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Resilient Collaborative Intelligence for Adversarial
IoT Environments

Dulanga Weerakoon, Kasthuri Jayarajah, Randy Tandriansyah, Archan Misra
School of Information Systems

Singapore Management University, Singapore

Abstract—Many IoT networks, including for battlefield deploy-
ments, involve the deployment of resource-constrained sensors
with varying degrees of redundancy/overlap (i.e., their data
streams possess significant spatiotemporal correlation). Collab-
orative intelligence, whereby individual nodes adjust their in-
ferencing pipelines to incorporate such correlated observations
from other nodes, can improve both inferencing accuracy and
performance metrics (such as latency and energy overheads).
Using realworld data from a multicamera deployment, we first
demonstrate the significant performance gains (up to 14% in-
crease in accuracy) from such collaborative intelligence, achieved
through two different approaches: (a) one involving statistical
fusion of outputs from different nodes, and (b) another involving
the development of new collaborative deep neural networks
(DNNs). We then show that these collaboration-driven perfor-
mance gains susceptible to adversarial behavior by one or more
nodes, and thus need resilient mechanisms to provide robustness
against such malicious behavior. We also introduce an under-
development testbed at SMU, specifically designed to enable real-
world experimentation with such collaborative IoT intelligence
techniques.

I. INTRODUCTION

We continue to march towards a world of sensor-rich
physical environments, with low-cost IoT devices projected to
be deployed in large numbers in various “smart spaces”, such
as shopping malls, factory malls and campus buildings. Such
devices will also be a critical enabler of real-time information-
driven decision making in future battlefield environments. To
enable real-time interactive applications such as Augmented
Reality (AR) based interactions and autonomous UAV routing
in such smart environments, computationally complex machine
intelligence functions (such as video-based tracking of objects
or audio-based instruction comprehension) will need to be
executed directly on such resource-constrained IoT devices–
i.e., at the edge. This remains an open challenge, especially
given the high computational complexity of Deep Neural
Networks (DNN) that represent the state-of-the-art in such
machine intelligence tasks.

Dense deployment of such IoT devices is likely to result
in significant spatiotemporal correlation in sensing coverage–
e.g., two cameras mounted at two ends of a campus building
corridor are likely to see the same individual either concur-
rently (from different perspectives) or with modest temporal
separation. We believe that the appropriate exploitation of such
spatiotemporal correlation can offer a powerful approach for
overcoming the computational challenges of executing such
high-complexity DNN-based machine intelligence tasks on

such resource-poor IoT platforms. In particular, we advocate
the vision of Collaborative IoT Intelligence, where the infer-
encing pipelines of multiple individual devices share features
and “internal state” in real time with one another, allowing
the devices to collectively both overcome their individual pro-
cessing bottlenecks and improve their sense-making fidelity.

In this paper, we consider the possibility of such collab-
orative intelligence for the specific case of a multi-camera,
campus-scale video sensing network, where the cameras are
tasked with executing people counting algorithms to collec-
tively provide a “live” view of the occupancy levels in different
parts of the campus. For concreteness, we assume that each
camera locally executes a state-of-the-art Single Shot Detector
(SSD) DNN pipeline, which takes individual image frames
and identifies the presence of (puts a “bounding box” around)
human objects. We shall see that the conventional approach,
of having each camera perform its counting in isolation,
suffers from reduced accuracy, possibly due to phenomenon
such as poor lighting or occlusion. We shall then propose
and empirically evaluate the likely benefits of two alternative
collaborative approaches, both of which involve the sharing
of identified bounding box coordinates (i.e., the estimated
location of identified individuals) by one camera with its peers.

Such collaborative intelligence models, however, have one
significant potential drawback: the performance of the DNN-
based pipelines on one device becomes susceptible to inad-
vertent or malicious errors in the DNN pipelines of other
nodes. For example, in the distributed camera-based sensing
infrastructure illustrated in Figure 1, a single camera can
deliberately suppress bounding box information on detected
objects from other collaborating cameras, thereby causing
errors in the processing logic of those peer cameras. We
shall empirically demonstrate, and quantify the relative impact
of, this vulnerability for both of the proposed collaborative
models.
Key Contributions: Our aim is to mobilize the attention of
the larger IoT/ML community to the promise of collaborative
inferencing, and the challenge of making it dependable and
robust in adversarial environments. We make the following
key contributions:

