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Abstract—An information dissemination campaign is often
multifaceted, involving several facets or pieces of information
disseminating from different sources. The question then arises,
how should we assign such pieces to eligible sources so as to
achieve the best viral dissemination results? Past research has
studied the problem of Influence Maximization (IM), which is to
select a set of k promoters that maximizes the expected reach of
a message over a network. However, in this classical IM problem,
each promoter spreads out the same unitary piece of information.

In this paper, we propose the Optimal Influential Pieces
Assignment (OIPA) problem, which is to assign k distinct pieces
of an information campaign T to k promoters, so as to achieve the
highest viral adoption in a network. We express adoption by users
with a logistic model, and show that approximatingOIPA within
any constant factor is NP-hard. Even so, we propose a branch-
and-bound framework for OIPA with an (1− 1/e) approxima-
tion ratio. We further optimize this framework with a pruning-
intensive progressive upper-bound estimation approach, yielding
a (1− 1/e− ε) approximation ratio and significantly lower time
complexity, as it relies on the power-law properties of real-world
social networks to run efficiently. Our extensive experiments on
several real-world datasets show that the proposed approaches
consistently outperform intuitive baselines, adopted from state-
of-the-art IM algorithms. Furthermore, the progressive approach
demonstrates superior efficiency with an up to 24-fold speedup
over the plain branch-and-bound approach.

I. INTRODUCTION

Campaigning in Social Media (SM) is an indispensable tool
for promoting business, advocating political standpoints, and
spreading information for the social good. The problem of
influence Maximization (IM) [16] asks to find a set of k initial
promoters that maximize the spread of a unitary message
propagating among users in a network. This problem has been
extensively studied over the last decade [16], [33], [7], [32] in
the context of viral marketing, network monitoring [19] and
recommendation [30]; a survey is given in [21].

However, real-world campaigns often need to be multi-
faceted: composed of multiple constituent message pieces. For
instance, an election campaign aims to inform voters regarding
a candidate’s policy statements on multiple issues, including
taxation, immigration, and healthcare. Studies in consumer
behavior confirm that it is unlikely to trigger any meaningful
actions (e.g., vote for a candidate or adopt a product) when a
user only receives a single element of the campaign [34], [13],

[11], [18], [29]. In another example, a Youtube channel may
try to increase the number of subscribers by spreading viral
videos on SM like Facebook or Twitter. Due to the short-lived
effect of SM contents [6], the viral video could quickly fade
out from a user’s memory even if she has watched it and shared
it with friends. Only upon watching multiple videos from
the same channel would the user turn to a subscriber. Thus,
a campaign strategy should spread multiple viral messages
aiming to achieve overlapping adoption results [1]. An early
example of an such approach was a 1919 marketing campaign
for a deodorant Odorono by Walter Thompson. Initial research
indicated that consumers insisted that they did not need such
a product. Thereafter, the campaign set a goal of consumer
education independently of product promotion, suggesting that
a nonuser “may offend without knowing it”; that caused an
outrage at the time, but enormously improved sales. In our
terms, a multifaceted promotion campaign was used, as the
focus shifted from the product to a wider social concern.

In this paper, we propose the Optimal Influential Pieces
Assignment (OIPA) problem. Given a multifaceted campaign
T that consists of ` pieces, we need to assign ki promoters
to spread the ith piece, where

∑
i ki = k, so as to maximize

the number of users who adopt the goal of T after receiving
a subset of the pieces. We assume that each piece is char-
acterized by a unique topic distribution and spreads in the
network in a topic-aware manner, governed by topic-dependent
influence probabilities between any two users, as in [31], [3].
The influence spread of a promoter with respect to a piece
t ∈ T depends on the piece’s unique topic distribution; it
follows that each promoter may be better positioned to spread
one piece than others. We model a user’s adoption behavior
when receiving multiple pieces by a logistic activation model,
as in consumer behavior studies [34], [13], [11], [18], [29]:
the adoption probability is small when a user receives little
information, but increases drastically upon seeing more; after
exposure to a sufficient number of pieces, the probability
gradient declines as the effect of extra information diminishes.

As an effect of the logistic activation model, the objective
function in OIPA is non-submodular and thus techniques
based on a submodularity assumption are inapplicable. Further,
we show that it is NP-hard to approximate OIPA within



any constant factor, using a novel reduction from the maxi-
mum clique problem. Still, we propose a branch-and-bound
framework and introduce a novel formulation of monotone
submodular optimization, which can be approximated with
factor of (1− 1/e) by means of a greedy heuristic, to obtain
a tight upper bound on the unexplored search space. Thereby,
we iteratively solve a tractable optimization problem until we
compute an upper bound smaller than or equal to the best
obtained solution. Thus, this branch-and-bound framework
thus guarantees an (1 − 1/e) approximation ratio. Still, the
upper bound estimation procedure is expensive, as it repeatedly
scans O(kn) users to select a set of promoters (where n is the
number of SM users). We render it more efficient by means of
a novel progressive upper bound estimation approach. Instead
of scanning a large number candidate promoters, we select a
promoter only if its marginal gain in terms of user adoption is
larger than a predefined threshold h. By progressively lowering
this threshold, we select more promoters as the budget k
allows. Due to the power-law principle of social influence, we
show that this progressive approach significantly lowers the
computational complexity, while ensuring an approximation
ratio of (1 − 1/e − ε) where ε is a tunable parameter that
trades effectiveness with efficiency.

We summarize our contributions as follows:
• We propose a novel OIPA problem, which is to assign

candidate promoters to the propagated facets of a mul-
tifaceted campaign in a way that maximizes adoption,
while capturing user behavior with a logistic model.

• We show that OIPA is NP-hard, and also NP-hard to
be approximated within any constant factor.

• We propose a branch-and-bound framework for OIPA,
and introduce a novel formulation of monotone submod-
ular optimization to tightly bound the unexplored search
space for effective pruning. This framework provides an
(1− 1/e) approximation guarantee.

• We devise an efficient progressive approach for the upper
bound evaluation, which achieves an approximation ratio
of (1− 1/e− ε) and drastically reduces time complexity.

• We experimentally evaluate the effectiveness and effi-
ciency of our approaches on three real world datasets. The
proposed approaches achieve over 215% quality improve-
ment against two intuitive baselines adapted from state-
of-the-art IM algorithms, while the progressive approach
achieves a 24-fold speedup compared to the plain branch-
and-bound approach.

The rest of the paper is organized as follows. We present
related work in Section II. Section III introduces preliminaries
and the OIPA problem definition. We present the hardness
result in Section IV. We propose the branch-and-bound frame-
work and the progressive upper bound estimation approach in
Section V. Section VI reports on our experimental study, and
Section VII concludes the paper.

II. RELATED WORK

In this section, we review related works in native, compet-
itive, and comparative Influence Maximization (IM).

Native IM: The objective of the well-studied IM problem [21]
is to find a set S of k promoters in a network that maximizes
the expected number of influenced users, denoted as σ(S).
While IM is NP-hard under the popular independent cascade
(IC) and linear threshold (LT) influence models, σ(·) is a
monotone1 and submodular2 function for both IC and LT,
hence a constant approximation factor holds for a simple
greedy algorithm [16].

Classical influence models treat different viral messages
as interchangeable in terms of their influence spread under
the model. In contrast, topic-aware models differentiate each
unique message’s influence in a topic-dependent manner [31],
[3]. The topic-aware IM problem [2] aims to find promoters
under such a topic-aware influence model.

