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ABSTRACT
In recent years, there has been a surge in the development of smart-
devices for monitoring health of individuals. An important aspect
in health monitoring is logging food consumption, which can help
management of diet-related diseases like obesity, diabetes, and even
cardiovascular diseases. Moreover, food logging can help fitness
enthusiasts, and people who want to achieve a target weight by ef-
fective monitoring of diets. However, food-logging is a cumbersome
task, which requires not only taking additional effort to note down
the food item consumed regularly, but also sufficient knowledge
of the food item consumed (which is very difficult due to the avail-
ability of a wide variety of cuisines). With increasing reliance on
smart devices, we exploit the convenience offered through the use
of smart phones and propose a smart-food logging system: FoodAI1,
which offers state-of-the-art deep-learning based image recognition
capabilities. FoodAI has been developed in Singapore and is partic-
ularly focused on food items commonly consumed in Singapore.
FoodAI models were trained on a corpus of 400,000 food images
from 756 different classes. In this paper we present extensive anal-
ysis and insights into the development of this system. FoodAI has
been deployed as an API service and is one of the components pow-
ering Healthy 365, a mobile app developed by Singapore’s Heath
Promotion Board. We also have over 60 registered organizations
(universities, companies, start-ups) subscribing to this service and
we actively receive 600 API requests a day. FoodAI has made it
convenient for users to log the food consumed, taking us closer
towards the Smarter Nation vision, where we use AI technologies
for smart consumption and a healthy lifestyle.
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1 INTRODUCTION
Food is an essential part of our lives, and has a multifaceted impact
on us, including health, culture, behavior, preferences and many
other aspects [28]. Particularly, food habits are among the main
reasons for several health-related ailments prevalent in society. Im-
proper consumption patterns can often lead to people becoming
overweight or obese, which is further linked to chronic illnesses like
diabetes and cardiovascular diseases. Tracking food consumption
behavior is thus a critical requirement to not only help individuals
to prevent diseases, but also for those suffering from these disease
to manage their health better. There is an extensive prevalence of
obesity and diabetes globally2, and there is a need to formulate
strategies to counter these issues. In Singapore, where the FoodAI
project has been undertaken, diabetes has been identified as major
problem that needs addressing, and several steps have been taken
towards this goal3. There are many ways to manage diabetes (e.g.
regular health check-ups, diligently following treatments, etc.)4,
where a major component is just effective monitoring of diets.
Moreover, effective monitoring of diets can serve as a good preven-
tion against diet-related ailments, and also help fitness enthusiasts
achieve their weight goals.

A traditional approach to monitoring diets is maintaining a food
journal, where we note down the food items everytime we con-
sume them. Such approaches are tedious and require substantial
manual effort from the users. While motivated individuals can
sustain this habit for a while, many might give it up soon due to
the inconvenience. Such an effort is also very inefficient, not only
from the perspective of logging, but also from the perspective of
analyzing the data. As a result, obtaining actionable insights in a
data-driven manner becomes difficult. Another major concern with
such a mechanism for logging is the assumption that the individual
has sufficient knowledge about the food items they are consuming.
Singapore is known for its highly diverse cuisines. Not only are
there several local items, but also cuisines from all over the world
are found here. This environment provides a wide array of novel
food choices for consumers, but makes effective food logging diffi-
cult, as now the users also need to make an effort to identify the
details of the unfamiliar food items they are consuming, including
their nutritional values. This is particularly harder when the item
names are in different languages or not very descriptive.

