
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

6-2019

Meta-transfer learning for few-shot learning Meta-transfer learning for few-shot learning

Qianru SUN
Singapore Management University, qianrusun@smu.edu.sg

Yaoyao LIU
Tianjin University

Tat-Seng CHUA
National University of Singapore

Bernt SCHIELE
Max Plank Institute for Informatics

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Artificial Intelligence and Robotics Commons, and the Numerical Analysis and Scientific

Computing Commons

Citation Citation
SUN, Qianru; LIU, Yaoyao; CHUA, Tat-Seng; and SCHIELE, Bernt. Meta-transfer learning for few-shot
learning. (2019). 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition: Long Beach,
CA, June 16-20: Proceedings. 403-412.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4447

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4447&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4447&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4447&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4447&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Meta-Transfer Learning for Few-Shot Learning

Qianru Sun1,3∗ Yaoyao Liu2∗ Tat-Seng Chua1 Bernt Schiele3

1National University of Singapore 2Tianjin University†

3Max Planck Institute for Informatics, Saarland Informatics Campus

{qsun, schiele}@mpi-inf.mpg.de

liuyaoyao@tju.edu.cn {dcssq, dcscts}@nus.edu.sg

Abstract

Meta-learning has been proposed as a framework to ad-

dress the challenging few-shot learning setting. The key

idea is to leverage a large number of similar few-shot tasks

in order to learn how to adapt a base-learner to a new task

for which only a few labeled samples are available. As deep

neural networks (DNNs) tend to overfit using a few samples

only, meta-learning typically uses shallow neural networks

(SNNs), thus limiting its effectiveness. In this paper we pro-

pose a novel few-shot learning method called meta-transfer

learning (MTL) which learns to adapt a deep NN for few

shot learning tasks. Specifically, meta refers to training

multiple tasks, and transfer is achieved by learning scal-

ing and shifting functions of DNN weights for each task.

In addition, we introduce the hard task (HT) meta-batch

scheme as an effective learning curriculum for MTL. We

conduct experiments using (5-class, 1-shot) and (5-class, 5-

shot) recognition tasks on two challenging few-shot learn-

ing benchmarks: miniImageNet and Fewshot-CIFAR100.

Extensive comparisons to related works validate that our

meta-transfer learning approach trained with the proposed

HT meta-batch scheme achieves top performance. An ab-

lation study also shows that both components contribute to

fast convergence and high accuracy1.

1. Introduction

While deep learning systems have achieved great perfor-

mance when sufficient amounts of labeled data are avail-

able [57, 17, 45], there has been growing interest in reduc-

ing the required amount of data. Few-shot learning tasks

have been defined for this purpose. The aim is to learn

new concepts from few labeled examples, e.g. 1-shot learn-

∗Equal contribution.
†Yaoyao Liu did this work during his internship at NUS.
1Code: https://github.com/y2l/meta-transfer-learning-tensorflow

Feature extractor Θ
(pre-trained & frozen)

feature

Scaling & Shifting Param Φ
(meta-learner)

Classifier
θ

softmax loss
(epi-training)

Meta transferring of neuron weights

epi-test

epi-training element-wise
product

(neuron-level)

softmax loss
(epi-test)

Training phase
 Test phase

accuracy
(epi-test)

meta gradient back-prop. (once)

Difficulty
predictor

θ’

L2 loss

Regularization, useful??? meta gradient back-prop. (once)

(only in the last epi-training epoch)

meta-training

Transfer Learning [34]

Meta-Learning [9]

task2
model1 + FT

...task1
model1

taskN
modelN

taskN+1
modelN+1

Meta-Transfer Learning
(ours)

...task
model

task1
model1

k tasks
Meta-Batch [9]

Hard Task Meta-Batch
(ours) ...k tasks + k’ hard tasks

batch i
k tasks

batch i+1

batch i batch i+1

meta-test

...

... k tasks + k’ hard tasks

online re-sampleonline re-sample

...

large-scale training

task1
model + SS1 + FT1

taskN
model + SSN + FTN

taskN+1
model + SSN + FTN+1

Figure 1. Meta-transfer learning (MTL) is our meta-learning

paradigm and hard task (HT) meta-batch is our training strategy.

The upper three rows show the differences between MTL and re-

lated methods, transfer-learning [34] and meta-learning [9]. The

bottom rows compare HT meta-batch with the conventional meta-

batch [9]. FT stands for fine-tuning a classifier. SS represents the

Scaling and Shifting operations in our MTL method.

ing [24]. While humans tend to be highly effective in this

context, often grasping the essential connection between

new concepts and their own knowledge and experience, it

remains challenging for machine learning approaches. E.g.,

on the CIFAR-100 dataset, a state-of-the-art method [33]

achieves only 40.1% accuracy for 1-shot learning, com-

pared to 75.7% for the all-class fully supervised case [6].

Few-shot learning methods can be roughly categorized

into two classes: data augmentation and task-based meta-

learning. Data augmentation is a classic technique to in-

crease the amount of available data and thus also use-

ful for few-shot learning [21]. Several methods propose

to learn a data generator e.g. conditioned on Gaussian

noise [28, 43, 53]. However, the generation models often

403

underperform when trained on few-shot data [1]. An alter-

native is to merge data from multiple tasks which, however,

is not effective due to variances of the data across tasks [53].

In contrast to data-augmentation methods, meta-learning

is a task-level learning method [2, 32, 51]. Meta-learning

aims to accumulate experience from learning multiple tasks

[9, 38, 47, 30, 13], while base-learning focuses on model-

ing the data distribution of a single task. A state-of-the-

art representative of this, namely Model-Agnostic Meta-

Learning (MAML), learns to search for the optimal initial-

ization state to fast adapt a base-learner to a new task [9].

Its task-agnostic property makes it possible to generalize to

few-shot supervised learning as well as unsupervised rein-

forcement learning [13, 10]. However, in our view, there

are two main limitations of this type of approaches lim-

iting their effectiveness: i) these methods usually require

a large number of similar tasks for meta-training which is

costly; and ii) each task is typically modeled by a low-

complexity base learner (such as a shallow neural network)

to avoid model overfitting, thus being unable to use deeper

and more powerful architectures. For example, for the mini-

ImageNet dataset [52], MAML uses a shallow CNN with

only 4 CONV layers and its optimal performance was ob-

tained learning on 240k tasks.

