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Abstract

We investigate the problem of object relationship classification of visual scenes. For
a relationship object1-predicate-object2 that captures the object interaction, its represen-
tation is composed by the combination of object1 and object2 features. As a result, rela-
tionship classification models usually bias to the frequent objects, leading to poor gener-
alization to rare or unseen objects. Inspired by the data augmentation methods, we pro-
pose a novel Semantic Transform Generative Adversarial Network (ST-GAN) that syn-
thesizes relationship features for rare objects, conditioned on the features from random
instances of the objects. Specifically, ST-GAN essentially offers a semantic transform
function from cheap object features to expensive relationship features. Here, “cheap”
means any easy-to-collect object which possesses an original but undesired relationship
attribute, e.g., a sitting person; “expensive” means a target relationship on this object,
e.g., person-riding-horse. By generating massive triplet combinations from any object
pair with larger variance, ST-GAN can reduce the data bias. Extensive experiments on
two benchmarks – Visual Relationship Detection (VRD) and Visual Genome (VG), show
that using our synthesized features for data augmentation, the relationship classification
model can be consistently improved in various settings such as zero-shot and low-shot.

1 Introduction
We study the task of visual relationship classification that labels an image region by a triplet
composed of object1, predicate and object2. Visual relationship classification is essentially a
compositional recognition and its representation is extracted from the image regions labeled
as object1 and object2. Taking person-riding-horse in Figure 1 as an example, riding is
represented by the attributes of person and horse. It is hard to annotate an accurate image
region for the predicate riding itself. Existing works [25, 60, 63, 64, 67] proposed deep
networks to pass messages between object1 and object2, to learn a classifier on different
kinds of relationships. Their methods thus suffer from the problem that the recognition of
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visual relationships is dominated by the distribution of objects. An evidence was reported
by Zellers et al. [66] that the relationship recognition models tend to be seriously skewed
once the categories of object1 and object2 are known. Such objective bias results in the poor
generalization ability of the model in recognizing rare or unseen object combinations [63],
e.g., on Visual Genome (VG) dataset [21], the recognition rate of unseen classes is only
18.9%, i.e., 44.0% lower than the average of all classes.

(random) means this current feature comes from a random image with a random 
relation label. But: the object class is fixed as in relation triplet.
Different levels of randomness need to be evaluated.
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Figure 1: Our ST-GAN synthesizes visual relationship fea-
ture given a triplet label: obj1-pred-obj2, e.g. person-riding-
horse. The inputs for ST-GAN are: 1) CNN features of
obj1 and obj2 from any same-labeled instances, i.e.cheap ob-
jects; 2) the word vector of pred as the reference of the tar-
get relationship. The feature extracted from the triplet obj1-
pred-obj2 serves as the ground truth. Rel.-E* indicates a
relationship feature extractor, e.g. Motifs [66] and VTransE
[67]. Emb. is an embedding model, e.g. GloVe [41] and
word2vec [36].

In this paper, we tackle
this problem by augmenting
relationship features for rare
or unseen categories. Exist-
ing data augmentation meth-
ods [17, 33, 49, 59] focus
on single image or object
feature synthesizing, which
cannot be directly applied to
our task, because our rela-
tion representation has triple
components object1, predi-
cate, object2, which requires
preserving semantic infor-
mation consistent with im-
age context. Therefore, we
propose a novel relationship
feature generation model –
Semantic Transform Gener-
ative Adversarial Networks
(ST-GAN). Here, “semantic”
feature means the higher-
level network layer output such as the feature at the last layers of VGG17 [50] and
ResNets [18]. These semantics are “transformed” from the original undesired relationships
of objects (on input images) to a target relationship of the same object pair. Taking Figure 1
as an example, “cheap” means any easy-to-collect objects – person and horse, which pos-
sess their original but undesired relationships jumping and pulling a cart on random images
(see Figure 1). “Expensive” means a target compositional relationship of these two objects –
person-riding-horse. More specifically, this means the annotation process of person-riding-
horse is more expensive than that of the object person (or horse).

With ST-GAN, we aim to transfer the shared objective variance from many-shot relations
to the low-shot or zero-shot relations. In order to validate the usefulness of ST-GAN fea-
tures, we utilize VTransE [67] as our baseline model. This model represents object relations
purely by the object appearance features without any knowledge from external corpus [65]
or complicated network architectures [25, 64]. For handling zero-shot objects, we leverage
word embeddings [36] as generation conditions for desired relationship categories, inspired
by [59]. Our model is trained on the whole dataset, then synthesize features for desired
relationship categories.

Our main contributions are in three folds. (1) We introduce a novel feature generation
model ST-GAN that synthesizes expensive relationship features from cheap object features.
We demonstrate that ST-GAN is particularly effective for augmenting features of zero-shot
and low-shot categories and improving their recognition performance by a large margin. (2)
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We observe consistent improvements brought by ST-GAN over ablative baselines and the
state-of-the-art methods on the VRD [31] and VG [21] datasets. (3) We validate the frame-
work of ST-GAN is generalizable by applying different architectures as well as different
kinds of reference information for the target relationship.