With the growing reliance on smart and self-tracking devices,
there has been an increasing demand for innovative technologies
to ease the tracking behavior of individuals [35]. One of the most
2www.who.int/news-room/fact-sheets/detail/diabetes
3www.diabetes.org.sg/
4www.niddk.nih.gov/health-information/diabetes/overview/managing-diabetes
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prevalent examples is the usage of smart-phones and fitness bands
to monitor physical activity (number of steps, distance traveled,
exercise, etc.) [8]. Following this trend, we propose to exploit the
convenience of smart-phones, and empower them with FoodAI,
our deep-learning based food-image recognition system, to build a
smart food logging system. This approach overcomes the limitations
of traditional logging techniques and allows for a very efficient and
effective logging. The entire system architecture is deployed as
an API service, with either a mobile app or a web-interface at
the front-end. At the backend, we store the trained deep neural
network model in the inference engine. There is also a database
which stores the images captured by the users of the service, and
the public food images collected by us during the web data crawling.
During the offline phase, we collected and annotated a large scale
dataset and trained a prediction model on this dataset using state-
of-the-art image recognition deep learning models. Users access our
food image recognition service through the API. One of our main
partners is the Health Promotion Board of Singapore, who have
developedHealthy365 App to help users maintain a healthy lifestyle.
One of the major components of this app is a diet journal for users
to track their food consumption. This diet journal is powered by
FoodAI at the backend. When having a meal, the users can take an
image of the meal, and log it down. A sample screenshot of how
this app works is shown in Figure 1. Over time, the users are able
to monitor their eating habits, their caloric intake and outtake, etc.
In the era of building a smart nation, FoodAI offers a solution to
addressing smart consumption and healthy lifestyle for the society.

Figure 1: An example of food logging in a diet journal on
the Healthy 365 App, which is developed and mantained by
Health Promotion Board, and is powered by FoodAI.

FoodAI has the capability to recognize 756 different classes of
foods. These items include main courses, drinks, as well as snacks.
A food-image dataset of almost 400,000 images was crawled from

public web search results and manually annotated for the purpose
of building our training corpus. 100 classes from the 756 were col-
lected with a specific focus on local food items commonly consumed
in Singapore (>500 images per class). Extensive efforts were made
to curate this dataset, and we also developed approaches to effi-
ciently introduce new food classes into the system (or remove or
merge existing classes). We used models pre-trained on ImageNet
and fine tuned on our dataset. Based on our train-validation split,
our approaches achieved over 83% top-1 accuracy and 95% top-5
accuracy. This model was then deployed as an API service, regularly
receiving over 600 API requests a day from more than 60 local and
international organizations, universities, and start-ups. These API
requests also allow users to give feedback regarding the quality of
the food item predictions. We frequently monitor these requests
and study the performance of the model. We have conducted exten-
sive qualitative and quantitative analysis of the usage patterns, and
accordingly we keep making efforts to come up with actionable
insights to continually improve the system.

2 RELATEDWORK
Food computing [28] has evolved as a popular research topic in
recent years. Thanks to the proliferation of smart phones and social
media, a large amount of food-related information (such as food
images, cooking recipes, and food consumption logs) are often
shared online. This has led to us having access to rich heterogeneous
information for several important tasks. In particular, this gives
the community an opportunity to conduct extensive analysis of
food-related topics. Effectively utilizing food computing impacts
our lives in multi-faceted ways, including our behavior, culture [32],
and health [1, 2, 26, 30]. In the past, such analysis has led to impact
in medicine[9], biology[4], gastronomy [3, 37], agronomy [15], etc.

One of the most important tasks is food image recognition using
deep learning. Many of these techniques rely on the recent success
of deep learning for visual recognition [13, 14, 20, 22], and use these
state-of-the-art models to train a deep convolution network that
can recognize a variety of food items. Using their feature extraction
ability [39], researchers adapt pre-trained ImageNet [6] models to
their own food datasets. Some of the recent examples include [5, 24,
25, 27, 29]. Among various efforts to build food image recognition
models [28], FoodAI has been trained on the largest food dataset
for recognition tasks, with almost 400,000 images.

