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Abstract. Studying recommender systems with implicit feedback has
become increasingly important. However, most existing works are
designed in an offline setting while online recommendation is quite chal-
lenging due to the one-class nature of implicit feedback. In this paper,
we propose an online collaborative filtering method for implicit feedback.
We highlight three critical issues of existing works. First, when positive
feedback arrives sequentially, if we treat all the other missing items for
this given user as the negative samples, the mis-classified items will incur
a large deviation since some items might appear as the positive feedback
in the subsequent rounds. Second, the cost of missing a positive feedback
should be much higher than that of having a false-positive. Third, the
existing works usually assume that a fixed model is given prior to the
learning task, which could result in poor performance if the chosen model
is inappropriate. To address these issues, we propose a unified frame-
work for Online Collaborative Filtering with Implicit Feedback (OCFIF).
Motivated by the regret aversion, we propose a divestiture loss to heal
the bias derived from the past mis-classified negative samples. Further-
more, we adopt cost-sensitive learning method to efficiently optimize
the implicit MF model without imposing a heuristic weight restriction
on missing data. By leveraging meta-learning, we dynamically explore a
pool of multiple models to avoid the limitations of a single fixed model
so as to remedy the drawback of manual/heuristic model selection. We
also analyze the theoretical bounds of the proposed OCFIF method and
conduct extensive experiments to evaluate its empirical performance on
real-world datasets.
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1 Introduction

Recommender systems aim to alleviate information overload by providing per-
sonalized suggestions from a superabundant of choices based on the historical
behaviour. Among various recommendation algorithms, Collaborative Filtering
(CF), an approach that uses known preferences of some users to make predic-
tions to the unknown preferences of other users, has been widely used as one
of the core learning techniques in building real-world recommender systems.
The prevalent of E-commerce and social media sites generate massive data at
an unprecedented rate. More than 10 million transactions are made per day
in eBay1 [1] and about half a billion tweets are generated every day [12]. Such
data is temporally ordered, high-velocity and time varying. Unfortunately, tradi-
tional CF based methods adopt batch machine learning techniques which assume
all training data are provided prior to model training. Such assumption makes
them unsuitable and non-scalable for real-world applications for the following
reasons. First, the user-item interactions usually arrive sequentially and periodi-
cally while batch learning model has to be retrained from scratch whenever new
samples are received, making the training process extremely expensive. Second,
whenever a new user/item is added to the system, batch learning cannot handle
such changes immediately without involving an expensive re-training process.
Third, it is common that user preferences are likely to change through time, but
it is difficult for a batch learning model to capture the changes. Therefore, it is
imperative to develop real-time scalable recommendation algorithms.

Recent years have witnessed some emerging studies for online recommenda-
tion methods [1,10,21]. These methods generally follow the paradigm of Matrix
Factorization (MF) model which associates each user and item with a latent
vector respectively and assume that the corresponding rating is estimated by
the vector inner product. These works formulate the recommendation task as
a rating prediction problem which is denoted by explicit feedback. Neverthe-
less, implicit feedback, such as monitoring clicks, view times, purchases, etc, is
much cheaper to obtain than explicit feedback, since it comes with no extra cost
for the user and thus is available on a much larger scale. Compared to explicit
ratings, implicit feedback is much more challenging due to the natural scarcity
of negative feedback (also known as the one-class problem). One popular solu-
tion to solve this problem is to select some negative instances from unlabeled
entries [2,14]. However, this adversely decreases the efficacy of the predictive
model due to insufficient data coverage. Another solution [8] is to contrast the
positive feedback against all the non-observed interactions. However, this strat-
egy significantly increases the computation cost. A state-of-the-art MF method
for implicit feedback is the eALS [7], which treats all missing data as the neg-
ative feedback but with a heuristic weight. Despite its success in dealing with
batch learning setting, it is challenging to develop online recommendation meth-
ods with implicit feedback for the following reasons: (i) when positive feedback
arrives sequentially, if we treat all the other missing items for this given user as

1 http://www.webretailer.com/articles/ebay-statistics.asp.

http://www.webretailer.com/articles/ebay-statistics.asp
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the negative feedback, the mis-classified items will incur a large deviation since
some items might appear as the positive feedback in the subsequent rounds;
(ii) the cost of missing a positive target is much higher than that of having a
false-positive [23]; (iii) the existing works usually assume that prior to the learn-
ing task, a fixed model is given either by manual selection or via cross validation.
This could result in poor performance if the chosen model is inappropriate in
a new environment, which happens commonly for real-world applications since
user preferences and item attributes dynamically change over time.