In this paper, we propose a novel meta-learning method

called meta-transfer learning (MTL) leveraging the ad-

vantages of both transfer and meta learning (see concep-

tual comparison of related methods in Figure 1). In a nut-

shell, MTL is a novel learning method that helps deep neu-

ral nets converge faster while reducing the probability to

overfit when using few labeled training data only. In partic-

ular, “transfer” means that DNN weights trained on large-

scale data can be used in other tasks by two light-weight

neuron operations: Scaling and Shifting (SS), i.e. αX + β.

“Meta” means that the parameters of these operations can

be viewed as hyper-parameters trained on few-shot learn-

ing tasks [30, 25]. Large-scale trained DNN weights of-

fer a good initialization, enabling fast convergence of meta-

transfer learning with fewer tasks, e.g. only 8k tasks for

miniImageNet [52], 30 times fewer than MAML [9]. Light-

weight operations on DNN neurons have less parameters to

learn, e.g. less than 2
49 if considering neurons of size 7× 7

(1
49 for α and < 1

49 for β), reducing the chance of overfit-

ting. In addition, these operations keep those trained DNN

weights unchanged, and thus avoid the problem of “catas-

trophic forgetting” which means forgetting general patterns

when adapting to a specific task [26, 27].

The second main contribution of this paper is an effec-

tive meta-training curriculum. Curriculum learning [3] and

hard negative mining [46] both suggest that faster conver-

gence and stronger performance can be achieved by a better

arrangement of training data. Inspired by these ideas, we

design our hard task (HT) meta-batch strategy to offer a

challenging but effective learning curriculum. As shown in

the bottom rows of Figure 1, a conventional meta-batch con-

tains a number of random tasks [9], but our HT meta-batch

online re-samples harder ones according to past failure tasks

with lowest validation accuracy.

Our overall contribution is thus three-fold: i) we pro-

pose a novel MTL method that learns to transfer large-

scale pre-trained DNN weights for solving few-shot learn-

ing tasks; ii) we propose a novel HT meta-batch learn-

ing strategy that forces meta-transfer to “grow faster and

stronger through hardship”; and iii) we conduct extensive

experiments on two few-shot learning benchmarks, namely

miniImageNet [52] and Fewshot-CIFAR100 (FC100) [33],

and achieve the state-of-the-art performance.

2. Related work

Few-shot learning Research literature on few-shot learning

exhibits great diversity. In this section, we focus on meth-

ods using the supervised meta-learning paradigm [12, 51, 9]

most relevant to ours and compared to in the experiments.

We can divide these methods into three categories. 1) Met-

ric learning methods [52, 47, 50] learn a similarity space in

which learning is efficient for few-shot examples. 2) Mem-

ory network methods [30, 41, 33, 29] learn to store “ex-

perience” when learning seen tasks and then generalize

that to unseen tasks. 3) Gradient descent based methods

[9, 38, 23, 13, 59] have a specific meta-learner that learns

to adapt a specific base-learner (to few-shot examples)

through different tasks. E.g. MAML [9] uses a meta-learner

that learns to effectively initialize a base-learner for a new

learning task. Meta-learner optimization is done by gra-

dient descent using the validation loss of the base-learner.

Our method is closely related. An important difference is

that our MTL approach leverages transfer learning and ben-

efits from referencing neuron knowledge in pre-trained deep

nets. Although MAML can start from a pre-trained net-

work, its element-wise fine-tuning makes it hard to learn

deep nets without overfitting (validated in our experiments).

Transfer learning What and how to transfer are key issues

to be addressed in transfer learning, as different methods are

applied to different source-target domains and bridge differ-

ent transfer knowledge [34, 56, 54, 58]. For deep models,

a powerful transfer method is adapting a pre-trained model

for a new task, often called fine-tuning (FT). Models pre-

trained on large-scale datasets have proven to generalize

better than randomly initialized ones [8]. Another popu-

lar transfer method is taking pre-trained networks as back-

bone and adding high-level functions, e.g. for object de-

tection and recognition [18, 49, 48] and image segmenta-

tion [16, 5]. Our meta-transfer learning leverages the idea

of transferring pre-trained weights and aims to meta-learn

how to effectively transfer. In this paper, large-scale trained

DNN weights are what to transfer, and the operations of

404

Feature extractor Θ
(pre-trained & frozen)

feature

Scaling & Shifting Param Φ
(meta-learner)

Classifier
θ

softmax loss
(epi-training)

Meta transferring of neuron weights

epi-test

epi-training element-wise
product

(neuron-level)

softmax loss
(epi-test)

Training phase
 Test phase

accuracy
(epi-test)

meta gradient back-prop. (once)

Difficulty
predictor

θ’

L2 loss

Regularization, useful??? meta gradient back-prop. (once)

(only in the last epi-training epoch)

Feature Extractor
Base-learner

all-class
train samples

N HT
meta-batches Feature Extractor

Meta-learner SSN
Base-learner FTN

classifier fine-tuning

unseen task
(train samples)

unseen task
(test samples)Feature Extractor

Meta-learner SSN
Base-learner FTN+1

final evaluation

Acc.

(b) meta-transfer learning (c) meta-test(a) large-scale DNN training

whole training phase

Feature Extractor
Meta-learner SSN
Base-learner FTN+1

D {T1∼k}1∼N T (trunseen
) T

(te
unseen

)

Figure 2. The pipeline of our proposed few-shot learning method, including three phases: (a) DNN training on large-scale data, i.e. using

all training datapoints (Section 4.1); (b) Meta-transfer learning (MTL) that learns the parameters of Scaling and Shifting (SS), based on the

pre-trained feature extractor (Section 4.2). Learning is scheduled by the proposed HT meta-batch (Section 4.3); and (c) meta-test is done

for an unseen task which consists of a base-learner (classifier) Fine-Tuning (FT) stage and a final evaluation stage, described in the last

paragraph in Section 3. Input data are along with arrows. Modules with names in bold get updated at corresponding phases. Specifically,

SS parameters are learned by meta-training but fixed during meta-test. Base-learner parameters are optimized for every task.

Scaling and Shifting indicate how to transfer. Similar op-

erations have been used to modulating the per-feature-map

distribution of activations for visual reasoning [36].

Some few-shot learning methods have been proposed to

use pre-trained weights as initialization [20, 29, 37, 44, 40].

Typically, weights are fine-tuned for each task, while we

learn a meta-transfer learner through all tasks, which is dif-

ferent in terms of the underlying learning paradigm.

Curriculum learning & Hard sample mining Curriculum

learning was proposed by Bengio et al. [3] and is popular

for multi-task learning [35, 42, 55, 14]. They showed that

instead of observing samples at random it is better to orga-

nize samples in a meaningful way so that fast convergence,

effective learning and better generalization can be achieved.