• Propose Collaborative models for multi-camera edge
intelligence: We describe two alternative approaches for
collaborative inferencing-based “people counting”, ap-
propriate for a networked, multi-camera system system
with per-node local processing capabilities. The first ap-



proach, called Collaborative Non-Maximum Suppression
(CNMS) refines the output values (the ‘bounding box’
location and likelihoods) of each camera’s DNN, by
statistically incorporating the bounding box coordinates
from other peer cameras. The second approach, called
Collaborative SSD (CSSD) modifies the structure of the
DNN itself to utilize the bounding box values (modeled
as an image bit-mask) from other cameras as part of an
augmented input vector. Using the PETS multi-camera
benchmark dataset [4], we show that collaborative in-
ferencing results in significantly higher accuracy (75.5%
for CNMS and 82% for CSSD), compared to a non-
cooperative baseline value of 68.03%.

• Quantify the Vulnerability to Adversarial/Malicious
Behavior: As evidence of the vulnerability of collab-
orative inferencing, we show that the ability of one
camera to detect objects accurately can degrade sharply,
if collaborating camera nodes maliciously injects errors–
i.e., it deliberately perturbs the histogram values or hides
presence of bounding boxes that it shares with neigh-
boring nodes. More specifically, the accuracy of CNMS
and CSSD approaches drops significantly, to 55% and
70% respectively, when the peer cameras inject noise
that reduces the SNR values to ≈ 15dB. However, even
in such noisy situations, the collaborative models out-
perform the non-collaborative baseline, whose accuracy
degrades to ≈ 50% (for SNR ∼= 15dB). Our results
also show that CSSD is more robust to such adversarial
behavior, suffering less than 5% drop in accuracy even if
one camera is constantly lying. Our results demonstrate
the need for building resiliency as a first-class primitive
in such collaborative inferencing frameworks.

• Outline an Upcoming Experimental Testbed We de-
scribe the design and system architecture of a medium-
scale IoT testbed currently being deployed on the SMU
Campus. The testbed will initially contain multiple video
sensors with edge co-processors for in-situ DNN-based
inferencing. Moreover, the testbed permits easy configu-
ration and execution (even from authorized locations out-
side SMU) of empirical studies of different collaborative
intelligence mechanisms, permitting a systematic study
of the tradeoff between different metrics such as infer-
encing accuracy, energy overhead, processing latency and
communication overheads. We hope that our described
effort becomes part of a larger, federated, multi-campus,
international testbed, which would provide the research
community a means of testing IoT-based machine intel-
ligence technologies under diverse environments.

II. ILLUSTRATIVE IOT ENVIRONMENT

The collaborative intelligence framework being introduced
here can broadly apply to a collection of IoT nodes, of different
modalities (e.g., video, audio & magnetic) and with differ-
ent characteristics (e.g., static vs. mobile nodes). However,
to provide a concrete demonstration of our ideas, we first
introduce an illustrative scenario, one involving a network of

Fig. 1: Illustrative IoT environment with collaborative cam-
eras.

multiple cameras with overlapping views of varying degrees
and with each camera possessing local embedded computing
capabilities.

Figure 1 illustrates this scenario for a campus-like envi-
ronment, where multiple overlapped cameras share spatiotem-
porally correlated information. As illustrated in the figure 1,
the default, non-collaborative model involves each camera
executing a state-of-the-art SSD DNN pipeline for people
detection using IntelTM Movidius vision processor unit for
hardware acceleration. In the collaborative approach that we
consider, each camera also shares detected bounding boxes
and, optionally, other features (e.g., SIFT/Color/SURF descrip-
tors) with the neighboring cameras. In this work, we assume
that this set of neighboring cameras is predefined and available
to each camera. We shall show that such a collaborative model
offers improved detection accuracy. We anticipate that such
improvement occurs because an individual camera’s view can
be subject to various impairments, such as occlusion of certain
individuals by other objects or poor illumination in part of the
space being monitored. Collaborative models help to overcome
such impairments as they offer the advantage of alternative
field-of-view (FoV) observations, which can help to overcome
such impairments.