To address these issues, we propose a unified framework for Online Collabo-
rative Filtering with Implicit Feedback (OCFIF). First, motivated by the regret
aversion [16], we propose a divestiture loss to heal the bias derived from the past
mis-classified negative samples. Next, we utilize cost-sensitive learning method
[3] to efficiently optimize the implicit MF model without imposing a heuristic
weight restriction on missing data. Finally, we leverage meta-learning method
[18] to explore a pool of multiple models, which are assigned with weights accord-
ing to their real-time performance, to remedy the drawback of using a single
fixed model by existing methods that often suffer considerably when the sin-
gle model is inappropriate. In this way, the selection of the optimal model is
adaptive and evolving according to the streaming data. By leveraging divesti-
ture loss, cost-sensitive learning and meta-learning, our implicit MF objective
function integrates them into a joint formulation. We theoretically analyze the
regret bounds of the proposed framework. To validate the efficacy of the pro-
posed method, we conduct extensive experiments by evaluating the proposed
algorithms on real-world datasets, showing that our method outperforms the
existing state-of-the-art baselines.

2 Related Work

The proposed work in this paper is mainly related to following two directions:
(i) recommendation with implicit feedback; (ii) online recommender systems.

2.1 Recommendation with Implicit Feedback

While early literature on recommendation has largely focused on explicit feed-
back [9,15], recent attention is increasingly shifting towards implicit data
[7,8,23]. We can categorize previous works for implicit feedback into two types:
sample-based learning and whole-data based learning. The first type samples
negative instances from missing data [2,14]. The BPR method [14] randomly
samples negative instances from missing data, optimizing the model with a pair-
wise ranking loss. Later on, [2] improves BPR with a better negative sampler by
additionally leveraging view data in E-commerce. By reducing negative examples
in training process, these sample-based methods are more efficient in training,
but the convergence speed is slower. The second type treats all missing entries
as negative instances [6–8]. For example, the WALS [8] method models all miss-
ing entries as negative instances, assigning them with a uniform lower weight in
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point-wise regression learning. Recently, [6] develops efficient learning algorithms
for any non-uniform weight on missing data. These whole-data based methods
can achieve a higher data coverage, but the training cost is much more expensive.
Although the aforementioned batch learning methods achieve relatively accurate
prediction performance, they often suffer poor efficiency and scalability issues
for the online recommendation tasks.

2.2 Online Recommender Systems

There are a variety of research works studying online recommendation algorithms
for explicit feedback. Most of these works focus on how to update the model effi-
ciently in online setting. Inspired by online multi-task learning, OMTCF algo-
rithm [20] treats users as tasks and update the models of multiple users simul-
taneously. [9] and [11] algorithms consider second-order information to achieve
faster convergent rate. Beyond the efficient updating problem, RKMF model [15]
focuses on solving the new user/item problem in the stream setting. [1] employs a
continuous markov process for each time-varying user/item latent vector to solve
the user interest drift problem. Recently, [21] solves new user/item, user inter-
est drift and overload problem in a single framework with probabilistic matrix
factorization model. By contrast, there are few studies on implicit online rec-
ommendation. [19] develops a fast incremental Matrix Factorization algorithm
for recommendation with positive-only feedback. However, modeling only the
positive feedback results in biased representations in user profile [8]. To this
end, [7] proposes an online implicit matrix factorization method, called eALS,
which models all the missing data as negative feedback. Although eALS could
update model in online setting, the basic model needs to be trained offline on a
large amount of historical data first (compared to the amount of data for online
update). Otherwise, the performance of eALS will significantly drop which limits
model’s flexibility and scalability for real applications.

