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Knowledge Base Question Answering with Topic Units

Yunshi Lan , Shuohang Wang and Jing Jiang
School of Information System, Singapore Management University
{yslan.2015, shwang.2014}@phdis.smu.edu.sg, jingjiang@smu.edu.sg

Abstract
Knowledge base question answering (KBQA) is an
important task in natural language processing. Ex-
isting methods for KBQA usually start with en-
tity linking, which considers mostly named entities
found in a question as the starting points in the KB
to search for answers to the question. However,
relying only on entity linking to look for answer
candidates may not be sufficient. In this paper, we
propose to perform topic unit linking where topic
units cover a wider range of units of a KB. We use
a generation-and-scoring approach to gradually re-
fine the set of topic units. Furthermore, we use re-
inforcement learning to jointly learn the parameters
for topic unit linking and answer candidate rank-
ing in an end-to-end manner. Experiments on three
commonly used benchmark datasets show that our
method consistently works well and outperforms
the previous state of the art on two datasets.

1 Introduction
Knowledge base question answering (KBQA) is an impor-
tant task in NLP that has many real-world applications such
as in search engines and decision support systems. It has at-
tracted much attention in recent years [Cai and Yates, 2013;
Kwiatkowski et al., 2013; Bordes et al., 2014; Dong et al.,
2015; Yih et al., 2015; Xu et al., 2016; Yu et al., 2017;
Petrochuk and Zettlemoyer, 2018]. The task is defined as
finding the answer to a factoid question using facts stored in
a knowledge base (KB).

Most existing methods for KBQA use a pipelined ap-
proach: First, given a question q, an entity linking step is used
to find KB entities mentioned in q. These entities are often
referred to as topic entities. Next, relations or relation paths
in the KB linked to the topic entities are ranked such that the
best relation or relation path matching q is selected as the one
that leads to the answer entities. For example, given the ques-
tion Q1 shown in Figure 1, an entity linking tool may link the
phrase “Morgan Freeman” in the question to the entity “Mor-
gan Freeman” in the KB. Then starting from this topic entity,
a number of different relation paths are considered such as
(Morgan Freeman, education), (Morgan Freeman, place of
birth) and (Morgan Freeman, place of birth, contained by).

Q1: Where did Morgan Freeman graduate ?
Q2: What body of water does St. Lawrence flow into ?
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Los Angeles
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actor
Memphis

USA

Saint
Lawrence

Romecountry

Canada

Niger River body of water

Atlantic
Ocean

Saint Lawrence
River

education
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of birth

notable types

contained by
notable
types

notable
types

notable
types

flow
through
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river mouth notable
types

contained by

KB

Figure 1: Two example questions and how they can be answered by
a KB. The questions are linked to topic entities by imaginary lines.
The shaded entities are the correct answers to the questions. The
paths in bold are correct relation paths towards the questions.

Ideally, we want the path (Morgan Freeman, education) to be
ranked the first with respect to the question so that the correct
answer at the end of this path can be extracted.

Although a plethora of methods has been proposed for
KBQA, most work focuses on the relation path ranking step.
For entity linking, many methods rely entirely on existing
entity linking tools [Xu et al., 2016; Dong et al., 2017;
Hao et al., 2017], which generally use traditional rule-based
methods to perform named entity recognition and linking.
There are at least two limitations with this approach. First,
oftentimes an entity mention in a question is ambiguous and
an entity linking tool may not link it to the correct entity in
the KB. Take the question Q2 in Figure 1 for example. An
entity linking tool is more likely to mistakenly link the en-
tity mention “St. Lawrence” to the entity “Saint Lawrence”
in the KB, which is far away from the correct answer entity
“Atlantic Ocean.” On the other hand, the question in Figure 1
shows that words that are not part of a named entity, such as
“body”, “water” and “flow”, can also be linked to relevant
entities and relations in the KB such as “body of water” and
“flow through” that can help find the correct answer entity.
The second limitation with a pipeline approach is that the
entity linking step cannot be trained using the final KBQA
results. Again, let us look at the Q2 in Figure 1. If both
“Saint Lawrence” and “Saint Lawrence River” are recognized
as topic entities, an entity linking module developed outside
of the KBQA system would not be able to know which one



is more relevant to the question. However, if we could train
a topic entity ranking function using the ground truth answer
to the question, we may learn that with “water” and “flow”
appearing in the question, “Saint Lawrence River” should be
ranked higher than “Saint Lawrence” as a topic entity.