III. COLLABORATIVE INTELLIGENCE: THE TWO
APPROACHES

Our proposed collaborative inferencing system involves the
following steps:

Step 1: Spatial mapping of Camera Views: As depicted in
Figure 1, the initial calibration stage involves the computation
of a “View Mapping” DB. This View Mapping DB computes
the translation between the (x,y) coordinate systems of the
FoV of different cameras. This spatial translation will help
later in translating the bounding box coordinates computed
by the DNN of one camera to the corresponding coordinates
of another camera. This spatial relationship is computed
and represented using standard homography transformation
matrices [6].
Step 2: People Detection As the next step, each camera
first executes it’s people detection algorithm–i.e., it feeds



each input frame to the DNN (executing on its Movidius
co-processor) to output a set S, representing a set of people
objects, along with the rectangular bounding box coordinates
for each of these objects. Without loss of generality, we use a
state-of-the-art deep learning-based detector called (SSD) [9]
for this. The SSD pipeline accepts images as an input and
generates multiple feature maps at different scales, which
are subsequently provided to a downstream regression and
classification network for (a) detecting object classes, (b)
computing bounding box coordinates and (c) deriving the
associated confidence scores. Finally the network combines
these outputs from multiple feature maps to execute the
Non-Maximum Suppression (NMS) step. NMS is used to
avoid over-counting: it identifies bounding boxes that have
significant spatial overlap and effectively unifies them into a
single bounding box (corresponding to the one with the highest
confidence value). In practice, such unification is performed
by computing the Intersection over Union (IoU) metric, which
is defined as: Area of Overlap/Area of Union, and which
effectively describes the fraction of the area that is common to
a pair of bounding boxes. Two boxes are declared to be equiva-
lent if the IoU value exceeds a minimum threshold (e.g.,≥0.7).
Note that the baseline (non-collaborative) approach terminates
at this step, with each camera independently providing the
post-NMS output as the set of detected persons.
Step 3: Collaborative Intelligence To further improve the
accuracy and overcome the impairments mentioned earlier,
we now introduce the additional collaborative inferencing
step. In this step, we focus on a single reference camera,
outlining the modifications to its SSD pipeline to incorporate
the bounding box estimates provided by its peer cameras. (In
practice, each camera would implement this collaborative logic
independently, refining its estimates by incorporating estimates
from other cameras.) In both of our proposed collaborative
approaches, each of the collaborating peer cameras first uses
the homography matrix transformations to map its own bound-
ing box coordinates to the coordinate space of the reference
camera view. It then send its transformed set of bounding
box coordinates (each corresponding to a potentially distinct
human object) to the reference camera. In the next two sub-
sections, we describe the two distinct ways, CNMS and CSSD,
in which the reference camera incorporates this peer-supplied
coordinate information.

A. Collaborative Non-Maximum Suppression (CNMS)

As mentioned before, Non-Maximum Suppression (NMS)
is a post-processing step used in most of the object detection
pipelines, which effectively assumes that bounding boxes
with IoU higher than a threshold (typically, 0.7) refer to
the same object, and thus suppresses (eliminates) one of the
boxes. The CNMS approach performs collaborative fusion
only by modifying this final NMS stage–i.e., it does not
modify the core SSD DNN pipeline, but simply performs
statistical fusion of the DNN’s output (the set of bounding
boxes). Figure 2a outlines the steps in the CNMS approach.
CNMS takes the output bounding boxes of the SSD and

modifies the output confidence value taking into account the
overlap with bounding box coordinates obtained from each
peer camera. Intuitively, CNMS will assign higher confidence
scores to the bounding boxes (of the reference camera) that
have high spatial overlap with the peer-generated bound-
ing boxes. More formally, we first convert peer-generated
bounding box coordinates to reference camera coordinates.
Let us assume peer camera generates m bounding boxes of
P = {p1, p2, ...., pm}, while reference camera generates n
bounding boxes R = {r1, r2, ...., rn} with n corresponding
confidence scores represented by C = {c1, c2, ...., cn}. We
then compute IoU(pi, rj) for all i ∈ [1,m] and j ∈ [1, n].
If IoU(pi, rj) > 0.8, then we assign a new confidence score
cj

new = (1 − α) ∗ cj + α ∗ IoU(ci, rj), where α = 0.2.
Similarly, we execute the same confidence update procedure
for multiple cameras and then we run the NMS step on this
updated confidence scores.

B. Collaborative SSD (CSSD)

Unlike the CNMS approach, the CSSD technique modifies
the structure of the SSD pipeline itself. Figure 2b illustrates
the high-level CSSD approach: in this case, the input to
the DNN is not just the individual video frames from the
reference camera, but also an additional input mask with
probable locations of objects (as indicated by the collab-
orating peer cameras). This input mask is calculated from
the bounding box information from neighboring cameras.
Similar to CNMS approach, we initially convert bounding
boxes generated by peer cameras to the coordinate system
of reference camera. Assume that the peer camera generates
m bounding boxes P = {p1, p2, .., pi, .., pm} where pi =
(xi

min, yi
min, xi

max, yi
max) (coordinates of the top left and

bottom right of the bounding box). We then initialize the
input mask of size (300, 300) with zeros. Assume pixeli,j
denotes pixel value of input mask at location (i, j). Then
∀ pk(k ∈ [1,m]), assign pixeli,j = 1, if xkmin < i < xk

max

and yk
min < j < yk

max. Similarly, we do the same
computation for multiple peer-cameras. Finally we pass the
video frame from the reference camera and computed input
mask into the CSSD DNN network (see Figure 2b).

