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A B S T R A C T

Anomaly detection is still a challenging task for video surveillance due to complex environments and
unpredictable human behaviors. Most existing approaches train offline detectors using manually labeled data
and predefined parameters, and are hard to model changing scenes. This paper introduces a neural network
based model called online Growing Neural Gas (online GNG) to perform an unsupervised learning. Unlike a
parameter-fixed GNG, our model updates learning parameters continuously, for which we propose several
online neighbor-related strategies. Specific operations, namely neuron insertion, deletion, learning rate
adaptation and stopping criteria selection, get upgraded to online modes. In the anomaly detection stage, the
behavior patterns far away from our model are labeled as anomalous, for which far away is measured by a time-
varying threshold. Experiments are implemented on three surveillance datasets, namely UMN, UCSD Ped1/
Ped2 and Avenue dataset. All datasets have changing scenes due to mutable crowd density and behavior types.
Anomaly detection results show that our model can adapt to the current scene rapidly and reduce false alarms
while still detecting most anomalies. Quantitative comparisons with 12 recent approaches further confirm our
superiority.

1. Introduction

Recent years have witnessed the development of video surveillance
in public sites such as subways and airports. It is desirable to figure out
the rare or distinctive behaviors which are probably anomalous.
However, surveillance cameras capture a huge number of videos,
dealing with which human operators have to burden a large amount
of labor. With the development of artificial intelligence, this problem
can be resolved using automated anomaly detectors [1–3]. Extensive
works including supervised models [5–10] and unsupervised models
[15,16,18,22,24] have been proposed in recent years [4].

In this paper, we mainly focus on the unsupervised approach
without using manually labeled data. The aim is to detect human
anomalous events in changing surveillance scenes which contain
mutable crowd density and behavior types. To model the human
behaviors in changing scenes, Feng et al. [24] proposed an online
Self-Organizing Map (online SOM) model and obtained satisfying
results for detecting local anomalies in outdoor crowded scenes.
Compared with original SOM [26], online SOM model is more efficient
for its ability of adjusting learning rates and neighborhood sizes

according to changing scenes. However, as shown on the left of
Fig. 1, SOM has the inherent limitation that training samples have to
be fixed into a pre-structured lattice. This lattice structure make some
null neurons (red dots) far away from realistic samples (small black
points) and results in a bad representation of the data space. For
example, when an anomalous sample comes, it might match well with
one of the null neurons, thereby causing a missing detection. Besides,
the number of neurons in SOM has to be set in prior and keep
unchanged. However, it is very difficult to decide an optimal number in
advance, especially for modeling changing scenes.

To avoid these problems of SOM, this paper utilizes a more flexible
neural network called Growing Neural Gas (GNG) [32]. GNG learns
data topology utilizing competitive Hebbian learning [34], and it has
been successfully applied to tasks including gesture recognition [35],
trajectory modeling [58,59], supervised stream data classification [57]
and so on. Different from SOM, GNG organizes the topology of neurons
based on realistic sample locations, as shown on the right of Fig. 1.
Current inserted neuron (the blue dot) is determined by the regional
density of new samples. In another respect, GNG neurons are not
learned by the absolute distance in a fixed lattice but by the relative
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distances between samples, making the network more flexible to adjust
the number of neurons according to observations. However, in our case
of modeling changing scenes, GNG has its problem that it can not
change dominant learning parameters, such as learning rates, stopping
criteria and so on, which constrains its efficiency. Although Waniek
et al. [59] used GNG for real-time anomaly detection, they still used
fixed learning parameters. Beyer et al. [57] introduced a mechanism to
control the network size of GNG adaptively, but they conducted a
supervised classification relied on labeled textual data. In our case with
changing scenes and unlabeled data, it is desirable that the method can
adjust dominant learning parameters systematically and optimize the
model based on the realistic data [36,57].

An original GNG network is expanded by inserting neurons,
adjusted by learning neuron weights, refined by deleting neurons,
and continuously converges to the data space before stopping criterion
is satisfied. In this paper, our contributions consist of proposing an
online version of GNG (online GNG) to operate above steps with fully
self-adaptive parameters, and solving the anomaly detection problem
in changing scenes with time-varying anomaly thresholds.

For online GNG, we attempt to answer four specific questions: (1)
when and how to insert a new neuron, (2) how to adjust learning rates
to learn input samples efficiently, (3) how to define and delete useless
neurons, (4) when to stop the learning. Accordingly, we propose a
series of online neighbor-related strategies that utilize the relationships
between input samples and network neurons. In other words, when
each sample finds its nearest neuron, called the winner, the relation-
ships among the sample, the winner, and winner's neighbors will be
used for parameter self-adaptation.

In the online testing stage, it is assumed that an anomalous pattern
is significantly different from any learned neuron, for which signifi-
cantly different is measured by the Gaussian distribution of distances
between all samples and their winners [24]. To reduce false alarms in
noisy environments, this paper defines that an anomalous event
contains enough anomalous patterns, for which enough is defined by
the Gaussian distribution of anomalous patterns. Therefore, input
samples are used, at some point, not only to train the model but also
to update anomaly thresholds. This mechanism is very helpful for
reducing false alarms and missing detections caused by model aging
and threshold aging, making the online model converge to the changing
data space according to new observations.

1.1. Related works

Although this paper mainly focuses on the unsupervised anomaly
detection approach, many supervised approaches are very instructive

and meaningful in this research field.
Some supervised approaches [5–7] rely on labeled data and well-

defined rules to train the models of normal events. In the detection
stage, they classify those falling outside of these models as anomalies,
for which outside is usually defined by learning a threshold. Jodoin
et al. [5] estimated object paths and recorded the maximum amount of
activities occurring during the normal-only training. Any event which
caused the activity amount to exceed the threshold would be detected
as an anomaly. A similar method by Zweng and Kampel [6] drew a hit
map to record the pixel location of human activity through normal data
training. They used the hit map to generate an unexpected location
map where the activity did not occur. An anomaly alarm would be
triggered when enough activity intensity appeared in any unexpected
region. Dong et al. [7] combined pointwise motion images with
AdaBoost algorithm. In their work, a normal score range involving
motion speed, orientation, duration, and shape, was firstly learned
from the normal data, then any outlier of this range would be detected
as an anomaly.

A more complex idea than learning a threshold is to train a
multidimensional model of normal events [8–10]. Benezeth et al. [8]
created a co-occurrence matrix indicating when and where pixels had
active motion labels. They learned a normal co-occurrence matrix by a
Markov Random Field (MRF). Some other related works studied the
relationships between observed objects [9,10]. Loy et al. [9] first
decomposed a complex behavior pattern according to its spatial–
temporal visual contexts. Then, a normal behavior was formulated
with a cascade of Dynamic Bayesian Networks. Yao et al. [10] observed
the objects’ spatio-temporal relationships concerning their sources,
sinks, and intermediate tracks. If the probability of a hidden track were
lower than the learned threshold, the track would be recognized as an
anomaly.

