
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

8-2016 

Unsupervised multi-graph cross-modal hashing for large-scale Unsupervised multi-graph cross-modal hashing for large-scale 

multimedia retrieval multimedia retrieval 

Liang XIE 
Wuhan University of Technology 

Lei ZHU 
Singapore Management University, lzhu@smu.edu.sg 

Guoqi CHEN 
Wuhan University of Technology 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Databases and Information Systems Commons, and the Numerical Analysis and Scientific 

Computing Commons 

Citation Citation 
XIE, Liang; ZHU, Lei; and CHEN, Guoqi. Unsupervised multi-graph cross-modal hashing for large-scale 
multimedia retrieval. (2016). Multimedia Tools and Applications. 75, (15), 9185-9204. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4437 

This Journal Article is brought to you for free and open access by the School of Computing and Information 
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in 
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional 
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4437&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4437&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4437&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4437&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


 

1 

 

Published in Multimedia Tools and Applications, August 2016, Volume 75, Issue 15, pp 9185–9204 

https://doi.org/10.1007/s11042-016-3432-0  

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License 

Accepted version 

 

Unsupervised multi-graph cross-modal hashing for large-scale multimedia retrieval 

Liang Xie, Wuhan University of Technology 

Lei Zhu, Singapore Management University 

Guoqi Chen, Wuhan University of Technology 

 

Abstract 

With the advance of internet and multimedia technologies, large-scale multi-modal representation techniques such 

as cross-modal hashing, are increasingly demanded for multimedia retrieval. In cross-modal hashing, three 

essential problems should be seriously considered. The first is that effective cross-modal relationship should be 

learned from training data with scarce label information. The second is that appropriate weights should be 

assigned for different modalities to reflect their importance. The last is the scalability of training process which is 

usually ignored by previous methods. In this paper, we propose Multi-graph Cross-modal Hashing (MGCMH) by 

comprehensively considering these three points. MGCMH is unsupervised method which integrates multi-graph 

learning and hash function learning into a joint framework, to learn unified hash space for all modalities. In 

MGCMH, different modalities are assigned with proper weights for the generation of multi-graph and hash codes 

respectively. As a result, more precise cross-modal relationship can be preserved in the hash space. Then Nyström 

approximation approach is leveraged to efficiently construct the graphs. Finally an alternating learning algorithm 

is proposed to jointly optimize the modality weights, hash codes and functions. Experiments conducted on two 

real-world multi-modal datasets demonstrate the effectiveness of our method, in comparison with several 

representative cross-modal hashing methods. 

 

Keywords 

Cross-modal hashing, Multi-graph learning, Cross-media retrieval 

 

1 Introduction 

In recent years, there has been an explosion in the scale of multimedia data on the web. For example, Flickr 

hosts billions of images, and it has more than 3.5 million new images uploaded daily. Traditional representation 

or feature learning methods, including bag-of-visual-words (BoVW) [7], Fisher Vector (FV) [23], Sparse 

Coding [22] and Dictionary Learning [41], cannot work well and even be computationally intractable for the 

retrieval of large-scale multimedia data. 

https://doi.org/10.1007/s11042-016-3432-0
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When designing an efficient representation technique for large-scale multimedia data, both computational cost 

and memory cost should be considered. Hashing technology, which is a representative binary representation 

learning approach, has gained much attention recently. Its core idea is to learn compact binary codes to 

represent high-dimensional data by hash functions. On one hand, these binary codes, which preserve the 

neighborhood relationships of original data, occupy a small amount of memory space. Thus a large number of 

codes can be stored in RAM. On the other hand, based on the Hamming distance between binary codes, fast 

search can be easily implemented by simple but efficient XOR and bit-count operations. 

Existing hashing methods can be generally divided into two categories [27]. The first is random projection 

based hashing methods. Locality Sensitive Hashing (LSH) [1] is one of the most representative methods of this 

kind, it uses several hash functions consisting of random linear projection. The disadvantage of LSH is that it 

may lead to quite inefficient (long) codes in practice, because the hash functions of LSH is data-independent 

[45]. The other category is machine learning based hashing methods, which can learn effective data-dependent 

hash functions. Therefore, many machine learning methods are designed for hashing, such as Spectral Hashing 

[35], Self-taught Hashing (STH) [45], K-means Hashing [13], PCA Hashing [30] and Anchor Graph Hashing 

[18]. 