2 Related work

Visual relationship detection. Related methods for visual relationship detection can be
roughly categorized into two categories. (1) Generic visual relationship detection methods.
Some works [19, 23, 25, 53, 58, 60, 61, 62, 64, 67] focus on predicting the relationship by
passing messages between objects or considering them as a whole. [67] proposes a simple
yet effective method by concatenating objects features directly, then these features are used
to train one relationship recognition model. Their features are object-level and thus can be
easily used as the training data for ST-GAN. [63] aims to remove the data bias by shuffling
and then assembling object categories in a triplet, thus forcing the relationship features to
be object-agnostic. Interestingly, on the contrary to [63], another category of methods make
use of such objective statistics (bias). (2) Subject-object statistics based methods. [6, 66, 69]
mine the statistics on the dataset bias, then the motif patterns are used for relationship detec-
tion, and obtain impressive results. Some other works [4, 8, 15, 43] utilize external knowl-
edge to obtain the scene graph, but none of them can handle the class-imbalance problem.
Few-shot learning. We divide few-shot learning methods into three categories. 1) Metric
learning methods [45, 48, 51, 57] learn an metric embedding space by a large corpus of
know categories instances, then some metric (L1 or L2) is used to classify instances of new
categories by the proximity to few labeled training samples. These approaches learn a quite
meaningful semantic space and show great performance. 2) Meta-learning methods [11, 14,
22, 44, 55] learn few-shot tasks instead of specific object instances, hence the learned models
can learn new tasks with few labeled data. E.g. MAML [11], Meta-SGD [26], MTL [54] and
LCC [30] have their models effectively learned with small data by meta gradient descent.
3) Generative methods [17, 34, 37, 49] learn to synthesize new data based on few training
examples, or additional samples by some transfer learning [5, 20, 32, 56] from external
data. For example, [17] present an approach of synthesizing additional examples for the
data-starved classes, meanwhile. But for augmentation, they need at least two pairs of same
category data and cannot be applied to zero-shot or even one-shot problems. [49] propose
a modified auto-encoder to synthesize new samples by transferring the learned variances to
unseen classes.
Zero-shot learning. In this setting, test classes are unseen during training [2, 10, 29, 52, 59].
We divide zero-shot learning methods into three categories. 1) [39, 70] regard the unseen
classes as a mixture of seen class proportions; 2) [12, 46] make use of transductive learning to
recognize unseen classes; 3) GAN [13] based models [3, 17, 33] generate additional samples
in feature space for zero-shot classes. They aim to tackle the object classification problems,
but not directly applicable for fine-grained triplet classes, i.e. relations.
Word embedding. Word embedding is widely studied in natural language processing (NLP) [7]
related tasks. It has been shown a superior performance for measuring similarities and dis-
similarities among words. This has given rise to many word representation model such as
Skip Gram and Common Bag Of Words (CBOW) [35]. In this paper, we leverage the word
representation as the condition of feature generation for desired relationship categories.
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Figure 2: The overall framework of our ST-GAN. The input contains 1) the object instances
from random images containing cheap objects, and 2) one kind of references of target rela-
tion, i.e., the label or the image example containing this relation. The generation is penalized
by the real/fake discrimination loss and the relation classification loss (the L1 loss between
the generated feature and the ground truth feature is used, see Section 3.4).

3 Semantic Transform Generative Adversarial Networks

Our ST-GAN aims to transform the original relationship attributes of cheap objects for gener-
ating expensive features of the target relationship. Its overall framework, shown in Figure 2,
includes four main components namely ST-GAN encoder, ST-GAN decoder, ST-GAN R/F
(real/fake) discriminator and ST-GAN relation classifier. Following related augmentation
methods [9, 17, 49, 59], we first pre-train the word and image embedding modules, i.e.,
Emb., CNN and Rel-E*, and then fix them.

As demonstrated in Figure 2, for a target triplet (obj1, pred, obj2), we first sample obj1
and obj2 instances from random images. Then, we feed their CNN features to ST-GAN
encoder (Section 3.1). The encoded feature (deep blue bar) together combined with the ref-
erence information of the target relation go to ST-GAN decoder for generation (Section 3.2).
Note that Input path 1 and Input path 2 show two options of the reference information – the
word embedding of relation label (deep green bar) OR an image feature example of the target
relation (light purple bar). Note that only the word embedding works for the zero-shot case.
Finally, ST-GAN components are optimized by the losses of R/F discriminator and relation
classifier, as well as the L1 distance to the ground truth feature (extracted from a random
sample of the target relation), see Section 3.4.

3.1 ST-GAN encoder Enc

ST-GAN encoder Enc is a function to transform the CNN features of new object instances
to an intermediate feature z which is expected to contain the object category-related features
without original relationship attributes (from source images).
Input: cheap objects. For ob j1 and ob j2, we randomly sample new instances from a source
database according to object labels and locations. Basically, we do not need any relationship
annotation. This is why we call these new instances as cheap objects. We choose cheap
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objects only from the dataset we are working on1, e.g., VRD [31] and VG [21]. The rela-
tionship detection dataset has the object labels and locations, according to which we can pick
up cheap objects directly. The relation annotation on source images are additional informa-
tion we might use. Taking object ob j1 in relation (ob j1, pred, ob j2) as an example, a new
instance of ob j1 can be chosen from an image with the relation label as (ob j1, pred, ob jx)
OR with the relation label as (ob j1, predx, ob jx), for which x means “any”. In experiments,
we name these choices as Ran. (pred is random, less annotation) and Sel. (pred is selected),
respectively. As shown on the left in Figure 2, new instances of ob j1 and ob j2 are first rep-
resented as CNN features fob j1 and fob j2, for which the CNN was trained on ImageNet [47].
Then, the concatenation of fob j1 and fob j2 is used as input fed into ST-GAN encoder. This
encoder has multi-layer perceptrons (MLP) with a leaky ReLU non-linearity except for the
last layer (more details can be found in the supplementary materials).