3 Online Collaborative Filtering with Implicit Feedback

3.1 Problem Formulation

First, we motivate the problem by introducing the formulation of implicit MF
model. For a user-item rating matrix A ∈ R

m×n, m and n denote the number
of users and items respectively, Ω denotes the set of user-item pairs that have
interactions. In the implicit setting, we define the observation matrix R, where
Rij = 1 if (i, j) ∈ Ω, and Rij = 0 otherwise. MF maps both users and items
into a joint latent feature space of k dimension. Formally, let U ∈ R

k×m be the
latent factor corresponding to the users, where the i-th column ui ∈ R

k is the
latent factor for user i. Similarly, let V ∈ R

k×n be the latent factor for the items,
where the j-th column vj ∈ R

k is the latent factor for item j. In this work, we
cast implicit MF as an online learning problem. On each round t, an observed
matrix entry rt

ij is revealed, where (i, j) ∈ Ω. The goal of OCFIF is to update ut
i
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and vt
j such that rt

ij ≈ (ut
i)

�vt
j . The existing online recommendation methods

[9,11] then alternatively update ut
i and vt

j while keeping the other one fixed by
minimizing the incurred loss �(rt

ij , r̂
t
ij), where r̂t

ij = (ut
i)

�vt
j .

However, this learning process is not suitable for online recommendation with
implicit feedback for the following reasons: (i) when positive feedback arrives
sequentially, if we treat all the other missing items for this given user as the neg-
ative feedback, it will significantly increase the time for updating model which
hinders it from deploying online. Moreover, the data we treat as negative feed-
back can appear as positive feedback later, which brings a non-negligible side-
effect to the model; (ii) the cost of missing a positive target is much higher
than that of having a false-positive; (iii) the existing works usually assume that
prior to the learning task, a fixed model is given either by manual selection or
via cross validation. This could result in poor performance if the chosen model
is inappropriate in a new environment, which is widely observed in real-world
applications since user preferences and item attributes dynamically change.

3.2 OCFIF Framework

Due to the one-class problem, the model cannot receive any negative samples
for training in online setting. Thus, we follow the conventional assumption that
treats all the other missing items for the given user at each round as the negative
feedback. To address the above issues, we propose a unified framework for Online
Collaborative Filtering with Implicit Feedback (OCFIF) as shown in Fig. 1. First,
motivated by the regret aversion [16], we propose a divestiture loss to heal the
bias derived from the past mis-classified negative samples. Next, we develop
a cost-sensitive learning method [3] that efficiently optimizes the implicit MF
model without imposing a heuristic weight restriction on missing data. Finally,
we utilize meta-learning [18] to explore a pool of multiple models, which are
assigned with weights according to their real-time performance, to remedy the
drawback of using a single fixed model by existing methods as their performance
often degrade considerably when the single model is inappropriate. In this way,
the selection of the optimal model is adaptive and evolving according to the
streaming data. By leveraging divestiture loss, cost-sensitive learning and meta-
learning, the proposed framework integrates them into a joint formulation.

Divestiture Loss. To tackle the issue of mis-classified negative samples, we
adopt the regret aversion [16] idea to amend the bias. Regret aversion is origi-
nated from decision theory, which encourages to anticipate regret when facing a
decision and thus incorporate their desire to eliminate or reduce this possibility
in their choice. It has been found to influence choices in a variety of important
domains including health-related decisions, consumer behavior, and investment
decisions. In our setting, we hypothesize that model should attach a higher
weight to the positive samples that were mis-classified as the negative samples
in the past than the other data. Therefore, we explicitly deal with this cost as
the divestiture loss and integrate it into the optimization problem. Formally, we
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Fig. 1. The OCFIF framework.

denote the set of historical user-item pairs which are treated as negative samples
before round t as Nt, then the divestiture loss is formulated as:

ξ(rt
ij , r̂

t
ij) = (1 + λI[(i, j) ∈ Nt])�(rt

ij , r̂
t
ij), (1)

where � could be any convex loss function and we instantiate it as the ε-insensitive
loss �(rt

ij , r̂
t
ij) = max(|rt

ij − r̂t
ij |−ε). I[·] is the indicator function that equals to 1

if the statement holds; and 0 otherwise. λ ≥ 0 is a hyper-parameter that balance
the original loss and the extra penalty. If λ = 0, the extra penalty disappears and
the loss function becomes the conventional one. I[(i, j) ∈ Nt] indicates whether
the user-item pair (i, j) has been mis-classified as the negative sample in the
past.