C. Vulnerability to Adversarial/Malicious Behavior

While collaborative inference can improve detection accu-
racy, it is, however, susceptible to malicious or faulty behavior
by peer nodes. As an example, illustrated in Figure 1, let us
assume that Camera C is exhibiting adversarial behaviour–
i.e. it does not report the true bounding boxes of people
detected in its images. Since the inference output and feature
summaries of Camera C are shared with Camera A and B, this
will affect the inferencing behavior of both Camera A and B.
Accordingly, it is necessary to understand the sensitivity of
different collaborative techniques to such faulty or malicious
behavior, especially to understand whether such incorrect peer
information can cause a collaborative model to perform worse
than a non-cooperative baseline.



(a) Collaborative NMS (b) Collaborative SSD

Fig. 2: Architectures of (a) Collaborative NMS vs (b) Collaborative SSD models

IV. MULTI-CAMERA COLLABORATIVE SENSING TEST BED

To provide an effective IoT platform for testing such collab-
orative intelligence techniques, as well as their vulnerability
to various forms of adversarial behavior, we have initiated the
development and deployment of a medium-scale experimental
IoT testbed on our SMU campus. The first version of the
testbed involves only 25-30 IoT nodes deployed in public
areas of the SMU campus, each consisting of a Raspberry
Pi platform equipped with a camera sensor as well as a
Movidius VPU (vision processing unit) to provide hardware
support for in-situ execution of DNN pipelines. The Pi CPU
is then responsible for fetching videos from the cameras,
passing individual frames to the VPU for processing and
handling the necessary communication between neighboring
nodes. Note that VPU is included to explicitly capture in-
situ edge processing: while CPU-based execution of DNN
pipelines take ∼1 sec/frame, the VPU reduces the overhead to
∼ 85 msecs/frame. To enable peer-to-peer communication, one
such IoT node is designated as the hub, to which other cameras
connect via WiFi. This group of network connected Raspberry
PI platforms is connected to a Web-based Dashboard at the
back-end, which allows users to execute actions such as:

1) Easily add new cameras to the system and also configure
the spatial relationships (the entries in the View Mapping
DB) of newly added cameras

2) Record videos for future experiments and run real-time
collaborative inferencing pipeline

3) Emulate real-time playback of, and experimentation
with, previously recorded videos

4) Use a unified command line interface to control the
configuration parameters of multiple IoT nodes.

This Web interface also permits authorized remote access,
thereby allowing researchers at international collaborating
institutions to run experiments on this platform.

To provide a software system that generalizes beyond just
the specific case of “people counting”, the testbed infrastruc-
ture is configured as a flexible data processing pipeline where

a new block (such as a new data source (audio,etc) or a new
algorithm module) may be added in an ad-hoc manner as the
research progresses, and even while experiments are being
currently executed. Therefore, at the software architecture
level, we implemented two things: (1) a flexible data pro-
cessing architecture (described in the next section) (2) a web
dashboard to act as a control centre to configure and schedule
the data processing pipeline. The web dashboard (screenshots
illustrated in Figure 5) includes the following functionality:
(a) Addition of new cameras to the system; (b) Easy selection
of cameras and video files (if they are being replayed) to
be included in the upcoming experiment, and (c) Transfer of
individual or multiple files (using rsync) between individual
cameras and the server (which automatically indexes such file
metadata for efficient future retrieval).

A. System Overview

Based on the above figure, each IoT node supports the
following key functional components:

1) Communication interface: This module consists of
processes to allow a camera to communicate with
the control centre (to receive appropriate configuration
parameters and commands) and also to all the other
cameras. Each camera, as well as the control center,
hosts a Web server, and uses HTTP messages to commu-
nicate among themselves. In addition, each camera has
a direct UDP-based communication interface with each
individual peer camera to transfer runtime data (such as
the bounding box coordinates) efficiently.