These approaches have the benefit of not requiring any training
data for anomalous events or behaviors, which are often rare and
difficult to collect. However, they tend to produce a lot of false alarms,
since any pattern not sufficiently represented due to the limited
training data will be regarded as anomalous. To specify behavior
classes, some approaches perform manual labeling for training data.
Anomaly is identified if an observed pattern goes against all labeled
classes [11–13].

Yin and Meng [11] proposed Self-Adaptive Hidden Markov Models
to identify motions such as walking, sitting as normality, and more
complex ones such as crouching, falling as anomalies. Chen et al. [12]
utilized Hidden Markov Models to learn normal behaviors of swim-
ming such as breaststroke, backstroke, and anomalies such as grasping
ropes and struggling in the pool. Lao et al. [13] proposed a similar

Fig. 1. 2D visualizations of SOM and GNG networks. Both of them are generated to cover the same group of data samples. Colored dots indicates the network neurons and black lines
between pairwise neurons are edges which indicate the neighborhood information. (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this paper.)
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approach to detect robbery behaviors. In their work, only postures such
as pointing, squatting and lying down were recorded in the training
stage. Anomalous behaviors were defined using some specified rules on
the temporal relationship of these postures.

These models with supervised labeling have the drawback that only
properly defined events can be recognized reliably. Moreover, it is clear
that manual labeling needs too many offline operations and restricts
the application in changing scenes where behavior density and types
are mutable. Therefore, Xiang and Gong [14] proposed that supervised
approaches should be substituted by unsupervised ones which do not
require labeled data.

For unsupervised learning, anomaly definition is usually based on
following assumptions: (1) anomalous events infrequently occur in
comparison to normal events; (2) anomalous events have significantly
different characteristics from normal ones. Concerning specific algo-
rithms, recent unsupervised approaches are based on either sparse
coding or pattern clustering. Both sides have achieved the state-of-the-
art performance on many public datasets [47,45,16].

In sparse coding approaches, reconstruction costs are first pre-
optimized to find the best combination of normal events, then testing
samples causing higher costs are considered anomalous [15,16,18,22].
The problem lies in that sparse coding usually uses a very large
dictionary, therefore, the optimization step, i.e., searching suitable
basis vectors, is very time-consuming. In [16], Lu et al. proposed a
method to accelerate the search speed, but they still needed to evaluate
least square errors. Another example is that Zhu et al. [18] computed
the sparse coding costs using Earth Mover's Distance (EMD) with a
high computational complexity of O n x( log( ))3 . Different from sparse
coding approaches, clustering approaches detect the anomaly when the
distance between input sample and its nearest cluster center exceeds a
threshold and do not need take extra time to optimize basis vectors
[20,21,23,24].

In clustering algorithms, Artificial Neural Network (ANN) has
shown excellent performance with its ability on self-learning [25].
Among related algorithms for analyzing human behaviors, SOM has
been successfully used in online systems, e.g., [27,24,28]. SOM per-
forms competitive neuron learning [26], which is suitable for anomaly
detection. The key competitive mechanism is that major events can be
learned very well due to their strength in numbers while rare events are
usually in conflict with the majority. To promote SOM for handling
changing scenes, Feng et al. [24] proposed an online model of SOM,
which adjusts the learning rate and neighborhood size during training
the network. They tried to encode the primary behavior space into an
8×8 lattice of neurons after thousands of training epochs. In experi-
ments, their model performed successfully on detecting local anomalies
in crowded outdoor scenes.

As we mentioned, SOM has pre-structured lattice and its network
size can not be changed. Comparatively speaking, GNG can quickly
adjust the network topology and size according to input data. To make
GNG more efficient for modeling changing scenes, we propose an
online GNG model in the training stage and use a double Gaussian
window method to identify anomalous events automatically in the
testing stage. Quantitative results on three widely used anomaly
datasets, namely UMN dataset [47], UCSD Ped dataset [45] and
Avenue dataset [16], validate that our approach outperforms most of
the state-of-the-art unsupervised works for detecting both global and
local anomalies.

The rest of this paper is organized as follows. Section 2 briefly
introduces original GNG and discusses self-adaptive proposals for
online GNG. In Section 3, three neighbor-related strategies and a
dynamic stopping criterion are proposed to update parameters for
online GNG systemically. Local pattern descriptor and anomaly judge
rule are supplemented in Section 4. Section 5 demonstrates the
experiments on three recent datasets of human behaviors in public
surveillance scenes. Conclusions are given in Section 6.

2. Original GNG and self-adaptive proposals for online GNG

In this section, we firstly introduce the algorithm of original GNG.
Then, we discuss how to extend it to an online self-adaptive model.

2.1. Algorithm of original GNG

Growing Neural Gas (GNG) is an extension of neural-gas [31]. It
aims to find the optimal representation of feature vectors. Its name
comes from the behavior of feature vectors during the adaptation
process that distributes them like gas in space. This paper relies on the
original version of GNG introduced by Fritzke [32]. GNG network is
composed by:

• A set of neurons denoted as (the colorful dots shown on the right
of Fig. 1). Each neuron i ∈ has a weight vector w ∈i

D. Each wi

has the same dimension D with the feature vector of input pattern
(the small black points shown on the right of Fig. 1).

• A set of edges between pairs of neurons are denoted as (the black
lines between colorful dots shown on the right of Fig. 1). Edges are
not weighted, and their sole purpose is to define the topological
structure of neurons. An edge aging scheme is used to periodically
remove edges that are invalid due to the motion of neurons, and
then remove isolated neurons without any emanating edge.

Table 1 shows some dominant notations to be used.

1. Start the GNG network with two neurons a and b which have
random weight vectors wa and wb selected from feature space D.

2. Input a new pattern with feature vector x, x ∈ D.
3. Find the nearest neuron s1 (the winner) and the second nearest

neuron s2 (the second winner) by

s x w= arg min ∥ − ∥
s

s1
∈

2 (1)

s x w= arg min ∥ − ∥
s s

s2
∈{ ⧹ }

2
1 (2)

where Euclidean distance is used as the metric.
4. Increase the age of all edges emanating from s1.
5. Add the distance between x and s1 to error variable es1:

e e w x≔ + ∥ − ∥s s s 21 1 1 (3)

6. Move s1 and its direct neighbors n n( ∈ )s1 towards x by multi-
plying fixed learning rates ϵs1 and ϵn:

w w x w≔ + ϵ ·∥ − ∥s s s s 21 1 1 1 (4)

nw w x w≔ + ϵ ·∥ − ∥ , ∀ ∈n n n i s2 1 (5)

Note that es1, ws1, wn are time-varying variables, and this paper uses “≔”
to indicate their updates following Fritzke's work [33].

Table 1
Algorithm notations.

x The feature vector of an input behavior pattern, and x ∈ D. For
concision, this paper uses x to represent the pattern

N The number of neurons in
λ The number of input patterns in each training epoch
wi The weight vector of neuron i. It has the same dimension with input

feature x, i.e., w ∈i D

ei The error variable of neuron i. It updates when i becomes the winner

i The set of direct topological neighbors of neuron i
age i j( , ) The age of the edge that connects neuron i and neuron j

ϵs1 The learning rate of winner s1
ϵn The learning rate of winner s1's direct neighbor n, where n ∈ s1
α The error variable adjustment factor used in neuron insertion
β The global factor for adjusting all error variables used when a training

epoch ends (i.e., every λ inputs)
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7. If s1 and s2 are connected by an edge, set the age of this edge to
zero. If this edge does not exist, create it.