In addition to FoodAI, there are several existing commercial and
academic food image recognition systems which can be employed
to reduce the burdens of traditional mobile food journaling. These
include CalorieMama5, AVA6, Foodlg7, MetaMind’s (now Salesforce
Research) Food Image Model8, Google Vision API9, Amazon Rekog-
nition10, and many others. To the best of our knowledge, FoodAI is
the most comprehensive food image recognition solution, with an
ability to recognize over 756 different visual food categories (over
1,166 food items), specifically covering a wide variety of Southeast
Asian cuisines and Asian cuisines in general.

5https://www.caloriemama.ai/
6https://eatwithava.com/
7https://ssi.nus.edu.sg/foodlg/
8https://metamind.readme.io/docs/food-image-model
9https://cloud.google.com/vision/
10https://aws.amazon.com/rekognition/
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3 FOOD-AI
We now present our proposed FoodAI. We first describe data col-
lection challenges, model training and addressing class imbalance
issues. Then, we present extensive experiments and qualitative
analysis to shed light onto the insights for deploying such a tech-
nology in the real world. We obtain insights from the development
environment (analysis on our data collected for training), and the
production environment (analysis of query data from users).

3.1 Constructing Food Image Dataset
During the early days, the primary objective was to develop a robust
dataset of several food images. Special attention was given to food
items commonly consumed in Singapore.We first defined 152 "super
categories" representing generic types of foods and drinks. Some
of these super categories are: Beer, Fried Rice, Grilled Chicken, Ice
Cream, etc.. For each of these super categories, we identified several
food-items that likely belong to the category. For example, the Fruit
super category would have pineapple, jackfruit, and lychee as the
food items. In this manner, we identified a total of 1,166 different
food items. Ideally, this is the total number of classes. However, it
turns out many items are not visually distinguishable (e.g., coffee
with sugar and coffee without sugar are visually indistinguishable,
but the difference is important as it significantly affects the users’
total caloric intake). Thus, we introduced a notion of Visual Foods
as a way to further group the items in a specific category according
to their visual similarity. By visually inspecting the images and
consulting with domain experts, we merged the 1,166 different
food items to 756 visual food categories. We also added a category
for non-food items, for which we randomly sampled about 10,000
different images from ImageNet dataset [6]. The prediction model
would be trained tomake predictions on these visual food categories
(or classes). In the case where finer grained predictions were needed
at the application level (e.g., during food logging), the users would
have the option to manually select a sub-item from the prediction
made. For example, given an image of coffee beverage, the model
would predict Coffee With Milk and the user can further choose
whether it was With Sugar or Without Sugar. As our target market
was primarily Singapore, we laid special focus on foods commonly
consumed in Singapore. Out of the 152 categories and 756 visual
food categories, 8 categories (e.g. Indian, Chinese, Desserts, Malay,
etc.) and 100 visual foods are tailored to this purpose. During the
dataset collection, we ensured that we had at least 500 images for
each of these 100 visual foods (totaling to 65,855 images).

The images were collected by crawling from Google, Bing, Insta-
gram, Flickr, Facebook and other social media, for each of the food
categories. These were manually vetted to confirm whether each
image crawled indeed belonged to the food class being searched
for. Based on requests from the stakeholders and our continued
efforts to improve FoodAI, we continue to update the dataset by
including new images and visual food classes. At present, we have
756 visual foods, comprising about 400,000 images in total. We have
a minimum of 174 images and maximum of 2,312 images per vi-
sual food. We then split the dataset into train, validation, and test
data, for training and evaluating the model. The dataset (henceforth
FoodAI-756) is summarized in Figure 2.