Although the above mentioned hashing techniques can achieve promising retrieval performance, most of them 

are only applied to unimodal data. With the advance of internet and multimedia technologies, large amount of 

multi-modal data are generated, shared and accessed on social websites, e.g., Flickr, Wikipedia and YouTube. 

Images or videos on the web are usually associated with text information, such as textual tags or comments. 

Traditional unimodal hashing methods cannot work well in the multi-modal scenario. Recently, several cross-

modal hashing methods are proposed, including CMSSH [54], CVH [15], MLBE [50], IMH [27] and THH 

[53]. Most of them leverage machine learning technologies to learn hash functions which can project different 

modalities into a unified space. Intuitively, machine learning is the best choice for cross-modal hashing. In 

common cross-modal analysis, the relationship between different modalities is unknown, and they should be 

learned from multi-modal data. Therefore, it is promising to learn the cross-modal relation and hash space 

simultaneously, and more specifically, to preserve the cross-modal relationship in the learned hash space. 

Despite the capability to deal with multi-modal data, there are three essential problems which should be 

seriously considered in designing an effective and practical hashing method. At first, training data is usually 

unlabeled, and manually labeling training data is time-consuming and expensive. Therefore, it is more practical 

to learn hash functions in the unsupervised manner. The second is that the weights of different modalities 

should be considered for hashing. Generally, different modalities may have different contributions to the cross-

modal relation and hash functions. Traditional cross-modal methods [15, 36] treat each modality equally, thus 

if one modality is very noisy, their performance may be significantly affected. The other is the scalability of 

learning process. Although it is quite efficient to use hash codes for search, learning hash functions in some 

existing methods is not so efficient. For example, the graph-based hashing approaches, including STH and 

IMH, are shown to be effective, but the time complexity of their learning process is quadratic to the size of 

training data. 

To solve the above problems, in this paper we propose a novel hashing method, which is termed as Multi-graph 

Cross-modal Hashing (MGCMH), for multimedia search. MGCMH is an unsupervised method which requires 

no label information in the training data. It is formulated in a joint mutli-graph framework, which 

simultaneously learns weights of modalities and their unified latent hash space. To solve the out-of-sample 

problem, we also learn the hash functions to project new data into this space. By integrating multi-graph 

learning and hash function learning, we obtain a joint framework which both learns optimal hash codes and 

hash functions. As a result, all modalities are mapped into the unified hash space by hash functions. Then in the 

training process, since graph construction is time-consuming, Nyström approach is adopted to approximate the 
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graph of each modality. Finally, in the optimization of hash codes and functions, an alternating learning process 

is proposed. The advantages of MGCMH are summarized as follows: 

 

• Since MGCMH is unsupervised, it is suited to real-world applications where label information is usually 

scarce and expensive to obtain. 

• In multi-graph framework, two types of weights are used for graphs and hash codes respectively. Therefore, 

the importance of each modality can be comprehensively considered, and the hash space constructed by 

MGCMH can better correlate different modalities. 

• In the graph construction, Nyström approximation is used. So the training process of MGCMH is efficient, 

and its time complexity is linear to the size of training data. 

• Experiments conducted on real-world multi-modal datasets demonstrate the better performance of 

MGCMH compared with several representative cross-modal hashing methods. 

The rest of this paper is organized as follows. Section 2 discusses related work about cross-modal learning and 

hashing. In Section 3, we describe the formulation of MGCMH and its optimization, then make a discussion 

about it. Section 4 shows the experimental results on Wikipedia and NUS-WIDE. Finally conclusions and 

future work are presented in Section 5. 