3.2 ST-GAN decoder Dec

ST-GAN decoder Dec is conditioned on both the output of encoder Enc and one kind of
references of the target relationship (pred). It aims to embed the variance of new objects
encoded in Enc output into this predicate, in order to generate a new relationship feature
containing the semantics of both.
Choosing relationship (pred) reference fre f . We have two options for referencing to the
target relationship, as shown in Figure 2. Input path 1: the word embedding vector, denoted
as f(w)re f , of the relationship label. This works well for the zero-shot setting. The vector is
extracted from a trained language embedding model, e.g. GloVe [41] and word2vec [36],
denoted as Emb. In order to reduce the gap between language and image feature spaces,
we propose to use a trainable Φ function following the language model. Input path 2: the
relation feature denoted as f(s)re f extracted from a ground truth example. The feature extraction
model Rel-E* was trained (also fixed) in prior using existing methods, e.g., VTransE [69].
Note that this path is not working for the zero-shot case, as there is no ground truth image.
Choosing images for f(s)re f . As f(s)re f is extracted from an image example, the relation label of
this example can have the same-predicate or the exact same-relation (triplet) to the target.
For example, when given the target relation (ob j1, pred, ob j2), the label of a selected refer-
ence image can be either (ob jx, pred, ob jx) or (ob j1, pred, ob j2). In general, same-relation
images are more limited in real datasets, and it is particularly difficult to find enough ex-
amples for low-shot relation classes. On the other hand, we can find more same-predicate
images using which may cause the conflicts of objective semantics between the reference and
the target. In experiments, we use same-relation images by default but use same-predicate
images for an ablation study.

3.3 ST-GAN discriminators
As shown in Figure 2, our ST-GAN contains two discriminators. The real/fake discriminator
distinguishes between ground truth features (real) and generated features (fake). The relation
classifier encourages the generated features to be useful for relationship classification.
Real/Fake discriminator. WGAN has been proved to be significantly effective for the gen-
eration of image features [17, 49, 59]. We extend the improved WGAN model – WGAN-

1Note that auxiliary data source is applicable in our paradigm assuming that 1) the data domain is not far away
from our target relationship data, and 2) object labels and bounding boxes are given or easy to detect.
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GP [16] to fit our situation of conditioning on two object images and one relation reference
information. Specifically, we learn a conditional ST-GAN with the Enc taking the CNN
features of ob j1 and ob j2, i.e., fob j1 and fob j2 , to produce an intermediate vector z. Then,
ST-GAN Dec takes z concatenated with a reference feature of the relation (f(s)re f or f(w)re f ) to
generate the target feature as real as possible. To this end, we propose to optimize ST-GAN
by the following WGAN-GP loss,

Ladv = E
[
D(x)

]
−E

[
D(x̃)

]
−λE

[
(||∇x̂D(x̂)||2−1)2] (1)

where x̂ = θx+(1−θ)x̃ with θ ∼ (0,1), and x̃ denotes the generated feature which is equal
to G[fob j1 , fob j2 , fre f ]. G represents the generator consisting three learnable components Enc,
Dec and Φ, and D represents the real/fake discriminator. In this equation, the third term is the
gradient penalty which enforces the gradient of discriminator to have a unit norm along the
straight line between pairs of real and generated points and λ is the penalty coefficient [16].
Relation classifier. WGAN does not guarantee the generated feature is semantically close
to the target one. Referring to related works [17, 40, 59], this issue could be alleviated by
encouraging the model to optimize its parameters towards constructing features, that can be
correctly categorized by standard relationship classifiers. We thus propose to minimize the
relationship categorization loss over generated features. Specific formulation is as follows,

Lrel =−E
[

logP(C(fre f )|G([fob j1 , fob j2 , fre f ]);R)
]

(2)

which is an empirical classification loss, e.g. cross-entropy loss. R represents the relation
classifier module. Both G and R aim to minimize this objective. C(fre f ) is the relationship
label. It is the predicate (pred), e.g. riding, in the triplet e.g. person-riding-horse.

3.4 Full objective
We use fgt to denote the ground truth feature. L1 loss is used to ensure that the generated
feature is not far from the ground truth. Furthermore, WGAN-GP loss and the relationship
prediction loss are jointly optimized. L1 loss and the full objective are as follows,

L1 = E
[
‖G([fob j1 , fob j2 , fre f ])− fgt‖1

]
. (3)

min
G

max
D

αLadv +βLrel + γL1 (4)

where α , β and γ are hyperparameters that are manually set to weight the effects of three
losses.

4 Experiments
We evaluate the proposed ST-GAN approach in terms of its performance for augmenting
relationship features of all classes, low-shot classes, e.g., a class less than 5-shot in training
data is categorized into “low-shot n = 5”, and zero-shot test classes that never appear in
training data. Note that we train ST-GAN model using the whole dataset for once, and
then apply the trained model to generate features for all, low-shot and zero-shot classes (see
detailed settings in Section 4.1). Finally, both the real and generated features are used to the
train relationship recognition models.
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4.1 Datasets and implementation details