3.1.1 Food Annotation Management System (FAMS). The original
image crawling process was labor-intensive and inefficient, requir-
ing users to manually query a search item and select appropriate
images to download a given food category. To alleviate these and
streamline the process, we developed Food Annotation Manage-
ment System (FAMS), a web-based tool for automatic crawling and
annotating food images. An annotator will define and submit a list
of keywords (i.e., food items) through FAMS. The back-end crawler
will then retrieve several thumbnail images and present them to
the annotator in FAMS. The number of images retrieved is based on
the input provided by the user. The annotator is then able to view
several thumbnails and is able to quickly identify relevant images
for the given keyword (e.g., by checking all, and unchecking the
few irrelevant images). After this, the annotator can confirm the
labeling and the full-size images are automatically downloaded and
saved to the database. An example of collecting images for Orange
Juice is shown in Figure 3. There are two important roles in FAMS,
manager and annotator. The manager manages the annotation pro-
cesses and assigns annotation tasks to one or more annotators.
Annotators complete the tasks assigned by the manager. After the
manager has confirmed the annotation results, FAMS initiates the
download of the full-resolution images from various sources to its
backend. Finally, the new annotated images are merged with the
existing data to form a new version of the training set.

3.2 Training the Model
With the growing success of deep learning for visual recognition
[13, 14, 20, 22], we use a deep convolution network as the model to
recognize food images.

3.2.1 Transferable Features for Image Recognition. In recent years,
it was observed that using networks pre-trained on the ImageNet
dataset and transferring those to other datasets provided a signfi-
cant boost to performance than training new models from scratch.
This was due to the ability of Deep Convolution Networks to learn
general features applicable to several computer vision tasks [7, 39].
Following this success, we use pre-trained ImageNet models and
fine tuned them on our food dataset. During the course of this
project, we have tried several models, and updated them as new
state-of-the-art models got invented. During the earlier iterations
on FoodAI we tried older models such as AlexNet [20], VGG [34],
GoogLeNet [36]. In this paper, we focus our attention to more re-
cent models and report their performance: ResNet [14], ResNeXt
[38] and SENet [17]. We also considered DenseNet [18], but found
its performance comparable to ResNet models. During training, we
followed the standard approaches for data augmentation such as
rotation, random crop, random contrast, etc.

3.2.2 Class Imbalance in the Dataset. A specific problem we face
in the FoodAI dataset is the extremely imbalanced data, i.e., there
is huge variance in the number of instances per class. See the
histogram of instance distribution in Figure 2. This imbalance would
induce a bias in the model favoring a better performance to those
classes with more data, even if those food items are relatively easy
to classify. To address this issue, we modify the traditional cross-
entropy loss to focal loss [23], during the training phase. This loss
will dynamically vary the scale of the loss of the instances such
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Figure 2: Details on the FoodAI-756 dataset. We have a total of about 400k images, and 756 classes (or visual food categories).
Some of these classes encompass multiple food items (e.g. coffee would encompass both coffee with and without sugar.)

Figure 3: Food Annotation Management System (FAMS). An efficient crawler developed to facilitate effective collection of new
data and new food classes based on the requirements from various stakeholders. Here we show an example of orange juice.

that the focus is more on the difficult examples during training.
Specifically, instead of using cross-entropy we modify the loss as:

FL(pt ) = −αt (1 − pt )
γ log(pt )

Here α is a factor that balances the weightage of samples from
different classes, and γ > 0 is the focusing parameter, which regu-
lates the importance of the sample based on its ease of classification.
If the sample is easy to classify, its importance gets reduced.

3.3 System Architecture and Deployment
After having trained the model at the backend, we deployed the
FoodAI model for production.

3.3.1 The System Architecture. FoodAI has been deployed as a
RESTful web service accessible via HTTP/HTTPS protocol. At the
front end, the client is platform and language independent. It can
be a mobile app, web application, or desktop application subject to
clients’ business requirement. At the backend, the Apache Nginx
web server is responsible for receiving user requests, redirecting
to the UWSGI web application server. The UWSGI calls Caffe [19]
inference engine to get the food prediction scores and returns it
to the Nginx web server, which returns the response to the user.
FoodAI web service is written in Python using Flask framework.