All aforementioned works are concerned with the problem
of spreading a unitary message, as opposed to a message
consisting of multiple parts as in OIPA. Still, topic-aware
influence models are useful in describing the propagation of
message parts. Yet, solutions for native IM problems cannot be
extended to address OIPA, in which the adoption probability
function is non-submodular.
Competitive IM: Competitive IM considers a scenario in
which each of several competitors spreads a message in
the same network, and each user adopts at most one mes-
sage. Past research has proposed three main objectives for
competitive IM problems: (1) maximizing one competitor’s
influence spread given the opponents’ strategies in choosing
promoters [4], [8], [14]; (2) finding the equilibrium of a com-
petition using game-theoretical concepts, when the opponents’
strategies are unknown beforehand [20], [23]; (3) maximizing
the total influence spread of all competitors, which is desirable
from the perspective of a network host who is interested to
allocate competing campaigns fairly [24], [17].

Competitive IM considers multiple propagating units, like
OIPA does, yet each of these units is a message belonging
to a different competitive campaign; they are not pieces con-
stituting a single multifaceted campaign; thus, the competitive
IM problem is fundamentally different from OIPA.
Comparative IM: Some works have considered viral market-
ing with multiple non-competing messages. Datta et al. [10]
study the case of campaigns whose influence spreads are
independent. Narayanam et al. [27] study a scenario with
two sets of complementary products, where a product can
be adopted only by a user who has already adopted its
corresponding product in the other set. Lu et al. [25] introduce
a comparative influence model which subsumes both com-
petitive and complementary IM: they consider two different
kinds of relationships between two campaigns, A and B: in
a competitive relationship, a user’s adoption of A lowers the
probability to adopt B; in a complementary relationship, a
user’s adoption of A raises the probability to adopt B. Two IM
problems arise with this comparative influence model: SELF-
INFMAX, which is to maximize a campaign’s own influence;

1A set function g is monotone if for all A ⊆ B, g(A) ≤ g(B).
2A set function g is submodular if for all A ⊆ B and any element x 6∈ B,

g(A ∪ {x})− g(A) ≥ g(B ∪ {x})− g(B).
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TABLE I: Frequently used notations in the paper
G(V,E) the social graph with vertex and edge sets
n,m,Z n = |V |,m = |E| and Z is the set of topics

T, l the viral campaign with l viral pieces
V p ⊆ V the set of available promoters
βββv the preference vector of v and βv

j is the preference
of v on the viral piece tj

rv the parameter to control the adoption probability
of user v

k the number of possible assignments
S̄ , Sj ∈ S̄ an assignment plan for T and the jth seed set for

tj ∈ T
IvSj an indicator for if a node v is activated by Sj

σ(·) the adoption utility (AU) function

and COMPINFMAX, which is to maximize the incremental
influence of one campaign on another.

Still, works on comparative IM focus on tuning the order in
which a user receives the messages of typically two campaigns
with interdependent propagation processes. In contrast, the
OIPA problem concerns the adoption of a single campaign
consisting of several pieces whose propagation processes are
mutually independent, yet serve a common goal.

III. PRELIMINARIES

In this section, we introduce a topic-aware influence model
that describes how different message pieces spread in a
network (Section III-A) and the Optimal Influential Pieces
Assignment (OIPA) problem (Section III-B). Before moving
on, all frequently used notations are listed in Table I.

A. Topic-aware Influence Model

We model a social network (SN) as a directed graph
G(V,E), where V is a set of users and each edge e = (u, v) ∈
E captures the (bidirectional) friend or (unidirectional) fol-
lower relationship from u to v, |V | = n, and |E| = m. To
model how an item propagates in an SN, we adopt the well-
studied topic-aware propagation model [3], [2], [9], [22]. This
model extracts a set of hidden topics Z = {z1, z2, . . . , z|Z|}
from social activities (e.g., tweets and replies) propagated on
an SN, and explains social influence by means of these topics.
Formally, given an edge e = (u, v), a topic-aware influence
probability p(e|z) models how u influences v under topic
z ∈ Z; we denote p(e) as the topic-wise influence vector
for e. These probabilities can be learned from logs of past
propagation activities [31], [12], [3].

We describe a piece of a viral message by the vector t =
(t1, t2, . . . , t|Z|), where tz is the probability that this piece
relates to topic z. Given a seed set of promoters S ⊆ V , the
influence process of t starting out from S under the topic-
aware influence model unfolds as follows. Initially, all users
in V \ S are inactive and the seed promoters in S are active.
Each promoter gets one chance to activate each of its neighbors
via the corresponding edge. As in [9], [2], we compute the
probability that message t goes through edge e as p(t, e) =
t ·p(e). Subsequently, any newly activated user u also gets one
chance to activate its neighbors. The process terminates when
no more users can be activated. Let IuS denote a Bernoulli

random variable that equals 1 if the item t propagating from
the seed set S successfully activates user u, and 0 otherwise.
Then the expected influence spread of t spreading from S is:
σim(S) =

∑
v∈V E[IvS ].

B. Problem Definition

We consider a viral campaign T consisting of ` viral pieces,
T = {t1, .., t`}. We assume that each piece tj propagates in the
network independently3 of others. We model the user adoption
behavior upon receiving some of the viral pieces in a campaign
with a logistic model [34], [13], [11], [18], [29]. In this model,
the probability that user v adopts the campaign T is a Bernoulli
random variable Xv , captured by the logistic function:

p[Xv = 1|IvS1
.., IvS` ] =


1

1+exp{α−β·
∑
j=1..` I

v
S
j
} if ∃IvSj = 1

0 otherwise
(1)

where each IvSj is a Bernoulli random variable that indicates
whether the piece tj propagating from seed set Sj reaches v,
and α, β > 0 are parameters that control the users’ turning
point for adoption. The larger α is, the harder it is for a user
to adopt T, while β weighs the the effect each piece tj has
on the adoption probability for any user.

As each promoter has a varying potential in spreading
message pieces on different topics, our goal is to assign the
pieces of T to a judiciously selected subset of the promoters
in S , so that the overall adoption utility over all users about
T is maximized. We first formally define the adoption utility.

We assign the propagation of each piece tj in T to a
subset of promoters Sj ⊆ S . Let S̄ denote the collection of
all seed subsets that compose our overall assignment plan,
S̄ = {S1, ..., S`}. We express the overall effectiveness of the
assignment plan S̄ via an adoption utility function σ(S̄ ):

σ(S̄ ) = E

[∑
v∈V

Xv

]
=
∑
v∈V

E[Xv] =
∑
v∈V

p[Xv = 1] (2)

The Optimal Influential Pieces Assignment (OIPA) prob-
lem is to extract the assignment plan that yields the largest
adoption utility for a campaign T.

Definition 1 (OIPA). Given a social graph G, a multifaceted
campaign T containing ` viral pieces, a pool of promoters V p

and a budget k, the Optimal Influential Pieces Assignment
(OIPA) problem is to find an assignment plan S̄∗ that
maximizes the overall adoption utility of T over G. Formally,

S̄∗ = argmax
|S̄ |≤k

σ(S̄ ) (3)

where |S̄ | =
∑
j=1,..,` |Si|.

Example 1. Figure 1 presents a running example of an
OIPA instance, using two topics z1, z2 with the topic-
aware influential probabilities shown on every graph edge. For

3While this independence assumption is not general, we show (Section IV)
that the problem is intractable even in this restricted case.
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(c) Influence graph viral piece t2

Fig. 1: A running example for OIPA. In (a), each edge in contains a topic-aware influence probability vector. In (b), we
show the influence graph for t1 which has a topic distribution of (1, 0). In (c), we show the influence graph for t2 which has
a topic distribution of (0, 1).

instance, the topics could be z1 =“tax” and z2 =“healthcare”
in a political campaign. We run a campaign on the network
with two messages, t1, t2, having topic distributions t1 =
(1.0, 0.0) and t2 = (0.0, 1.0) respectively, i.e., one is only
about tax and the other only about healthcare. Given a budget
of two promoter assignments, OIPA finds the assignment
plan that maximizes the overall adoption utility in the network.