In this paper, we address the two limitations above by re-
placing the standard topic entity linking module with a novel
topic unit generation-and-scoring module. Our topic units
include not only named entities but also other KB units such
as entities containing common nouns (e.g., “body of water”)
and relation types (e.g., “flow through,” “river mouth”). By
flexibly considering a wide range of topic units, we can in-
crease the chance of the correct answer being connected to
one of the topic units. However, we do not want to consider
too many topic units for the subsequent relation path ranking
step as this would incur high computational costs. We there-
fore propose to identify topic units in two steps: a genera-
tion step and a scoring step. First, in a topic unit generation
step, we use heuristics with low computational costs (e.g., n-
gram matching with an inverted index) to identify an initial
set of topic units that has a high coverage. Subsequently, in a
topic unit scoring step, we use a neural network-based scor-
ing function to rank the initial topic units and select a small
number of them that are highly relevant to the question. We
then only consider relation paths derived from this small set
of topic units. Our method is trained in an end-to-end manner
using reinforcement learning such that the ranking function
in the topic unit scoring step can be learned without knowing
the ground truth topic units.

We evaluate our method on three benchmark datasets: We-
bQuestionsSP, ComplexWebQuestions and SimpleQuestions.
We find that our method can clearly outperform the state of
the art on two datasets, especially on ComplexWebQuestions
where the improvement is substantial. It also performs com-
petitively on the third dataset. Further analyses also show that
considering a wide range of topic units is crucial to the per-
formance improvement.

2 Related Work
A general solution to KBQA is a pipeline approach, where
the question is first linked to some topic entities in the KB
by an existing entity linking tool [Yao and Durme, 2014;
Bordes et al., 2015; Dong et al., 2017; Hao et al., 2017]
and then relation paths connected to the topic entities in
the KB are retrieved and ranked by various ranking mod-
els, including semantic parsing based models [Berant et al.,
2013; Yih et al., 2015; Yih et al., 2016] and embedding
based models [Bordes et al., 2014; Bordes et al., 2015;
Dong et al., 2017; Sun et al., 2018]. The top-ranked re-
lation path will then be used to answer the question. Al-
though these methods have worked well on KBQA, there
are limitations of this pipeline approach using an external
entity linking tool [Shen et al., 2015; Lample et al., 2016;
Mai et al., 2018], as we have pointed out in Section 1.

There has been some work attempting to address the limi-
tations pointed out. Yu et al. (2017) re-rank the topic entities
using their associated relations. Xu et al. (2016) jointly train
entity linking and path ranking through entity descriptions.

However, these studies still only consider named entities as
topic entities rather than linking a question to other kinds of
KB units. In contrast, we consider a wide range of KB units
during our topic unit linking step. Zhang et al. (2017) in-
tegrate entity linking and relation path ranking into an end-
to-end model. However, their topic entity linking module
considers all candidate topic entities without using a scor-
ing function to rank and fiter them, and as a result, it is hard
to scale up their method to large knowledge bases. In con-
trast, we take a topic unit generation-and-scoring approach,
using heuristics for generating topic units and a neural net-
work model for fine-grained scoring. Similar to [Zhang et
al., 2017], We also use reinforcement learning to jointly train
the entire system.

3 Method
3.1 Task Setup
We first formally define the KBQA task. A KB (knowl-
edge base) consists of a set of entities E (e.g., Mor-
gan Freeman), a set of relation types1 R (e.g., place
of birth) and a set of relation triplets (h, r, t) (e.g.,
(Morgan Freeman, place of birth,Memphis), where h ∈ E is
the head entity, t ∈ E is the tail entity, and r ∈ R is a di-
rected relation between h and t. The triplets (h, r, t) are facts
or knowledge contained in the KB. A KB can also be seen as
a knowledge graph whose nodes are the entities and edges are
the relations. We assume that each entity or relation type has
a textual description, which is a sequence of words.