FoodAI web service mainly provides two interfaces, classify and
feedback. The classify interface receives HTTP/HTTPS request,
including either the URL of image or image data, saves data and im-
age to database and returns the classification results. The feedback
interface receives the user feedback about the classification result
and saves to database. In FoodAI, we use MongoDB as database.
The classification interface supports both GET and POST meth-
ods. The feedback supports GET method only. To perform food
image classification, the UWSGI sends image data to the Caffe in-
ference engine. The Caffe inference engine is written in C++ and
hosted on a web server. The web server loads the FoodAI model at
startup time and makes inference in the GPU mode. To facilitate
the cross-language communication between API service and infer-
ence engine, we use the Apache Thrift framework. The Apache
Thrift framework is a scalable cross-language service solution that
work efficiently and seamlessly between a various range of lan-
guage, such as Java, Python and C++ etc. An overview of the entire
deployed architecture is shown in Figure 4.

3.3.2 User Experience for API Service. To use FoodAI web service,
users are required to register their interests on FoodAI website
(www.foodai.org). After the requests are approved, an API key is
assigned to them. The API key is required to validate user’s identity

www.foodai.org
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Figure 4: System Architecture for FoodAI. The end-to-end framework of deployment of FoodAI as an API service.

for using FoodAI service. Users can integrate FoodAI web service
in their application or system independent from the platforms. The
API documentation can be found at FoodAI website. The response
in Json format is returned to the user. The Json object contains the
attributes as follows:

• food result: a list of top 10 visual food name sorted by the
classification score.

• food results by category: a list of top 10 food category sorted
by the classification score

• non-food: an indicator to show if the image is not a food
• qid: query id of the request
• status code: an indicator of the response status
• status message: a descriptive message based on status code
• time cost: the time spending on inference

3.3.3 User Experience on Healthy 365 App. The Health Promotion
Board (HPB) of Singapore is one of the major partners of FoodAI
project and they have integrated FoodAIweb service on their mobile
app called Healthy 365 on both IOS and Android platforms. HPB is a
government organization committed to promoting healthy living in
Singapore and Healthy 365 enables users to track their daily calorie
intake and consumption and motivate healthier lifestyle. When the
users want to update their diet journal, they take a photo of their
meal to be identified by the FoodAI system. After the necessary
computation, FoodAI returns a list of top visual food categories
sorted by the classification score. The user can then choose which
visual food category best describes their meal and determine further
variations (e.g., coffee with or without sugar), based on the visual
food chosen. Of course, if the correct item is not in the top predicted
results, users have the freedom to manually enter their own choice
of food. This feedback by the user is recorded for the purpose of
monitoring the performance of FoodAI in the real world and to
help improve the performance of the model.

4 EXPERIMENTS AND CASE STUDIES
4.1 Evaluation of Model during Development
Here we present the results of FoodAI in the training phase, where
we evaluate the performance on test data of the original dataset.

4.1.1 Performance of Fine-Tuning Pre-Trained ImageNet Models.
While several models have been explored over the course of FoodAI
development, in this paper, we present the performance of ResNet-
50, ResNet-101 (50-layer and 101-layer ResNet) [14], ResNeXT-50
(50 layers) [38], and SENet trained with ResNeXt-50 [17, 38]. We
present the results of the basic models in Table 1. Among themodels,
the best top-1 accuracy of 80.86% and top-5 accuracy of 95.61% was
obtained by a combination of SENet with ResNeXt-50. ResNet-101
did not do very well (possibly due to convergence challenges). We
also look at the inference speed of the models and see that we can
make predictions at the rate of 80-120 images per second for the
50-layer models, or 1 image in 0.01 seconds. This is fairly fast and
the end-to-end inference result returned to the user thus depends
on the round-trip latency of transferring the image to our server
and getting the result back. The models occupy close to 100MB for
the 50 layer models. Since this model is going to be stored only on
the server, the model does not cause a memory constraint.

4.1.2 Performance After Incorporating Focal Loss. We present the
results of training the model with focal loss [23] in Table 2. Here,
due to the usage of focal loss, we have improved the convergence
of the model to a better optimum. We obtain a top-1 accuracy of
83.2%, achieved with a combination of SENet[17] and ResNeXt-101
[38], outperforming the previous best of 80.86%. This demonstrates
the ability of focal loss to improve the performance on imbalanced
datasets like the FoodAI-756 dataset by dynamically changing the
scale of the loss during training and giving less importance to easy
examples.