Datasets. We use ST-GAN to generate relationship features and train the relation recognition
model on two benchmarks: Visual Relationship Detection (VRD) [31] and Visual Genome
(VG) [21]. For VRD, we follow the training/test split in works [31, 63, 67], i.e., 4,000 images
for training and 1,000 for test. For VG, we use preprocessed data and splits containing
73,794 images for training and 25,858 for test [63, 67].
Settings. Following the standard settings in related works [28, 31, 63, 67], we focus on the
visual relationship classification which concerns the purified problem of visual relationship
detection. This means we use ground truth bounding boxes to locate objects but do not con-
sider noisy detected bounding boxes [23, 24, 38, 64, 66]. According to the different numbers
of training data of different visual relation classes, we have following three evaluation set-
tings. All classes (ALL) is the typical supervised setting that classify all relation classes.
In this setting, we augment relation features to double the whole dataset. Low-shot classes
(LShot) case focuses on the classification of low-shot relation classes. If the training sample
number of a relation r is less than or equal to n, then the classification of r is in a n-shot clas-
sification regime. We have n = 1,5,10,20. In this setting, we augment relation features only
for low-shot classes. Zero-shot classes (ZShot) case only counts the classification accuracy
of relations which appear in the test set but unseen in the training set.
Ablation settings. (1) Alternative architectures from related generation models [17, 49, 59].
In order to validate whether our framework is superior for generating useful additional data,
we conduct same augmentation experiments using different data generation models; (2) ST-
GAN without discriminator. This is an ablation test of adversarial training to verify the
effectiveness of using adversarial training in our network, we switch off the GAN module by
simply setting α = 0; (3) ST-GAN without encoder. This setting is to verify that performance
improvements are obtained by the ability of transferring information using ST-GAN encoder
and decoder, as opposed to the sampling scheme for the inputs. More ablation studies can be
found in supplementary materials.
Other details. We add one fully connected layer after the VGG model to extract the 500-
dimension object feature, and the relation feature is the concatenation of two object features,
i.e.1000-dimension. For ST-GAN, each training iteration consists of 1 and 5 updates for the
generator (including Φ, Enc and Dec) and the discriminator (including Real/Fake discrimina-
tor and Relation classifier), respectively. As to generating new features: for ALL classes, we
synthesize one new relation feature for each sample of the training data; for LShot and ZShot
classes, we synthesize 5 and 20 times of new data, respectively. For the final evaluation, we
use Recall@50 (R@50) and Recall@100 (R@100) as metrics. There are two kinds of cal-
culation methods: one is with graph constraint and the other one is without graph constraint.
Omitting graph constraint, namely, allowing a subject-object pair to have multiple predicate
labels in system output. Our code is available at https://github.com/xiaogangw/Generating-
Expensive-Relationship-Features-from-Cheap-Objects.git.

4.2 Results and analyses

In Table 1, we show the data augmentation results using our proposed ST-GAN, on the VRD
and VG datasets. We then give the ablation study results in Table 2, and comparison to the
state-of-the-arts in Table 3. Finally, in Figure 3, we demonstrate some success and failure
cases of relationship classification, comparing to baseline models.
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VRD VG

VTransE[67]
f(s)re f f(w)re f ↑ VTransE[67]

f(s)re f f(w)re f ↑
Ran Sel Ran Sel Ran Sel Ran Sel

ZShot n=0 18.4* – – 21.4 21.7 3.3 16.4* – – 18.0 19.0 2.6

LShot

n=1 20.9* 24.2 24.4 23.3 23.4 3.5 19.5* 20.4 20.9 20.1 20.4 1.4
n=5 24.1* 27.1 27.4 26.1 26.2 3.3 22.9* 24.0 24.0 23.7 23.7 1.1
n=10 27.4* 30.3 30.6 29.1 30.0 3.2 25.6* 26.7 27.1 26.2 26.3 1.5
n=20 32.0* 34.5 34.8 33.5 33.9 2.8 28.1* 29.6 30.0 28.5 28.8 1.9

ALL
@50 44.8 (49.0*) 51.8 52.0 50.7 50.9 3.0 62.6 63.5 63.7 63.0 63.1 1.1
@100 44.8 (49.0*) 51.8 52.0 50.7 50.9 3.0 62.9 63.9 64.0 63.4 63.5 1.1

Table 1: Relation recognition accuracy (%) using our feature augmentation method, compar-
ing to a baseline model VtransE [67]. * indicates our implementation using their code.

Augmentation results by ST-GAN. In Table 1, we present the results of data augmenta-
tion using the features generated by our ST-GAN. Real data and generated data are merged
together to train relation recognition models. We take VTransE [67] as our baseline. Our
generation model is trained with the ground truth extracted from a trained VTransE model.
Using ST-GAN (trained only on the whole dataset), we can generate new features for low-
shot classes (LShot), zero-shot classes (ZShot) and all classes (ALL). The maximum im-
provements are given in the columns denoted as ↑. Note that Ran. or Sel. is the input for the
encoder and f (s)re f or f (w)re f is the input for the decoder. The notation Ran. means we randomly
sample object instances according to object labels. Sel. means we sample object instances
according to not only the object labels but also the labels of relationships the objects belong-
ing to, i.e. these relationships should be same to the target one.

In Table 1, we have three observations. (1) Fewer-data cases gain more improvements.
Compared to the case of ALL classes, LShot and ZShot cases gain larger improvements
using our method. This fits well to the common sense that data augmentation methods bring
more gains to the training on fewer data with the extreme case shown in zero-shot feature
augmentation [59]. In terms of the datasets, we can see that VRD “enjoys more dividends”
brought by our augmentation method, since VRD has less data than VG. (2) Image reference
is better than word reference. On both datasets, we get more improvements using the
image feature of the relation example (f(s)re f ) as reference than using the word embedding of

relationship label (f(w)re f ), e.g., about a 1% margin (for both Ran and Sel.) on the VRD dataset.