We define KB units (denoted as U) to be the union of the
entities and the relation types, i.e., U = E ∪ R. Given a
question q, the task of KBQA (knowledge base question an-
swering) is to find a set of entities in E that are answers to q.
It is assumed that a set of questions together with their correct
answers in the KB is given for training.

3.2 Method Overview
Like many existing methods for KBQA, our method follows
the general approach of first linking the words in the ques-
tion to some parts of the KB as starting points for search and
then following the edges of the knowledge graph to look for
answer entities whose relation path best matches the ques-
tion. Different from previous methods, instead of confining
the first linking step to only named entities in the question, we
consider a wider range of KB units to be linked to the ques-
tion. We also propose a generation-and-scoring strategy such
that we can gradually refine the linked KB units.

Specifically, we divide our method into the following three
steps: (1) Topic unit generation. In this step, our goal is
to identify all KB units that are likely mentioned in the ques-
tion. We want to achieve high coverage without incurring any
heavy computation. So in this step we rely mostly on existing
entity linking tools as well as string matching, pre-computed
corpus statistics and pre-constructed inverted index. The out-
put of this step is an initial set of topic units for a given ques-
tion. (2) Topic unit scoring. In this second step, we want

1Since sometimes relations may refer to relation triplets, to avoid
confusion, here we use the term relation type.



Q: What body of water does St Lawrence flow into ?
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Figure 2: An overview of the various steps of our method.

to refine the topic units obtained in the first step by select-
ing the top ones based on a sophisticated ranking function
learned from the training data. The output of this step is a
much smaller subset of the initial topic units. (3) Relation
path ranking. Given the topic units selected in the previous
step, we can derive a set of relation paths where each path
starts from a topic unit and contains one or multiple hops of
relations. We then use a neural network-based scoring func-
tion to rank these relation paths. Finally, we pick the entities
connected to the top-ranked relation path as the answers to
the question.

Our main contributions lie in the first two steps. We regard
the third step as a standard procedure to complete the entire
KBQA system. The three steps are illustrated in Figure 2. In
the rest of this section we present the details of each step and
describe how we use reinforcement learning to train the entire
method in an end-to-end manner.

3.3 Topic Unit Generation
The goal of topic unit generation is to identify all KB units
that are possibly mentioned in the question. For named en-
tities appearing in the question, we rely on existing entity
linking tools to recognize and link them. Here we mainly
describe how we identify other KB units possibly mentioned
in the question.

A straightforward solution would be to identify those KB
units whose textual descriptions contain one of the words in
the question. However, exact word matching is too restrictive.
Here we use two strategies to relax the matching conditions.
One is to allow character-level n-gram matching. Another is
to expand the question with additional words that are highly
related to some original question words.

Specifically, we do the following to identify topic units that
are not named entities:

1. We build an inverted index to map each unique character
n-gram (where n > 4) and each unique word found in
the descriptions of all KB units to the corresponding KB
units. This allows us to quickly link a character n-gram
or a word found in a question to the KB units contain it.

2. Next, we link the question to some highly correlated
words based on statistics obtained from the training data.
E.g., the word “flow” appearing in the question in Fig-
ure 2 could be linked to the word “river” in a relation
path, which would help us link “flow” from a question
to relation types such as “river mouth” in the KB. To
achieve this, for those training questions whose topic en-
tities can be identified by existing entity linking tools,

we find the relation paths between the topic entities and
the ground truth answer entities. We thus obtain a set
of (question, relation path) pairs. We then compute the
pointwise mutual information (PMI) between each pair
of a question word and a relation path word. Note that
although the relation paths used here are not always cor-
rect, most of them are still relevant to the question, and
therefore the mutual information computed can still in-
dicate strongly correlated words.

3. Given a question q, we first use an entity linking tool to
identify named entities in q. Then we remove the linked
named entities and stop words in q. For the remaining
question words, we use the pre-computed PMI values to
find other words highly correlated with one of the ques-
tion words (using a PMI threshold of 1) and add these
additional words to the question.