8. Remove edges with an age age i j( , ) that exceeds agemax. If it
results in some neurons without any emanating edge, remove
them.

9. If the number of input patterns so far is an integral multiple of λ
(i.e., each training epoch contains λ patterns, and here λ is a fixed
parameter), then insert a new neuron (e.g., the blue dot on the right
of Fig. 1) to network as follows:
(a) Select neuron q with the maximum error eq.
(b) Insert a neuron r halfway between q and its neighbor f which

has the largest error ef. Set w w w= ( + )/2r q f .
(c) Insert edges connecting r with q and f, and remove the original

edge between q and f.
(d) Decrease eq and ef by multiplying them by a fixed parameter α.

Initialize the error of r with eq.
10. Decrease all error variables by multiplying by a fixed parameter β

which is usually very close to 1.
11. If the stopping criterion (e.g., the maximum number of iteration) is

not yet fulfilled, go to Step 2. Else stop the learning, and return
and .

Dominant neuron operations are as follows. Learning towards a
sample occurs in Step 3-6 with fixed learning rates (Learning). In Step
7, the edge between the winner and the second winner of sample
creates an induced Delaunay triangulation [34]. Step 8 eliminates the
edge between neurons that no longer comprise this triangulation
because their ending neurons have moved. This results in some isolated
neurons to be deleted (Deleting). In Step 9, error variables determine
where it is necessary to insert a neuron (Inserting). Finally, the
learning is terminated (Stopping) when the stopping criterion is
fulfilled.

2.2. Self-adaptive proposals for online GNG

Inserting: Original GNG inserts neuron only between existing
neurons, assuming that all input patterns obey the same distribution.
However, most crowds act non-cross behaviors with multiple modal-
ities [49], for which internal network expansion is not efficient. It is
necessary to insert outer neurons as in [36]. Moreover, online GNG
preserves the inner insertion of original GNG, and the associated
parameters, namely λ, α and β, should be carefully selected since they
may influence model efficiency.

Learning: In original GNG, the winner and its neighbors learn
input patterns at fixed learning rate. Article [50] indicates that
appropriate learning rate is crucial for constructing fast and robust
self-organizing networks, in particular, for handling time-varying data.
This paper hence studies a self-adaptive scheme for learning rates,
making the model converge to the data space more efficiently.

Deleting: During the learning of original GNG, if the number of
inputs so far is an integer multiple of λ, edges with the age value that
exceeds agemax are deleted and then neurons with no topological
neighbor are removed. This paper tackles changing surveillance scenes
which contain a mutable quantity of behavior patterns, therefore, the
network can hardly assign agemax with no basis. In other words, the
deletion rule is hard to set. To solve this problem, this paper proposes
to delete neurons with relatively low “density” which is a novel variable
to combine the frequency of the neuron being a winner with the
distances between the neuron and its neighbors.

Stopping: Original GNG can use different stopping criteria such as
the maximal number of neurons and the minimal error between two
training epochs. However, these fixed criteria have not been evaluated.
It may be hard to use them for measuring the convergence of changing
surveillance data. This paper, therefore, proposes a dynamic stopping
criterion to measure whether the current network learns the data space
well enough.

3. Online GNG

Above self-adaptive proposals compose the core idea of online
GNG. This section first introduces three neighbor-related strategies to
realize the proposals of inserting, learning and deleting, respectively.
Related parameters get adjusted in a time-dependent manner to ensure
the network best modeling the current data space. Then, a variation of
Cluster Validity Index (CVI) [56] called Silhouette Index [55] is used to
measure the network performance and to set a dynamic stopping
criterion, i.e., for the last proposal.

3.1. Neuron insertion

Unlike original GNG, online GNG expands the network by addi-
tionally inserting outer neurons. First, the neighbor-related distance
threshold will be defined for each neuron following Shen's work [36].
Then, distance thresholds will determine whether an input pattern is
distinctive enough to be an outer neuron or not.

When a pattern with its feature vector x comes in, online GNG finds
the winner s1 and the second winner s2, following Step 3 of original
GNG. Then, it judges whether this pattern is distinctive enough from s1
or s2 by comparing with the distance threshold T computed as follows:

If si, where i = 1, 2, has directly connected neighbors, then the
distance threshold Tsi is calculated using the maximum distance
between si and its neighbors:

T w w= max ∥ − ∥s
n

s n
∈

2i
si

i (6)

where wsi is the weight of si, and si is the neighbor set. If neuron si has
no neighbor, the distance threshold Tsi is defined as the minimum
distance between si and other neurons:

T w w= min ∥ − ∥s
n s

s n
∈ ⧹ { }

2i
i

i (7)

During learning, online GNG updates a neuron's distance threshold
when it becomes the winner or second winner. Assuming that there are
N neurons in the network, the costs of traversal comparisons are no
more than N4 × .

The outer neuron insertion rule is as follows. If the distance
between a new pattern and its winner si, where i = 1, 2, is greater
than threshold Tsi, this pattern will be inserted as an outer neuron x to
represent the first neuron of a new class. Its distance threshold Tx will
be initialized as +∞. In particular, Fig. 2(a) shows an example in which
the distance between the input x and its winner s1 is greater than Ts1.
Online GNG inserts an outer neuron x whose initial neuron weight is x,
as illustrated in Fig. 2(b). Otherwise, if the distance between x and si is
shorter than Tsi, x will be learned by s1 and s1's neighbors i and j, as
shown in Fig. 2(c).

Besides inserting outer neurons, our online GNG also preserves
inner insertion as in the original GNG, i.e., a new neuron is added every
λ inputs and its directly connected neighbors decrease their error
variables with a fixed parameter α, as given in Section 2.1 Step 9. To
model changing scenes, however, online GNG uses unfixed λ and α.
More specifically, λ is set following the speed of pattern input, e.g. the
number of patterns observed every second by detectors like spatial–
temporal interest points [41] and cuboids [42]. This scheme is simple,
but it can combine scene changes directly with the model update. For
parameter α, since it is tough to justify the theoretical value [37,38],
this paper learns its candidate by performance validation on many
samples. More details are given in algorithm in Section 3.5 and
experiment in Section 5.1.