This optimal assignment plan is to assign t1 to user a and
t2 to user e. Under this plan, Ia{a} = Ib{a} = Ic{a} = Id{a} = 1
and Ie{a} = 0 for t1 (see Figure 1 (b)), while Ia{e} = 0

and Ib{e} = Ic{e} = Id{e} = Ie{e} = 1 (see Figure 1 (c)).
Assume the parameters α = 3, β = 1, the adoption utility of
each user is given by Equation (1). For instance, p(Xb) =

1
1+exp{3−(1+1)} = 0.27. Eventually, the overall utility of
the assignments plan is σ({{a}, {e}}) =

∑
i=a,b,c,d,e p[Xi]

= 0.12 + 0.27 · 3 + 0.12 = 1.05 as user a receives t1, user e
receives t2, and others receive both, with probability 1.

IV. PROBLEM ANALYSIS

This section provides a theoretical analysis of OIPA. First,
we study the properties of the adoption utility function σ(S̄ )
(Section IV-A). Then, we study the hardness and approxima-
bility of OIPA (Section IV-B).

A. Properties of Adoption Utility Function

Here, we study the properties of the OIPA objective
function, the adoption utility function σ(S̄ ), to gain insights
into the optimization problem. While σ(S̄ ) measures the
effectiveness of an assignment plan S̄ , i.e., a set of seed sets
assigned to different pieces; thus, σ(·) is not a proper set func-
tion. To analyze σ(·), we define a containment relationship
between assignment plans.

Definition 2. An assignment plan S̄a contains another plan
S̄b, i.e., S̄b ⊆ S̄a, if and only if Sbj ⊆ Saj ∀j = 1, . . . , `.

We further define the union of one assignment plan with
another, and the associated marginal utility gain, as follows.

Definition 3. The union of two assignment plans, S̄a and S̄b,
is a new assignment plan S̄ = S̄a ∪ S̄b with Sj = Saj ∪ Sbj ,
j = 1, . . . , `. The marginal gain of adding S̄b to S̄a is:

δS̄a(S̄b) = σ(S̄a ∪ S̄b)− σ(S̄a) (4)

Definition 4. The i-union of an assignment plan S̄a with a
seed set S is a new assignment plan S̄ = S̄a ∪i S where
Sj = Saj , j 6= i and Si = Sai ∪ S . Then the i-marginal gain
of adding S to S̄a is:

δiS̄a(S) = σ(S̄a ∪i S)− σ(S̄a) (5)

We study the monotonicity and submodularity of σ(·) under
these containment and union relationships.

Definition 5. We say that σ(·) is monotone iff, for any two
assignment plans S̄a and S̄b such that S̄a ⊆ S̄b, it holds that
σ(S̄a) ≤ σ(S̄b). We say that σ(·) is submodular iff, for any
two such plans and any S̄ , δS̄b(S̄ ) ≤ δS̄a(S̄ ).

It is trivial to show that σ(·) is monotone. However, as the
following counterexample shows, σ(·) is not submodular.

Example 2. Building on Example 1, consider assignment
plans S̄x = {∅, ∅}, S̄y = {{a}, ∅}, and S̄ = {∅, {e}}. It
holds that S̄x ⊆ S̄y . Yet, δS̄y (S̄ ) = 1.05 − 0.48 = 0.57 >
δS̄x(S̄ ) = 0.48− 0.00 = 0.48. Thus, σ(·) is not submodular.

The absence of submodularity precludes any greedy approx-
imation algorithm based on that property. Given this negative
result, we study the problem’s hardness and approximability.

B. Hardness and Approximability

When a campaign consists of one viral piece, T = {t0},
OIPA is reduced to a variant of the classical IM problem [16]
in which a user v adopts T with probability p[Xv = 1] =

1
1+exp{α−β·IvS }

, if v is activated by the seed set S for t0.

Further, if α → c · β for any c < 1, then p[Xv = 1] → 1
as β → ∞ for a v activated by t0. Thus, the classical IM
problem is fully reduced to this special variant of OIPA.
In effect, OIPA is straightforwardly NP-hard, since IM is
NP-hard. Nevertheless, as we have seen, the AU function is
not submodular in the general OIPA case, as the influence
spread function is in the IM setting, leading to an efficient
greedy approximation algorithm [16]. This fact indicates that
OIPA is harder than IM. That motivates us to study how
hard it is to approximate OIPA within a constant factor.

We study approximability by reduction from the Maximum
Clique (MC) problem. Given an instance of MC, Πa, on
a graph GΠa(VΠa , EΠa) where |VΠa | = n, we construct a
corresponding instance of OIPA, Πb, in polynomial time:

4



1) We create 3n vertices for Πb which we denote each vertex
as xi, yi and ri, i = 1, . . . , n.

2) We set n topics, Z = {z1, . . . , zn} and a campaign
consisting of ` = n pieces, T = {t1, . . . , tn}, each piece
ti having a topic vector where the ith entry is 1 and others
0. In other words, piece ti is about topic zi only.

3) We set an edge e = (xi, rj) for all j ∈ {j|j =
i ∨ (vi, vj) ∈ EΠa} and set p(e) = ti. In other words,
we connect each xi to the r-vertices standing for vi and
its neighbors in GΠa , with a topic vector consisting of
exactly topic zi.

4) We set an edge e = (yi, rj) for all j ∈ {1, . . . , i− 1, i+
1, . . . n} and set p(e) = ti. In other words, we connect
each yi to all r-vertices except the one standing for vi in
GΠa , with a topic vector consisting of exactly topic zi.

5) We set α = ln(2n)2n and β = ln(2n)2. With these
settings, for a vertex v that receives all n pieces it is
p[Xv = 1] = 1

2 , while for a vertex v that receives at
most n− 1 pieces it is p[Xv = 1] ≤ 1

1+(2n)2 .
6) We set the set of available promoters as Vp = {xi|i =

1, . . . , n} ∪ {yi|i = 1, . . . , n} with budget k = n.
In the constructed Πb OIPA instance, p(ti, e) = 1 if

and only if e starts from xi or yi, hence xi and yi are the
only eligible promoters for piece ti. The following lemma
establishes the connection between instances Πa and Πb.

Lemma 1. Let clique size OPT (Πa) and adoption utility
OPT (Πb) denote the optimal solutions for the MC in-
stance Πa and the OIPA instance Πb, respectively. Then
2 ·OPT (Πb)− 1

n ≤ OPT (Πa) ≤ 2 ·OPT (Πb).

Proof. Let CΠa be the maximum clique vertex set in Πa. We
can then deploy an assignment plan S̄ for Πb as follows: for
each i, if vi ∈ CΠa , we choose xi to promote ti, and yi
otherwise. By this plan, if vi ∈ CΠa , than ri receives all n
pieces. Thus, σ(S̄ ) ≥

∑
vi∈CΠa

p[Xri = 1] = 1
2OPT (Πa),

hence OPT (Πa) ≤ 2 ·OPT (Πb), the second inequality.
On the other hand, any plan S̄ for Πb will have the form

{{ui1}, . . . , {uin}} where each uij is either some xij or some
yij . Let C(S̄ ) = N(ui1) ∩ N(ui2) ∩ . . . ∩ N(uin) where
N(uij ) is the neighbor set of uj in Πb. Given the way edges
in Πb are set, since ri is never a neighbor of yi, yet ri is
always a neighbor of xi, only contributions by xi’s survive
all intersections in C(S̄ ). As all vertices rj corresponding to
neighbors of vi in Πa are neighbors of xi in Πb, any pair of
vertices in Πa that corresponds to a pair ri, rj ∈ C forms an
edge in Πa, i.e., (vi, vj) ∈ EΠa . Thus, C(S̄ ) induces a clique
in GΠa , hence the largest size it can get is OPT (Πa).