4. Finally, we find those KB units linked to all the charac-
ter n-grams and the words inside the expanded question,
based on the inverted index built earlier. This is our ini-
tial set of topic units for question q, which we denote
with Ūq .

3.4 Topic Unit Scoring
The topic unit generating step aims to increase coverage but
usually returns a large set of topic units. In the topic unit
scoring step, we use a scoring function to derive a distribu-
tion over the topic units identified from the previous step with
respect to the question.

The probability function is based on a standard linear feed-
forward neural network as follows:

s(u, q) = wᵀ
1 fu + b1,

p(u|q) =
exp(s(u, q))∑

u′∈Ūq
exp(s(u′, q))

, (1)

where u ∈ Ūq , fu is a feature vector associated with u, and
w1 and b1 are parameters to be learned.

The feature vector fu is the concatenation of four vectors:

fu = f semantic
u ⊕ f character

u ⊕ f category
u ⊕ f link

u .

• f semantic
u is the output of a neural network-based sequence

matching model [Seo et al., 2017] that measures the se-
mantic relatedness between the topic unit u and the ques-
tion q. Here the topic unit u is a represented by the
embedding vectors of the words in the textual descrip-
tion of u, denoted as (u1,u2, . . . ,u|u|), and q is also



represented by the embedding vectors of its sequence
of words, (q1,q2, . . . ,q|q|). The sequence matching
model first uses the attention mechanism to obtain at-
tention weights aij as follows:

αij = wᵀ
2 (qi ⊕ uj ⊕ (qi � uj)),

aij =
exp(αij)∑|q|
k=1 exp(αkj)

.

Then for each word uj in the topic unit u, we obtain an
attention-weighted version of the question as follows:

q̃j =

|q|∑
i=1

aijqi.

Finally, we match each unit word uj with its correspond-
ing question representation q̃j , and aggregate the match-
ing results to obtain the vector f semantic

u :

f semantic
u = wᵀ

3

|u|∑
j=1

(q̃j ⊕ uj).

Essentially f semantic
u is a 1-dimensional vector that en-

codes the knowledge about how well unit u matches
question q using the attention-based sequence matching
model. Here w2 and w3 are parameters to be learned.

• f character
u is a 1-dimensional vector that measures the per-

centage of characters in u that are also found in q.

• fcategory
u is a 3-dimensional one-hot vector indicating the

category of the topic unit u, i.e., whether it is a named
entity recognized by the entity linking tool, an entity that
is a common noun, or a relation type.

• flink
u is a 1-dimensional vector, which contains the entity

linking score returned by the entity linking tool if u is a
named entity and 0 otherwise.

Based on Eqn. (1), we can rank the topic units in Ūq and
pick the top-K to form a new set Uq for the next step.

3.5 Relation Path Ranking
Given the set Uq , in the relation path ranking step we first
identify candidate relation paths that are connected to some
u ∈ Uq and then rank these relation paths based on how well
they match the question. Note that this step is not the focus
of our work and we omit some of the implementation details.

To identify the candidate relation paths, for each u ∈ Uq we
extract a set of relation paths. If u is an entity, we take those
relation paths starting from u and containing one or two rela-
tions. If u itself is a relation type, we take all relation paths
in the KB with one or two relations where at least one of the
relations is u. When a unit u gives us more than 500 rela-
tion paths, we use character-level overlap with the question
q to rank these relation paths and take only the top 500. In
the end, we take the union of all the extracted relation paths
from all u ∈ Uq . Let us use Cq to denote this set of candidate
relation paths.

Next, we would like to obtain a distribution over the paths
inside Cq . We again use a standard linear feed-forward neural
network for this:

s(c, q) = wᵀ
4 fc + b4,

p(c|q) =
exp(s(c, q))∑

c′∈Cq
exp(s(c′, q))

, (2)

where c ∈ Cq , w4 and b4 are parameters to be learned, and

fc = f link
c ⊕ f semantic

c ⊕ f pattern
c ⊕ f answer

c .

