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Person Re-Identification over Encrypted
Outsourced Surveillance Videos

Hang Cheng, Huaxiong Wang, Ximeng Liu, Yan Fang, Meiqing Wang, and Xiaojun Zhang

Abstract —Person re-identification (Re-ID) has attracted extensive attention due to its potential to identify a person of interest from
different surveillance videos. With the increasing amount of the surveillance videos, high computation and storage costs have posed a
great challenge for the resource-constrained users. In recent years, the cloud storage services have made a large volume of video data
outsourcing become possible. However, person Re-ID over outsourced surveillance videos could lead to a security threat, i.e., the
privacy leakage of the innocent person in these videos. Therefore, we propose an efFicient privAcy-preseRving peRson Re-ID Scheme
(FARRIS) over outsourced surveillance videos, which can ensure the privacy of the detected person while providing the person Re-ID
service. Specifically, FARRIS exploits the convolutional neural network (CNN) and kernels based supervised hashing (KSH) to extract
the efficient person Re-ID feature. Then, we design a secret sharing based Hamming distance computation protocol to allow cloud
servers to calculate similarities among obfuscated feature indexes. Furthermore, a dual Merkle hash trees based verification is
proposed, which permits users to validate the correctness of the matching results. The extensive experimental results and security
analysis demonstrate that FARRIS can work efficiently, without compromising the privacy of the involved person.

Index Terms —Privacy-Preserving, person re-identification, secret sharing, secure Hamming distance, Merkle hash tree.

✦

1 INTRODUCTION

W ITH the increasing popularity of smart city and digital
home, surveillance cameras are significantly adopted

in our daily life, which are often installed across highway,
supermarket, university campus, and so on. Especially, the
continuously improving infrastructures and increasing se-
curity issues caused by crime activities and terrorist attacks
significantly facilitate the growth of surveillance camera
market. In 2018, it was reported from BBC News that the
over 170 million surveillance cameras have been deployed
in China, and approximately 400 million more cameras are
expected to be installed within the next three years [1]. As a
world famous market research store, Research and Markets
forecasted that the video surveillance market will grow at a
compound average growth rate of 11.8%, which is expected
to touch US$ 43.8 billion by 2025 from US$ 18.3 billion in
2017 [2].

At present, the video data from the surveillance cam-
eras are used in a wide range of applications such as
traffic monitoring, crime forensics, and activity detection.
As an essential processing task over visual data, person
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Query

Camera 1

Camera 2

Fig. 1. The illustration of the person re-identification problem. Left : A
query person image. Right : Different persons with different postures are
taken by the two cameras in various lighting and viewpoints. Notes : All
images are from the VIPeR [3] dataset.

re-identification (Re-ID) has attracted considerable research
interests in recent years. The purpose of person Re-ID over
video data is to match a person of interest from different
cameras that are equipped at different locations [4] (as
Fig. 1). It means that the target person in one camera can be
identified whether he/she has appeared in other cameras at
different time and places. This speciality of person Re-ID is
widely employed in many security-related fields, especially
public security. For example, it can readily identify the
presence or absence of a suspect in different surveillance
videos. This information assists the police to infer the next
step from the suspect. With the large increasing number of
cameras, the extensive video data are created to introduce
enormous storage and computational costs. It was estimated
that video data from the global surveillance cameras are
over 560 petabytes per day [5], which is an extremely
heavy amount for any resource-constrained individual or
enterprise to store and process.
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The massive storage and powerful computation of the
cloud server render large-scale data processing possible at
lower costs[6]. However, the problem is that users know
nothing about where the data is stored and whether it is
deliberately tampered due to losing the physical control of
the outsourced data. In this case, users could only trust
the cloud server completely. It is obviously not a wise
option for users, since the data leakage events are frequently
reported. Thus, it remains a challenging task to protect data
security and privacy in the cloud [7]. Directly employing
traditional encryption algorithms (e.g., AES or RSA) prior
to outsourcing operation could be a good choice for users
to ensure the confidentiality of the data. Nevertheless, it
also hinders the further processing of these encrypted data,
such as person Re-ID over encrypted surveillance videos.
A naive solution for secure person Re-ID is to download
all encrypted video data, and decrypt them to perform
person Re-ID locally. Nevertheless, it incurs high compu-
tational and communication costs to users. Hence, how to
perform efficient person Re-ID over encrypted outsourced
surveillance videos without revealing the confidentiality of
the video data, is significantly demanded.