In order to meet high efficiency requirement of online recommendation and
reduce the number of mis-classified samples, we denote the set of user-item
pairs which have not been fed to the model before round t as Bt, then sample
Z negative instances from Bt for model update. A naive sample strategy is to
uniformly sample from Bt which assumes each missing entry is negative feedback
with equal probability. We follow the assumption in [7,13] that popular items
are more likely to be known by users in general, and thus a miss on a popular
item is more likely to be truly negative. In this way, we sample negative instances
according to the global item popularity. Let Dt denotes the set of user-item pairs
that revealed before round t. The sampling distribution of item j is defined as:

p(j) =
∑m

i′=1 I[(i
′, j) ∈ Dt]∑n

j′=1

∑m
i′=1 I[(i′, j′) ∈ Dt]

. (2)

Cost-Sensitive Learning. Although ξ can deal with the issue of mis-classified
negative samples, it equally penalizes the mistakes on both positive and negative
entries. However, in the implicit feedback scenario, the cost of missing a positive
target is much higher than that of having a false-positive. Thus, we assume
rij = I[r̂ij ≥ q], where q ∈ [0, 1] is a threshold, and adopt cost-sensitive learning
method with a more appropriate metric, such as the sum of weighted recall and
specificity.
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sum = μp × recall + μn × specificity, (3)

where μp + μn = 1 and 0 ≤ μp, μn ≤ 1. In general, the higher the sum, the
better the performance. Besides, another appropriate metric is to measure the
total cost of algorithm:

cost = cp × Mp + cn × Mn, (4)

where Mp denotes the number of false negatives and Mn denotes the number
of false positives. cp + cn = 1 and 0 ≤ cp, cn ≤ 1 are the misclassification cost
of positive and negative, respectively. In general, the lower the cost value, the
better the performance.

Lemma 1. The goal of maximizing the weighted sum in (3) or minimizing the
weighted cost in (4) is equivalent to minimizing the following objective:

∑

rij=+1

ρI(r̂ij≤q) +
∑

rij=0

I(r̂ij>q), (5)

where ρ = ηpTn

ηnTp
for the maximization of the weighted sum, and ρ = cp

cn
for the

minimization of the weighted cost. Tp and Tn are the number of positive examples
and negative examples, respectively.

Lemma 1 gives the explicit objective function to optimize, but the indicator
function is not convex. To solve this problem, we replace this objective function
by its convex surrogate and derive the following two cost-sensitive loss functions:

�I(rij , r̂ij) = ρI(rij=1)�(r̂ij , 1) + I(rij=0)�(r̂ij , 0),

�II(rij , r̂ij) = I(rij=1)�(r̂ij , ρ) + I(rij=0)�(r̂ij , 0).

We could find that the slope of �I(rij , r̂ij) changes for specific class, leading to
more “aggressive” updating while the required margin of �I(rij , r̂ij) changes for
specific class, resulting in more “frequent” updating.

Meta-learning. By introducing cost-sensitive loss and divestiture loss, we can
solve the problem of implicit feedback in online recommendation. However, how
to decide the value of hyper-parameter like ρ remains an issue. Typically, in a
batch learning setting, one can choose hyper-parameters with manual selection
or via cross validation prior to the learning task, which is impossible for online
learning setting. Moreover, in the real-world online recommender systems, user
preferences and item attributes dynamically change. To address this issue, we
adopt the meta-learning method [22] to exploit the benefit of multiple implicit
MF models. The motivation is that if multiple implicit MF models with a number
of hyper-parameters are learned simultaneously, there must exist one setting
that is most appropriate to the streaming data. Specifically, take the hyper-
parameter ρ as an example, we construct a pool of multiple values of parameter
ρ by discretizing (0, 1) into S evenly distributed values 1

S+1 , ..., s
S+1 , ... S

S+1 and
setting ρs to (1 − s

S+1 )/( s
S+1 ).
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A remaining issue is how to choose appropriate implicit MF model from
S candidates for prediction and update them at each round. We apply the
Hedge algorithm [4] and randomly select a model according to a distribution
pt = (p1t , ..., p

S
t ) such that

∑
s ps

t = 1 and ps
t ≥ 0. The sampling probabilities

represents the online predictive performance of each model which is defined as

ps
t =

exp(γMs
t )

∑S
s=1 exp(γMs

t )
, s = 1, ..., S, (6)

where γ > 0 is a temperature hyper-parameter, and Ms
t is an online performance

measure on historical data. Here we choose two commonly used performance
measure in recommendation with implicit feedback task: F-measure and AUC
[14,23]. However, both of these two performance measures are non-decomposable
which makes it significantly challenging to directly optimize them in the online
process. Motivated by [22], we propose the following update methods.