 

2 Related work 

2.1 Cross-modal learning 

Cross-modal learning, which is related to our work, has been widely used for various multimedia applications, 

such as classification and retrieval. In cross-modal (multi-modal) methods, determining the modality weight is 

essential for combining and correlating different modalities. Image annotation/classification is a typical 

application of cross-modal methods. Multiple Kernel Learning (MKL) [29] learns weights of kernels from 

different modalities, and it is applied to multi-modal image classification [12]. Liu et al. [17] propose 

multiview Hessian Regularization (mHR) for image annotation, mHR assigns kernel weights and Hessian 

weights to different modalities. Luo et al. [20] propose Multiview Matrix Completion (MVMC) for image 

classification, and they apply a cross-validation strategy to learn the modality weights. Cross-modal (multi-

modal) learning is also used for video analysis, Ma et al. [21] propose Riemannian weighted Semi-Supervised 

Multi-feature learning (RSSM) for video action and event recognition. RSSM assigns modality weights for 

both Laplacian graphs and Riemannian distances, and a maximum entropy regularization is imposed to avoid 

trivial solution. Multi-task learning is effective for cross-modal analysis, such as FEGA-MTL [40], Multitask 

LDA [39] and CMMTL [36]. 

Another major application of cross-modal learning is multimedia retrieval [37]. In [6], two types of cross-

modal relationship: correlation and abstraction are studied. It uses Canonical Correlation Analysis (CCA) [14], 

Kernel CCA (KCCA) [26] and Cross-modal Factor Analysis (CFA) [16] for correlation learning, and uses 

Logistic Regression [9], Support Vector Machine (SVM) [3] and Boosting [25] for abstraction learning. Wang 

et al. [32] propose to learn coupled feature spaces for cross-modal retrieval, its framework consists of the 

coupled linear regression and a trace norm which enforces the relevance of different modalities. Some cross-

modal methods [11, 42, 43] rely on graph learning based approach. Recently, deep learning methods are 

becoming a popular approach for cross-modal retrieval, such as Corr-AE [10], MSAE and MDNN [34]. 
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2.2 Unimodal hashing 

Based on the usage of label information, existing hashing methods can be divided to supervised/semi-

supervised and unsupervised hashing methods. Graph learning is confirmed to be effective in hashing. Anchor 

Graph Hashing (AGH) [18] constructs anchor graph, which is similar to Nyström approximation used in this 

paper. However, AGH is unimodal method, thus it is not suited to cross-modal retrieval. Discrete Graph 

Hashing (DGH) [19] improves AGH by using discrete optimization to directly learn binary codes, and it is also 

only suited to unimodal data. Both AGH and DGH are unsupervised methods, and graph learning can be 

applied to supervised or semi-supervised hashing, such as SSH [31]. Despite graph learning approach, other 

learning methods have also been extensively studied for hashing. Latent Factor Hashing (LFH) [49] is a 

supervised approach which learns hash codes based on latent factor model. Supervised Hashing with Pseudo 

Labels (SHPL) [28] uses the cluster centers as pseudo label, and then linear discriminant analysis (LDA) based 

trace ratio is used for hashing. Some studies [33, 51] use active learning for semi-supervised hashing, to 

actively select the most informative labels for hash function learning. 

2.3 Cross-modal hashing 

In cross-modal hashing, both supervised/semi-supervised and unsupervised methods are studied. Supervised 

cross-modal hashing learns the cross-modal correlation from the class labels, and different modal data with the 

same label are relevant. Cross-modality Similarity-sensitive Hashing (CMSSH) [2] uses supervised similarity 

learning to embed the input data from two modalities into the hash space. Multimodal Latent Binary 

Embedding (MLBE)[50] uses class labels to construct the inter-modality similarity matrices, and learns hash 

functions in a probabilistic framework. Semantic Correlation Maximization (SCM) [44] integrates semantic 

labels into the hash function learning. It uses sequential learning for non-orthogonal projection to reduce the 

quantization error. Supervised methods require class labels in training data, which is difficult to obtain in 

practice. Some supervised methods can be applied to the unsupervised case. Cross-view Hashing (CVH) [15] 

requires predefined affinity matrix of the training data, which is usually obtained from labels. If training data 

contain no labels, the affinity matrix becomes an identity matrix, and CVH becomes an unsupervised method. 