Pentina et al. [35] use adaptive SVM classifiers to evaluate

task difficulty for later organization. Differently, our MTL

method does task evaluation online at the phase of episode

test, without needing any auxiliary model.

Hard sample mining was proposed by Shrivastava et

al. [46] for object detection. It treats image proposals over-

lapped with ground truth as hard negative samples. Training

on more confusing data enables the model to achieve higher

robustness and better performance [4, 15, 7]. Inspired by

this, we sample harder tasks online and make our MTL

learner “grow faster and stronger through more hardness”.

In our experiments, we show that this can be generalized to

enhance other meta-learning methods, e.g. MAML [9].

3. Preliminary

We introduce the problem setup and notations of meta-

learning, following related work [52, 38, 9, 33].

Meta-learning consists of two phases: meta-train and

meta-test. A meta-training example is a classification task

T sampled from a distribution p(T). T is called episode,

including a training split T (tr) to optimize the base-learner,

and a test split T (te) to optimize the meta-learner. In partic-

ular, meta-training aims to learn from a number of episodes

{T } sampled from p(T). An unseen task Tunseen in meta-

test will start from that experience of the meta-learner and

adapt the base-learner. The final evaluation is done by test-

ing a set of unseen datapoints T
(te)
unseen.

Meta-training phase. This phase aims to learn a meta-

learner from multiple episodes. In each episode, meta-

training has a two-stage optimization. Stage-1 is called

base-learning, where the cross-entropy loss is used to opti-

mize the parameters of the base-learner. Stage-2 contains a

feed-forward test on episode test datapoints. The test loss is

used to optimize the parameters of the meta-learner. Specif-

ically, given an episode T ∈ p(T), the base-learner θT is

learned from episode training data T (tr) and its correspond-

ing lossLT (θT , T
(tr)). After optimizing this loss, the base-

learner has parameters θ̃T . Then, the meta-learner is up-

dated using test loss LT (θ̃T , T
(te)). After meta-training

on all episodes, the meta-learner is optimized by test losses

{LT (θ̃T , T
(te))}T ∈p(T). Therefore, the number of meta-

learner updates equals to the number of episodes.

Meta-test phase. This phase aims to test the performance

of the trained meta-learner for fast adaptation to unseen

task. Given Tunseen, the meta-learner θ̃T teaches the base-

learner θTunseen
to adapt to the objective of Tunseen by

some means, e.g. through initialization [9]. Then, the test

result on T
(te)
unseen is used to evaluate the meta-learning ap-

proach. If there are multiple unseen tasks {Tunseen}, the

average result on {T
(te)
unseen} will be the final evaluation.

4. Methodology

As shown in Figure 2, our method consists of three

phases. First, we train a DNN on large-scale data, e.g. on

miniImageNet (64-class, 600-shot) [52], and then fix the

low-level layers as Feature Extractor (Section 4.1). Second,

in the meta-transfer learning phase, MTL learns the Scal-

ing and Shifting (SS) parameters for the Feature Extractor

neurons, enabling fast adaptation to few-shot tasks (Sec-

tion 4.2). For improved overall learning, we use our HT

meta-batch strategy (Section 4.3). The training steps are

detailed in Algorithm 1 in Section 4.4. Finally, the typical

meta-test phase is performed, as introduced in Section 3.

405

4.1. DNN training on largescale data

This phase is similar to the classic pre-training stage as,

e.g., pre-training on Imagenet for object recognition [39].

Here, we do not consider data/domain adaptation from other

datasets, and pre-train on readily available data of few-shot

learning benchmarks, allowing for fair comparison with

other few-shot learning methods. Specifically, for a partic-

ular few-shot dataset, we merge all-class data D for pre-

training. For instance, for miniImageNet [52], there are

totally 64 classes in the training split of D and each class

contains 600 samples used to pre-train a 64-class classifier.

We first randomly initialize a feature extractor Θ (e.g.

CONV layers in ResNets [17]) and a classifier θ (e.g. the

last FC layer in ResNets [17]), and then optimize them by

gradient descent as follows,

[Θ; θ] =: [Θ; θ]− α∇LD

(

[Θ; θ]
)

, (1)

where L denotes the following empirical loss,

LD

(

[Θ; θ]
)

=
1

|D|

∑

(x,y)∈D

l
(

f[Θ;θ](x), y
)

, (2)

e.g. cross-entropy loss, and α denotes the learning rate.

In this phase, the feature extractor Θ is learned. It will be

frozen in the following meta-training and meta-test phases,

as shown in Figure 2. The learned classifier θ will be dis-

carded, because subsequent few-shot tasks contain differ-

ent classification objectives, e.g. 5-class instead of 64-class

classification for miniImageNet [52].

4.2. Metatransfer learning (MTL)

As shown in Figure 2(b), our proposed meta-transfer

learning (MTL) method optimizes the meta operations Scal-

ing and Shifting (SS) through HT meta-batch training (Sec-

tion 4.3). Figure 3 visualizes the difference of updating

through SS and FT. SS operations, denoted as ΦS1
and ΦS2

,

do not change the frozen neuron weights of Θ during learn-

ing, while FT updates the complete Θ.

In the following, we detail the SS operations. Given a

task T , the loss of T (tr) is used to optimize the current

base-learner (classifier) θ′ by gradient descent:

θ′ ← θ − β∇θLT (tr)

(

[Θ; θ],ΦS{1,2}

)

, (3)

which is different to Eq. 1, as we do not update Θ. Note

that here θ is different to the one from the previous phase,

the large-scale classifier θ in Eq. 1. This θ concerns only

a few of classes, e.g. 5 classes, to classify each time in a

novel few-shot setting. θ′ corresponds to a temporal clas-

sifier only working in the current task, initialized by the θ

optimized for the previous task (see Eq. 5).