3.2. Learning rate adaptation

To learn the input pattern, the winner and its neighbors will change
their weights by multiplying rates ϵs1 and ϵn. Previous works such as
[24,36] indicate that using time-dependent learning rate is helpful for
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modeling changing data. In the study of an improved GNG called Self-
Organizing Incremental Neural Network (SOINN) [36], Shen and
Osamu adopted a scheme similar to k-means to adjust learning rates
as:

⎧
⎨
⎪⎪

⎩
⎪⎪

t
M t

t
M t

n

ϵ ( ) = 1
( )

(8)

ϵ ( ) = 1
100 ( )

, ∀ ∈ (9)

s
s

n
n

s

1
1

1

where M t( )s1 represents the number of input patterns for which neuron
s1 has been a winner until time t. One time unit corresponds to each
discrete insertion of input. This scheme slows down the learning
process when s1 becomes the winner for more and more patterns. It
is hence useful to stabilize the weights of neurons which have gotten
enough training. While this scheme focuses on learning frequencies, it
does not decrease the error variables among irregular patterns which

usually have different distances to their winners. In contrast, Feng et al.
[24] adjusted the learning rate for online SOM using a feedback
mechanism. Their approach took the effect of error variable into
consideration and demonstrated that when an input is far away from
its winner and causes a big error, it is necessary to increase learning
rate to adapt to it.

Inspired by these ideas, we adjust learning rates considering both
the frequency of neuron being a winner and the distance between the
input and the winner. They are formulated as follows:

⎧
⎨⎪

⎩⎪
t t e

t t e n

ϵ ( ) = ϵ ( )· (10)

ϵ ( ) = ϵ ( )· , ∀ ∈ (11)

s s

s
Ts

n n
n

Tn s

x w

x w

∥ − 1∥2
1

∥ − ∥2
1 1

1

where Ti has been defined in Eq. (6).
Eqs. (10) and (11) enable the network to adjust its neurons at

appropriate step sizes. For example, if the distance between the input
and its winner is large, the winner should adjust its weight fast.
Meanwhile, if the winner is mature by winning enough number of
patterns, this acceleration can be decreased.

For comparison, we record accumulated errors from different
settings of learning rates for original GNG (ϵ = 0.1s1 , ϵ = 0.01n ),
SOINN (Eqs. (8) and (9)), online SOM (Eq. (7) in [24]), and online
GNG (Eqs. (10) and (11)) respectively. Fig. 3 shows that online GNG
gets the lowest accumulated errors in each training epoch. When
samples at 40–60 epochs cause an interference, online GNG learns best
and generates the smallest peak.

3.3. Neuron deletion

Neuron deletion is essential for learning human behaviors in
changing scenes, e.g., crowd density gradually decreases from day to
night. Besides, it also helps to reduce false negatives, i.e., missing
detections. A prior assumption is that neurons caused by noises or
anomaly events have significantly lower probability density than
normal neurons. Shen et al. [36] identified low-density neurons by

Fig. 2. The difference between online GNG and original GNG for learning a distinct pattern. If the new pattern x is far away enough from its winner neuron s1, online GNG will create an
outer neuron based on x in (b), while original GNG just adjusts current neurons in (c). In these figures, A′ is the next state of A. L indicates the distance from a new pattern x to its winner
s1. es1 is the error variable of s1. Neurons i, j are direct connected neighbors of s1. Patterns inside the dashed circles are previous data clustered to s1.
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Fig. 3. Different accumulated errors (accumulated in each epoch) using different
learning rates. Each epoch has 100 input samples extracted from the scene 1 of UMN
dataset [47]. Initial accumulated errors are different since the first two GNG neurons are
random. Note that all results are averaged over 10 runs.
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defining a new density. During learning period, the frequency of the
neuron being a winner is recorded and used as its density. If a neuron
has fewer than two neighbors and has a lower density than the fixed
threshold, it will be deleted.

Although the frequency of being a winner defining the neuron
density seems reasonable, it has a problem that usually there are a
significant amount of neurons in the high-density region, and the
average chance for each neuron being a winner may not be higher than
a neuron in the low-density region. Moreover, the fixed threshold is not
suitable to segment the low-density region especially when the data
space keeps changing. This paper proposes an improved strategy to
achieve more reasonability. A score is defined to replace the frequency.
It combines the frequency of the neuron being a winner with the
relationship between the neuron and its neighbors.

Firstly, when neuron i is the current winner, the average distance
disti between neuron i and its neighbors in set i can be calculated as:

dist
w w

=
∑ ∥ − ∥

| |
,i

j i j

i

∈ 2i

(12)

and the score of neuron i is calculated as:

score e=i
dist− i (13)

Eqs. (12) and (13) indicate that if neuron i is far from its neighbors, i.e.,
the region around i is sparse, i will get a low score for representing the
characteristic of this low-density region. Otherwise, neuron i will get a
higher score.

After K epochs of learning, the accumulated score asi of neuron i is
defined as:

∑ ∑as score k j= ( , ),i
k

K

j

λ

i
=1 =1 (14)

where λ is the number of input patterns in each epoch.
The mean accumulated score in each epoch is as follows:

∑ ∑as
K

score k j= 1 ( , ),i
k

K

j

λ

i
=1 =1 (15)

where scorei is in the interval (0, 1). Upon each input, only the score of
winner i is updated, but the scores of other neurons j j i( ≠ ) are set to 0.
In other words, the accumulated score asi will be changed, but other
asj j i( ≠ ) remain unchanged. Finally, the network deletes the neuron j
with as as<j thr , where asthr is a self-adaptive threshold in our approach.

An example of using a simple threshold as = ∑thr j
N as

N=1
j to control

neuron deletion is given in Fig. 4. It shows that our deletion strategy
reserves high-score neurons. In Section 3.5, Step 9(f), asthr will update
online based on the stopping criterion in Section 3.4.

In summary, both original GNG and SOINN use fixed conditions for
neuron deletion, e.g., original GNG uses a fixed agemax, and SOINN
additionally deletes neurons with less than two neighbors. In contrast,
our strategy depends on the frequency of the neuron being a winner as
well as the relationship between the neuron and its neighborhood
which are more objective and reasonable. More importantly, the only
parameter asthr is a self-adaptive parameter.

3.4. Stopping criterion

Online GNG updates network size continuously. To avoid over-
flowing, it is better to set a threshold on how many neurons are enough
for representing current data space. Moreover, the threshold should be
adjusted as time goes by for handling changing scenes. This paper
presents a novel proposal of dynamic stopping criterion based on
Cluster Validity Index (CVI) [56], which is usually used to measure the
partition performance of clustering algorithm. This paper uses a
variation of CVI called Silhouette Index (Sil) [55] for its outstanding
performance in estimating sparse multidimensional clustering shown

in [56].
Silhouette Index in conjunction with the network learning is

formulated as follows:

∑ ∑Sil t
N t

d i t d i t
d i t d i t
x x

x x
( ) = 1

( )
∥ ( , ; ) − ( , ; )∥
max{ ( , ; ), ( , ; )}i tx∈ ∈ ( )

1 2 2

1 2i (16)

where N t( ) is the number of neurons in until time t, and t( )i
represents the set of input patterns for which neuron i has been a
winner. Meanwhile,

∑d i t
t

x x y( , ; ) = 1
| ( )|

∥ − ∥
i ty

1
∈ ( )

2
i (17)

indicates the cohesion measured by the distance between all the
patterns assigned to neuron i, and
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indicates that the separation among neurons is measured by the
nearest neighbor distance.