In [4], multi-graph learning is used for semi-supervised hashing, and its main difference to this work is that it 

still requires label information to learn hash functions. 

Unsupervised cross-modal hashing can use training data without class labels, it exploits the co-occurrence 

information that different modal data in the same document is relevant, thus it is more practical than supervised 

hashing. Inter-media Hashing (IMH) [27] preserves both inter-media consistency and intra-media consistency, 

and learns hash functions by solving an eigenvalue problem. In order to preserve the intra-media consistency, 

IMH constructs similarity graphs, which is very time consuming when the training data is large. Collective 

Matrix Factorization Hashing (CMFH) [8] learns unified hash codes by the matrix factorization of each 

modalities. CMFH can increase the search accuracy by combining multi-modal information sources. CMSTH 

[38] applies self-taught learning to effectively correlate cross-modal data in hashing. 

 

3 Multi-graph cross-modal hashing 

The learning and retrieval process of Multi-Graph Cross-Modal Hashing (MGCMH) are illustrated in Fig. 1. In 

the learning process, Nyström approach is used to construct the approximate graph for each modality 

respectively, then these graphs are combined by modality weights. MGCMH uses a joint framework which 

consists of multi-graph learning and hash function learning. Hash codes of database and hash function of each 

modality are simultaneously learned by the joint framework of MGCMH. In the retrieval process, both image 

and text queries are supported. The hash codes of each query are first computed by the corresponding hash 

functions, and then they are compared with database hash codes via their hamming distance. 
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Fig. 1 Learning and retrieval process of MGCMH 

 
Table 1 List of notations 

Notation Description 

N Size of multi-modal training data 

M Number of modalities, M = 2 in this paper 

K Code length 

H Hash codes of training data 

X m N×d m Feature matrix of modality m 

A m N×N Graph matrix modality m 

V m Nyström embedding vector for approximating A m 

W m d m ×K Weight matrix of hash function for modality m 

𝜃 m Weight of modality m for multi-graph combination 

α m Weight of modality M for generating multi-modal hash codes 

β m ,γ, μ Penalty parameters in MGCMH 
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3.1 Formulation of MGCMH 

Suppose there are N multi-modal documents on|Nn=1 for training. Each document o = {x 1,…,x M } consists 

of M modalities, where x m is the feature of the m-th modality. We only consider the condition that each 

document consists of an image and a text. Thus M = 2 in this paper, and our method can be also applied to the 

condition that M > 2. m = 1 denotes image modality and m = 2 denotes text modality. For simplicity, a list of 

notations used in this paper are shown in Table 1. 

 

Our goal is to learn a set of hash codes H=[hT
1,…,hT

N]T for all documents, where h n ∈ {0, 1}1×K , K is the code 

length. It has been shown that optimal hash codes can be obtained when average Hamming distance between 

similar points is minimal [35]. Based on this principle, we formulate the following multi-graph framework to 

optimize the hash codes: 

 

   (1) 

where am
ij = exp(disij

m / δm) , disij
m is the m-th modal distance between the i-th and j-th documents, and δm is the 

mean of distances. We use L2 distance for images, and cosine distance for texts. 𝜃 m is the weight of m-th 

modality. 

This multi-graph framework has two advantages. The first is that hash codes are generated from multi-modal 

similarity. Principally, combining multiple modalities can preserve more semantic correlation than using single 

modality only. Besides, the semantic information contained in different modalities may be unbalanced. Unlike 

previous methods which treat all modalities equally, in our framework, the similarities of different modalities 

have different weights which can be automatically optimized. 

We can reformulate (1) as T r (H T L H), where L=∑M
m=1 θm Lm , L m = D m −A m is the Laplacian matrix for m-th 

modality. Dm ∈ RN×N is the diagonal matrix, whose element dm
ii = ∑N

j=1 a
m

ij  · A
m ∈ RN×N  is the matrix whose 

element is am
ij.  