ΦS1 is initialized by ones and ΦS1 by zeros. Then, they

are optimized by the test loss of T (te) as follows,

ΦSi
=: ΦSi

− γ∇ΦSi
LT (te)

(

[Θ; θ′],ΦS{1,2}

)

. (4)

: 1x4x1x1

 : Cx4x1x1

 : 1x4x1x1 : Cx4x3x3

: 1x4x1x1 : Cx4x3x3

 : 1x4x1x1 : Cx4x1x1

: 1x4x1x1

epi-test

epi-training

Feature extractor Θ
(pre-trained & frozen)

feature

Scaling & Shifting Param Φ
(meta-learner)

Classifier
θ

softmax loss
(epi-training)

base gradient back-prop.
(multiple epochs)

Meta transferring of neuron weights

epi-test

epi-training element-wise
product

(neuron-level)

softmax loss
(epi-test)

Training phase
 Test phase

accuracy
(epi-test)

meta gradient back-prop. (once)

Difficulty
predictor

θ’

Predicted
accuracy

L2 loss

meta gradient back-prop. (once)

Regularization, useful??? meta gradient back-prop. (once)

(only in the last epi-training epoch)

(b) Our Scaling S1 and Shifting S2

frozen learnable

. .+ +

(a) Parameter-level Fine-Tuning (FT)

C x C x

C x C x

 : Cx4x3x3

C x

: 1x4x1x1

C x

: Cx4x3x3

W b W ′ b′

ΦS1 ΦS2 Φ′
S1

Φ′
S2

T

W b W b

update

T

update

Figure 3. (a) Parameter-level Fine-Tuning (FT) is a conventional

meta-training operation, e.g. in MAML [9]. Its update works for

all neuron parameters, W and b. (b) Our neuron-level Scaling and

Shifting (SS) operations in MTL. They reduce the number of learn-

ing parameters and avoid overfitting problems. In addition, they

keep large-scale trained parameters (in yellow) frozen, preventing

“catastrophic fogetting” [26, 27].

In this step, θ is updated with the same learning rate γ as in

Eq. 4,

θ =: θ − γ∇θLT (te)

(

[Θ; θ′],ΦS{1,2}

)

. (5)

Re-linking to Eq. 3, we note that the above θ′ comes from

the last epoch of base-learning on T (tr).

Next, we describe how we apply ΦS{1,2}
to the frozen

neurons as shown in Figure 3(b). Given the trained Θ,

for its l-th layer containing K neurons, we have K pairs

of parameters, respectively as weight and bias, denoted

as {(Wi,k, bi,k)}. Note that the neuron location l, k will

be omitted for readability. Based on MTL, we learn K

pairs of scalars {ΦS{1,2}
}. Assuming X is input, we apply

{ΦS{1,2}
} to (W, b) as

SS(X;W, b; ΦS{1,2}
) = (W ⊙ ΦS1

)X + (b+ΦS2
), (6)

where ⊙ denotes the element-wise multiplication.

Taking Figure 3(b) as an example of a single 3 × 3 fil-

ter, after SS operations, this filter is scaled by ΦS1 then the

feature maps after convolutions are shifted by ΦS2
in addi-

tion to the original bias b. Detailed steps of SS are given in

Algorithm 2 in Section 4.4.

Figure 3(a) shows a typical parameter-level Fine-Tuning

(FT) operation, which is in the meta optimization phase of

our related work MAML [9]. It is obvious that FT updates

the complete values of W and b, and has a large number of

406

parameters, and our SS reduces this number to below 2
9 in

the example of the figure.

In summary, SS can benefit MTL in three aspects. 1)

It starts from a strong initialization based on a large-scale

trained DNN, yielding fast convergence for MTL. 2) It does

not change DNN weights, thereby avoiding the problem

of “catastrophic forgetting” [26, 27] when learning specific

tasks in MTL. 3) It is light-weight, reducing the chance of

overfitting of MTL in few-shot scenarios.

4.3. Hard task (HT) metabatch

In this section, we introduce a method to schedule hard

tasks in meta-training batches. The conventional meta-

batch is composed of randomly sampled tasks, where the

randomness implies random difficulties [9]. In our meta-

training pipeline, we intentionally pick up failure cases in

each task and re-compose their data to be harder tasks for

adverse re-training. We aim to force our meta-learner to

“grow up through hardness”.

Pipeline. Each task T has two splits, T (tr) and T (te), for

base-learning and test, respectively. As shown in Algo-

rithm 2 line 2-5, base-learner is optimized by the loss of

T (tr) (in multiple epochs). SS parameters are then opti-

mized by the loss of T (te) once. We can also get the recog-

nition accuracy of T (te) for M classes. Then, we choose

the lowest accuracy Accm to determine the most difficult

class-m (also called failure class) in the current task.

After obtaining all failure classes (indexed by {m}) from

k tasks in current meta-batch {T1∼k}, we re-sample tasks

from their data. Specifically, we assume p(T |{m}) is

the task distribution, we sample a “harder” task T hard ∈
p(T |{m}). Two important details are given below.

Choosing hard class-m. We choose the failure class-m

from each task by ranking the class-level accuracies instead

of fixing a threshold. In a dynamic online setting as ours, it

is more sensible to choose the hardest cases based on rank-

ing rather than fixing a threshold ahead of time.

Two methods of hard tasking using {m}. Chosen {m},
we can re-sample tasks T hard by (1) directly using the sam-

ples of class-m in the current task T , or (2) indirectly using

the label of class-m to sample new samples of that class. In

fact, setting (2) considers to include more data variance of

class-m and it works better than setting (1) in general.

4.4. Algorithm

Algorithm 1 summarizes the training process of two

main stages: large-scale DNN training (line 1-5) and meta-

transfer learning (line 6-22). HT meta-batch re-sampling

and continuous training phases are shown in lines 16-20,

for which the failure classes are returned by Algorithm 2,

see line 14. Algorithm 2 presents the learning process on

a single task that includes episode training (lines 2-5) and

episode test, i.e. meta-level update (lines 6). In lines 7-11,

the recognition rates of all test classes are computed and

returned to Algorithm 1 (line 14) for hard task sampling.

Algorithm 1: Meta-transfer learning (MTL)

Input: Task distribution p(T) and corresponding

dataset D, learning rates α, β and γ

Output: Feature extractor Θ, base learner θ, SS

parameters ΦS{1,2}

1 Randomly initialize Θ and θ;

2 for samples in D do

3 Evaluate LD([Θ; θ]) by Eq. 2;

4 Optimize Θ and θ by Eq. 1;

5 end

6 Initialize ΦS1 by ones, initialize ΦS2 by zeros;

7 Reset and re-initialize θ for few-shot tasks;

8 for meta-batches do

9 Randomly sample tasks {T } from p(T);
10 while not done do

11 Sample task Ti ∈ {T };
12 Optimize ΦS{1,2}

and θ with Ti by

Algorithm 2;

13 Get the returned class-m then add it to {m};

14 end

15 Sample hard tasks {T hard} from ⊆ p(T |{m});
16 while not done do

17 Sample task T hard
j ∈ {T hard} ;

18 Optimize ΦS{1,2}
and θ with T hard

j by

Algorithm 2 ;

19 end

20 Empty {m}.

21 end

Algorithm 2: Detail learning steps within a task T

Input: T , learning rates β and γ, feature extractor Θ,

base learner θ, SS parameters ΦS{1,2}

Output: Updated θ and ΦS{1,2}
, the worst classified

class-m in T
1 Sample T (tr) and T (te) from T ;

2 for samples in T (tr) do

3 Evaluate LT (tr) ;

4 Optimize θ′ by Eq. 3;

5 end

6 Optimize ΦS{1,2}
and θ by Eq. 4 and Eq. 5;

7 while not done do

8 Sample class-k in T (te);

9 Compute Acck for T (te);

10 end

11 Return class-m with the lowest accuracy Accm.

407

5. Experiments

We evaluate the proposed MTL and HT meta-batch in

terms of few-shot recognition accuracy and model conver-

gence speed. Below we describe the datasets and detailed

settings, followed by an ablation study and a comparison to

state-of-the-art methods.