2) Event distributor: This module interprets and for-
wards the instructions/data received from the com-
munication interface to destination modules by either
RPC or publish-subscribe mechanism. The instructions
can range from starting/stopping processes (record-
ing/inference), changing properties of the other running
processes during runtime (e.g which inference model
to use, which cameras to send/receive message from
during inference stage), etc. By allowing hot swapping



(a) Camera Configuration Settings (b) Command line interface

Fig. 3: Illustrative images for the Testbed Web Dashboard

Fig. 4: Collaborative Sensing Testbed Architecture

of an individual node’s inferencing module and collabo-
ration messages, this module enables us to additionally
simulate adversarial behavior by other nods (e.g., by
instructing a camera to incorrectly perform random
discard of bounding box information).

3) Sensor interfacer: This is implemented as a multi-
process module that connects to the underlying sensor
(video camera in initial setup), retrieve the correspond-
ing data stream, perform appropriate buffering (e.g.,
discarding intermediate frames if the inference engine’s
throughput is lower than the frame rate) and send it
to both the inference engine (for real-time machine
intelligence) and also to the data archival component
(for future trace-based playback and analysis). To help
emulate various controlled experiments, the module also
includes “virtual sensors” that effectively bind to, and
replay, video files stored on the server.

4) Core inference logic: This module (which implements
the baseline and SSD pipelines described earlier) con-
tains the inference engine and processes to load specific
models (e.g. different DNN models), execute the models
and archive the inference results.

5) Space-time correlator: This module stores the spa-
tiotemporal correlations among different cameras. In
particular, if two cameras have overlapping views, the
alignment will include the coordinate transformation ma-
trix; on the other hand, if the two cameras are temporally
correlated, this module will store the statistics (e.g.,
mean, variance) of the underlying temporal shift. Such

shift is used by the Inferencing Engine, for example, to
align the frames from different cameras for collaborative
processing.

6) Data archival: This module stores and tags output data
(video, bounding boxes) from other processes. Note that
each output data may have its own custom format meta-
data–e.g., a video file may include parmeters such as
resolution, location and recording duration. The server
stores and indexes such metadata, allowing the dash-
board interface to perform metadata search queries (e.g.,
‘find HD videos shot by camera 1 last Monday’). .

V. EVALUATION

We now present our experimental results, which illustrate
both the benefits of collaborative intelligence and the vulnera-
bility of such approaches to adversarial behavior by individual
nodes.

A. Experiment Setting
We use the PETS 2009 dataset [4] which consists of video

feeds of 8 synchronous cameras in the outdoors, under varying
crowd flow and density settings. The individual cameras
record video at an approximate frame rate of 7 FPS and
we consider 4 views (views 5-8) with considerable overlap
(shown in Figure 5) in our evaluations. The resolution was
fixed at 720 × 576. We processed a total of 3180 frames
(i.e., 795 per camera) and consider the camera pertaining to
View 005 as the reference camera with respect to which we
report all our performance results. Because we focus only on
the “people detection” task, we use the manually annotated
ground truth from [15] which provides 2D annotations of
10 persons entering, passing through, staying and exiting the
pictured area. We build on the Single Shot Detector (SSD)1,
proposed by [9] for object detection with model trained on
the PASCAL VOC dataset [3] and focus only on the “person”
object detections.

B. Accuracy Improvements with Multiple Collaborating Cam-
eras

We evaluate our collaborative inferencing model on PETS
with up to 4 collaborating camera views for view 5,6,7 and 8.

1Implementation available from https://github.com/weiliu89/caffe/tree/ssd



(a) Reference camera view (b) Collaborative camera 1 (c) Collaborative camera 2 (d) Collaborative camera 3

Fig. 5: Illustrative images from the PETS 2009 benchmarking dataset.

Fig. 6: Accuracy: independent vs. collaborative operation

In figure 6 we plot variation of F-Score and MODA2 y−axis
with varying number of collaborating cameras (N ) in the
x−axis (x = 1 corresponds to the baseline where camera 5
operates in isolation, purely using its own sensor data). We
see that the addition of more collaborating cameras improves
accuracy in both CNMS and CSSD. However, CSSD achieves
significantly higher increase in accuracy (∼10%) even with
the addition of one collaborating camera. Moreover, we also
see the law of diminishing returns in collaboration, with the
performance gain saturating beyond N = 3 for both CNMS
and CSSD.