 

Besides learning the hash codes H of all training documents, we also have to project new documents into this 

hash space. For each modality m, we adopt the projection function: 

 

 (2) 

where Xm∈RN×dmXm∈RN×dm is the feature matrix of m-th modality, Wm∈Rdm×KWm∈Rdm×K is the 

projection matrix. 

Finally we have the overall objective function which optimizes both H and W m : 

 (3) 

3.2 Efficient construction of graphs and hash codes 

In practice, it is difficult to directly compute the similarity graphs. The computation process is time consuming, 

and the time complexity of the graph construction is about O(N 2). If N is very large, then it is unaffordable to 
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spend a great deal of time (may be several days) to construct graphs. To this end, we adopt Nyström 

approximation [47], which is an efficient graph approximation method, to construct graphs. 

Nyström method approximates its graph matrix A by: 

  (4) 

Where AEE ∈ RE×E is the sub-matrix, it is constructed by E samples which are randomly selected from N training 

samples. A N E denotes the sub-matrix of A with E columns. 

Since AEE is symmetric and positive definite, its reverse can be approximated by A−1
EE = UΛ−1U T. Where Λ ∈ 

RE′×E′ is a diagonal matrix, and its diagonal elements correspond to E ′ largest eigenvalues of AEE . U ∈ 
RE′×E′  consists of the corresponding eigenvectors. 

 

Then we can rewrite (4) as: 

  (5) 

where V = A N E UΛ−1/2 can be regarded as the explicit embedding of training features. For m-th modality, we 

can first compute V m , then A m can be efficiently constructed. 

Besides the graph construction, we have to construct the hash codes, for directly optimizing hash codes is also 

time-consuming. Inspired by the work in [48], we assume that H can be constructed from Vm , the difference is 

that we use multiple modalities for construction. H can be constructed by: 

  (6) 

where Pm ∈ REm′×K is the construction matrix of modality m, E m 
′ is the column dimension of V m . α m is the 

weight of modality m for constructing codes. 

After the construction of graphs and hashing codes, the optimization of H is transformed to the optimization 

of P m . α m and 𝜃 m are the weights for the construction of hash space H and Laplacian matrix L 

respectively. H should preserve the relationship in L, thus 𝜃 m and α m should be consistent. We add a penalty 

term to our objective function (3), then it becomes: 

 
 (7) 

where μ is the parameter of penalty term. 
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3.3 Optimization 

By setting the derivative of (7) w.r.t. W m to zero, we have: 

  (8) 

 

Substituting W m and (6), (5) into (3), we derive the following objective function: 

   (9) 

where P = [PT
1,…,PT

M]T, W = [WT
1,…,WT

M]T , Z consists of several sub-matrices, and its sub-matrix in i-th row 

and j-th column is: 

 
 (10) 

where: 

  (11) 

Y also consits of sub-matrices, and its sub-matrix is computed by: 

      (12) 

 

Suppose Vm = [(Vm
1)T,…,(Vm

N)T]T, we can obtain an efficient computation of Dm , for each diagonal element 

in Dm we compute it by: 

     (13) 

 

The total computation time for Dm is O (N E ′ 2). 

The objective function (9) is nonconvex, but it is convex respect to each parameter, thus we propose an 

alternating process for optimization. 

1. Optimizing P m . All α m and 𝜃 m are fixed. Discarding the irrelevant terms in (9), we have the following 

problem: 
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     (14) 

 

(14) can be solved by eigenvalue decomposition. P is obtained with the K eigenvectors, which correspond to 

the K smallest eigenvalues of the generalized eigenvalue problem Z P = λ Y P. 

  

2. Optimizing αm . All Pm are fixed, and we adopt the coordinate descent to optimize αm | Mm=1. In each iteration, we 

select two elements to update and fix others. Suppose α i and α j are selected, since ∑ Mm=1 αm =1, αi + αj will not 

change in this iteration. Therefore, we obtain the following solution for updating αi and αj : 

 (15) 

 

where: 

 
 (16) 

The obtained α∗i and α∗j may violate the constraint α m > 0. Thus if α∗i <0, we set α∗i =0, and if α∗j < 0, we 

set α∗j = 0. 