Update F-measure. For each entry rt
ij at round t, the model produces an N-

size ranking list of items for user i. We denote ht as the hit result that equals to
1 if item j appears in the ranking list and 0 otherwise. Then the F-measure can
be computed by F@Nt+1 = 2

∑t
τ=1 rτ

ijhτ
∑t

τ=1 rτ
ij+

∑t
τ=1 hτ

. However, directly calculating the
online F-measure by going through all entries in history is expensive. Therefore,
we introduce an incremental calculation method according to [22]. Let at =∑t

τ=1 rτ
ijhτ and ct =

∑τ
τ=1(r

τ
ij + hτ ), then we can calculate F@Nt+1 = 2at

ct
and

update at and ct incrementally by

at+1 =

{
at + 1, if rt+1

ij = 1 and ht+1 = 1,

at, otherwise;

ct+1 =

⎧
⎪⎨

⎪⎩

ct + 2, if rt+1
ij = 1 and ht+1 = 1,

ct + 1, if rt+1
ij = 1 or ht+1 = 1,

ct, otherwise.

Update AUC. Similar to F-measure case, directly calculating the online AUC
is difficult, which requires to compare the present entry to historically received
entries. To avoid storing the prediction results of all entries, we introduce two E-
length hash tables Lt

+ and Lt
− with ranges (0, 1/E), (1/E, 2/E), ..., ((E−1)/E, 1).

For e ∈ 1, ..., E, Lt
+[e] and Lt

−[e] store the number of positive entries and nega-
tive entries before round t respectively, whose prediction result r̂ij are such that
1/(1 + exp(−r̂ij)) ∈ [(e − 1)/E, e/E). Then, we can approximately update
the online AUC using the two hash tables according to [22]. In particular, if

rt+1
ij = 1, AUCt+1 = Nt

+
Nt

++1
AUCt + 1

(Nt
++1)Nt

−

(∑e
k=1 Lt

−[k] + Lt
−[e+1]

2

)
, where e

is the largest index such that e/E ≤ 1/(1 + exp(−r̂t+1
ij )); if rt+1

ij = 0, we have

AUCt+1 = Nt
−

Nt
−+1

AUCt + 1
Nt

+(Nt
−+1)

(∑E−1
k=e+1 Lt

−[k] + Lt
+[e]

2

)
, where e is the

smallest index such that e/E ≥ 1/(1 + exp(−r̂t+1
ij )).
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Now we can summarize our proposed framework in Algorithm1. We could
use any online optimization methods [17] to solve the objective in (1). A default
choice is online gradient descent (OGD) [17] due to its simplicity and popularity.
At each round t, we alternatively update ut

i and vt
j while keeping the other

matrix fixed, the update rules are:

ut+1
i = ut

i − ηt∇ui
ξ(rt

ij , r̂
t
ij), (7)

vt+1
j = vt

j − ηt∇vj
ξ(rt

ij , r̂
t
ij), (8)

where ηt is the learning rate.

Algorithm 1. The OCFIF Framework
Input: the number of models S
Randomly initialize Us, Vs for s = 1, 2, . . . , S, p1 = (1/S, 1/S, . . . , 1/S);
for t = 1, 2, . . . , T do

Receive an observed entry ritjt ;
Sample negative item set Z from Bt \ {(it, jt)};
for all rij ∈ {{ritjt} ∪ {ri′j′ = 0|i′ = i, j′ ∈ Z}} do

Sampling a model s according to the distribution in (6);
Compute prediction r̂ij and loss ξ;
for s = 1, 2, . . . , S do

Update us,i,vs,j with Eqs. (7), (8);
Update the performance Ms;

end for
Update pt+1 with Eq. (6);

end for
Update Bt+1 ← Bt \ {(it, jt) ∪ Z}, Nt+1 ← Nt ∪ Z and Dt+1 ← Dt ∪ (it, jt);

end for

3.3 Theoretical Analysis

We now analyze the theoretical performance of the OCFIF framework in
terms of online regret bound analysis. To ease our discussion, we simplify some
notations in our analysis as in Table 1.