Fig. 7: Noise vs. Inferencing Accuracy.
Performance Under Noise: In the real world, cameras are
susceptible to noisy inputs (e.g., due to poor lighting con-
ditions). To further understand the benefits of collaborative
inferencing, we also study the performance of CNMS and

2Multiple Object Detection Accuracy, a metric that normalizes the number
of false positives and negatives by the number of ground truth objects

CSSD vs. the non-cooperative baseline under varying levels
of Gaussian noise. Figure 7 plots the result, with the x−axis
representing progressively smaller values of SNR (i.e., larger
the noise, lower the SNR) and y−axis representing the cor-
responding detection accuracy (F-Score). We see that both
CNMS and CSSD always outperform the comparative non-
collaborative baseline. In addition, (a) even at high noise
levels (variance = 100 and SNR ∼9dB), CSSD performance
is similar to non-collaborative performance without any noise;
and (b) both CSSD and CNMS are less sensitive to noise than
a non-collaborative model (their accuracy dropping by ∼11%,
compared to a drop of ∼ 19% for self-inference).

TABLE I: Comparison: CNMS vs CSSD

CNMS CSSD
Bandwidth per Node 150kbps 150kbps

Accuracy/F Score 75.5% 82.5%
Processing Latency 100ms 85ms

Additional Comparison: CNMS vs CSSD Besides accuracy,
we also evaluated CNMS and CSSD on a couple of additional
metrics, (a) the communication overhead (bandwidth/node)
needed to sustain the collaborative exchange of bounding box
information with peer cameras, and (b) the overall per-frame
processing latency (the sum of VPU and CPU processing
latency on reference node 5). Table I shows the results.
We note that the communication overhead is identical (as
expected) as both approaches require sharing identical infor-
mation (bounding box coordinates). On the other hand, CSSD
latency is lower than that of CNMS. This is due to the fact
that, in CSSD, the entire processing pipeline is executed in the
VPU, whereas in CNMS, the final step of confidence-weighted
bounding box suppression is executed in the node’s CPU.
Key Takeaway: Overall, our results demonstrate that CSSD,
which involves an explicit modification of the DNN pipeline
and a corresponding collaborative learning phase, outperforms
the CNMS approach which merely alters the final Bayesian
inferencing step: it achieves both higher accuracy and lower
processing latency.

C. Resilience to Adversarial Behavior

As a final study, we investigate the performance of the col-
laborative mechanisms proposed under adversarial conditions–



(a) Original detections (b) Low Noise

(c) Medium Noise (d) High Noise, Baseline
F−score=52%

Fig. 8: Performance of (CNMS and CSSD) under Adversarial
Conditions.

i.e., when collaborating nodes falsely inject or suppress data.
To mimic such adversarial behavior, we configure each of
the peer cameras to lie (falsely generate incorrect bounding
boxes or suppress inferred boxes) with a variable probability
p. Figure 8 plots the change in detection accuracy vs. p (for
both CSSD and CNMS) under 4 different conditions, corre-
sponding to different levels of noise. Moreover, we varying the
number of ‘lying’ peers (from 1 to 3). The figures show that
CSSD is significantly more robust to such adversarial behavior
than CNMS, with its accuracy dropping marginally even for
moderate noise and large values of p, as long as the number
of adversarial cameras is 1 or 2. CNMS, on the other hand,
experiences a sharper (∼15%) drop in accuracy even under
modest adversarial behavior (p = 0.3). The results show the
promise of CSSD’s collaborative learning approach, but also
illustrate the need to build additional explicit mechanisms to
protect such frameworks against adversarial behavior.

VI. RELATED WORK

Edge computing technologies are pushing frontiers in en-
abling real-time analytics systems for situation awareness.
Early examples of such systems have been described for
various video-based applications and services [12, 13, 14].
Very recently, multi-device cooperation, at the edge, has
piqued the interest of the research community (e.g., multi-
camera systems [7, 8, 11], cooperative UAV swarms [1, 2],
occupant authentication [5]) owing to its advantage of im-
proving accuracy and reducing overheads in dealing with
communication with a centralized cloud. As video processing
using deep learning pipelines is considered resource-intensive,
early efforts in enabling collaboration/cooperation between
multi-camera systems explore cost-efficiency without sacrifice
in accuracy. Qiu et al.[11] demonstrate the ability to track
vehicles across a heterogeneous camera networks consisting

of both fixed (e.g., surveillance) and mobile camera. By
selectively activating the mobile cameras only to resolve ambi-
guities whilst much of the heavy-lifting of the video analytics
pipeline is performed on the cloud, they achieve high accu-
racy without overly draining the resource-constrained mobile
devices. Further, Lee et al. [8] show that by establishing space-
time relationships between views of co-located cameras a-
priori, significant savings in bandwidth needs can be achieved.
They show that by selectively turning off (and on) downstream
cameras in the network depending on the moving targets
detected by upstream cameras and the respective likelihood
of them appearing downstream, the amount of raw footage
collected and uploaded to the cloud (for processing) can
be reduced as much as by 238 times with a nominal miss
rate of 15%. More recently, Jain et al [7] discuss alternative
configurations of video analytics pipelines that are triggered by
peer cameras that share spatiotemporal correlations between
co-located cameras. The authors provide recommendations
for cost efficiency (e.g., by reducing redundant processing
by cameras sharing overlapping views) and higher inference
accuracy (e.g., cross-camera model refinement).