  

3. Optimizing 𝜃m . All Pm are fixed, and we also adopt the coordinate descent to optimize θm|Mm=1. In each iteration, 

the updating will follow the rule of: 

   (17) 

where:  

      (18) 

 

In each step, we first optimize αi and αj , then we optimize 𝜃i and 𝜃j , we iterate this step for all αm and 𝜃m. 

  

The whole alternating optimization process is illustrated in Algorithm 1. Note that in order to obtain a relatively 

concise training process, we do not consider the constrain W T Y W = I for the optimizing of α m , but after the 

optimization of P m , this constrain is guaranteed. In each updating, the objective function is not increased, thus 

the constrains and convergence are guaranteed in this algorithm. 

 

  



 

10 

 

Algorithm 1 Training process of MGCMH 

 

3.4 Discussion 

We can easily find that the complexity of MGCMH is less than O(N 2). In the training process, since the feature 

dimensions and modality number and are fixed, we only consider N. For the step 1-8 of Algorithm 1, the 

computing time is about O(N E 2). For the iteration steps, the time complexity is about O(T E ′ 3), where E ′< E. 

Generally the maximum iteration number T is much less than N, and value of sample size E is set to be similar 

to feature dimensions. Thus we can ignore E, T and E ′. As a result, the overall time complexity of training 

process is linear to the size of training set. 

Given a new document, if it contains only one modality, we can use (2) to compute its hash score f. If this 

document is multi-modal, we first compute the hash scores of each modality fm , then we combine all modalities 

to obtain the final scores by f =∑M
m=1 αmfm. After we obtain the hash scores, we compute the hash codes by  

f  = sgn(f −1/N ∑N
n=1 f n), where fn is the hash scores of the training document. 
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4 Experiments 

4.1 Datasets 

In this paper, two real world multi-modal datasets: Wikipedia [24] and NUS-WIDE [5] are used for evaluation. 

They both consist of image-text pairs and are fully labeled. The statistics of them are summarized in Table 2. 

• Wikipedia is first used in [24], it is assembled from the “Wikipedia feature articles”. It contains 2,866 

image-text pairs which are labeled with 10 semantic labels. These labels are used as the ground truth, 

documents share same concepts with the query are regarded as relevant. Each image is represented by 128-

D SIFT histograms, and each text is represented by 10-D LDA histograms. We use 693 pairs as as the 

query set and the remaining 2,173 pairs as database, which directly correspond to the test/training set in 

[24]. 

• NUS-WIDE contains 269,648 image-tag pairs downloaded from Flickr, as well as ground-truth for 81 

labels that can be used for evaluation. In our experiments, we preserve 10 largest concepts and the 

corresponding 186,643 pairs. Image features are 500-D SIFT histograms, and text features are 1,000-D 

vectors represented by the presence of 1,000 tags. We use 1 % of all pairs as query set and the rest as 

database. 

•  

Table 2 The statistics Wikipedia and NUS-WIDE 

Datasets Wikipedia NUS-WIDE 

Total Size 2,173 186,643 

Image Queries 693 1,866 

Text Queries 693 1,866 

Dimension of image feature 128 500 

Dimension of text feature 10 1,000 

Database Size 2,173 184,777 

It should be noted that in our experiments, the labels in both datasets are only used for evaluation, but not used 

for training. 

4.2 Evaluation metrics 

We adopt non-interpolated mean average precision (MAP) to measure the performance. Given a query, AP 

score is the average of precision obtained for the set of top-R results [8], it is defined as: 

     (19) 

where p is the number of relevant documents in the retrieved set, p r e(i) is the precision of top i retrieved 

documents. r e l(i)=1 if the i-th retrieved documents is relevant to query, otherwise r e l(i)=0. The MAP score is 

the mean of AP scores from all the queries. in this paper we set R = 50. Besides MAP, we also use precision-

recall curves to measure the performance. 
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4.3 Compared methods and implementation details 