The four feature vectors are defined as follows:

• For a candidate path c, we consider all its components
that are topic units inside Uq and define f link

c to be a 1-
dimensional vector containing the sum of the probabili-
ties of these units as computed by Eqn. (1).

• f semantic
c is based on a previous work on KBQA [Yih et

al., 2015]. It is the output of a sequence matching model
that matches the question sequence with the relation path
sequence, where the relation path sequence contains the
words from the descriptions of the components of the
relation paths and a CNN network with a max-pooling
layer is used to encode each sequence into a vector be-
fore the dot product of the two vectors is computed to
measure their similarity.

• f pattern
c is also based on some existing work on

KBQA [Dong et al., 2015]. It also uses the same se-
quence matching model [Yih et al., 2015] to measure
the similarity between the question and a relation path,
but entities in the question and the relation path are re-
placed by placeholders. E.g., “where did Morgan Free-
man graduate” becomes (where, did, 〈e〉, graduate).

• Since previous work [Xu et al., 2016] has shown that
contexts in the KB of candidate answer entities are use-
ful for KBQA, here we adopt this idea to define f answer

c .
For the relation path c, we collect those entities linked
to the answer entities that characterize them. E.g., from
the answer entity “Jamie Dornan” we can collect entities
“person” and “actor,” which are linked to “Jamie Dor-
nan” in the KB. We call these answer contexts. We then
use another CNN network to match the question pattern
with these answer contexts to derive f answer

c .

3.6 End-to-End Learning
The model parameters we need to learn include those used in
the scoring function at the topic unit scoring step (which we
denote as θ1) and those in the scoring function at the relation
path ranking step (which we denote as θ2). Although these
are two separate steps, we jointly learn the parameters in an
end-to-end manner. (See Algorithm 1.)

We define the overall loss function as follows. For each re-
lation path, we treat the set of the connected tail entities as the
predicted answer. Given a training question q and its ground
truth answers, we can compute the F1 score of each relation
path c ∈ Cq . We normalize these F1 scores over all paths
and treat it as an empirical distribution over Cq , which we de-
note as p̂(c|q). We use the KL-divergence between p̂(c|q) and



Algorithm 1 Model training

1: Input: KB, training questions Q and their answers
2: Output: (θ1, θ2)
3: Initialize: (θ1, θ2) ← pre-trained models (see Sec-

tion 3.7)
4: for each q ∈ Q do
5: Identify the initial set Ūq according to Section 3.3
6: Sample K topic units Ûq according to pθ1(u|q)
7: Use the topic units Ûq to identify relation paths Cq
8: Rank the relation paths using pθ2(c|q) and pick the

top one to extract the answers
9: Compute the reward r(Ûq) based on the F1 score of

the answers
10: Update θ1 through the policy gradient according to

Eqn. (4)
11: Update θ2 through the gradient of the loss according

to Eqn. (3)

the predicted distribution p(c|q) from Eqn. (2) to measure the
loss on q, and we sum over all the training questions in our
training set Q as the total loss:

L(θ1, θ2,Q) = −
∑
q∈Q

∑
c∈Cq

p̂(c|q) log
p(c|q)
p̂(c|q)

. (3)

Because at the topic unit scoring step we pick the top-K
topic units, which is a discrete choice, the loss function above
is not differentiable over θ1. We thus adopt reinforcement
learning and use policy gradient to learn θ1 [Williams, 1992].
Specifically, let r(Ûq) denote the reward of selecting a set of
K topic units Ûq ⊂ Ūq as the final topic units, the gradient
for θ1 is

∇θ1J(θ1) = E[r(Ūq) · ∇θ1 log pθ1(u|q)]. (4)

For the reward r(Ūq), we use the final F1 score of the ex-
tracted answers when Ūq is selected. We use the sampling
method to estimate the expected reward. To update θ2, we fix
θ1 and use the loss function shown in Eqn. (3).