The max improvements of most settings are obtained using f(s)re f . However, this feature is
not available for zero-shot classes which do not have any training sample. We use only the
embedding feature f(w)re f in this zero-shot case, and obtain 3.3% and 2.4% improvements on
two datasets, respectively. (3) Random object images bring satisfied improvements with
low annotation cost. As mentioned, although Sel. have higher similarity to the target, we
can see using Sel. is only slightly better than using Ran., e.g., 0.2% higher on VRD ALL.
Therefore, using Ran. instances is a cheaper way to satisfy the augmentation requirement
without losing much accuracy. This also validates that our ST-GAN can make successfully
semantic transformations even for the instances with very different attributes.

Ablative study. We show the ablative study results in Table 2. We have following ob-
servations. (1) Our method achieves the best performance over other feature generation
models [17, 49, 59]. Delta-encoder [49] utilized a simple reconstruction loss without any
relation-specific penalty or adversarial loss. Even though the model [59] used two discrim-
inator losses as ours, it still gets inferior performance. The possible reason is that it only
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VRD VG
Other models Ours Other models Ours

[17] [59] [49] w/o Dis w/o Enc ST-GAN [17] [59] [49] w/o Dis w/o Enc ST-GAN

ZShot n=0 – 20.2 19.4 20.0 20.3 21.7 – 17.2 16.7 17.4 17.1 19.0

LShot

n=1 21.1 21.6 21.8 22.7 23.0 24.4 19.6 19.7 20.2 19.9 19.7 20.9
n=5 24.1 24.5 24.8 26.6 25.7 27.4 22.9 23.3 23.3 22.9 23.0 24.0
n=10 27.3 27.5 27.8 30.0 30.2 30.6 25.5 25.7 25.6 26.0 25.8 27.1
n=20 32.3 32.1 32.5 34.0 33.9 34.8 28.2 28.2 29.1 28.5 28.6 30.0

ALL
@50 48.8 49.1 49.6 51.3 51.2 52.0 62.4 62.7 62.6 63.0 63.1 63.7
@100 48.8 49.1 49.6 51.3 51.2 52.0 62.6 63.0 63.0 63.3 63.4 64.0

Table 2: Ablation study results. Note that f(s)re f is used as a reference information by default.

False: (giraffe-in-road) 

True:(giraffe-on-road)

giraffe instances road instances

test results

False->True

Ours: ear-of-teddy bear
GT: ear-on-teddy bear

test resultreference image

ear instances teddy bear instances hand instances racket instances

VTransE: hand-in-racket
Ours: hand-hold-racket
GT:hand-hold-racket

test resultreference image

Base: giraffe-in-road
Ours: giraffe-on-road
GT:giraffe-on-road

test resultreference image

(a) failure by VTransE, success by ours (a) failure case (b) success case 
Figure 3: (a) Our failure case. (b) Our success case. GT is ground truth. In (b) we also give
the wrong predication by the baseline model – VTransE [67].

takes word embedding vector as input. While, our ST-GAN has more informative inputs
both for the encoder and decoder, i.e., the image features extracted from cheap objects and
the relation feature extracted from a reference image. (2) ST-GAN R/F discriminator is
helpful. Inferior results are obtained when removing ST-GAN R/F discriminator. Since re-
construction loss alone can only guarantee the feature quality, however, learning good feature
distribution is critical for generating new samples, and this can be achieved by adversarial
training [1]. (3) ST-GAN encoder is helpful. We obtain lower accuracies when removing
ST-GAN encoder and feeding reference feature directly into the decoder. This is because the
encoder works for filtering out the object attributes related to the original relationships they
belonging to [49].
Comparing to the state-of-the-art. In Table 3, we list the comparable2 methods and results
on VRD and VG datasets, respectively. On the VG dataset, there are different training/test
splits and and we use the split-2 version following the most related works [63, 67]. We
can see our method makes further improvements on ALL classes, and obtains larger margin
under no graph constraints. This verifies our method on generating reasonable semantic rela-
tion features. Removing graph constraints significantly increases reported performance since
the model is then allowed multiple guesses for challenging objects and relations, especially
for zero-shot cases.
Success and failure cases. In Figure 3, we present the representative cases using source
images: (a) the failure sample of our method, and (b) the success case which are wrongly

2Others [24, 65, 71] using strong prior knowledge are not directly comparable to our method.
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VRD VG

Method
ALL ZShot

Method
ALL ZShot

@50 @100 @50 @100 @50 @100 @50 @100

G
C

Motifs [66] 48.9* 48.9* - -

G
C

Sp
lit

-1

SMP [60] 44.8 53.1 - -
VTransE [67] 49.0* 49.0* 18.4 18.4 PAE [38] 54.2 55.5 - -
STA [63] 48.0 48.0 20.6 20.6 Motifs [66] 65.2 67.1 - -
ST-GAN-f(w)re f 50.9 50.9 21.7 21.7 MPS [19] 65.1 66.9 - -

ST-GAN-f(s)re f 52.0 52.0 - -

Sp
lit

-2

VTransE [67] 62.6 62.9 16.4 16.4

N
o

G
C

LVR [42] 46.3 47.9 8.5 8.5 STA [63] 62.7 62.9 18.9 18.9
PPR-FCN [68] 47.4 47.4 - - ST-GAN-f(w)re f 63.1 63.7 19.0 19.0
VDL [31] 47.9 55.16 19.17 19.17 ST-GAN-f(s)re f 63.6 64.0 - -
DRL [6] 80.78 81.90 - -

N
o

G
C

Sp
lit

-2 DRL [6] - - - -
DSR [27] 60.90 79.81 - - DSR [27] 69.06 74.37 - -
ST-GAN-f(w)re f 86.38 93.92 64.64 81.85 ST-GAN-f(w)re f 77.97 84.55 36.2 49.5

Table 3: Relationship recognition accuracy (%) comparisons with graph constraints (GC)
and without graph constraints (No GC). * indicates our implementation using their codes.

recognized by VTransE [67] but correctly recognized by ours. We also show the cheap
object instances and relation reference images. In (a), our method failed to predicate the
correct label ear-on-teddy bear. When observing the object instances, we see the reason is
that most ear examples are on the heads of human or animals instead of toys.