VII. DISCUSSION

This work, introducing the benefits and challenges of ro-
bust collaboration in adversarial environments, opens up the
possibility of research along different dimensions.
Building Resiliency Against Adversarial Behavior: As il-
lustrated in our results, collaborative intelligence approaches
are vulnerable to incorrect data from or malicious behavior by
one or more peer nodes. A variety of different approaches may
help improve the robustness of collaborative sense-making by
such IoT nodes. One approach (briefly introduced in [10])
is to create a Reputation-based mechanism, where each node
updates a reputation score for each neighboring camera based
on the observed mutual discrepancy between objects (e.g.,
using color histogram as a representative feature) occurring
concurrently in a common field-of-view, and then using this
score to modify its collaborative fusion logic. However, such
reputation-based mechanisms may (a) lead to higher-than-
ideal communication overheads, as building the reputation
score may require the transmission of multiple object features
(e.g., the color histograms) for every image frame between
nodes; (b) not be suitable to accommodate other forms of
correlation, e.g., when the same object is not seen concurrently,
but with a varying time gap between different nodes; (c) be
unable to capture transient or isolated adversarial behavior
(e.g., when a camera drops the bounding boxes only for a
specific individual of interest). Alternative approaches (e.g.,
based on cryptographic hash chains) need to be investigated
to understand the tradeoffs between resiliency and metrics such
as network bandwidth and computational overheads.
Autonomic Identification of Collaborative Devices: The
collaborative frameworks (CSSD and CNMS) presented here
implicitly assumed the apriori existence of a set of collabo-
rative relationships between pairs of IoT nodes. In real-world
environments, the set of IoT devices may change dynamically,



and the ideal set of collaborating partners may change as well,
depending for example, on changes in device locations and
underlying movement patterns. Accordingly, we will need to
develop frameworks that allow one or more IoT devices to
autonomously identify the set of devices that share salient
spatiotemporal correlations, and can thus benefit from such
collaborative inferencing.
Incorporation of Additional Collaboration Constraints:
The collaborative frameworks introduced here implicitly as-
sume that the IoT resources are all under a single admin-
istrative domain (e.g., a single operator). Future operating
environments may, however, involve the opportunistic and
negotiated use of IoT resources belonging to different admin-
istrative entities [8] (e.g., a military unit seeking to utilize
not just its own UAV-based sensors, but also surveillance
cameras operated by a civilian authority or other camera nodes
belonging to a coalition partner), with additional constraints:
e.g., one may be able to collaborate with a coalition partner’s
cameras for no more than 2 hours daily. In such scenarios, the
collaborative intelligence pipeline must adapt to contextual and
environmental conditions to achieve the right tradeoff between
accuracy and resource usage.

VIII. CONCLUSION

In this work, using people counting via multiple cameras as
an exemplar application, we have introduced the notion of real-
time collaboration as a technique for improving the accuracy
vs. performance tradeoffs of complex “machine intelligence”
tasks in a set of networked, resource-limited IoT devices. We
introduced two different collaborative techniques: the CNMS
approach utilizes the bounding box coordinates from peer
devices in a final step of Bayesian fusion, whereas the CSSD
approach creates a new DNN model, with an input vector that
is augmented by an object mask created from peer devices.
Through empirical results on the PETS dataset, we show that
both collaborative approaches are superior (with around 5-
14% accuracy gains) compared to a traditional self-inferencing
approach, with CSSD showing overall superior performance
in terms of accuracy, both in the absence and presence of
noise. However, the drawback of such collaboration is greater
susceptibility to inadvertent or deliberate failures or false
information injected by erroneous or malicious nodes. We
show that CSSD does provide resilience to such adversarial
behavior, experiencing an accuracy drop of less than 5% when
faced with a single ‘lying’ peer node. We anticipate that our
work will spur research interest in developing collaborative
ML-based mechanisms, for both training and inferencing,
that take advantage of the spatiotemporal correlations among
different nodes of uncertain fidelity.