If all n pieces are propagated in the network and at least one
vertex ri receives them all, then adoption utility is σ(S̄ ) ≥ 1

2 .
On the other hand, if less than n pieces are propagated in the
network, then, even if all vertices ri, i = 1, . . . , n, receive
them all, adoption utility is σ(S̄ ) < 1

2n . Thus, an optimal
plan S̄∗ for Πb should ensure all n pieces are propagated in
the network and at least one vertex receives them all (as long
as that is possible). To include all n pieces, since the budget is
k = n promoters, S̄∗ should assign each piece to exactly one

promoter; thus, it should be in the from {{u1}, . . . , {un}}
where ui is either xi or yi, i.e., one of the only eligible
promoters of piece ti. Even so, only nodes ri in C(S̄∗) can
possibly receive all n pieces, and will do so if and only if S̄∗
selects the xi corresponding to each of the OPT (Πa) vertices
vi in a maximum clique in Πa, and the yi corresponding to
any other vertex vi in Πa, provided there exists at least one
edge (i.e., a clique of size 2) in Πa. Then it follows that:

OPT (Πb) =
∑

∀r∈C(S̄∗)

p[Xr = 1] +
∑

∀r 6∈C(S̄∗)

p[Xr = 1]

≤ 1

2
OPT (Πa) +

2n

1 + (2n)2

≤ 1

2
OPT (Πa) +

1

2n

Therefore 2 ·OPT (Πb)− 1
n ≤ OPT (Πa).

Lemma 1 leads to the following hardness result.

Theorem 1. There is no polynomial-time algorithm to approx-
imate the optimal solution of OIPA within a factor of 1

2n
1−ε

for any ε > 0, unless NP = ZPP .

Proof. Let k ≥ 1. By Lemma 1, if OPT (Πa) ≥ k then
OPT (Πb) ≥ k

2 , and if OPT (Πa) ≤ k
n1−ε then OPT (Πb) ≤

k
2n1−ε + 1

2n ≤
1

1
2n

1−ε · k2 . Thus, we have a gap-preserving
reduction from Πa to Πb [35]. If we can approximate OIPA
in polynomial time within a factor of 1

2n
1−ε, then we can

approximate MC within a factor of n1−ε. This can not be
true unless P = ZPP [15].

V. APPROXIMATION ALGORITHMS

Given the results of Section IV, there is no known way to
develop a polynomial-time approximation algorithm for the
general OIPA case. Still, social influence follows a power
law principle [28]: a few people have significantly larger
influence than others. Based on this principle, we propose a
branch-and-bound framework that prioritizes promoters with
large influence and enables early termination when necessary.

We maintain partial candidate plans in a max-heap, sorted
by their estimated AU score upper bound. If the upper bound
of a partial plan is smaller than the exact AU score of the best
currently obtained plan, we safely prune the partial plan. Yet
this solution brings nontrivial technical challenges, as we need
to: (1) quickly compute the AU score of a candidate plan; (2)
derive an effective upper bound for the AU score of a partial
plan, and (3) efficiently compute the upper bound function.

This section addresses these challenges. A branch-and-
bound technique that efficiently evaluates the AU of any
candidate assignment plan is the subject of Section V-A. We
present a tight upper bound function for effective pruning that
ensures a (1− 1/e) approximation ratio in Section V-B. Last,
we propose an efficient progressive estimation scheme that has
a slightly worse (1− 1/e− ε) approximation ratio with huge
performance boost in Section V-C.
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A. AU Estimation

To employ a branch-and-bound framework, we need to
evaluate the AU for a large number of candidate assignment
plans. Since evaluating the influence spread of any user set in
the classical IM problem is #P -hard, it follows that computing
the AU for any candidate plan is also #P -hard. Yet we can
evaluate AU with good accuracy using an extension of the
reverse reachable (RR) sets method [7], [33], [32]. We briefly
review the RR set method in the following.

Reverse-Reachable (RR) Sets. Given a homogeneous in-
fluence graph G′ = (V ′, E′), |V ′| = n′, where a single
value p(e) characterizes the activation probability through
edge e = (u, v) ∈ E′, the RR set method estimates the
expected influence of any seed set S ∈ V ′. A Random RR
set rests on two random choices: (i) an initial node x is
randomly chosen from the graph, and (ii) the graph is sampled
by keeping each edge e ∈ E with probability p(e). The RR
set comprises all vertices from which we can reach x in the
sampled graph. Let I[Ri ∩ S 6= ∅] be a boolean variable that
indicates whether RR set Ri intersects with S. Then, after
generating θ RR sets, we can estimate the expected influence
of S, σIM (S), as:

σIM (S)← n′

θ

∑
i=1,..,θ

I[Ri ∩ S 6= ∅]

Multi-Reverse-Reachable (MRR) Sets. We extend the RR
sets method to the Multi-RR (MRR) sets method to evaluate
the AU function in OIPA. As in the RR sets method, we
select θ users from V uniformly at random. Yet now, each
viral piece tj induces a homogeneous influence graph where
the influence probability of edge e is computed as p(tj , e) =
tj ·p(e). Then, for each selected user vi, we generate a multi-set
of ` RR sets, one for each viral piece tj , Ri = {R1

i , . . . , R
`
i}.

Given an assignment plan S̄ = {S1, . . . , S`}, we denote IiSj =

I[Rji ∩ Sj 6= ∅]. Then an unbiased estimator of σ(S̄ ) is:

σ(S̄ )← n

θ

∑
i=1,...,θ

1

1 + exp{α− β ·
∑
j=1,...,` I

i
Sj
}]

(6)

Lemma 2. Eqn. 6 gives an unbiased estimator for σ(S̄ ).

We refer the reader to the appendix for the proof. This
estimator is the sum of θ i.i.d random variables Xi = [1 +
exp{α − β ·

∑
j=1...,` I

i
Sj
}]]−1. We can adopt the Chernoff

bound used in the RR sets method [26] to derive the MRR
convergence speed. In practice, a large θ ensures the estimated
AU score for any S̄ is accurate with a high probability.

Example 3. Table II shows an example of using MRR samples
to estimate AU, following the running example in Figure 1. We
sample four vertices, c, a, b, c, and then build the RR sets for
t1 and t2. We compute the adoption probability for each MRR
set shown in the table, and estimate the AU score for the
assignment plan S̄ = {{a}, {e}} as σ(S̄ ) = 5

4 (0.27 + 0.12 +
0.27 + 0.27) = 1.16.

TABLE II: Example of MRR samples and AU estimation
vertex R1

i for t1 R2
i for t2 p(Xi = 1|{{a}, {e}})

R1 c a c c d e 1
1+exp {3−2} = 0.27

R2 a a a 1
1+exp {3−1} = 0.12

R3 b a b b e 1
1+exp {3−2} = 0.27

R4 c a c c d e 1
1+exp {3−2} = 0.27

B. Upper Bound Function by Branch-and-Bound

A naive OIPA solution would enumerate all possible
candidate plans and compute their AU scores using MRR sets.
Yet that would incur

(
`·n
k

)
AU score estimations. Instead, we

estimate an AU upper bound function by branch-and-bound.