5 Conclusions
In this work, we propose a novel relation feature generation model ST-GAN, in order to
tackle recognition problems for rare and unseen relation categories. Our ST-GAN utilizes
not only the real/fake discriminator but also the relationship classier, encouraging the gen-
erated feature to be useful for the relationship classification. Our approach transforms the
cheap object instances to augment data for expensive compositional relations. Extensive ex-
periments demonstrate our augmented data can be used to achieve superior performances,
particularly for few-shot and zero-shot classes.

Acknowledgments
This research is part of NExT++ research which is supported by the National Research Foun-
dation, Prime Minister’s Office, Singapore under its IRC@SG Funding Initiative, and it is
part of CREATE program, Singapore-MIT Alliance for Research and Technology (SMART)
Future Urban Mobility (FM) IRG. It is also partially supported by German Research Foun-
dation (DFG CRC 1223), and by the Nvidia Corporation through the Memorandum of Un-
derstanding with the Advanced Robotics Centre of the National University of Singapore on
autonomous systems technologies.

References
[1] Sanjeev Arora, Andrej Risteski, and Yi Zhang. Do GANs learn the distribution? some

theory and empirics. In International Conference on Learning Representations (ICLR),
2018.

Citation
Citation
{Zellers, Yatskar, Thomson, and Choi} 2018

Citation
Citation
{Xu, Zhu, Choy, and Fei-Fei} 2017

Citation
Citation
{Zhang, Kyaw, Chang, and Chua} 2017{}

Citation
Citation
{Newell and Deng} 2017

Citation
Citation
{Yang, Zhang, and Cai} 2018{}

Citation
Citation
{Zellers, Yatskar, Thomson, and Choi} 2018

Citation
Citation
{Herzig, Raboh, Chechik, Berant, and Globerson} 2018

Citation
Citation
{Zhang, Kyaw, Chang, and Chua} 2017{}

Citation
Citation
{Peyre, Laptev, Schmid, and Sivic} 2017

Citation
Citation
{Yang, Zhang, and Cai} 2018{}

Citation
Citation
{Zhang, Kyaw, Yu, and Chang} 2017{}

Citation
Citation
{Lu, Krishna, Bernstein, and Fei-Fei} 2016

Citation
Citation
{Dai, Zhang, and Lin} 2017

Citation
Citation
{Dai, Zhang, and Lin} 2017

Citation
Citation
{Liang, Guo, Chang, and Chen} 2018

Citation
Citation
{Liang, Guo, Chang, and Chen} 2018

Citation
Citation
{Zhang, Kyaw, Chang, and Chua} 2017{}



WANG ET AL.: GENERATING EXPENSIVE RELATIONSHIP FEATURES FROM C. O. 11

[2] Ankan Bansal, Karan Sikka, Gaurav Sharma, Rama Chellappa, and Ajay Divakaran.
Zero-shot object detection. In Proceedings of the European Conference on Computer
Vision (ECCV), 2018.

[3] Maxime Bucher, Stéphane Herbin, and Frédéric Jurie. Generating visual representa-
tions for zero-shot classification. In Proceedings of the IEEE International Conference
on Computer Vision (CVPR), 2017.

[4] Tianshui Chen, Weihao Yu, Riquan Chen, and Liang Lin. Knowledge-embedded rout-
ing network for scene graph generation. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2019.

[5] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and Jaegul
Choo. Stargan: Unified generative adversarial networks for multi-domain image-to-
image translation. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2018.

[6] Bo Dai, Yuqi Zhang, and Dahua Lin. Detecting visual relationships with deep relational
networks. In Proceedings of the IEEE International Conference on Computer Vision
(CVPR), 2017.

[7] Li Deng and Yang Liu. Deep Learning in Natural Language Processing. Springer,
2018.

[8] Ming Ding, Jie Tang, and Jie Zhang. Semi-supervised learning on graphs with gen-
erative adversarial nets. In Proceedings of the 27th ACM International Conference on
Information and Knowledge Management (CIKM), 2018.

[9] Mandar Dixit, Roland Kwitt, Marc Niethammer, and Nuno Vasconcelos. Aga:
Attribute-guided augmentation. In Proceedings of the IEEE International Conference
on Computer Vision (CVPR), 2017.

[10] Rafael Felix, BG Vijay Kumar, Ian Reid, and Gustavo Carneiro. Multi-modal cycle-
consistent generalized zero-shot learning. In European Conference on Computer Vision
(ECCV), 2018.

[11] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast
adaptation of deep networks. In Proceedings of the 34th International Conference on
Machine Learning (ICML), 2017.

[12] Yanwei Fu, Timothy M Hospedales, Tao Xiang, and Shaogang Gong. Transductive
multi-view zero-shot learning. IEEE transactions on pattern analysis and machine
intelligence (TPAMI), 2015.

[13] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. Generative adversarial nets. In
Advances in Neural Information Processing Systems (NIPS), 2014.

[14] Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell, and Thomas Griffiths. Recast-
ing gradient-based meta-learning as hierarchical bayes. In International Conference on
Learning Representations (ICLR), 2018.