We compared our method to several representative unsupervised cross-modal hashing methods, including 

Cross-View Hashing (CVH) [15], Composite Hashing with Multiple Information Sources (CHMIS) [46], Inter-

Media Hashing (IMH) [27] and Collective Matrix Factorization Hashing (CMFH) [8]. Since CHMIS and IMH 

have to compute the graph matrix and compute the eigenvalue of the N×N matrix, their time complexities are 

higher than O(N 2). The time complexity of CMFH is also larger than O(N 2). Therefore, our hashing method is 

more efficient than the compared methods except CVH. Since IMH and CHMIS have to construct full graph 

matrix for learning, on NUS-WIDE we select 10,000 documents for the training of all methods. 

In the implementation of our method, the sample size E is set to 200 on Wikipedia and 500 on NUS-WIDE. 

The embedding dimension of image E ′ 1 is set to 100 and 300 on Wikipedia and NUS-WIDE respectively. The 

embedding dimension of text E ′ 2 is set to 10 and 30 on two datasets respectively. Since our method is not 

sensitive to parameters, we set all β m and γ to 1. In order to make two types of modality weights consistent, we 

set μ to 10. 

4.4 Experimental results 

At first we show the modality weights which are automatically learned in our training process. Table 3 shows 

the image weights α 1, 𝜃 1 and text weights α 2, 𝜃 2 respectively. We can find that that text weights are 

significantly larger than image weights, which illustrates that text is more important than image in constructing 

multi-modal graph and generating hash codes. Generally, text contains more semantic information than image 

content, and previous study also shows that text is more important for cross-modal retrieval [37]. 

 

Table 3 Modality weights on two datasets 

Wiki Code Length 

  16 32 64 128 

α 1 0.0457 0.0232 0.0210 0.0097 

α 2 0.9543 0.9768 0.9790 0.9903 

𝜃 1 0.2397 0 0 0 

𝜃 2 0.7603 1 1 1 

NUS 16 32 64 128 

α 1 0.2146 0.1968 0.1818 0.1663 

α 2 0.7854 0.8032 0.8182 0.8337 

𝜃 1 0 0 0 0 

𝜃 2 1 1 1 1 

In our experiments, two types of cross-modal search task are considered. The first is image query, where 

images in the query set are used to search texts in the database. The other is text query, where texts are used to 

search images. 
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Table 4 shows the MAP scores of all compared cross-modal hashing methods with varying code length on 

Wikipedia dataset. We can find that MGCMH and CMFH obtain much higher MAP scores than other methods, 

this phenomenon is especially significant in text query. The reason is that both MGCMH and CMFH combine 

multiple modalities in the database and use unified hash codes to represent both images and texts, while other 

methods only consider single modality in the database. Besides, MGCMH performs better than CMFH. One 

reason is that the graph framework in MGCMH can handle complex structure of multi-modal data. As a result, 

hash codes represented by MGCMH can better correlate different modalities than CMFH. The other reason is 

that modality weights in MGCMH can reflect different contributions of images and texts in the learning 

process. On the contrary, CMFH does not consider the modality weights, thus it preserves less semantic 

correlation than MGCMH. In addition, we also observe a desirable characteristic of MGCMH, that it has 

promising performance with small code length. When using 16 bits codes, the MAP scores of MGCMH are 

much better than IMH, CHMIS, and CVH with any code lengths, and they are very close to the best scores of 

CMFH. Fig. 2 shows the PR curves of all compared methods with code length 16, 32, 64 and 128 bits. We can 

easily find that the results in Fig. 2 is consistent with Table 4, which further demonstrates the superiority of 

MGCMH in comparison with other methods. 