Algorithm 1 Branch-and-Bound
1: R← Generate θ MRR sets for T on G.
2: S̄ ← ∅∅∅ = {S1 = ∅, S2 = ∅, . . . , S` = ∅}
3: Vp ← {V1 = V p, V2 = V p, ..., V` = V p}
4: L← 0, U ←∞, S̄∗ ← S̄
5: Initialize max heap H ← (S̄ ,Vp, U)
6: while L < U do
7: (S̄ ,Vp, U)← top of H
8: if |S̄ | ≤ k and |Vp| 6= 0 then
9: Select v∗ ∀v∗ ∈ Vj ∧ ∀ Vj ∈ Vp

10: Vj ← Vj \ {v∗} and update Vp with Vj
11: S̄a ← S̄ with vj included
12: S̄b ← S̄
13: (S̄c, La, Ua)← ComputeBound(S̄a,Vp,R)
14: if La > L then
15: L← La and S̄∗ ← S̄c
16: if Ua > L then
17: H ← H ∪ (S̄a,Vp, Ua)

18: Repeat Lines 13-17 for S̄b

Algorithm 1 presents this framework. We first generate θ
MRR sets for campaign T (Line 1). Then we initialize a max
heap with each entry denoted as (S̄ ,Vp, U) (Lines 2–5). S̄ is
a partial plan, Vp the set of promoters that have not yet been
considered and U the upper bound of the corresponding search
space. In each iteration of the search loop, we get the top entry
of the heap by upper bound value, (S̄ ,Vp), and update the
global upper bound U . As long as the partial plan has not
been filled up, we select a promoter v∗ from Vp, and branch
the search space to examine the cases of including v∗ and
excluding v∗ from S̄ , to form two new partial plans S̄a and S̄b
(Lines 9–12). For each such partial plan, e.g., S̄a, we invoke
ComputeBound(·) to get a triple (S̄c, La, Ua), where Ua

is the upper bound for the partial plan and S̄c is a complete
candidate plan with AU score La (Line 13). If S̄c is better than
the current best solution S̄∗, we update the global lower bound
L and add the partial solution S̄a back to the heap if its upper
bound is better than the global lower bound (Lines 14–17).
We repeat the process for the other partial solution S̄b. The
algorithms terminates when the global lower bound is larger
or equal to the global upper bound.
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The ComputeBound(S̄a,Vp,R) function estimates the po-
tential of a partial plan S̄a, i.e., the maximum AU score of all
possible complete plans that contain S̄a. If this bound is lower
than the global lower bound, we can safely prune S̄a from the
search space. Formally, the ComputeBound functions solves
the following optimization problem:

max|S̄c|≤k
∑

i=1,..,θ

1

1 + exp{α− β ·
∑
j=1..l I

i
Scj
}

s.t. Scj ⊇ Saj ∀Scj ∈ S̄c
(7)

While this optimization is still non-submodular, we propose
a bound estimation method based on adaptively solving a
submodular optimization problem. Figure 2 illustrates the main
idea: Although each individual logistic function is not sub-
modular, we choose the submodular function that most tightly
upper bounds the function value, by means of a tangent line
that intersects with the logistic S-curve. Since the objective
function in Equation 7 is a sum of logistic functions, the sum
of these upper bound functions is submodular. Whenever the
branch-and-bound routine searches a subspace which contains
a partial assignment plan, we update the upper-bound function
as in Figure 2. For example, if we find a user v activated for
viral piece tj by a partial assignment plan S̄a, we refine the
submodular upper bound function by shifting the tangent line
to a larger gradient.

 ࢜ࢄ = 

࢞ =  ࢼ ⋅ ࢜ࡿࡵ − ..ୀࢻ
ࢻ−

 ࢜ࢄ = 

ࢻ− ࢼ − ࢻ ࢞ =  ࢼ ⋅ ࢜ࡿࡵ − ..ୀࢻ
Fig. 2: Example of upper-bound refinement when user v is
found to be activated by piece tj .

Definition 6. The upper bound function τ(S̄ |S̄a) is defined
over a space of all possible assignment plans S̄ ∈ V p×V p×
. . .× V p s.t.

τ(S̄ |S̄a) =
∑

i=1,...,θ

τi(S̄ |S̄a)

where τi(S̄ |S̄a) is a minimal monotone submodular function
for S̄ s.t. S̄a ⊆ S̄ and

τi(S̄ |S̄a) ≥ 1

1 + exp{α− β ·
∑
j=1..l I

i
Sj
}

We derive τ(S̄ |S̄a) (i.e., discuss how to efficiently obtain
the tangent line) in the appendix due to space constraints.

Armed with this upper bound function, Algorithm 2
presents the pseudocode for ComputeBound(S̄a,Vp,R),
which greedily finds a promoter of maximum marginal gain
on τi(·|S̄a) in each iteration. As τi(·|S̄a) is a submodular

Algorithm 2 ComputeBound(S̄a,Vp,R)

1: Refine τ(·|S̄a) according to the updates in S̄a
/** Run greedy selection from Vp **/

2: S̄ ← ∅∅∅
3: while |S̄ | ≤ k − |S̄a| do
4: (v∗, Vj) = argmaxv∈Vj∈Vp τ(S̄ ∪j {v}|S̄a)−τ(S̄ |S̄a)
5: Vj ← Vj \ {vj} and update Vp with Vj
6: S̄ ← S̄ ∪j {v∗}
7: return (S̄ ∪ S̄a, σ(S̄ ∪ S̄a), τ(S̄ |S̄a))

function obtained by the tangent-line method, this greedy
strategy provides an approximation guarantee. In more detail,
Algorithm 2 first refines the upper bound function τ(·|S̄a), in
case S̄a has a promoter who appears in the ith MRR set. Since
at most one promoter, say v, is added to S̄a in the branch-
and-bound framework (Lines 11–12, Algorithm 1), we only
update those τi(·|S̄a) functions that correspond to MRR sets
in which v appears. Then the algorithm greedily selects the
remaining k−|S̄a| promoters to form a complete plan S̄ with
k assignments (Lines 2–6), and returns S̄ ∪ S̄a as a candidate
solution with its AU score, computed by Equation 6, as a lower
bound and τ(S̄ |S̄a) as an upper bound.

Theorem 2. The branch-and-bound framework using Algo-
rithm 2 for upper bound estimation achieves a (1 − 1/e)
approximation ratio to the MRR-based solution to OIPA.

Proof. Since τ(·) is monotone and submodular, and
ComputeBound(·) selects a candidate solution S̄ by the
greedy approach, it is τ(S̄ |S̄a) ≥ (1 − 1/e)τ(S̄∗|S̄a) ≥
(1 − 1/e)σ(S̄∗ ∪ S̄a) for all |S̄∗| = |S̄ |. Let S̄g denote
the returned assignment plan. For any τ(S̄ |S̄a) that has not
been evaluated when the search terminates, we deduce that
σ(S̄g) ≥ τ(S̄ |S̄a). Thus, σ(S̄g) ≥ (1 − 1/e)σ(S̄∗ ∪ S̄a) for
any unexplored partial solution S̄a. S̄g is the best solution
among all evaluated ones, hence the guarantee holds.

The approximation ratio in Theorem 2 holds with respect to
the OIPA solution computed by estimating AU scores σ(·)
from sampled MRR sets, which incurs a sampling error. Still,
when generating millions of MRR sets, this error is negligible.

C. Progressive Upper Bound Estimation

The branch-and-bound framework repeatedly invokes
ComputeBound(·) to compute an upper bound for each
sub-search space that corresponds to a partial assignment
plan. Although the greedy selection in Algorithm 2 gives an
(1−1/e) approximation ratio, it scans all available promoters
in each iteration, incurring O(kn) evaluations of AU marginal
gain over τ(·|S̄a) (Line 4), each performed on millions of
MRR sets (Definition 6). Nevertheless, due to the power law
principle of social influence, most users have small social
influence, hence it is unnecessary to scan all promoters when
constructing partial plans. Motivated by this observation, we
propose a progressive upper bound estimation method that
maintains a (1 − 1/e − ε) approximation ratio, where ε is
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a tunable parameter that trades efficiency with accuracy. This
method is based on an asymptotic bound for the number of
τ(·|S̄a) evaluations, based on the power law principle.