IX. ACKNOWLEDGEMENT

This material is supported partially by the Army Research
Laboratory, under agreement number FA5209-17-C-0006, and
partially by the National Research Foundation, Prime Minis-
ter’s Office, Singapore under its International Research Centres
in Singapore Funding Initiative. The view and conclusions

contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of the Army
Research Laboratory or the US Government.

REFERENCES

[1] Axel Bürkle. 2009. Collaborating miniature drones for surveil-
lance and reconnaissance. In Unmanned/Unattended Sensors
and Sensor Networks VI, Vol. 7480. International Society for
Optics and Photonics.

[2] Xinlei Chen, Aveek Purohit, Carlos Ruiz Dominguez, Stefano
Carpin, and Pei Zhang. 2015. DrunkWalk: Collaborative
and Adaptive Planning for Navigation of Micro-Aerial Sensor
Swarms. In Proceedings of the 13th ACM Conference on
Embedded Networked Sensor Systems (SenSys).

[3] Mark Everingham, S. M. Eslami, Luc Gool, Christopher K.
Williams, John Winn, and Andrew Zisserman. 2015. The
Pascal Visual Object Classes Challenge: A Retrospective. Int.
J. Comput. Vision 111, 1 (2015).

[4] James Ferryman and Ali Shahrokni. 2009. Pets2009: Dataset
and challenge. In 2009 Twelfth IEEE International Workshop on
Performance Evaluation of Tracking and Surveillance. IEEE.

[5] Jun Han, Shijia Pan, Manal Kumar Sinha, Hae Young Noh,
Pei Zhang, and Patrick Tague. 2018. Smart Home Occupant
Identification via Sensor Fusion Across On-Object Devices.
ACM Trans. Sen. Netw. 14, 3-4 (Dec. 2018).

[6] Richard Hartley and Andrew Zisserman. 2003. Multiple view
geometry in computer vision. Cambridge university press.

[7] Samvit Jain, Ganesh Ananthanarayanan, Junchen Jiang, Yuan-
chao Shu, and Joseph Gonzalez. [n. d.]. Scaling Video Analytics
Systems to Large Camera Deployments. In In Proc. of HotMo-
bile.

[8] Jongdeog Lee, Tarek Abdelzaher, Hang Qiu, Ramesh Govindan,
Kelvin Marcus, Reginald Hobbs, Niranjan Suri, and Will Dron.
2018. On tracking realistic targets in a megacity with contested
air and spectrum access. MILCOM (2018).

[9] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C. Berg.
2016. SSD: Single Shot MultiBox Detector. In ECCV.

[10] Archan Misra, Dulanga Weerakoon, and Kasthuri Jayarajah.
2019. The Challenge of Collaborative IoT-Based Inferencing
in Adversarial Settings. In The First International Workshop on
Internet of Things for Adversarial Environments, INFOCOM.
IEEE.

[11] Hang Qiu, Xiaochen Liu, Swati Rallapalli, Archith J Bency,
Kevin Chan, Rahul Urgaonkar, BS Manjunath, and Ramesh
Govindan. 2018. Kestrel: Video Analytics for Augmented
Multi-Camera Vehicle Tracking. In Internet-of-Things Design
and Implementation (IoTDI), 2018 IEEE/ACM Third Interna-
tional Conference on. IEEE, 48–59.

[12] Mahadev Satyanarayanan. 2017. Edge computing for situational
awareness. In Local and Metropolitan Area Networks (LAN-
MAN), 2017 IEEE International Symposium on. IEEE, 1–6.

[13] Mahadev Satyanarayanan, Zhuo Chen, Kiryong Ha, Wenlu Hu,
Wolfgang Richter, and Padmanabhan Pillai. 2014. Cloudlets:
at the leading edge of mobile-cloud convergence. In 2014 6th
International Conference on Mobile Computing, Applications
and Services (MobiCASE). IEEE, 1–9.

[14] Pieter Simoens, Yu Xiao, Padmanabhan Pillai, Zhuo Chen,
Kiryong Ha, and Mahadev Satyanarayanan. 2013. Scalable
crowd-sourcing of video from mobile devices. In Proceeding
of the 11th annual international conference on Mobile systems,
applications, and services. ACM, 139–152.

[15] Yuanlu Xu, Xiaobai Liu, Lei Qin, and Song-Chun Zhu.
2017. Cross-View People Tracking by Scene-Centered Spatio-
Temporal Parsing.. In AAAI. 4299–4305.


	Resilient Collaborative Intelligence for Adversarial IoT Environments
	Citation

	tmp.1567664030.pdf.VfVZM