Sil(t) measures the effectiveness of online GNG modeling on input
data at time t. Based on this index, we propose a dynamic stopping
criterion to decide when to stop changing the network size (but not stop
the training). First, the CVI error Esil(t) is computed by:

E t Sil t Sil t( ) = ( ) − ( − 1)sil (19)

When Esil(t) is continuously smaller than a tiny residual denoted as
Ethr, i.e., E t( ) → 0sil , it means input samples are well represented by
the current number of neurons. Then, the threshold asthr mentioned in
Section 3.3 can be used to ensure that the number of deleted neurons
equals to the number of inserted neurons. Details are given in Section
3.5, Step 9.

As illustrated in Fig. 5, online GNG network reaches a stable size
after 200 training epochs. Note that our “stopping” is a dynamic
replacement of neurons. Insertion and deletion synchronously regulate
network states with time goes by.

3.5. Algorithm of online GNG in changing scenes

This section gives the complete algorithm of online GNG based on
proposed self-adaptive strategies. It takes the scene-changing videos
into account.

Table 2 shows some dominant notations to be used.

1. Initialize neuron set to include a, b with w w, ∈a b
n randomly

chosen from input pattern set (1), where superscript indicates the
first video frame. Initialize connection set , ⊂ × , to be
empty. Set nnew and λ to be 0.

2. Extract a new feature vector x from frame k, i.e., x ∈ k( ). Input x,
and λ λ≔ + 1.

3. For x, search for the winner s1 and the second winner s2 by Eqs. (1)
and (2).

4. If the distance between x and s1 (or s2) is greater than the distance
threshold Ts1 (or Ts2) computed by Eq. (6) or (7), then x generates an
outer neuron, i.e., if

T Tx w x w{∥ − ∥ > } ∨ {∥ − ∥ > }s s s s2 21 1 2 2 (20)

then insert a new neuron x with x≔ ∪ { }, w x=x , n n≔ + 1new new ,
T x w= ∥ − ∥x s 21 and go to Step 2 to process the next input. Else, go to
the next step.
5. If a connection between s1 and s2 does not exist, create it and add it

to as s s≔ ∪ {( , )}1 2 .
6. Add the distance between x and s1 to error variable es1 by Eq. (3).
7. Update the mean accumulated score ass1 of s1 by Eqs. (12)–(15).
8. Adjust the weight vector of winner s1 and its direct topological

neighbor n (n ∈ s1) by multiplying tϵ ( )s1 and tϵ ( )n (Eqs. (10) and
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(11)) by the distance between x and s1 as follows:

tw w x w≔ + ϵ ( )·∥ − ∥s s s s 21 1 1 1 (21)

t nw w x w≔ + ϵ ( )·∥ − ∥ , ∀ ∈n n n n s2 1 (22)

9. If the patterns on current frame k have been completely observed,

i.e., λ increases to | |k( ) , insert an inner neuron and delete low-
density neurons as follows:
(a) Find the neuron q with the maximum error eq.
(b) Among the neighbors in set q, find the neuron f with the

maximum error variable ef.
(c) Add neuron r to neuron set r≔ ∪ { }, n n≔ + 1new new , and

tween-interpolate its weight vector as: w w w= ( + )/2r q f .
(d) Insert edges connecting new neuron r with q and f, and remove

the original edge between q and f: q r r f≔ ∪ {( , ), ( , )},
q f≔ ⧹{( , )}. Initialize er and asr respectively with eq and asq .

(e) Decrease the error variable of q and f by fraction α: e αe≔q q,
e αe≔f f . Meanwhile, decrease the mean accumulated score of q
and f as: as γas≔q q , as γas≔f f .

(f) The first situation with asthr being null: Compute Esil(t) by
Eqs. (16)–(19). If E t E( ) ≥sil thr , then rank the mean accumu-
lated scores of all neurons in a decreasing order, and delete the
bottom neuron i and its edges. That is i≔ ⧹{ }, and

i≔ ⧹{( , *)}, where i( , *) indicates the edges connected to i.
Else if E t E( )<sil thr, rank the mean accumulated scores of all
neurons in a decreasing order, and delete the bottom nnew
neurons and their edges. Update asthr with the minimum mean
accumulated score in current network, i.e., as as= min { }thr i i∈ .

The second situation with asthr assigned: Compute Esil(t)
by Eqs. (16)–(19). If E t E( ) ≥sil thr , compare the mean accumu-
lated score of all neurons with asthr . Deletes all neurons j when
as as<j thr , and remove their edges. Else if E t E( )<sil thr , do the
same operations of The first situation.

(g) Set both nnew and λ to 0.
10. Go to Step 2 to continue the training. When it comes to the testing

stage, return current and to give an anomaly judge on input
patterns and take in normal patterns for training.

Note that online GNG works in an online training-testing mode,
and there is no real stop in Step 10. The “stop” here indicates the
network size stops expanding, meanwhile, the network keeps on
training.

4. Supplements to anomaly detection

In this section, we introduce the pattern descriptors used in
surveillance scenes. Then, we define the anomaly judge rule in quantity
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Fig. 4. Neuron deletion with a threshold as = ∑thr j
N asj

N=1 . Important notes are as follows. (1) The “neuron index” on x-axis implies that neurons are generated one by one, e.g., the

450th–540th neurons in (a) are generated after 400 training epochs. (2) The x-axis value of each curve's endpoint indicates the current quantity of neurons in the network after hundreds
of training epochs. For example, as shown in (b), about 100 neurons are preserved after 200 training epochs. (3) “neuron index=100 and mean accumulated score=560 on the red curve
in (a)” indicates when the network is trained for 500 epochs, the mean accumulated score of the 100th neuron is 560. (4) Each epoch contains 100 patterns extracted from UCSD Ped1
dataset [45]. All presented results are averaged over 10 runs. (5) It is shown in (b) that our neuron deletion strategy only preserves high-score neurons, e.g., only 300 neurons are
preserved after 500 epochs.
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Fig. 5. The change of the network size is recorded for each model. Training samples are
from UCSD Ped1 dataset [45]. For comparison, online SOM is set to a 17×17 lattice of
neurons, close to the gradually stabilizing size of online GNG. Note that all results are the
average of 10 runs, and average accumulated errors are marked at 200, 400 epochs.

Table 2
Algorithm notations.

asi The local mean accumulated score of neuron i. It is updated when i is the
current winner

Ti The distance threshold of neuron i. If the distance between an input
pattern and neuron i is larger than Ti, the input pattern generates a new
neuron

nnew The number of newly added neurons in each training epoch

tϵ ( )n The learning rate of winner neuron s1 at time point t

tϵ ( )n The learning rate of winner neuron s1's direct neighbor neuron n
(n ∈ s1) at time point t

α The error variable adjustment factor used in neuron insertion
γ The mean accumulated score adjustment factor used in neuron insertion
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according to general assumptions that anomaly means rare or dis-
tinctive events in contrast with normal ones.

4.1. Pattern description

Abnormal events can be divided into two categories [15]: global
abnormal event (GAE), where the whole scene is unnatural like group
panic; local abnormal event (LAE), where the local behavior is different
from its neighbor regions. Both are illustrated in Fig. 6.