The idea of the progressive estimation method is as fol-
lows. Instead of scanning all promoters to find the one with
maximum marginal gain in τ(·|S̄a) in each iteration, we
sort promoters v by their individual τ(·|S̄a). Then, we set
a threshold h and include a promoter in the candidate plan
if its marginal gain is larger than h. We progressively lower
the threshold so as to include more promoters. This method
accelerates upper bound estimation thanks to two features:
First, the sorting process does not need to rerun in each
iteration. We only need to update the position of promoters
v whose score is affected by the new promoter v∗ in S̄a,
i.e., who coexist in an MRR set with v∗. Second, when the
threshold is small enough, the algorithm terminates and returns
a plan even if the number of assignments is lower than k. As
we will discuss, this second feature tightly bounds the number
of τ(·) evaluations.

Algorithm 3 ComputeBoundPro(S̄a,Vp,R)

1: Refine τ(·|S̄a) according to the updates in S̄a
2: Reorder v ∈ Vj ∈ Vp by δ∅∅∅(v) = τ(∅∅∅ ∪j {v}|S̄a) −
τ(∅∅∅|S̄a) for j = 1, . . . , `

3: maxinf← maxv∈Vj∈Vp δ∅∅∅(v)
4: h← maxinf

5: S̄ ← ∅∅∅
6: while |S̄ | ≤ k − |S̄a| do
7: for v ∈ Vj ∈ Vp do
8: δS̄ (v) = τ(S̄ ∪j {v}|S̄a)− τ(S̄ |S̄a)
9: if δS̄ (v) ≥ h then

10: S̄ ← S̄ ∪j {v}
11: if δ∅∅∅(v) < h then
12: break
13: h← h

(1+ε)

14: if h ≤ τ(S̄ |S̄a)
(k−|S̄a|) ·

e−1

1−e−1 then
15: break
16: return (S̄ ∪ S̄a, σ(S̄ ∪ S̄a), τ(S̄ |S̄a))

Algorithm 3 presents the progressive upper bound estima-
tion. As in ComputeBound(·), we refine τ(·|S̄a) if S̄a in-
cludes a new promoter v∗ in the branch-and-bound framework.
Line 2 sorts promoters by their individual τ(·|S̄a) scores. Then
we set the threshold h to be the largest individual τ(·|S̄a) score
among all promoters (Lines 3 – 4). We iteratively lower the
threshold by a factor of (1 − ε) to include more promoters
in S̄ (Lines 6–15). Lines 11 – 12 break the loop once the
individual τ(·|S̄a) score of a promoter is found to be smaller
than h. Due to the submodularity of τ(·|S̄a), if δ∅∅∅(v) < h
then δS̄ (v) < h. Since promoters are sorted by δ∅∅∅(v), we then
have an early termination.

In the rest of this section, we analyze this progressive upper
bound method in terms of approximation ratio and complexity.

The following lemma unveils the approximation proper-
ties of the solution obtained by ComputeBoundPro(·). To

simplify the presentation, we denote v ∈ S̄ if there exists
a j = 1, .., ` s.t. v ∈ Sj ∈ S̄ , and denote S̄x \ S̄y =
{Sx1 \ S

y
1 , ..., S

x
` \ S

y
` } for any two plans S̄x, S̄y . Last, vi

denotes the ith promoter selected in Algorithm 3.

Lemma 3. Let k′ = k − |S̄a|. The solution S̄ obtained by
Algorithm 3 with |S̄ | = d ≤ k′ has an approximation ratio of
1− e−d/((1+ε)k′) to the optimal solution w.r.t. (S̄a,Vp,R).

Proof. Let S̄∗ be the optimal solution for the instance
(S̄a,Vp,R) and assume vi is selected at a given threshold
h. Due to the submodularity of τ(·|S̄a), it follows that:

δS̄ (v) =

{
≥ h if v = vi

≤ h · (1 + ε) if v ∈ S̄∗ \ (S̄ ∪j {vi})
(8)

where S̄ is the current partial plan and δS̄ (v) is as defined
in Line 8 of Algorithm 3. Equation 8 implies that δS̄ (vi) ≥
δS̄ (v)/(1 + ε) for v ∈ S̄∗ \ S̄ . Thus, we have δS̄ (vi) ≥

1
(1+ε)|S̄∗\S̄ |

∑
v∈S̄∗\S̄ δS̄ (v) = 1

(1+ε)k′

∑
v∈S̄∗\S̄ δS̄ (v).

Let S̄i be partial plan obtained by the algorithm after
including i promoters and vi+1 be the promoter included at
the (i+ 1)th step. Then we have:

τ(S̄i+1|S̄a)− τ(S̄i|S̄a) = δS̄i(v
i+1)

≥ 1

(1 + ε)k′

∑
v∈S̄∗\S̄i

δS̄i(v)

≥ 1

(1 + ε)k′
(τ(S̄∗ ∪ S̄i|S̄a)− τ(S̄i|S̄a))

≥ 1

(1 + ε)k′
(τ(S̄∗|S̄a)− τ(S̄i|S̄a))

where the first inequality is obtained from Equation 8, the
second inequality is due to a sequence of submodularity
relationships that holds for adding v ∈ S̄∗ \ S̄i on top of
each other vs. adding each one individually to S̄i, and the last
inequality is due to monotonicity. Using the geometric series
formula, we derive from this last inequality that:

τ(S̄d|S̄a) ≥

(
1−

(
1− 1

(1 + ε)k′

)d)
τ(S̄∗|S̄a)

≥
(

1− e
−d

(1+ε)k′
)
τ(S̄∗|S̄a)

Lemma 3 allows us to analyze the approximation ratio of
the progressive estimation method.

Theorem 3. The branch-and-bound framework using Algo-
rithm 3 for upper bound estimation achieves a (1− 1/e− ε)
approximation ratio to the MRR-based solution to OIPA.

Proof. As in the proof of Theorem 2, we only need to prove
that the Algorithm 3 achieves a (1− 1/e− ε) approximation
to the optimization problem of selecting k′ = k − |S̄a|
assignments that maximize τ(·|S̄a). Given a returned plan S̄
with |S̄ | = d, we discuss two cases:
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First, d = k′. The approximation ratio then follows directly
from Lemma 3, as we have:

τ(S̄ |S̄a) ≥
(

1− e
−1
1+ε

)
τ(S̄∗|S̄a) ≥ (1− e−1 − ε)τ(S̄∗|S̄a)

where S̄∗ is the optimal solution.
Second, d < k′. Since the algorithm terminates when h falls

below τ(S̄ |S̄a)
k′ · e−1

1−e−1 (Line 14), we deduce that:

τ(S̄∗|S̄a) ≤ τ(S̄∗ ∪ S̄ |S̄a) ≤
∑

v∈S̄∗\S̄

δS̄ (v) + τ(S̄ |S̄a)

≤ k′ · τ(S̄ |S̄a)

k′
· e−1

1− e−1
+ τ(S̄ |S̄a)

≤ 1

1− e−1
· τ(S̄ |S̄a)

Thus, the theorem is proved.