5.1. Datasets and implementation details

We conduct few-shot learning experiments on two

benchmarks, miniImageNet [52] and Fewshot-CIFAR100

(FC100) [33]. miniImageNet is widely used in related

works [9, 38, 13, 11, 31]. FC100 is newly proposed in [33]

and is more challenging in terms of lower image resolution

and stricter training-test splits than miniImageNet.

miniImageNet was proposed by Vinyals et al. [52] for few-

shot learning evaluation. Its complexity is high due to the

use of ImageNet images, but requires less resource and in-

frastructure than running on the full ImageNet dataset [39].

In total, there are 100 classes with 600 samples of 84 × 84
color images per class. These 100 classes are divided into

64, 16, and 20 classes respectively for sampling tasks for

meta-training, meta-validation and meta-test, following re-

lated works [9, 38, 13, 11, 31].

Fewshot-CIFAR100 (FC100) is based on the popular ob-

ject classification dataset CIFAR100 [22]. The splits were

proposed by [33] (Please check details in the supplemen-

tary). It offers a more challenging scenario with lower

image resolution and more challenging meta-training/test

splits that are separated according to object super-classes.

It contains 100 object classes and each class has 600 sam-

ples of 32× 32 color images. The 100 classes belong to 20
super-classes. Meta-training data are from 60 classes be-

longing to 12 super-classes. Meta-validation and meta-test

sets contain 20 classes belonging to 4 super-classes, respec-

tively. These splits accord to super-classes, thus minimize

the information overlap between training and val/test tasks.

The following settings are used on both datasets. We

train a large-scale DNN with all training datapoints (Sec-

tion 4.1) and stop this training after 10k iterations. We use

the same task sampling method as related works [9, 38].

Specifically, 1) we consider the 5-class classification and 2)

we sample 5-class, 1-shot (5-shot or 10-shot) episodes to

contain 1 (5 or 10) samples for train episode, and 15 (uni-

form) samples for episode test. Note that in the state-of-

the-art work [33], 32 and 64 samples are respectively used

in 5-shot and 10-shot settings for episode test. In total, we

sample 8k tasks for meta-training (same for w/ and w/o HT

meta-batch), and respectively sample 600 random tasks for

meta-validation and meta-test. Please check the supplemen-

tary document (or GitHub repository) for other implemen-

tation details, e.g. learning rate and dropout rate.

Network architecture. We present the details for the Fea-

ture Extractor Θ, MTL meta-learner with Scaling ΦS1
and

Shifting ΦS2
, and MTL base-learner (classifier) θ.

The architecture of Θ have two options, ResNet-12 and

4CONV, commonly used in related works [9, 52, 38, 31, 29,

33]. 4CONV consists of 4 layers with 3 × 3 convolutions

and 32 filters, followed by batch normalization (BN) [19],

a ReLU nonlinearity, and 2 × 2 max-pooling. ResNet-12

is more popular in recent works [33, 29, 11, 31]. It con-

tains 4 residual blocks and each block has 3 CONV layers

with 3 × 3 kernels. At the end of each residual block, a

2 × 2 max-pooling layer is applied. The number of filters

starts from 64 and is doubled every next block. Following 4
blocks, there is a mean-pooling layer to compress the output

feature maps to a feature embedding. The difference be-

tween using 4CONV and using ResNet-12 in our methods is

that ResNet-12 MTL sees the large-scale data training, but

4CONV MTL is learned from scratch because of its poor

performance for large-scale data training (see results in the

supplementary). Therefore, we emphasize the experiments

of using ResNet-12 MTL for its superior performance. The

architectures of ΦS1 and ΦS2 are generated according to

the architecture of Θ, as introduced in Section 4.2. That is

when using ResNet-12 in MTL, ΦS1
and ΦS2

also have 12

layers, respectively. The architecture of θ is an FC layer.

We empirically find that a single FC layer is faster to train

and more effective for classification than multiple layers.

(see comparisons in the supplementary).

5.2. Ablation study setting

In order to show the effectiveness of our approach, we

design some ablative settings: two baselines without meta-

learning but more classic learning, three baselines of Fine-

Tuning (FT) on smaller number of parameters (Table 1), and

two MAML variants using our deeper pre-trained model

and HT meta-batch (Table 2 and Table 3). Note that the

alternative meta-learning operation to SS is the FT used in

MAML. Some bullet names are explained as follows.

update [Θ; θ] (or θ). There is no meta-training phase. Dur-

ing test phase, each task has its whole model [Θ; θ] (or the

classifier θ) updated on T (tr), and then tested on T (te).

FT [Θ4; θ] (or θ). These are straight-forward ways to define

a smaller set of meta-learner parameters than MAML. We

can freeze low-level pre-trained layers and meta-learn the

classifier layer θ with (or without) high-level CONV layer

Θ4 that is the 4th residual block of ResNet-12.

5.3. Results and analysis

Table 1, Table 2 and Table 3 present the overall results on

miniImageNet and FC100 datasets. Extensive comparisons

are done with ablative methods and the state-of-the-arts.

Note that tables present the highest accuracies for which

the iterations were chosen by validation. For the miniIma-

408

 0.4k 1k 5k 10k 15k
iterations

54

56

58

60

62

ac
cu

ra
cy

 (%
)

(a)

SS [Θ; θ], HT meta-batch
SS [Θ; θ], meta-batch

 0.4k 1k 5k 10k 15k
iterations

72

73

74

75

76
(b)

 0.4k 1k 5k 10k 15k
iterations

41

42

43

44

45
(c)

 0.4k 1k 5k 10k 15k
iterations

54

55

56

57

58
(d)

 0.4k 1k 5k 10k 15k
iterations

61.5

62

62.5

63

63.5
(e)

Figure 4. (a)(b) show the results of 1-shot and 5-shot on miniImageNet; (c)(d)(e) show the results of 1-shot, 5-shot and 10-shot on FC100.

geNet, iterations for 1-shot and 5-shot are at 17k and 14k,

respectively. For the FC100, iterations are all at 1k. Fig-

ure 4 shows the performance gap between with and without

HT meta-batch in terms of accuracy and converging speed.