3.7 Implementation Details
We use S-MART [Yang and Chang, 2015] as our entity link-
ing tool. We leverage 300-dimensional GloVe [Pennington
et al., 2014] word embeddings at the topic unit scoring step
and the relation path ranking step. We use Adam optimizer
with an initial learning rate of 0.001. All hidden vectors are
200-dimensional. All hyper-parameters are turned on the de-
velopment data. During training of reinforcement learning,
to initialize θ1, we distantly train the model with surrogate
labels of the topic units by checking whether the unit has a
relation path leading to the correct answer. To initialize θ2,
we train a baseline using only topic entities returned by our
entity linking tool. We set K to be 3.

4 Experiments
4.1 Datasets
We evaluate our KBQA method on three benchmark datasets.

WebQuestionsSP (WQSP): This is a dataset that has been
widely used for KBQA [Yih et al., 2016]. It contains 2848
training questions, 250 development questions and 1639 test
questions. ComplexWebQuestions (CWQ): This dataset
was introduced by Talmor and Berant [2018] with the inten-
tion to create more complex questions from the WebQues-
tionsSQ dataset. Questions in this dataset often involve re-
lation paths with more than one relations. CWQ contains
27K, 3K and 3K questions for training, development and test,
respectively. SimpleQuestions (SQ): This is another popu-
larly used KBQA dataset, introduced by Bordes et al. [2015].
Questions in this dataset can be answered by single-hop re-
lation paths. SQ contains 76K, 11K and 21K for training,
development and test, respectively.

For WQSP and CWQ, the knowledge base used is the en-
tire Freebase. For SQ, the knowledge base used is a subset
of Freebase that comes with the SQ dataset, which is called
“FB2M.” To measure the performance, we follow the stan-
dard evaluation metric for each dataset. We use hits@1 and
F1 scores for WQSP and CWQ, and accuracy for SQ2.

4.2 Main Results
First, we would like to check whether our ideas to consider a
wide range of KB units for topic unit linking and to use the
generation-and-scoring strategy work. We use ablation exper-
iments to do the comparison. In Table 2, FullModel refers to
our full model that first links a question to a wide range of KB
units and then uses the topic unit scoring function to select a
small set of topic units for the subsequent relation path rank-
ing. NEOnly refers to a degenerate version of the full model
where during the topic unit generation step we only consider
named entities, i.e., we only use the topic entities returned by
the entity linking tool. However, the topic unit scoring step
is still retained and trained using reinforcement learning. BL
refers to a baseline version of our method where only named
entities are considered as topic units (same as in NEOnly)
and there is no scoring and selection of these topic entities.

From Table 2 we have the following findings: (1)
FullModel consistently works better than NEOnly on all
three datasets, verifying the effectiveness of including a wide
range of KB units as topic units in the topic unit generation
step. Note that since both FullModel and NEOnly have the
topic unit scoring step, their performance difference is not due
to the neural network-based ranking function. (2) NEOnly
consistently works better than BL on all three datasets, show-
ing that even with only named entities as topic units, it is still
beneficial to use the neural network-based ranking function
to select the top topic units for the subsequent relation path
ranking. (3) The improvement of NEOnly over BL is not as
large as the improvement of FullModel over NEOnly, sug-
gesting that the idea of using a wide range of KB units for
topic unit linking is more important.

4.3 Comparison with Existing Methods
Next, we compare our method with the state-of-the-
art (SOTA) performance on each of the three datasets.

2For hits@1, we used the official evaluation script at https:
//www.tau-nlp.org/compwebq. For F1, we retrieved the ground truth
via SPARQL queries and measured by ourselves.

https://www.tau-nlp.org/compwebq
https://www.tau-nlp.org/compwebq


Method WQSP CWQ SQ

Our FullModel 68.2 / 67.9 39.3 / 36.5 80.3

SOTA -/69.0 34.2/- 78.1
HR-BiLSTM - / - - / - 77.0
GRAFT-Net 67.8 / 62.8 - / - -

HR-BiLSTM† 62.9 / 62.3 33.3 / 31.2 77.6
GRAFT-Net† 67.8 / 62.5 30.1 / 26.0 -

(a)

WQSP CWQ SQ

avg size of Ūq
FullModel 24.5 22.6 194.0
NEOnly 2.9 9.8 163.6

topic unit recall FullModel 97.3% 83.1% 97.8%
NEOnly 93.3% 78.4% 96.7%

answer recall FullModel 93.4% 52.0% 97.7%
NEOnly 89.5% 48.0% 96.6%

(b)

Feature WQSP

all features 67.9
without f semantic 61.5 (-6.4)
without f character 65.9 (-2.0)
without f category 66.1 (-1.8)
without f link 64.9 (-3.0)

(c)

Table 1: (a) Comparison with existing methods. The top section shows the performance of our full model. The middle section shows
previously reported performance. The last section shows the performance of two existing methods reimplemented by us. (b) Coverage of Ūq .
(c) F1 scores on WQSP when different feature configurations are used in Eqn. (1).