We denote by S the set of indexes that correspond to the trials when a loss
happens, S = {t|ξt(wt) > 0}. Similarly, we denote by Sp = {t|ξt(wt) > 0 and
yt = 1}, Sn = {t|�t(wt) > 0 and yt = 0}, Sp = |Sp|, Sn = |Sn|.

Table 1. Simplification of notations.

Notations Meaning

vt
j or ut

i xt input

ut
i or vt

j wt current status

ut+1
i or vt+1

j wt+1 solution

u or v w variable

rtij yt target



442 J. Yin et al.

Theorem 1. Let (x1, y1), ..., (xT , yT ) be a sequence of input-target pairs, where
xt ∈ R

k and G = maxt ‖xt‖2, yt ∈ {0, 1}. Let w1, ...,wT be a sequence of
vectors obtained by the proposed algorithm. Then for any w ∈ R

k, by setting
η = ‖w‖√

G[(ρ+ρλ)2Sp+Sn]
for ξI , η = ‖w‖√

G[(1+λ)2Sp+Sn]
for ξII , we then have the

bounds of the proposed algorithms:

T∑

t=1

ξI
t (wt) −

T∑

t=1

ξI
t (w) ≤ ‖w‖

√
G[(ρ + ρλ)2Sp + Sn],

T∑

t=1

ξII
t (wt) −

T∑

t=1

ξII
t (w) ≤ ‖w‖

√
G[(1 + λ)2Sp + Sn].

Proof. Relying on the definition of OGD, we have

‖wt+1 − w‖ = ‖wt − η∇ξt(wt) − w‖2
= ‖wt − w‖2 + η2‖∇ξt(wt)‖2 − 2η∇ξt(wt)(wt − w).

For the convexity of the loss function: ξt(wt) − ξt(w) ≤ ∇ξt(wt)(wt − w)), we
have the following:

ξt(wt) − ξt(w) ≤ ‖wt − w‖2 − ‖wt+1 − w‖2
2η

+
η

2
‖∇ξt(wt)‖2.

Summing over t = 1, ..., T , gives

T∑

t=1

(ξt(wt) − ξt(w)) ≤ ‖w‖2
2η

+
η

2

T∑

t=1

‖∇ξt(wt)‖2.

When we adopt ξI , it is easy to see that ‖∇ξt(wt)‖ ≤ √
G if t ∈ Sn, ‖∇ξt(wt)‖ ≤

ρ(1 + λ)
√

G if t ∈ Sp and ‖∇ξt(wt)‖ = 0 otherwise. Thus, we can obtain the
bound ‖w‖2

2η + ηG[(ρ+ρλ)2Sp+Sn]
2 , by setting η = ‖w‖√

G[(ρ+ρλ)2Sp+Sn]
. Similarly, when

we adopt ξII , ‖∇ξt(wt)‖ ≤ √
G if t ∈ Sn, ‖∇ξt(wt)‖ ≤ (1 + λ)

√
G if t ∈ Sp and

‖∇ξt(wt)‖ = 0 otherwise. Thus, we can obtain the bound ‖w‖2

2η + ηG[(1+λ)2Sp+Sn]
2

by setting η = ‖w‖√
G[(1+λ)2Sp+Sn]

.

Because Sp + Sn ≤ T , we get a regret bound
√

T . From this theorem, our
framework is guaranteed to converge to obtain the optimal average loss with
respect to the online learning setting with divestiture loss and cost-sensitive loss.
According to the theory of the Hedge algorithm [4], we can show that the OCFIF
framework can achieve an optimal upper bound of regret by

√
T ln S/2 with S

models after T iterations. This implies that it can asymptotically approach the
most appropriate parameter setting and ensure the per-round regret vanishes
over time in a sub-linear rate. The details of the proof can be found in [4].
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4 Experiments

In this section, we conduct experiments with the aim of answering the following
research questions:

RQ1: Does our proposed OCFIF framework outperform the state-of-the-art
online implicit collaborative filtering methods?

RQ2: How do our sampling strategies perform? Which negative sampling
strategy is better?

RQ3: How sensitive is our framework to hyper parameters?
In what follows, we first present the experimental settings, followed by

answering the above three research questions.

4.1 Experimental Setting

Dataset. We experimented with three publicly accessible datasets: MovieLens2,
Yelp3 and Pinterest4. The characteristics of the three datasets are summarized
in Table 2.