12 WANG ET AL.: GENERATING EXPENSIVE RELATIONSHIP FEATURES FROM C. O.

[15] Jiuxiang Gu, Handong Zhao, Zhe Lin, Sheng Li, Jianfei Cai, and Mingyang Ling.
Scene graph generation with external knowledge and image reconstruction. In The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[16] Ishaan Gulrajani, Faruk Ahmed, Martín Arjovsky, Vincent Dumoulin, and Aaron C.
Courville. Improved training of wasserstein gans. In Advances in Neural Information
Processing Systems (NIPS), 2017.

[17] Bharath Hariharan and Ross Girshick. Low-shot visual recognition by shrinking and
hallucinating features. In The IEEE International Conference on Computer Vision
(ICCV), 2017.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016.

[19] Roei Herzig, Moshiko Raboh, Gal Chechik, Jonathan Berant, and Amir Globerson.
Mapping images to scene graphs with permutation-invariant structured prediction. In
Advances in Neural Information Processing Systems (NIPS), 2018.

[20] Haoshuo Huang, Qixing Huang, and Philipp Krahenbuhl. Domain transfer through
deep activation matching. In Proceedings of the European Conference on Computer
Vision (ECCV), 2018.

[21] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz,
Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A Shamma, Michael Bernstein,
and Li Fei-Fei. Visual genome: Connecting language and vision using crowdsourced
dense image annotations. 2016. URL https://arxiv.org/abs/1602.07332.

[22] Yoonho Lee and Seungjin Choi. Gradient-based meta-learning with learned layerwise
metric and subspace. In International Conference on Machine Learning (ICML), 2018.

[23] Yikang Li, Wanli Ouyang, Xiaogang Wang, and Xiao’ou Tang. Vip-cnn: Visual phrase
guided convolutional neural network. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2017.

[24] Yikang Li, Wanli Ouyang, Bolei Zhou, Kun Wang, and Xiaogang Wang. Scene graph
generation from objects, phrases and region captions. In The IEEE International Con-
ference on Computer Vision (ICCV), 2017.

[25] Yikang Li, Wanli Ouyang, Zhou Bolei, Shi Jianping, Zhang Chao, and Xiaogang Wang.
Factorizable net: An efficient subgraph-based framework for scene graph generation.
In Proceedings of the European Conference on Computer Vision (ECCV), 2018.

[26] Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-sgd: Learning to learn
quickly for few-shot learning. arXiv preprint arXiv:1707.09835, 2017.

[27] Kongming Liang, Yuhong Guo, Hong Chang, and Xilin Chen. Visual relationship
detection with deep structural ranking. In AAAI, 2018.

[28] Xiaodan Liang, Lisa Lee, and Eric P Xing. Deep variation-structured reinforcement
learning for visual relationship and attribute detection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

https://arxiv.org/abs/1602.07332


WANG ET AL.: GENERATING EXPENSIVE RELATIONSHIP FEATURES FROM C. O. 13

[29] Shichen Liu, Mingsheng Long, Jianmin Wang, and Michael I Jordan. Generalized
zero-shot learning with deep calibration network. In Advances in Neural Information
Processing Systems (NIPS), 2018.

[30] Yaoyao Liu, Qianru Sun, Anan Liu, Yuting Su, Bernt Schiele, and Tat-Seng Chua.
Lcc: Learning to customize and combine neural networks for few-shot learning. arXiv,
1904.08479, 2019.

[31] Cewu Lu, Ranjay Krishna, Michael Bernstein, and Li Fei-Fei. Visual relationship de-
tection with language priors. In Proceedings of the European Conference on Computer
Vision (ECCV), 2016.

[32] Liqian Ma, Xu Jia, Qianru Sun, Bernt Schiele, Tinne Tuytelaars, and Luc Van Gool.
Pose guided person image generation. In Advances in Neural Information Processing
Systems (NIPS), 2017.

[33] Liqian Ma, Qianru Sun, Stamatios Georgoulis, Luc Van Gool, Bernt Schiele, and Mario
Fritz. Disentangled person image generation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2018.

[34] Liqian Ma, Qianru Sun, Bernt Schiele, and Luc Van Gool. A novel bilevel paradigm
for image-to-image translation. arXiv, 1904.09028, 2019.

[35] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. In International Conference on Learning Repre-
sentations, ICLR 2013, Workshop Track Proceedings, 2013.

[36] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in Neural
Information Processing Systems (NIPS), 2013.

[37] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets.
arXiv:1411.1784, 2014.

[38] Alejandro Newell and Jia Deng. Pixels to graphs by associative embedding. In Ad-
vances in Neural Information Processing Systems (NIPS), 2017.

[39] Mohammad Norouzi, Tomas Mikolov, Samy Bengio, Yoram Singer, Jonathon Shlens,
Andrea Frome, Greg S Corrado, and Jeffrey Dean. Zero-shot learning convex combina-
tion of semantic embeddings. International Conference on Learning Representations
ICLR, 2014.

[40] Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis
with auxiliary classifier gans. International Conference on Learning Representations
(ICLR), 2017.

[41] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vec-
tors for word representation. In EMNLP, 2014.

[42] Julia Peyre, Ivan Laptev, Cordelia Schmid, and Josef Sivic. Weakly-supervised learning
of visual relations. In The IEEE International Conference on Computer Vision (ICCV),
2017.



14 WANG ET AL.: GENERATING EXPENSIVE RELATIONSHIP FEATURES FROM C. O.

[43] Mengshi Qi, Weijian Li, Zhengyuan Yang, Yunhong Wang, and Jiebo Luo. Attentive
relational networks for mapping images to scene graphs. arXiv:1811.10696, 2018.

[44] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In
In International Conference on Learning Representations (ICLR), 2017.