Method WQSP CWQ SQ

FullModel 68.2/67.9 39.3/36.5 80.3
NEOnly 64.8/64.0 38.4/34.0 78.2
BL 63.6/62.8 36.3/33.8 77.9

Table 2: The main experiment results. The metrics used are the
commonly-used ones for each dataset. For WQSP and CWQ the
metrics are hits@1/F1. For SQ the metrics are accuracy.

NSM [Chen Liang, 2017], SPLITQA [Talmor and Berant,
2018] and BiLSTM-CRF [Petrochuk and Zettlemoyer, 2018]
achieve the state of the art on WQSP, CWQ and SQ, respec-
tively. We show their originally reported results in Table 1a.
Besides, we also consider two recent methods that have been
shown to generally work well for KBQA: HR-BiLSTM [Yu
et al., 2017] and GRAFT-Net [Sun et al., 2018]. We reimple-
mented these two methods and report both our results and the
originally reported results of these two methods.

From Table 1a we can see the following: (1) Our full model
outperforms the previous state of the art on CWQ and SQ. On
WQSP, in terms of hits@1, our model also achieves the state
of the art, while in terms of F1, our model still performs com-
petitively although not as good as NSM. (2) Previous state-
of-the-art methods NSM, SPLITQA and BiLSTM-CRF were
each tested on a single dataset. It is unclear whether they
could perform consistently well on different datasets. Our full
model is shown to consistently work well on three datasets.

4.4 Further Analyses
Coverage of Ūq . We would like to check if the initial set of
topic units Ūq as returned by our method indeed has a higher
coverage than traditional entity linking. We therefore com-
pare FullModel and NEOnly in three aspects. We first look
at the average size of Ūq . We then look at topic unit recall of
Ūq . This is defined as the percentage of questions for which
Ūq contains at least one of the KB units found in the ground
truth relation paths (which are provided in the datasets but not
used for training in our method). We also look at answer re-
call of Ūq , which is defined as the percentage of questions for
which one of the relation paths derived from Ūq leads to the
correct answer. We show the numbers in Table 1b. We can
see that indeed FullModel gives a larger size of Ūq in general
and can increase the topic unit recall and answer recall.

(a) (b)

Figure 3: Performance on WQSP test in terms of avg size of Ūq

(in blue) and topic unit recall (in green) when (a) n-gram threshold
ranges from 0 to 30 and PMI threshold is 1. (b) n-gram threshold is
4 and PMI threshold ranges from -2 to 30.

Configurations of Topic Unit Generation. In the topic
unit generation step, we defined some thresholds, namely, n-
gram threshold and PMI threshold. Figure 3 shows that with
increasing n-gram and PMI thresholds, both average size of
Ūq and topic unit recall decrease. To obtain scalable topic
units without too much decrease of topic unit recall, we set
n-gram and PMI thresholds as 4 and 1, respectively.
Features for Topic Unit Scoring. Recall that in the topic
unit scoring step our scoring function uses four feature vec-
tors. In Table 1c we show the performance in terms of F1
on the WQSP dataset when we use the full model and when
we remove each of the feature vectors. We can see that if
we remove any of the feature vectors, the performance drops.
In particular, the performance decreases the most when the
feature f semantic is removed, showing the importance of mea-
suring the semantic relevance of a topic unit to the question.

5 Conclusions
In this paper we propose method that uses topic units for
KBQA, which allows us to leverage more information of the
questions. We show that our method can achieve either the
state of the art or competitive results on benchmark datasets.
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