 

Table 4 MAP scores of hashing methods on Wikipedia 

Wiki Method Code Length 

    16 32 64 128 

Image query CVH 0.2132 0.2132 0.2132 0.2051 

CHMIS 0.2123 0.2055 0.1962 0.1818 

IMH 0.2225 0.2004 0.1758 0.1610 

CMFH 0.2490 0.2495 0.2633 0.2670 

MGCMH 0.2540 0.2588 0.2755 0.2860 

Text query CVH 0.2919 0.2471 0.2275 0.1931 

CHMIS 0.2559 0.2485 0.2339 0.2120 

IMH 0.2975 0.3030 0.2645 0.2475 

CMFH 0.6034 0.6231 0.6246 0.6296 

MGCMH 0.6278 0.6439 0.6471 0.6497 
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Fig. 2 The precision-recall curves on Wikipedia with different code lengths 
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Table 5 shows the MAP scores of all hashing methods with varying code length on NUS-WIDE. We can easily 

observe similar results on NUS-WIDE, that MGCMH significantly outperforms other methods. Since NUS-

WIDE has much more data than Wikipedia, its retrieval tasks are more challenging and more close to the real-

world. However, on NUS-WIDE, the increase of MAP scores obtained by MGCMH is more significant than 

Wikipedia. This phenomenon demonstrates the robustness of MGCMH, that its performance can be guaranteed 

for large-scale data. Fig. 3 shows the precision-recall curves of all hashing methods on NUS-WIDE with 

different code lengths. We can find the results are consistent with MAP scores in Table 5. The curves of 

MGCMH are always higher than curves of other methods. 

 

Table 5 MAP scores of hashing methods on NUS-WIDE 

NUS Method Code Length 

16 32 64 128 

Image query CVH 0.4833 0.4635 0.4500 0.4430 

CHMIS 0.4948 0.4799 0.4605 0.4601 

IMH 0.4567 0.4654 0.4607 0.4628 

CMFH 0.5593 0.5725 0.5874 0.5836 

MGCMH 0.6143 0.6094 0.6281 0.6472 

Text query CVH 0.4866 0.4627 0.4508 0.4444 

CHMIS 0.5429 0.5202 0.4884 0.4612 

IMH 0.4506 0.4477 0.4525 0.4532 

CMFH 0.6987 0.7090 0.7250 0.7313 

MGCMH 0.7360 0.7647 0.7784 0.7743 
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Fig. 3 The precision-recall curves on NUS-WIDE with different code lengths 
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At last, we also demonstrate the detailed performance comparison on all 10 concepts of NUS-WIDE. For each 

concept, we choose the query examples which belong to it to form a new query set, and then we evaluate the 

MAP scores of this concept. Table 6 shows the MAP scores on each of the 10 concepts of NUS-WIDE, where 

we set the code length as 128 bits. We can find that MGCMH significantly outperforms other compared 

methods on most concepts, which confirms the robustness of MGCMH. The only exception is the image query 

of concept ‘person’, where MGCMH obtains slightly smaller score than the best result 0.5699. We can also find 

that all methods perform differently on the 10 concepts, the reason is that some concepts are more difficulty to 

be represented by hash codes. Moreover, on these difficult concepts such as ‘plants’, the superiority of 

MGCMH is more significant. 

 

 

Table 6 MAP scores on each concept of NUS-WIDE with 128 bits code length 

 
 

5 Conclusions and future work 

In this paper, we propose an unsupervised hashing method: Multi-graph Cross-modal Hashing (MGCMH) for 

large-scale multimedia search. MGCMH integrates multi-graph learning and hash function learning into a joint 

framework. Nyström method approximation is used for the efficient construction of graphs. Appropriate 

weights are assigned in both multi-graph and hash code generation. Then an alternating training process is 

proposed for the optimization of MGCMH to simultaneously learn hash codes and functions. Finally, the 

experimental results on two multi-modal datasets demonstrate the effectiveness of MGCMH compared with 

other representative unsupervised cross-modal hashing methods. 

We have confirmed that graph approach is effective in cross-modal hashing. In order to obtain better hashing 

performance, we can improve our method by introducing multi-modal graph with more complex structure, such 

as multi-modal hypergraph [52]. However, with the increase of complexity in graph structure, designing an 

efficient graph construction approach whose time complexity may be linear to the training size, will become 

more difficult. Therefore, it is challenging to design a complex but efficient multi-modal graph for hashing. 
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