[45] Oren Rippel, Manohar Paluri, Piotr Dollar, and Lubomir Bourdev. Metric learning with
adaptive density discrimination. In International Conference on Learning Representa-
tions (ICLR), 2016.

[46] Marcus Rohrbach, Sandra Ebert, and Bernt Schiele. Transfer learning in a transductive
setting. In Advances in neural information processing systems (NIPS), 2013.

[47] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. Interna-
tional Journal of Computer Vision (IJCV), 2015.

[48] Victor Garcia Satorras and Joan Bruna Estrach. Few-shot learning with graph neural
networks. In International Conference on Learning Representations (ICLR), 2018.

[49] Eli Schwartz, Leonid Karlinsky, Joseph Shtok, Sivan Harary, Mattias Marder, Abhishek
Kumar, Rogerio Feris, Raja Giryes, and Alex Bronstein. Delta-encoder: an effective
sample synthesis method for few-shot object recognition. In Advances in Neural Infor-
mation Processing Systems (NIPS). 2018.

[50] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. In International Conference on Learning Representations
(ICLR), 2015.

[51] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot
learning. In Advances in Neural Information Processing Systems (NIPS), 2017.

[52] Jie Song, Chengchao Shen, Jie Lei, An-Xiang Zeng, Kairi Ou, Dacheng Tao, and Min-
gli Song. Selective zero-shot classification with augmented attributes. In European
Conference on Computer Vision (ECCV), 2018.

[53] Qianru Sun, Bernt Schiele, and Mario Fritz. A domain based approach to social relation
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017, 2017.

[54] Qianru Sun, Yaoyao Liu, Tat-Seng Chua, and Bernt Schiele. Meta-transfer learning for
few-shot learning. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2019.

[55] Sebastian Thrun and Lorien Pratt. Learning to learn: Introduction and overview. In
Learning to learn. Springer, 1998.

[56] Longhui Wei, Shiliang Zhang, Wen Gao, and Qi Tian. Person transfer gan to bridge
domain gap for person re-identification. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.



WANG ET AL.: GENERATING EXPENSIVE RELATIONSHIP FEATURES FROM C. O. 15

[57] Kilian Q Weinberger, John Blitzer, and Lawrence K Saul. Distance metric learning
for large margin nearest neighbor classification. In Advances in neural information
processing systems (NIPS), 2006.

[58] Sanghyun Woo, Dahun Kim, Donghyeon Cho, and In So Kweon. Linknet: Relational
embedding for scene graph. In Advances in Neural Information Processing Systems
(NIPS), 2018.

[59] Yongqin Xian, Tobias Lorenz, Bernt Schiele, and Zeynep Akata. Feature generating
networks for zero-shot learning. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2018.

[60] Danfei Xu, Yuke Zhu, Christopher B Choy, and Li Fei-Fei. Scene graph generation by
iterative message passing. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2017.

[61] Hsuan-Kung Yang, An-Chieh Cheng, Kuan-Wei Ho, Tsu-Jui Fu, and Chun-Yi Lee. Vi-
sual relationship prediction via label clustering and incorporation of depth information.
In Proceedings of the European Conference on Computer Vision (ECCV), 2018.

[62] Jianwei Yang, Jiasen Lu, Stefan Lee, Dhruv Batra, and Devi Parikh. Graph r-cnn for
scene graph generation. In Proceedings of the European Conference on Computer
Vision (ECCV), 2018.

[63] Xu Yang, Hanwang Zhang, and Jianfei Cai. Shuffle-then-assemble: Learning object-
agnostic visual relationship features. In Proceedings of the European Conference on
Computer Vision (ECCV), 2018.

[64] Guojun Yin, Lu Sheng, Bin Liu, Nenghai Yu, Xiaogang Wang, Jing Shao, and
Chen Change Loy. Zoom-net: Mining deep feature interactions for visual relationship
recognition. In Proceedings of the European Conference on Computer Vision (ECCV),
2018.

[65] Ruichi Yu, Ang Li, Vlad I Morariu, and Larry S Davis. Visual relationship detection
with internal and external linguistic knowledge distillation. In The IEEE International
Conference on Computer Vision (ICCV), 2017.

[66] Rowan Zellers, Mark Yatskar, Sam Thomson, and Yejin Choi. Neural motifs: Scene
graph parsing with global context. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2018.

[67] Hanwang Zhang, Zawlin Kyaw, Shih-Fu Chang, and Tat-Seng Chua. Visual translation
embedding network for visual relation detection. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2017.

[68] Hanwang Zhang, Zawlin Kyaw, Jinyang Yu, and Shih-Fu Chang. Ppr-fcn: Weakly su-
pervised visual relation detection via parallel pairwise r-fcn. In The IEEE International
Conference on Computer Vision (ICCV), 2017.

[69] Ji Zhang, Mohamed Elhoseiny, Scott Cohen, Walter Chang, and Ahmed M Elgammal.
Relationship proposal networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017.



16 WANG ET AL.: GENERATING EXPENSIVE RELATIONSHIP FEATURES FROM C. O.

[70] Ziming Zhang and Venkatesh Saligrama. Zero-shot learning via semantic similarity
embedding. In Proceedings of the IEEE international conference on computer vision
(CVPR), 2015.

[71] Bohan Zhuang, Lingqiao Liu, Chunhua Shen, and Ian Reid. Towards context-aware
interaction recognition for visual relationship detection. In The IEEE International
Conference on Computer Vision (ICCV), 2017.


	Generating expensive relationship features from cheap objects
	Citation

	tmp.1574928450.pdf.qCh8x