Eventually, we discuss the complexity of the proposed
progressive approach. We focus on the number of τ(·|S̄a)
evaluations as it is the bottleneck of the upper bound es-
timation process. Algorithm 3 enables an early termination
when we find δ∅∅∅(v) < h for some v. Moreover, since h
progressively decreases by a factor of (1+ε) and h is bounded
as h ∈ [ τ(S̄ |S̄a)·e−1

(k−|S̄a|)(1−e−1)
, maxinf], the number of scans s over

all promoters is bounded as follows:

s ≤ log1+ε

(
maxinf · (k − |S̄a|)(1− e−1)

τ(S̄ |S̄a) · e−1

)
≤ log1+ε 2k

(9)
Next, we examine how many evaluations are invoked for

each scan. The following lemma is based on the power law
principle of social influence.

Lemma 4. The number of τ(·|S̄a) evaluations for each
iteration in Algorithm 3 is O

(
k · n

τ(S̄ |S̄a)

)
.

Proof. We only evaluate a promoter v if δ∅∅∅(v) ∈[
τ(S̄ |S̄a)·e−1

(k−|S̄a|)(1−e−1)
, maxinf

]
⊂

[
τ(S̄ |S̄a)

2k , τ(S̄ |S̄a)
]
. By the

power law principle, the fraction of nodes that have an
influence of x, i.e., P (x) is P (x) ∼ x−α, 2 < α < 3.

Since δ∅∅∅(v) measures the individual τ score of v and
is positively correlated to the influence of v, we can
model the number of promoters that have influence score in
[ τ(S̄ |S̄a)

2k , τ(S̄ |S̄a)], denoted as w[ τ(S̄ |S̄a)
2k , τ(S̄ |S̄a)], by the

power law principle:

w

[
τ(S̄ |S̄a)

2k
, τ(S̄ |S̄a)

]
=

n ·

∫ τ(S̄ |S̄a)
τ(S̄ |S̄a)

2k

x−αdx∫ τ(S̄ |S̄a)

1
x−αdx

∼ n ·
(

2k

τ(S̄ |S̄a)

)α−1

< k · n

τ(S̄ |S̄a)

where the last inequality holds for α > 2. The lemma thus
follows.

We summarize the above analysis in the following theorem:

Theorem 4. The number of τ(S̄ |S̄a) evaluations in Algo-
rithm 3 is O( n

τ(S̄ |S̄a)
· k log1+ε(2k)).

The proof follows from Equation (9) and Lemma 4. In prac-
tice, τ(S̄ |S̄a) is large especially for large k, i.e., τ(S̄ |S̄a) ∼ n,
hence the number of τ(·|S̄a) evaluations is small. Compared to
the greedy selection that performs O(nk) evaluations, the pro-
gressive approach effectively avoids unnecessary evaluations
while maintaining a (1− 1/e− ε) approximation ratio.

VI. EXPERIMENTAL EVALUATION

A. Experimental Setup

Datasets. We conduct experiments on the following three real
datasets. 1) lastfm is a social music sharing dataset from
an online site4. lastfm contains a social network and an
action log which records users’ activities of voting items (i.e.,
“a log of past propagation” in [3]). 2) dblp is a DBLP co-
author graph which is downloaded from an online academic
search service5. 3) tweet is a social network built from the
retweet and reply actions of users in Twitter6. We adopt the
TIC model [3] to learn the topic-aware influence probabilities
p(e|z) (see Section III) for lastfm based on its action logs.
Following the previous settings in [3], [2], [9], we set the
number of topics of lastfm as 20. Since dblp has no action
log, we follow the settings in [9] to use research fields as
topics and compute p(e|z) of two authors by categorizing their
related conferences using the topics. For tweet dataset, we
consider all hashtags of an individual users as a document
and apply LDA [5] on all the documents to obtain the topic
distribution of each user. Given an edge e = (u, v), we
compute p(e|z) based on the topic distribution of u and v.
The statistics of the datasets are listed in Table III.

TABLE III: Statistics of Datasets

Datasets lastfm dblp tweet
Number of Vertices 1.3K 0.5M 10M
Number of Edges 15K 6M 12M
Average Degrees 8.7 11.9 1.2

Number of Topics 20 9 50
Sample Time 1.2s 5.7s 23.9s

Compared Methods. To the best of our knowledge, there is
no existing work for OIPA. Thus, we compare the following
baselines together with our proposed approaches.
• IM: We run the state-of-the-art IM algorithm on graph G

to obtain k seed nodes (denoted as S) under the IC model
[32]. Subsequently, we compare the adoption utility among
using S to spread each viral piece ti ∈ T and the viral piece
with the maximum utility is chosen to be spread by S.

• TIM: We construct an influence graph Gti for each ti ∈ T.
For each Gti constructed, we run the IM algorithm on Gti
to obtain k seed nodes (denoted as Si) [9] and we select Si
to spread ti which achieves the largest adoption utility.

• BAB: The branch and bound algorithm proposed in Sec-
tion V-B. We terminate the search when the utility difference
between the upper bound and the best obtained solution is
within 1% error ratio.
4http://www.last.fm/
5http://dblp.uni-trier.de/xml/
6http:/snap.stanford.edu/
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• BAB-P: The progress upper bound estimation techniques
proposed in Section V-C to speedup BAB.

Note that for all compared approaches, we need to generate
θ RR sets for each viral pieces. For a fair comparison, we
fix θ = 106 across all experiments. Note that when comparing
the efficiency of different approaches, we exclude the sampling
time for generating RR sets since the time is the same for all
compared approaches. The sampling overheads can be found
in Table III.
Parameter and Query. The parameters in this experiments
are: (1) k is the number of promoters selected for the campaign
T. (2) ` is the number of viral pieces in T. For each viral piece,
we generate the topic vector by uniformly sampling a non-
zero topic dimension. (3) α, β are parameters in the logistic
model. We fix β = 1 and vary β/α to test the performance
against increasing difficulty levels for the user to adopt the
idea promoted by T. (4) For Vp, we select 10% users from
V since in reality not all users are eligible for promoting ads.
The parameter setup can be found in Table IV.

TABLE IV: Parameters in the experiments
Parameter Values

k 10, 20,. . . , 50, . . . , 100
` 1, 2, 3, 4, 5

β/α 0.3, 0.5, 0.7
ε 0.1, 0.2, . . . , 0.5, . . . , 0.9

Experiment Settings. All the methods are implemented with
C++ and ran on a Ubuntu 14.04 server (Intel(R) Xeon(R) CPU
E5-2650 v2 with 256G memory).

B. Tunning Parameter ε
Recall that BAB-P progressively lowers the threshold h

for a promoter to be included in the solution (Sec. V-C) by
a ratio of (1 + ε). We examine how the parameter ε affects
the solution quality of BAB-P. The results are illustrated in
Figure 3. The adoption utility shows a descending trend when
ε rises. Thus, the larger ε is, the easier an promoter is included,
which could potentially degrade utility. When lowering ε from
0.1 to 0.9, the adoption utility drops by 0.08%, 6.6% and 1.4%
for lastfm, dblp and tweet respectively, a result which
aligns with the theoretical result presented in Theorem 3. For
the remaining part of the experiments, we fix the parameter ε
to be 0.5.
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Fig. 3: Tunning parameter ε for BAB-P.

C. Varying the Number k of Promoters

The experimental results for the compared approaches with
varying k are shown in Fig. 4. The utility of all proposed
methods increases with a larger k, which is expected since

more promoters would enable a wider spread of viral messages
and lead to higher adoption utility of the campaign. IM and
TIM show inferior utilities than those of BAB and BAB-P.
IM has the worst utility because it completely ignores influ-
ence behavior of viral pieces with different topic distribution.
TIM has better results compared with IM since it chooses the
promoters who collectively maximize the spread of a single
viral piece. However, users have a low probability to adopt
the campaign if they only receive one viral piece thus the
overall adoption probability could be low. Our proposed BAB
and BAB-P achieve superior adoption utility as the branch
and bound framework ensures the theoretical guarantee. On
top of that, BAB-P demonstrates competitive solution quality
with BAB with near-equivalent adoption utilities. Thus, the
progressive upper bound estimation technique introduced in
BAB-P does not show significant quality degradation even
for a larger k empirically.