– MovieLens. This movie rating dataset has been widely used in recommen-
dation task. We used the version containing one million ratings, where each
user has at least 20 ratings. We transformed it into implicit data, where each
entry is marked as 0 or 1 indicating whether the user has rated the item.

– Yelp. This is the Yelp Challenge data of user ratings on businesses. We use
the filtered subset created by [7].

– Pinterest. This implicit feedback data is constructed by [5] for evaluating
content-based image recommendation. The original data is very large but
highly sparse. We filtered the dataset in the same way as for the MovieLens
data that retained only users with at least 20 interactions (pins). This results
in a subset of the data that contains 55,187 users and 1,500,809 interactions.

Evaluation Metrics. For experimental setup, each dataset is randomly divided
into two parts: 80% for training and 20% for test. We repeat such a random per-
mutation 10 times for each dataset and compute the average results of each
algorithm over the 10 runs. For the metrics, The accuracy of a recommendation
model is measured by two widely-used metrics, namely AUC and F-measure@N.
AUC measures whether the items which are observed were held out during learn-
ing are ranked higher than unobserved items. F-measure@N is the weighted
harmonic mean of precision and recall. In our experiments, we set N = 20. Basi-
cally, the higher these measures, the better the performance. For each metric,
We report the score averaged by all the users.

2 http://grouplens.org/datasets/movielens/.
3 https://www.yelp.com/dataset/challenge.
4 https://sites.google.com/site/xueatalphabeta/academic-projects.

http://grouplens.org/datasets/movielens/
https://www.yelp.com/dataset/challenge
https://sites.google.com/site/xueatalphabeta/academic-projects
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Baselines. We compare three variants of the proposed OCFIF framework with
the state-of-the-art algorithms for online recommendation tasks with implicit
feedback as follows:

– OBPR. BPR [14] is a sample-based method that optimizes the pair-wise
ranking between the positive and negative samples via SGD. We propose an
Online BPR by online incremental learning [15]. We use a fixed learning rate,
varying it and reporting the best performance.

– ISGD [19]. This is a incremental matrix factorization method for positive-
only feedback. It learns by incremental SGD, which is acceptable for streaming
data.

– NN-APA [9]. A second order online collaborative filtering algorithm.
– OCFIF. The proposed OCFIF framework. To examine the effectiveness of

the framework on different components, we run two variants of OCFIF,
OCFIF-C and OCFIF-CD. OCFIF-C only adopts cost-sensitive loss, and
OCFIF-CD consider both cost-sensitive loss and divestiture loss.

For parameter settings, we adopt the same parameter tuning schemes for
all the compared algorithm to enable fair comparisons. We perform grid search
to choose the best parameters for each algorithm on the training set. For MF
methods, the number of latent factors is tuned from {10, 15, ..., 50}. For OCFIF,
we search the ranges of values for negative sample size from {1, 5, 10, ..., 50}, cost
sensitive parameter ρ = cp

cn
tuned with cp from {0.5, 0.55, ..., 0.95} with a stepsize

of 0.5, and extra loss parameter λ ∈ {0.1, 0.2, 0.5, 1, 2}. We set the number of
models S = 10 and adopts uniform sampling strategy.

Table 2. Statistics of the evaluation datasets.

Dataset #Interaction #Item #User

MovieLens 1000209 3706 6040

Yelp 731671 25815 25677

Pinterest 1500809 9916 55187

4.2 Performance Comparison (RQ1)

Table 3 summarizes the comparison results in terms of AUC and F-measure, from
which we can draw several observations. First, it is clear to see that the proposed
OCFIF framework and its variants significantly outperform OBPR, ISGD and
NN-APA on all the datasets. This encouraging results validate the effectiveness
of utilizing cost-sensitive loss. Furthermore, by examining the two variants of
the proposed framework, we found that the OCFIF-CD with both divestiture
loss and cost-sensitive loss significantly outperforms the OCFIF-C with only
cost-sensitive loss. The reason is that divestiture loss could heal the bias derived
from the past mis-classified negative samples. By further comparing OCFIF
with its variants, we found that OCFIF is able to achieve the best performance.
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This result highlights the importance of meta learning which dynamically
explores a pool of multiple models to avoid the limitations of a single fixed
model. Interestingly, we can observe that NN-APA outperform OBRP and ISGD
in most cases, which is consistent with [9] that exploiting second-order informa-
tion can improve the performance for explicit feedback. This could be a potential
direction for OCFIF.