Result overview on miniImageNet. In Table 2, we can

see that the proposed MTL with SS [Θ; θ], HT meta-batch

and ResNet-12(pre) achieves the best few-shot classifica-

tion performance with 61.2% for (5-class, 1-shot). Be-

sides, it tackles the (5-class, 5-shot) tasks with an accuracy

of 75.5% that is comparable to the state-of-the-art results,

i.e. 76.7%, reported by TADAM [33] whose model used

72 additional FC layers in the ResNet-12 arch. In terms of

the network arch, it is obvious that models using ResNet-

12 (pre) outperforms those using 4CONV by large mar-

gins, e.g. 4CONV models have the best 1-shot result with

50.44% [50] which is 10.8% lower than our best.

Result overview on FC100. In Table 3, we give the results

of TADAM using their reported numbers in the paper [33].

We used the public code of MAML [9] to get its results for

this new dataset. Comparing these methods, we can see that

MTL consistently outperforms MAML by large margins,

i.e. around 7% in all tasks; and surpasses TADAM by a

relatively larger number of 5% for 1-shot, and with 1.5%
and 1.8% respectively for 5-shot and 10-shot tasks.

MTL vs. No meta-learning. Table 1 shows the results

of No meta-learning on the top block. Compared to these,

our approach achieves significantly better performance even

without HT meta-batch, e.g. the largest margins are 10.2%
for 1-shot and 8.6% for 5-shot on miniImageNet. This val-

idates the effectiveness of our meta-learning method for

tackling few-shot learning problems. Between two No

miniImageNet FC100

1 (shot) 5 1 5 10

update [Θ; θ] 45.3 64.6 38.4 52.6 58.6

update θ 50.0 66.7 39.3 51.8 61.0

FT θ 55.9 71.4 41.6 54.9 61.1

FT [Θ4; θ] 57.2 71.6 40.9 54.3 61.3

FT [Θ; θ] 58.3 71.6 41.6 54.4 61.2

SS [Θ4; θ] 59.2 73.1 42.4 55.1 61.6

SS [Θ; θ](Ours) 60.2 74.3 43.6 55.4 62.4

Table 1. Classification accuracy (%) using ablative models, on two

datasets. “meta-batch” and “ResNet-12(pre)” are used.

meta-learning methods, we can see that updating both fea-

ture extractor Θ and classifier θ is inferior to updating θ

only, e.g. around 5% reduction on miniImageNet 1-shot.

One reason is that in few-shot settings, there are too many

parameters to optimize with little data. This supports our

motivation to learn only θ during base-learning.

Performance effects of MTL components. MTL with full

components, SS [Θ; θ], HT meta-batch and ResNet-12(pre),

achieves the best performances for all few-shot settings on

both datasets, see Table 2 and Table 3. We can conclude

that our large-scale network training on deep CNN signif-

icantly boost the few-shot learning performance. This is

an important gain brought by the transfer learning idea in

our MTL approach. It is interesting to note that this gain

on FC100 is not as large as for miniImageNet: only 1.7%,

1.0% and 4.0%. The possible reason is that FC100 tasks

for meta-train and meta-test are clearly split according to

super-classes. The data domain gap is larger than that for

miniImageNet, which makes transfer more difficult.

HT meta-batch and ResNet-12(pre) in our approach can

be generalized to other meta-learning models. MAML

4CONV with HT meta-batch gains averagely 1% on two

datasets. When changing 4CONV by deep ResNet-12 (pre)

it achieves significant improvements, e.g. 10% and 9% on

miniImageNet. Compared to MAML variants, our MTL re-

sults are consistently higher, e.g. 2.5% ∼ 3.3% on FC100.

People may argue that MAML fine-tuning(FT) all network

parameters is likely to overfit to few-shot data. In the mid-

dle block of Table 1, we show the ablation study of freezing

low-level pre-trained layers and meta-learn only the high-

level layers (e.g. the 4-th residual block of ResNet-12) by

the FT operations of MAML. These all yield inferior per-

formances than using our SS. An additional observation is

that SS* performs consistently better than FT*.

Speed of convergence of MTL. MAML [9] used 240k
tasks to achieve the best performance on miniImageNet.

Impressively, our MTL methods used only 8k tasks, see

Figure 4(a)(b) (note that each iteration contains 2 tasks).

This advantage is more obvious for FC100 on which MTL

methods need at most 2k tasks, Figure 4(c)(d)(e). We attest

this to two reasons. First, MTL starts from the pre-trained

ResNet-12. And second, SS (in MTL) needs to learn only

< 2
9 parameters of the number of FT (in MAML) when

using ResNet-12.

409

Few-shot learning method Feature extractor 1-shot 5-shot

Data augmentation
Adv. ResNet, [28] WRN-40 (pre) 55.2 69.6

Delta-encoder, [43] VGG-16 (pre) 58.7 73.6

Metric learning

Matching Nets, [52] 4 CONV 43.44 ± 0.77 55.31 ± 0.73
ProtoNets, [47] 4 CONV 49.42 ± 0.78 68.20 ± 0.66
CompareNets, [50] 4 CONV 50.44 ± 0.82 65.32 ± 0.70

Memory network

Meta Networks, [30] 5 CONV 49.21 ± 0.96 –

SNAIL, [29] ResNet-12 (pre)⋄ 55.71 ± 0.99 68.88 ± 0.92

TADAM, [33] ResNet-12 (pre)† 58.5 ± 0.3 76.7 ± 0.3

Gradient descent

MAML, [9] 4 CONV 48.70 ± 1.75 63.11 ± 0.92
Meta-LSTM, [38] 4 CONV 43.56 ± 0.84 60.60 ± 0.71
Hierarchical Bayes, [13] 4 CONV 49.40 ± 1.83 –

Bilevel Programming, [11] ResNet-12⋄ 50.54 ± 0.85 64.53 ± 0.68
MetaGAN, [59] ResNet-12 52.71 ± 0.64 68.63 ± 0.67

adaResNet, [31] ResNet-12‡ 56.88 ± 0.62 71.94 ± 0.57

MAML, HT FT [Θ; θ], HT meta-batch 4 CONV 49.1 ± 1.9 64.1 ± 0.9
MAML deep, HT FT [Θ; θ], HT meta-batch ResNet-12 (pre) 59.1 ± 1.9 73.1 ± 0.9

MTL (Ours)
SS [Θ; θ], meta-batch ResNet-12 (pre) 60.2 ± 1.8 74.3 ± 0.9
SS [Θ; θ], HT meta-batch ResNet-12 (pre) 61.2 ± 1.8 75.5 ± 0.8

⋄Additional 2 convolutional layers ‡Additional 1 convolutional layer †Additional 72 fully connected layers

Table 2. The 5-way, 1-shot and 5-shot classification accuracy (%) on miniImageNet dataset. “pre” means pre-trained for a single classifi-

cation task using all training datapoints.