4.1.3 Insights from Performance on the Test Dataset. Next, we look
closer at some of the results so as to obtain new insights. Specifically,
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Table 1: Performance of various models on the FoodAI-756 dataset. The models were pre-trained on ImageNet and fine tuned
on our dataset. Combination of SENet and ResNeXt gave a top-1 accuracy of 80.86%. We also look at the inference (testing
speed) and the model size, to help with practical decision making of trading off speed and performance. Best performance is
in bold.

Network Top-1 Accuracy Top-5 Accuracy Testing Speed (#Images/second) Model Size
ResNet-50 [14] 0.7870 0.9427 80 96 MB
ResNet-101 [14] 0.7645 0.9366 32 168 MB
ResNeXt-50 [38] 0.7898 0.9473 112 94 MB
SENet ResNeXt-50 [17]+[38] 0.8086 0.9561 122 103 MB

Table 2: Performance enhancement by using Focal Loss to address issues arising from imbalanced dataset. Using Focal loss,
we managed to improve our top-1 accuracy from the best fine-tuned models at 80.86% to 83.2%. Best performance is in bold.

Top-1 Accuracy Top-5 Accuracy
ResNet50 without Focal Loss 0.787 0.943
ResNet-50 + Focal Loss 0.802 0.95
SENet + ResNeXt50 + Focal loss 0.823 0.955
SENet + ResNeXt101 + Focal loss 0.832 0.957

we focused on themost misclassified instances. Our objective was to
understand why these specific classes would get misclassified. Was
it a possible short-coming in our training strategy? Was it that the
data was just too difficult or noisy?Was it that many of these classes
looked visually very similar? Or possibly a combination of any of
these factors. We show some of these highly misclassified results
in Table 3. In many of the cases, from the visual food name, we can
see that some of the items and their predictions have very similar
ingredients, which leads to confusion. In particular the first row in
the table show the same dish with soup predicted as being without
soup (dry). One possible explanation of this is that our dataset has
more instances of the dry version of the dish than the soupy version.
Another interesting case is the last row: Mee Kuah, and Mee Rebus.
See Figure 5 for images of both classes, where we can see that they
look very similar. At the time of dataset collection, we assumed that
these should have been different categories. Upon further research,
we found that these categories are often considered as the same
item. This suggests merging them into a single visual food.

Figure 5: Example of items misclassified in development
environment: Mee Kuah(left) and Mee Rebus (right). Best
viewed in color.

4.2 Evaluation of Model in Production
Our deployed system receives about 600 API calls a day. As expected
we have 3 peaks in the usage during the day, one in the morning
at around 7 AM, one at lunch time, between 12 noon to 2 PM. and

one at dinner time from 6 PM. to 8 PM. Here we present results of
our analysis of the query data by the users.

4.2.1 Performance of the Model. How do we measure the model
performance in the real world? One approach could be to manually
annotate data that has been queried, and compare this against the
model predictions. This approach is extremely expensive for two
reasons: (i) It requires substantial manual effort, which would be
time-consuming; and (ii) This labeling process requires an expert
who is familiar with all 756 visual food categories (for a variety
of cuisines) and finding/hiring such experts for labeling is not an
easy task. Note that annotating these images is significantly harder
than collecting them. This is because during data collection, we just
query a keyword and retrieve several images immediately which
requires a cursory look to confirm. In the case of user queries, the
annotator has to look at one image and assign it one of the 756
categories (some of whom are visually very similar) .