Table 3. Comparison of different algorithms in terms of AUC and F-measure for
recommendation task.

Algorithm Metrics Movielens Yelp Pinterest

OBPR AUC 0.8433 ± 0.0012 0.7754 ± 0.0004 0.6996 ± 0.0023

F-measure 0.0487 ± 0.0004 0.0105 ± 0.0004 0.0210 ± 0.0003

ISGD AUC 0.8578 ± 0.0009 0.8165 ± 0.0018 0.8620 ± 0.0018

F-measure 0.0618 ± 0.0008 0.0150 ± 0.0003 0.0231 ± 0.0005

NN-APA AUC 0.8600 ± 0.0003 0.8427 ± 0.0012 0.8810 ± 0.0008

F-measure 0.0581 ± 0.0008 0.0155 ± 0.0001 0.0246 ± 0.0004

OCFIF-C AUC 0.8953 ± 0.0010 0.8621 ± 0.0016 0.8901 ± 0.0022

F-measure 0.0750 ± 0.0007 0.0162 ± 0.0003 0.0259 ± 0.0007

OCFIF-CD AUC 0.9043 ± 0.0008 0.9105 ± 0.0011 0.9012 ± 0.0016

F-measure 0.0788 ± 0.0009 0.0176 ± 0.0005 0.0263 ± 0.0006

OCFIF AUC 0.9105± 0.0006 0.9126± 0.0012 0.9312± 0.0013

F-measure 0.0809± 0.0004 0.0186± 0.0005 0.0275± 0.0002
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Fig. 2. Evaluation of different sample strategies: AUC (a) and F-measure (b).

4.3 Sampling Strategies Comparison (RQ2)

We compared OCFIF under different sampling strategies: uniform sampling and
popularity based sampling. In particular, we set the sampling size gradually
increasing from 0 to 50, and report the performance under different sampling
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strategies. Figure 2(a) shows the performance evaluated by AUC and Fig. 2(b)
shows the performance evaluated by F-measure. We can observe that popularity
based sampling strategy is able to achieve the better performance than uniform
sampling strategy. Moreover, the results show the same trend that better per-
formance is obtained by increasing the sampling size. However, when sampling
size is set too large, the performance suffers. The reason is that the likelihood
of positive entries in negative sampling set will increase rapidly when sampling
size is too large, which results in severely negative side-effect on the model.
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Fig. 3. Impact of cost sensitive parameter ρ.

4.4 Evaluation of Parameter Sensitivity (RQ3)

For the proposed OCFIF framework, there are two key parameters: cost sensitive
parameter ρ and divestiture loss parameter λ. Figures 3 and 4 show the results
of parameter sensitive evaluations using different values of ρ and λ.
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Fig. 4. Impact of divestiture loss parameter λ.

First of all, by examining the influence of cost sensitive parameter ρ, we found
that the performance of framework is gradually improved with the increase of ρ.
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This indicates the effectiveness of our cost sensitive learning. Moreover, when ρ
is larger than 10, the performance starts to drop significantly. This reveals the
drawback of over-updating of positive entries.

Second, by examining the influence of divestiture loss parameter λ, we found
that the better performance is achieved by balancing between the impact of
cost-sensitive loss and divestiture loss, while either a large or a small value of
λ will adversely degrade the performance. This is primarily because that too
large divestiture loss can cause excessive correction, then reducing the accuracy
of model.

5 Conclusion

In this work, we propose a unified framework for online collaborative filtering
with implicit feedback. Specifically, motivated by the regret aversion, we pro-
pose a divestiture loss to heal the bias derived from the past mis-classified nega-
tive samples. Furthermore, we adopt cost-sensitive learning method to efficiently
optimize the implicit MF model without imposing a heuristic weight restriction
on missing data. By leveraging meta-learning, we dynamically explore a pool of
multiple models to avoid the limitations of a single fixed model so as to remedy
the drawback of manual/heuristic model selection. We also analyze the theoret-
ical bounds of the proposed OCFIF method, conduct extensive experiments and
ablation studies, and achieve state-of-the-arts results on real-world datasets for
online recommendation with implicit feedback task.
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