Few-shot learning method Feature extractor 1-shot 5-shot 10-shot

Gradient descent MAML, [9]‡ 4 CONV 38.1 ± 1.7 50.4 ± 1.0 56.2 ± 0.8

Memory network TADAM, [33] ResNet-12 (pre)† 40.1 ± 0.4 56.1 ± 0.4 61.6 ± 0.5

MAML, HT FT [Θ; θ], HT meta-batch 4 CONV 39.9 ± 1.8 51.7 ± 0.9 57.2 ± 0.8
MAML deep, HT FT [Θ; θ], HT meta-batch ResNet-12 (pre) 41.8 ± 1.9 55.1 ± 0.9 61.9 ± 0.8

MTL (Ours)
SS [Θ; θ], meta-batch ResNet-12 (pre) 43.6 ± 1.8 55.4 ± 0.9 62.4 ± 0.8
SS [Θ; θ], HT meta-batch ResNet-12 (pre) 45.1 ± 1.8 57.6 ± 0.9 63.4 ± 0.8

†Additional 72 fully connected layers ‡Our implementation using the public code of MAML.

Table 3. The 5-way with 1-shot, 5-shot and 10-shot classification accuracy (%) on Fewshot-CIFAR100 (FC100) dataset. “pre” means

pre-trained for a single classification task using all training datapoints.

Speed of convergence of HT meta-batch. Figure 4

shows 1) MTL with HT meta-batch consistently achieves

higher performances than MTL with the conventional meta-

batch [9], in terms of the recognition accuracy in all set-

tings; and 2) it is impressive that MTL with HT meta-batch

achieves top performances early, after e.g. about 2k itera-

tions for 1-shot, 1k for 5-shot and 1k for 10-shot, on the

more challenging dataset – FC100.

6. Conclusions

In this paper, we show that our novel MTL trained with

HT meta-batch learning curriculum achieves the top perfor-

mance for tackling few-shot learning problems. The key op-

erations of MTL on pre-trained DNN neurons proved highly

efficient for adapting learning experience to the unseen task.

The superiority was particularly achieved in the extreme 1-

shot cases on two challenging benchmarks – miniImageNet

and FC100. In terms of learning scheme, HT meta-batch

showed consistently good performance for all baselines and

ablative models. On the more challenging FC100 bench-

mark, it showed to be particularly helpful for boosting con-

vergence speed. This design is independent from any spe-

cific model and could be generalized well whenever the

hardness of task is easy to evaluate in online iterations.

Acknowledgments

This research is part of NExT research which is
supported by the National Research Foundation, Prime
Minister’s Office, Singapore under its IRC@SG Fund-
ing Initiative. It is also partially supported by German
Research Foundation (DFG CRC 1223), and National
Natural Science Foundation of China (61772359).

410

References

[1] S. Bartunov and D. P. Vetrov. Few-shot generative modelling

with generative matching networks. In AISTATS, 2018. 2

[2] S. Bengio, Y. Bengio, J. Cloutier, and J. Gecsei. On the op-

timization of a synaptic learning rule. In Optimality in Ar-

tificial and Biological Neural Networks, pages 6–8. Univ. of

Texas, 1992. 2

[3] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Cur-

riculum learning. In ICML, 2009. 2, 3

[4] O. Canévet and F. Fleuret. Large scale hard sample mining

with monte carlo tree search. In CVPR, 2016. 3

[5] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.

Yuille. Deeplab: Semantic image segmentation with deep

convolutional nets, atrous convolution, and fully connected

crfs. IEEE Trans. Pattern Anal. Mach. Intell., 40(4):834–

848, 2018. 2

[6] D. Clevert, T. Unterthiner, and S. Hochreiter. Fast and accu-

rate deep network learning by exponential linear units (elus).

In ICLR, 2016. 1

[7] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. In CVPR, 2005. 3

[8] D. Erhan, Y. Bengio, A. C. Courville, P. Manzagol, P. Vin-

cent, and S. Bengio. Why does unsupervised pre-training

help deep learning? Journal of Machine Learning Research,

11:625–660, 2010. 2

[9] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-

learning for fast adaptation of deep networks. In ICML,

2017. 1, 2, 3, 4, 5, 6, 7, 8

[10] C. Finn, K. Xu, and S. Levine. Probabilistic model-agnostic

meta-learning. In NeurIPS, 2018. 2

[11] L. Franceschi, P. Frasconi, S. Salzo, R. Grazzi, and M. Pontil.

Bilevel programming for hyperparameter optimization and

meta-learning. In ICML, 2018. 6, 8

[12] H. E. Geoffrey and P. C. David. Using fast weights to deblur

old memories. In CogSci, 1987. 2

[13] E. Grant, C. Finn, S. Levine, T. Darrell, and T. L. Grif-

fiths. Recasting gradient-based meta-learning as hierarchical

bayes. In ICLR, 2018. 2, 6, 8

[14] A. Graves, M. G. Bellemare, J. Menick, R. Munos, and

K. Kavukcuoglu. Automated curriculum learning for neu-

ral networks. In ICML, 2017. 3

[15] B. Harwood, V. Kumar, G. Carneiro, I. Reid, and T. Drum-

mond. Smart mining for deep metric learning. In ICCV,

2017. 3

[16] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick. Mask

R-CNN. In ICCV, 2017. 2

[17] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016. 1, 4

[18] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara,

A. Fathi, I. Fischer, Z. Wojna, Y. Song, S. Guadarrama, and

K. Murphy. Speed/accuracy trade-offs for modern convolu-

tional object detectors. In CVPR, 2017. 2

[19] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. In

ICML, 2015. 6

[20] R. Keshari, M. Vatsa, R. Singh, and A. Noore. Learning

structure and strength of CNN filters for small sample size

training. In CVPR, 2018. 3

[21] A. Khoreva, R. Benenson, E. Ilg, T. Brox, and B. Schiele.