A reliable descriptor of behavior pattern is critical for distinguishing
different behavior classes. Many image descriptors are available, as
shown in the survey article [4]. This paper focuses on public surveil-
lance scenes, where there are crowds of people, and it is very hard to
segment individuals [46]. In our previous works [27,29,30], we utilized
local motion descriptors [45,40,42] for action recognition. Moreover,
such descriptors have been successfully tested in similar cases of
anomaly detection [24,46]. Although our approach in this paper can
be applied regardless of the elaborate choice of pattern descriptor, we
select different local motion descriptors for different surveillance
scenes to benefit from the accuracy they bring. Other descriptor
analysis for anomaly detection can be found in a newly published
article [62]. Sparse interest points (STIP) [40] are utilized for describ-
ing GAE scenes such as the crowd panic in Fig. 6(a). In contrast, dense
cuboids [42] tend to describe more details than STIP. It is hence
chosen for detecting the LAE in the scenes like Fig. 6(b) and (c).

4.2. Anomaly judge rule

Anomaly detection has the assumption that online GNG sum-
marizes the high-density region of behavior space into a limited
number of neurons, and it is hard for an anomalous pattern to be
close to any one of these neurons [24]. Based on this assumption, we
then define the anomaly judge rule by using Gaussian smoothing
window as follows.

The distance between the input sample and its winner is assumed to
be conforming to the Gaussian distribution whose mean μfeature and
variance σfeature are easily computed. To decide whether a new
pattern is anomalous, we first find its winner and record the distance
between them. If this distance is larger than the overflowing threshold:

th μ σ= + 2overflowing feature feature (23)

then this pattern will be labeled as an anomalous pattern. When
detecting GAE, very few anomalous patterns are insufficient to make
the conclusion, especially in noisy scenes. Therefore, we confirm the
abnormity after observing enough anomalous patterns, i.e., if the
number of anomalous patterns goes over anomaly threshold:

th μ σ= + 2anomaly overflowing overflowing (24)

then the GAE is confirmed. In this definition, μoverflowing and
σoverflowing respectively represent the mean and the standard devia-
tion of anomalous pattern quantities. This threshold involves the
conservative estimate of noises, and thus can resist the false alarms

caused by sparse noises.
For LAE detection, the input frame is split into grids, and dense

cuboid features are extracted in each grid. Then, above GAE detection
method is applied to a grid to decide whether it is anomalous or not.
Frame 1 and frame 2 in Fig. 7(b) contain some abnormal patterns
which go over thoverflowing but cannot cause anomalous events.
Specifically, small-region noises on flickering light (frame 1), walking
pedestrians and shaking vegetation (frame 2) are filtered out for not
having enough anomalous patterns. Fig. 7(b) marks the abnormal
events detected by thanomaly in red grids.1

4.3. Relationship with online SOM

Both online SOM [24] and online GNG are based on the competitive
neural networks. Online SOM organizes a certain number of neurons in
a lattice, and its online indicates that the neighborhood size and
learning rate continue updating. It ignores the discussion of using
different network sizes and topology. In contrast, GNG network has a
more flexible topological structure, and the network size can be easily
changed online. Moreover, online GNG achieves the update of all
dominant learning parameters using neighbor-related strategies with
clear statistical meanings. It exploits the advantages of both online
SOM and original GNG, and can achieve better performance theoreti-
cally.

5. Experiments and discussions

Our anomaly detection approach has two conceptual stages: the
training stage of online GNG and the testing stage using anomaly judge
rule. Experiments are implemented in 3 public datasets filmed in
changing surveillance scenes. UMN dataset [47] is used to detect GAE,
while UCSD Ped1 dataset [45] and Avenue dataset [16] are used for
LAE detection. The frame-level measurement is used to evaluate GAE
detection while both frame-level and pixel-level measurements are
used for the evaluation of LAE detection. Both measurements are
defined in [45] that if more than 40% of ground truth anomalous pixels
are detected, the corresponding frame or grid is considered as a correct
detection.

We demonstrate quantitative comparisons with 12 recent ap-
proaches [44,24,45,48,15,16,61,60,18,51,53,52], which are tested on
the datasets in common. We show our approach outperforms theses
approaches in terms of Receiver Operating Characteristic (ROC) [45],
Area Under ROC Curve (AUC) [45], number of correct detections [16],
and number of false alarms [16].

5.1. Parameter preferences

In GNG related works [24,36], researchers attempt to adjust

Fig. 6. GAE refers to the cases such as people running away in panic [47] in (a). LAE refers to the distinctive events such as a car crossing sidewalk [45] in (b) and a man running fast
across subway entrances. Red grids mark the anomalous events.

1 For the statistic of anomalous pixels, only red pixels inside red boxes are counted. In
following video snapshots, we omit red pixels for clearness, and only use red grids to
indicate the locations of anomalous events.
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dominant parameters like learning rates ϵ , ϵs n1 , and keep some para-
meters like α, β unchanged. In online GNG, neuron insertion and
deletion involve following undetermined parameters: λ, α, γ and Ethr.
These parameters may affect our model efficiency. Hence, we propose
specific schemes for parameter preferences.

At first, λ represents the number of input samples in each epoch and
controls the neuron insertion period of original GNG. However, the
insertion of online GNG dominantly relies on outer neuron selection,
making the periodical influence brought by λ extremely weak. On the
other hand, λ controls the neuron deletion frequency of online GNG.
Although our neighbor-related strategy removes neurons based on
network topology so that candidates in low-density regions tend to be
eliminated, λ might make a difference before generating a mature
network topology. This paper uses the pattern number on each video
frame to define λ, as shown in Section 3.5, Steps 1, 2, 9, and 11. It
means that network trimming is following the pace of observation, e.g.,
fewer patterns motivate a higher frequency of trimming, yielding fewer
neurons to represent fewer patterns. The average pattern number of
consecutive 5 frames is used for each frame to prevent the frame drop
caused by the failure of feature detectors.

For fractions α and γ, we refer to the conclusions of corresponding β
and γ in Shen's works [36,39]. They analyzed that Voronoi regions
method could be used to determine that α = 2/3 and γ = 3/4 under a
supposition that signals are uniformly distributed over Voronoi re-
gions. However, this supposition is untenable for some tasks, and
resulting parameters may not be optimal. Fortunately, they drew the
conclusion that the model is not very sensitive to the choice
of these two parameters through extensive experimental
validation on both stationary and non-stationary environments. This
paper extends Shen's experiments, and tests
α γ( , ) = {(2/3, 3/4), (2/3, 1/2), (1/2, 1/2), (1/4, 3/4)} by performance va-
lidation on behavior data. We select the optimal pair that brings the
minimum accumulated error after the first thousand of training
epochs. Finally, α γ= = 1/2 are selected for UMN and UCSD Ped1/
Ped2 datasets, and α γ= 2/3, = 1/2 for Avenue dataset.