The efficiency results of all proposed approaches are also
shown in Fig. 4 (y-axis is plotted in log-scale). The run time
increases for all compared approaches as more promoters
are selected into a plan. IM and TIM are efficient since
they simply run the greedy maximum cover algorithm on the
generated samples. BAB takes much longer run time as it
needs to repeatedly invoke the ComputeBound(·) functions,
each of which is a greedy procedure to select the promoters,
until the procedure stops (Algorithm 1). BAB-P optimizes
the computation of ComputeBound(·) via the progressive
upper bound estimation technique with early termination and
demonstrates superior efficiency (Algorithm 2), achieving up
to 24x, 22x, 8.1x speedups compared with BAB in lastfm,
dblp and tweet respectively. BAB-P shows great scalability
for a larger k and has converging performance with TIM.
This is because BAB-P does not need to scan all candidate
promoters to obtain an upper bound estimation and could early
terminate even when there are less than k promoters selected.
On the contrary, TIM, IM and BAB need to iteratively scan all
candidates and thus their performance degrades more severely
than BAB-P for larger k.

D. Varying the Number of Viral Pieces `

We examine the effect of conducting a campaign with
varying the number of viral pieces (Fig. 5). The utility of all
the compared approaches increases as more viral pieces are
being promoted. This is because, the adoption probability of
a user u increases with the number of viral pieces influencing
u when β = 1, as the model defined by Eqn. 1. The qualities
of IM and TIM degrade with larger ` compared with BAB
and BAB-P since they do not optimize towards multiple
viral pieces. Take tweet for an example, BAB achieves
quality gain of 71x, 2.9x against IM and TIM respectively
when l = 5, meanwhile BAB-P has competitive qualities
against BAB. It is worth-noting that the quality of IM and
TIM is severely poor in tweet. This is because the average
number of non-zero topic influence probability (i.e., p(e|z))) in
tweet is only 1.5 across all edges in the dataset and tweet
more topics than lastfm and dblp. Under this scenario,
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Fig. 4: Varying number k of promoters.
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optimizing a single viral piece results in low influence spread
thus produces poor overall adoption utility.

The runtime of all the compared approaches increases with
larger ` and the performance trend follows previous observa-
tions: given competitive solution qualities, BAB-P is able to
achieve substantial efficiency improve over BAB. Although
IM and TIM have better overall performance, this is at the
expense of significant lower utility.

E. Varying the Ratio β/α

The experimental results for the compared approaches with
varying β/α are shown in Fig. 6. The utility shows an
increasing trend when the ratio is set to larger values. Since we
fix β = 1, β/α rises when α drops. When that happens, the
probability of a user v adopting a campaign increases (Eqn. 1),
which leads to higher overall utility. We note that BAB and
BAB-P has significant better utilities than IM and TIM, with
greater improvement ratio for a smaller β/α (larger α). For
example, in tweet, BAB has 190% utility improvement over
TIM when β/α = 0.7, whereas the improvements pump to
280% when β/α = 0.3. This is because for a smaller β/α, it is
harder for a user to adopt the campaign for receiving one viral
piece only. Thus, it requires a more sophisticated optimization
technique to find promoters for different viral pieces. We omit
the efficiency results since they demonstrate similar patterns
with previous results.

VII. CONCLUSION & FUTURE WORK

We introduced a novel formulation of a real-world setting
where a network influence campaign T is multifaceted, con-
sisting of various pieces pertaining to its different facets. We
described user adoption behavior in this setting by a logistic
model and introduced the Optimal Influential Piece Assign-
ment (OIPA) that assigns campaign elements to k promoters
in a way to maximizes adoption utility. We showed that it is
NP-hard to approximate OIPA within any constant factor.
Nevertheless, we developed a branch-and-bound framework
that solves OIPA with an (1 − 1/e) approximation ratio, a
novel formulation of monotone and submodular optimization
to compute an upper bound of the unexplored search space,
and a progressive pruning-intensive approach to efficiently
compute this bound. We show that this progressive approach
has an approximation factor of (1− 1/e− ε) and much lower
time complexity than the plain branch-and-bound approach,
by virtue of the power law principle. Our experiments show
that our solutions achieve adoption utility superior to that
of two intuitive baselines adapted from state-of-the-art IM
approaches, while the progressive approach achieves up to 24-
fold speedups over the plain approach.

In this work, the viral pieces are spread in the network
independently. It would be interesting to study the interde-
pendence of different viral pieces while still optimizing the
adoption utility. However, as we have shown the problem to
be intractable in general, a promising future direction would
be to relax the adoption behavior model in a way that would
render the problem tractable, i.e., monotone and submodular,
yet add interdependence considerations as well.
Acknowledgement. Yuchen Li was supported by the Singa-
pore MOE Tier 1 grant MSS18C001. Ju Fan was supported by
National Natural Science Foundation of China (No. 61602488,
No. 61632016), the Research Funds of Renmin University of
China (No. 18XNLG18) and the Tencent Social Ads Rhino-
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VIII. APPENDIX

Proof of Lemma 2. We show the lemma as follows:

Eqn. 6 = E

n
θ

∑
i=1,..,θ

1

1 + exp{α− β ·
∑
j=1..l I

i
Sj
}]


=
n

θ

∑
i=1,..,θ

E

[
1

1 + exp{α− β ·
∑
j=1..l I

i
Sj
}]

]

=
n

θ

∑
i=1,..,θ

E

[∑
v∈V

1

n
· 1

1 + exp{α− β ·
∑
j=1..l I

v
Sj
}]

]

=
∑
v∈V

∑
i=1,..,θ

1

θ
· E[p(Xv = 1)] = σ(S̄ )

Derivation of τ(S̄ |S̄a). To simplify the derivation, let x(S̄ ) =
(
∑
j=1..l β · IiSj − α) and τ(x(S̄ )|S̄a) = 1

1+e−x . We further
simplify and write τ(x) instead of τ(x(S̄ )|S̄a) when the con-
text is clear. To derive the tangent line L : y = w·x+b where w
is the gradient of the line and b is the intercept, we note that
this line is unique due to the S shape curve of the logistic
function. Suppose we have τ(x(S̄a) = β|S̄a)) = 1

1+e−β

and we want to refine τ(·) by adjusting L, there will be
two points on the line: p1 = (β, 1

1+e−β
), p2 = (t, 1

1+e−t )

and w = τ ′(t) = (1 − τ(t))τ(t) = et

(1+et)2 . We wish to
express t in terms of β. Unfortunately, we can show that:
e−t(β−t+1)+1

(1+e−t)2 = 1
1+e−β

. Neither t nor e−t can be expressed
as a close form function of β. Thus, in order to quickly obtain
τ(·), we devise a binary search routine since we know that L
is unique and it always lies above 1

1+e−x . Algorithm 4 shows
how to obtain the gradient w and other parameters of the line
can be easily obtained with w. We know that w must lie in
(0, 1/4) and thus we recursively divide the interval to get the
gradient that makes the line just tangent to 1

1+ex .

Algorithm 4 Refine(β)

1: L← 0, U ← 1
4

2: while U − L > ε do
3: w = (U + L)/2

4: t = log( 1+
√

1−4w
1−
√

1−4w
)

5: v = w · t+ 1
1+eβ

− w · β
6: if v = 1

1+e−t then return w

7: if v > 1
1+e−t then U ← w

8: else L← w
9: return U
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