Another approach to measure model performance is based on
the feedback given by the users. Despite not receiving feedback
for all queries, this is a useful indicator. Based on the feedback, we
score an accuracy of about 50% in top-1 accuracy, and about 80%
in top-5 accuracy. There could be several factors contributing to a
worse performance in the real world than on our test dataset. We
hypothesize the following possible (not exhaustive) reasons:

• Domain Shift. Possibly, the distribution of query data and
our training data is different. Our data is relatively cleaner,
and has higher quality photos in comparison to the real world
photos taken by the users. This domain shift [10, 11, 16] may
cause a degradation of performance of the model.

• Poor Quality of Data Query. Closely related to domain
shift is the poor quality of image queries. Many users may
submit queries which are of poor quality (e.g. upside down
images, food is mostly consumed, etc.). These images would
result in a poor performance of the model.

• Different Imbalanced Distribution. As noted before, the
FoodAI-756 dataset is highly imbalanced, creating a bias in



FoodAI: Food Image Recognition via Deep Learning
for Smart Food Logging Conference’17, July 2017, Washington, DC, USA

Table 3: Difficult Cases in the FoodAI-756 test dataset (in the development environment). These are some of the most incor-
rectly classified items in the test dataset. Delving deeper can give us actionable insights on how to improve the model.

Visual Food Recall Most common incorrect prediction
mushroom_and_minced_pork_noodles_soup 0.2 dry_minced_pork_and_mushroom_noodles
vegetable_u_mian 0.24 dry_ban_mian
stewed_taupok 0.28 bak_kut_teh
tauhu_goreng 0.3 fried_tau_kwa
pork_chop_western_set 0.32 chicken_chop
tikka 0.4 chicken_curry
beef_ball_soup 0.42 beef_ball_kway_teow_soup
dao_xiao_mian 0.42 been_noodles_soup
instant_coffee 0.42 kopi_o
mee_kuah 0.42 mee_rebus

Figure 6: Examples of different types of queries sent by users, and the different types of challenges we face.
A. These are some of the easy queries sent by the users, where we get good quality images, and easy to recognize classes.
B. Large inter-class similarity. First 3 images are instant_coffee and the next two are teh-c/teh-o, and they look visually similar.
C. Large intra-class diversity. These are all examples of economy_rice, where the images look very different from one another.
D. Incomplete food. Often the users will send images of food already consumed, making it difficult to detect visual features.
E. Non Food. Being a relatively new technology, curious users will play with FoodAI and submit several non-food queries.
F. Poorly taken photos. Users will submit queries where the photos taken suffer from illumination, rotation, occlusion, etc.
G. Multiple Food Items. Several queries will have multiple food items present, while FoodAI is trained to detect a single class.
H. Unknown Foods.We receive queries of food items that are not available in our list, making it impossible to recognize them.

the model learnt. This bias may affect model performance in
the real world, where the distribution of instances per class
queried may be different from that in the train dataset.

• Poor Feedback Quality. It is possible that users may not
have the knowledge of food item and may gave an arbitrary
feedback. They may also be intending to "play" around with
the technology and intentionally giving a wrong feedback.

Next, we will explore some of these factors through case studies.

4.2.2 Analysis of UserQueries. We first look at some of the queries
sent by users, and identify some of the key properties. We show
several examples in Figure 6, where we have categorized them
into 8 categories based on the associated challenges. While several
queries are easy to classify (A), there are many challenges including

inter-class similarity (B), intra-class diversity (C), incomplete food
(D), non-food (E), poorly taken photos (F), multiple food items (G),
and unknown foods (H). Detailed descriptions are in the caption.

4.2.3 Query Images vs Our Dataset. Here we present a couple of
case studies based on FoodAI behavior we wanted to investigate.