Finally, we have an arbitrary parameter Ethr, which is a tiny
residual and works in the Step 9(f) of online GNG algorithm. We set its
value to be 0.0001 for all datasets.

For original GNG, there is no parameter self-adaptive scheme. Its
constant parameters in Section 2.1 are set as follows: ϵ = 0.1s1 ,
ϵ = 0.01n , age = 200max , λ=100, α = 1/2, and β=0.99.

5.2. Tests on UMN dataset

UMN dataset contains 2, 6, 3 panic events respectively in three
indoor and outdoor scenes. Each event starts with some typical
behaviors such as walking and hand waving, then ends with a short
emergent panic. Normal/anomalous events and corresponding local
features are shown in Fig. 8. On this dataset, online GNG training
begins just as the feature vectors are input, and so does the testing. In
the beginning, neurons are learning by first coming normal features.
When a panic pattern comes, it will be figured out immediately since it
is far from existing neurons. If a number of such patterns are observed,
an anomaly is detected. In the meantime, online GNG keeps on
training, in which neuron insertion and deletion cooperate to avoid
anomaly patterns invading the model.

Statistics and final detection results of 3 scenes are shown in Fig. 9.
It can be seen that overflowing threshold (blue line) and anomaly
threshold (red line) fluctuate. For example, in Fig. 9(a), overflowing
threshold and anomaly threshold are first learned with the features on
frames 1–450, then they suddenly go up when the anomalous patterns
on frames 450–600 come. After this short disturbance, normal patterns
on frames 600–1300 are input, making these thresholds decline to
their original levels gradually. Therefore, input data affect the anomaly
threshold directly and automatically.

As shown in Fig. 9, anomaly value indicates the anomaly state of
each video frame. Colors except blue denote the occurrence of GAE.
The closer to red, the severer GAE is. The ground truth by manual
labeling and the result of original GNG are given for comparison. It is
clear that online GNG makes less false alarms than original GNG.
Especially, online GNG avoids many false alarms in the beginning,
because online GNG can insert outer neurons and quickly expand the
network when different classes are observed for the first time.
However, missing detections occasionally occur, for example after the
1400th frame in scene 1. This is because people gradually escape out of
view in the video, leaving behind too few patterns being observed to

Fig. 7. UCSD Ped2 anomaly samples detected by using thoverflowing, then using thanomaly. Red marked pixels in (a) and (b) indicate the overflowing features (anomalous patterns).
In (b), LAEs in red grids are confirmed by thanomaly, and red pixels outside the grids are background noises. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)
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exceed anomaly threshold.
In this test, original GNG is limited to have no more than 300

neurons, and in fact, it always reaches this maximum number. In
contrast, online GNG learns a necessary number of neurons with slight
fluctuation around the average quantities 89, 93, and 112 in 3 scenes,
respectively. It uses fewer neurons but obtains better performance.
Moreover, the average distances between all observed patterns and
winners are 7.6367 in online GNG and 21.8853 in original GNG,
indicating that online GNG converges to the behavior space better.

For quantitative comparison, we present the results of Area Under
Curve (AUC) in Table 3. AUC results of [44,48,45,15,18,51,53,52] are
also given. The AUCs of our approach vary from 0.9928 to 0.9987 with
the average 0.9965 which is lower but comparable to the highest record
0.997 in [18]. Zhu et al. [18] computed sparse coding costs using Earth
Mover's Distance (EMD) [19] with a complexity of O n x( log( ))3 . Yuan
et al. [52] proposed a robust multi-object tracker, and they also used

Fig. 8. Three crowd scenes on UMN dataset. Yellow circles represent the local features extracted by Laptev's detector [41]. Note that the anomaly marks in the second row are from raw
videos. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 9. Our anomaly detection results compared with original GNG in UMN scenes 1–3.

Table 3
Comparing AUCs with the state-of-the-art approaches in UMN dataset. The simple
acronyms in brackets are used for other experiments.

Approach Area under the curve

Chaotic invariants 2010 [48] 0.994
Non-negative sparse coding 2014 [18] 0.997
Social force (SF 2009) [44] 0.949
Hierarchical MDTs with CRF (MDT 2013) [45] 0.995
Sparse reconstruction cost (SRC 2013) [15] 0.996
Unsupervised kernel learning (CCUKL 2014) [51] 0.980
Histogram with SVDD model (Hist+SVDD 2016) [53] 0.9833
Online Structural Analysis (OADC-SA 2015) [52] 0.9967

Online GNG scene 1 0.9980
Online GNG scene 2 0.9928
Online GNG scene 3 0.9987
Online GNG average 0.9965
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EMD measurement for anomaly detection. Though both of them
achieved slightly better results than ours, we use a simple Euclidean
distance which yields a much faster computational speed.

5.3. Tests on UCSD Ped1/Ped2 dataset

UCSD Ped1/Ped2 datasets have been well tested in recent works
[15,16,44,60,61,45,51–53]. Ped1 scene contains 70 crowd clips with
34 clips of normal-only behaviors for training and other 36 clips for
testing. Videos are acquired with a stationary camera. Ped2 scene is
with pedestrian movement parallel to the camera plane, containing 16
training video samples and 12 testing video samples. In both scenes,
pedestrian density changes from sparse to very dense. Anomaly
indicates the local occurrence of the non-pedestrian entity in walkways
such as truck crossing, people skating and biking. On this dataset,
model training starts using normal clips, and it goes on by using the
normal events observed in the testing stage.

Unlike UMN dataset, Ped1/Ped2 scenes both contain the local
anomaly events (LAE). Hence, each frame is divided into 7×7 grids
following [15]. Dense cuboid features [42] are detected on each grid. If
a grid contains a number of anomalous features over anomaly thresh-
old, it is labeled as LAE.

Example snapshots of successful/failed detections in Ped1 scene are

shown in Fig. 10. Our approach detects most of the distinctive LAEs
such as skating, riding a bike, crossing the grassland, and car crossing.
Wrong detections and undetected events are marked with white
arrows. They are possibly due to body occlusions and shadows, which
might be alleviated by using sophisticated crowd features, e.g., the gait
feature in conjunction with the temporal consistency of local appear-
ance [54]. Our online model does not use this feature for its high
computational complexity.

In Fig. 11, we count the number of failure frames in 36 testing clips.
It is worth noting that cyan and green curves show many fluctuations
due to the different complexities of different clips. The stable tendency
is that failure frames in later stages become much less than those in the
beginning, which can be figured out from total frames dropping off
from 55 (in clip-1) to 10 (in clip-36). The reason is that our online
model does not stop learning even in testing stages, i.e., initially trained
using 34 normal clips, then continues this training during the testing of
36 clips. Our model converges toward the behavior space better and
better as long as there is new pattern observation.