Lucid data dreaming for object tracking. arXiv, 1703.09554,

2017. 1

[22] A. Krizhevsky. Learning multiple layers of features from

tiny images. University of Toronto, 2009. 6

[23] Y. Lee and S. Choi. Gradient-based meta-learning with

learned layerwise metric and subspace. In ICML, 2018. 2

[24] F. Li, R. Fergus, and P. Perona. One-shot learning of ob-

ject categories. IEEE Trans. Pattern Anal. Mach. Intell.,

28(4):594–611, 2006. 1

[25] Z. Li, F. Zhou, F. Chen, and H. Li. Meta-sgd: Learning to

learn quickly for few shot learning. In ICML, 2018. 2

[26] D. Lopez-Paz and M. Ranzato. Gradient episodic memory

for continual learning. In NIPS, 2017. 2, 4, 5

[27] M. McCloskey and N. J. Cohen. Catastrophic interference in

connectionist networks: The sequential learning problem. In

Psychology of learning and motivation, pages 3–17, 1989. 2,

4, 5

[28] A. Mehrotra and A. Dukkipati. Generative adversarial

residual pairwise networks for one shot learning. arXiv,

1703.08033, 2017. 1, 8

[29] N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel. Snail:

A simple neural attentive meta-learner. In ICLR, 2018. 2, 3,

6, 8

[30] T. Munkhdalai and H. Yu. Meta networks. In ICML, 2017.

2, 8

[31] T. Munkhdalai, X. Yuan, S. Mehri, and A. Trischler. Rapid

adaptation with conditionally shifted neurons. In ICML,

2018. 6, 8

[32] D. K. Naik and R. Mammone. Meta-neural networks that

learn by learning. In IJCNN, 1992. 2

[33] B. N. Oreshkin, P. Rodrı́guez, and A. Lacoste. TADAM: task

dependent adaptive metric for improved few-shot learning.

In NeurIPS, 2018. 1, 2, 3, 6, 7, 8

[34] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang. Domain

adaptation via transfer component analysis. IEEE Trans.

Neural Networks, 22(2):199–210, 2011. 1, 2

[35] A. Pentina, V. Sharmanska, and C. H. Lampert. Curriculum

learning of multiple tasks. In CVPR, 2015. 3

[36] E. Perez, F. Strub, H. de Vries, V. Dumoulin, and A. C.

Courville. Film: Visual reasoning with a general condition-

ing layer. In AAAI, 2018. 3

[37] S. Qiao, C. Liu, W. Shen, and A. L. Yuille. Few-shot image

recognition by predicting parameters from activations. In

CVPR, 2018. 3

[38] S. Ravi and H. Larochelle. Optimization as a model for few-

shot learning. In ICLR, 2017. 2, 3, 6, 8

[39] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual

Recognition Challenge. International Journal of Computer

Vision, 115(3):211–252, 2015. 4, 6

[40] A. A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pascanu,

S. Osindero, and R. Hadsell. Meta-learning with latent em-

bedding optimization. In ICLR, 2019. 3

411

[41] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and

T. P. Lillicrap. Meta-learning with memory-augmented neu-

ral networks. In ICML, 2016. 2

[42] N. Sarafianos, T. Giannakopoulos, C. Nikou, and I. A. Kaka-

diaris. Curriculum learning for multi-task classification of

visual attributes. In ICCV Workshops, 2017. 3

[43] E. Schwartz, L. Karlinsky, J. Shtok, S. Harary, M. Marder,

R. S. Feris, A. Kumar, R. Giryes, and A. M. Bronstein. Delta-

encoder: an effective sample synthesis method for few-shot

object recognition. In NeurIPS, 2018. 1, 8

[44] T. R. Scott, K. Ridgeway, and M. C. Mozer. Adapted deep

embeddings: A synthesis of methods for k-shot inductive

transfer learning. In NeurIPS, 2018. 3

[45] E. Shelhamer, J. Long, and T. Darrell. Fully convolutional

networks for semantic segmentation. IEEE Trans. Pattern

Anal. Mach. Intell., 39(4):640–651, 2017. 1

[46] A. Shrivastava, A. Gupta, and R. B. Girshick. Training

region-based object detectors with online hard example min-

ing. In CVPR, 2016. 2, 3

[47] J. Snell, K. Swersky, and R. S. Zemel. Prototypical networks

for few-shot learning. In NIPS, 2017. 2, 8

[48] Q. Sun, L. Ma, S. Joon Oh, L. Van Gool, B. Schiele, and

M. Fritz. Natural and effective obfuscation by head inpaint-

ing. In CVPR, 2018. 2

[49] Q. Sun, B. Schiele, and M. Fritz. A domain based approach

to social relation recognition. In CVPR, 2017. 2

[50] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. S. Torr, and

T. M. Hospedales. Learning to compare: Relation network

for few-shot learning. In CVPR, 2018. 2, 7, 8

[51] S. Thrun and L. Pratt. Learning to learn: Introduction and

overview. In Learning to learn, pages 3–17. Springer, 1998.

2

[52] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and

D. Wierstra. Matching networks for one shot learning. In

NIPS, 2016. 2, 3, 4, 6, 8

[53] Y. Wang, R. B. Girshick, M. Hebert, and B. Hariharan. Low-

shot learning from imaginary data. In CVPR, 2018. 1, 2

[54] Y. Wei, Y. Zhang, J. Huang, and Q. Yang. Transfer learning

via learning to transfer. In ICML, 2018. 2

[55] D. Weinshall, G. Cohen, and D. Amir. Curriculum learn-

ing by transfer learning: Theory and experiments with deep

networks. In ICML, 2018. 3

[56] J. Yang, R. Yan, and A. G. Hauptmann. Adapting SVM clas-

sifiers to data with shifted distributions. In ICDM Workshops,

2007. 2

[57] L. Yann, B. Yoshua, and H. Geoffrey. Deep learning. Nature,

521(7553):436, 2015. 1

[58] A. R. Zamir, A. Sax, W. B. Shen, L. J. Guibas, J. Malik,

and S. Savarese. Taskonomy: Disentangling task transfer

learning. In CVPR, 2018. 2

[59] R. Zhang, T. Che, Z. Grahahramani, Y. Bengio, and Y. Song.

Metagan: An adversarial approach to few-shot learning. In

NeurIPS, 2018. 2, 8

412

	Meta-transfer learning for few-shot learning
	Citation

	Meta-Transfer Learning for Few-Shot Learning