Case Study 1. We wanted to explore some cases where we had a
very poor performance on the user query data (while the perfor-
mance on test data in the development stage was reasonable). We
considered two cases: soya_milk and steamed_stir_fried_ tofu_with
_minced_pork. We have visualized some the samples queried by
the users and the ones in our FoodAI-756 dataset in Figure 7. In
the case of soya_milk, it was clear that the query data was com-
pletely different from our data, as users queried cartons, while our
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Figure 7: Case Study 1: User query data, where we had a poor performance (on both top-1 and top-5 accuracies). First column
is the class soya_milk. While our model was trained to recognize the actual soya milk, several users queried cartons of soya
milk, where "food-image features" were not prominent. Second column is the class steamed_stir_fried_tofu_with_minced_pork.
Here, the images in our training set were much clearer and cleaner, while the user data was not of sufficient quality for our
model to extract useful visual features. Best viewed in color

Figure 8: Case Study 2: User query data, where out top-1 accuracy was poor, but top-5 accuracy was high. These are cases
where the foods have very similar features. The first column is the class dry_prawn_noodles. Most of the top-1 predictions were
hokkien_mee, which has very similar ingredients. The second column is the class fish_beehoon_soup, whose top-1 prediction
was beehoon_soup_with_mixed_ingredients_eg_seafood. Both dishes have very similar appearances. Best viewed in color

model was trained on actual milk. Thus, the result was not sur-
prising, and it tells us that we should potentially account for any
text in packaged goods to try to improve predictions. In the case of
steamed_stir_fried_ tofu_with_minced_pork, it would appear that
there is a domain shift in the query set and our data, which might
possibly be overcome by domain adaptation techniques [11, 16].

Case Study 2. We also wanted to explore the scenario where the
top-1 accuracy was poor but the top-5 accuracy was very high.
Such scenarios would give us insight into the most confusing food
items according to the users (where our performance is consistently
good, but we struggle to give the best prediction), and also highlight
cases where the users maybe potentially giving us incorrect feed-
back. In Figure 8, we show two examples: (i) dry_prawn_noodles
was almost always top-1 predicted as hokkien_mee. Both have sim-
ilar ingredients, and it is possible the model was biased due to a
different number of instances for each class in our training set,
as opposed to the user query data; (ii) We have a similar expla-
nation for fish_beehoon_soup, whose top-1 prediction was mostly
beehoon_soup_with_mixed_ingredients_eg_seafood. Note that it is

very hard for us to validate the class imbalance hypothesis as that
requires us to manually label a large amount of the query data.

5 CONCLUSIONS AND FUTURE DIRECTIONS
We have developed FoodAI, a deep learning based food image recog-
nition model for smart food logging. FoodAI helps reduce the bur-
dens of manually logging an online food journal by facilitating
photo-based food journals. The system has been trained to iden-
tify 756 different types of foods, specifically covering a variety of
cuisines commonly consumed in Singapore. We have conducted
several experiments to train a powerful model relying on state-
of-the-art visual recognition methods, and further improved the
performance by incorporating focal loss. We have presented analy-
sis of how we updated the dataset regularly, and how we obtained
actionable insights based on the model performance during devel-
opment. The technology has been deployed, and we have several
organizations and universities using this service. One of our major
partners Health Promotion Board, Singapore has integrated FoodAI
into the Healthy 365 App. We get over 600 API calls a day. We
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have also conducted extensive analysis and case studies to obtain
insights into the performance of the model in the real world.

We are also pursuing several research and development direc-
tions. One of the major challenges is how to update the model to
incorporate new classes of food as they become popular. Retraining
the model can be very expensive and time consuming. To alleviate
this, we are exploring Lifelong Learning solutions [31]. A related
idea is if the data for new classes is very limited, how do we extend
the model to recognize this class? We are looking into incorporat-
ing few-shot learning techniques to do this [21]. Since there are
several food items, it will not be possible for us to maintain a fully
exhaustive list. Another way to incorporate calorie consumption
is to estimate calories directly from the image. A related task that
we are exploring is cross-modal retrieval between food images and
cooking recipes [33], where we want to retrieve the recipe for a
given image (and it is easier to estimate nutrition and calorie con-
sumption from recipes) . We are also looking at incentivization
strategies for healthier consumption and food recommendation
[12]. We are making efforts to expand FoodAI research into a viable
solution for aiding smart consumption and a healthy lifestyle.
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