Following [16,45,51,53,52], we plot the Receiver Operating
Characteristic (ROC) curves using frame-level and pixel-level measure-
ments, as given in Fig. 12. Involved approaches are with following
abbreviations: Hist+SVDD 2016 [53], OADC-SA 2015 [52], CCUKL
2014 [51], SS 2013 [61], MDT 2013 [45], Fast SC 2013 [16], SRC 2013
[15], SF 2009 [44], SF+MPPCA 2009 [60], online SOM 2010 [24],
original GNG, and our online GNG.2

In Fig. 12, it is clear that our online GNG demonstrates the best
performance in both scenes. The main reason could be that most other
approaches use limited training samples for modeling while our online
model keeps on training to improve itself also in the testing stage. Our
self-adaptation strategies take full advantage of current input data to
update dominant learning parameters. Therefore, they help to reduce
false alarms caused by model aging. Meanwhile, the strategy of neuron
deletion significantly reduces false negatives resulting from anomalous
neurons. Particularly, Fig. 12(a) and (c) show that our approach
achieves higher AUCs over the state-of-the-art Unsupervised Kernel
Learning with Clustering Constraint model (CCUKL) [51] and
Semiparametric Scan (SS) model [61] by frame-level measurement.

Fig. 10. Example results on UCSD Ped1. Although there are some false alarms and missing detections (pointed out by white arrows), most anomalous events such as biking, skating, car
crossing and their co-occurrences are well detected. Note that red pixels are omitted for clearness. More results can be found in our Supplementary demo.
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Fig. 11. The number of false frames drops off during the training-testing procedure with
more and more video clips input.

2 We do not provide the comparison with a newly published article [62], since we
cannot get the detailed results from its experiment section. Its ROC curves in Fig. 17
show that its results on UCSD Ped1 and Ped2 datasets are not very competitive to Fast SC
2013 [16] and MDT 2013 [45], respectively. These comparisons can be used as reference.
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Fig. 12(b) shows that our approach has very comparable performance
to the best result of SS model [61] in detecting anomaly locations by
pixel-level measurement which signifies the precision for anomaly
positioning. Intuitive comparisons are given in Fig. 12(d).

The disadvantage of our approach could be the lower computing
speed because online parameter adjustment consumes computing
resources. For example on UCSD Ped1 (360×240 resolution videos),
the speed of our approach (0.073 second/frame) is about 10 times
slower than that of Fast SC (0.00697 s/frame) [16]. However, this
speed is fast enough for processing videos at about 15 fps, offering an
efficiency guarantee for real environment applications.

5.4. Tests on avenue dataset

Avenue dataset [17] is the newest anomaly detection dataset
proposed by Lu et al. [16]. There are 16 training videos and 21 testing
videos. The average video length is about 2 minutes. In total, 38

discontinuous anomalies such as running, throwing objects, and
loitering are observed. Following the settings in [16], we segment the
image plane into 12×16 grids, then detect LAEs. On this dataset, model
training starts using training videos, and it keeps on when detecting
anomalies in testing videos.

Examples of anomaly detection are presented in Fig. 13. In the first
row, a man is throwing papers and another man is running across the
view at a high speed, which are distinctive events in front of a subway
entrance. In the second row, the left snapshot shows an anomaly when
the man picks up white papers from the ground. Meanwhile, an
occasional false alarm is caused by a pedestrian nearby subway exit.
Another false alarm occurs in the snapshot on the right side, due to the
complex texture on a girl's handbag.

To analyze the contribution of our self-adaptive proposals, namely
outer neuron insertion, neuron deletion and learning rate adaptation
(l.r. adaptation), we test each of them in conjunction with other
components from original GNG. Final detection results are given in

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tru
e 

po
si

tiv
e 

ra
te

Hist+SVDD 0.85
OADC−SA 0.91
CCUKL 0.9288
SS 0.87
MDT 0.84
Fast SC 0.9180
SRC 0.8600
SF 0.6750
SF+MPPCA 0.77
online SOM 0.7822
original GNG 0.7267
online GNG 0.9375

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tru
e 

po
si

tiv
e 

ra
te

0.65
0.539
0.5035
0.66
0.44
0.6380
0.4610

0.2188
0.21
0.4556
0.5358
0.6511

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tru
e 

po
si

tiv
e 

ra
te

Hist+SVDD 0.9
OADC−SA 0.925
SS 0.94
SF 0.63
MDT 0.85
SF+MPPCA 0.71
online SOM  0.7419
original GNG 0.7367
online GNG 0.9409

AUC

Approach
(a) (b) (c)

Hist+SVDD 2016 0.85 0.65 0.9
OADC-SA 2015 0.91 0.539 0.925
CCUKL 2014 0.9288 0.5035 -
SS 2013 0.87 0.66 0.94
MDT 2013 0.84 0.44 0.85
Fast SC 2013 0.9180 0.6380 -
SRC 2013 0.8600 0.4610 -
SF 2009 0.6750 0.2188 -
SF+MPPCA 2009 0.77 0.21 0.71
online SOM 2010 0.7822 0.4556 0.7419
original GNG 0.7267 0.5358 0.7367
online GNG (ours) 0.9375 0.6511 0.9409

Fig. 12. The detection and localization results in UCSD Ped1 and Ped2 scenes. Involved approaches are with following abbreviations: Hist+SVDD 2016 [53], OADC-SA 2015 [52],
CCUKL 2014 [51], SS 2013 [61], MDT 2013 [45], Fast SC 2013 [16], SRC 2013 [15], SF 2009 [44], SF+MPPCA 2009 [60], online SOM 2010 [24], original GNG, and our online GNG.
Every approach has its AUC values marked in legends. The legend of (b) is the same to (a), and approach names are omitted for figure concision.
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Table 4. As introduced in Section 5.1, λ has possible impacts on neuron
insertion and deletion. Table 4 shows that λ affects the final results only
for neuron deletion. This effect vanishes when online GNG components
work together, and corresponding results are given in the last two rows.

From the global perspective, it is evident that using deletion
strategy increases false alarm but helps little to improve correct
detection. The reason is when there is no outer neuron insertion, over
deletion makes the model too compact to cover the data space.
Furthermore, it is easy to understand why the opposite false alarm
rate occurs when using neuron insertion only. Concerning learning rate
adaptation, it improves the performance of original GNG in both
decreasing false alarm and increasing detection rates because reason-
able self-adaptation towards input data always tends to improve the
model. Finally, there are some false alarms when using online GNG due
to some salient events like someone passing by with a colorful handbag.
In summary, online GNG achieves a satisfactory performance with only
2 missing detections and 6 false alarms.

6. Conclusions

This paper proposes an unsupervised model called online GNG to
learn surveillance scenes with changing crowd density and behavior
types. The Innovation lies in that dominant learning operations all
employ online adaptive parameters. Moreover, the model itself can

estimate the learning efficiency, and adjust the network size to fit
changing data space automatically. In experiments, online GNG
effectively reduces the false alarms and missing detections caused by
model aging and threshold aging which frequently happen in unstable
environments. Quantitative comparisons with 12 recent related works
further confirm the superiority of our approach.

Our current neighbor-related strategies treat all neurons equally,
which possibly results in some common parameters amplified by the
sparsest or densest subregion of GNG network. The next step for
optimization is to assign a weight to each neuron, and then update this
weight according to proper density measurement. This scheme might
improve the learning efficiency, thereby yielding a better representa-
tion for changing data space.
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