In the plaintext domain, most person Re-ID research
focus on person retrieval, namely, identifying correctly the
same person across several non-overlapped surveillance
videos [8]. At this point, person Re-ID can be largely per-
ceived as the problem of image-to-video retrieval. The rea-
son is, in both cases, the inputs are images and the outputs
are the best matching videos associated with the input im-
age. As discussed in [9], video retrieval using image query is
an asymmetric problem, where videos contain spatiotempo-
ral information, whereas only spatial data for query image.
A direct approach to this problem is to transform it into
the sophisticated image retrieval issue [10] by viewing each
frame of video as an independent image. But, it is prone
to inefficiency especially in a large video dataset because a
video contains lots of frames. A more efficient alternative
technique, i.e., the temporal aggregation, is widely adopted
in the existing image-to-video schemes [11], [12], [13]. But,
the retrieval accuracy of these schemes is limited by the
hand-crafted feature representation, such as SIFT [14], and
Fisher Vector [15]. It is difficult for the hand-crafted features
to largely improve the retrieval performance due to the
lack of the optimal compatibleness with the spatiotemporal
information. To obtain better accuracy, the deep learning
technique was introduced to extract more effective features
in the schemes [9], [16]. However, the privacy of video data
and query images are not guaranteed in these schemes [9],
[11], [12], [13], [16].

To the best of our knowledge, few image-to-video re-
search in the encrypted domain has been done. A rough
framework about the privacy-preserving video retrieval
has been proposed in [17]. Transferring into the privacy-
preserving image retrieval is the core idea of this frame-
work. However, it is not suitable for person Re-ID. This
is because person Re-ID mainly targets identifying the ex-
istence of a given person over the different surveillance
videos, whereas image retrieval focuses on returning the
similar images with the query image. Therefore, the ap-
proaches of privacy-preserving image retrieval, such as [18],
[19], [20], [21], [22], [23], cannot be applied directly to

person Re-ID. Currently, there still lacks a feasible approach,
which can support privacy-preserving person Re-ID over
outsourced surveillance videos. Besides, another problem is
that the cloud server may return a fraction of false retrieval
results for its malicious purposes, i.e., saving storage costs
or concealing the data corruption/loss accidents. To address
this problem, many verifiable secure searchable encryption
(SE) schemes [24], [25], [26], [27] have been developed to
achieve keyword search over encrypted text files. However,
the retrieval over encrypted outsourced videos or images
does not take into consideration the correctness verification
of the retrieval results.

In this paper, we devise an efFicient privAcy-preseRving
peRson Re-ID Scheme (FARRIS) over outsourced surveil-
lance videos, which allows the cloud server to perform the
person Re-ID without knowing the plaintext content of the
involved data, such as video data, and query information.
To obtain better retrieval performance, we employ deep
Convolutional Neural Network (CNN) to capture more ef-
fective features from key frames of videos. Also, the kernels
based supervised hashing (KSH) is further exploited to
accelerate person Re-ID. Moreover, we develop a verifica-
tion mechanism to guarantee the exact matching results.
The main contributions of our FARRIS are summarized as
follows:

• Support secure person Re-ID. To the best of our
knowledge, this work is the first endeavor to develop
privacy-preserving person Re-ID over outsourced
surveillance videos. Our FARRIS allows users to
store their data to the cloud server for secure Re-ID.

• Secure Hamming distance computation. We con-
struct a novel secure Hamming distance protocol. It
allows the cloud server to compute the Hamming
distance, without learning anything about the plain-
text contents.

• Keyless feature index encryption. Key Generation
Center (KGC) is indispensable in general cryptosys-
tem, who is responsible to manage and distribute
users’ private keys. However, over-reliance on KGC
easily introduces the key escrow issue. Our scheme
is designed to allow users to encrypt the feature
indexes in keyless way.

• High accuracy and low costs. An offline trained
CNN based features are employed to capture in-
variant person characteristics for better matching
performance. And also, KSH technique is exploited
to transfer high-dimensional CNN features into short
binary codes. It reduces storage and communication
costs for users.

• Verifiable Re-ID. Our FARRIS develops a dual
Merkle hash trees to allow users to check the correct-
ness of the matching results. Using the dual trees de-
sign, the users can identify whether the results have
been tampered by the server or by the independent
adversary.

• Privacy and efficiency. Security analysis shows that
our FARRIS can achieve the confidentiality of the
plaintext surveillance videos and the query informa-
tion. The extensive experiments demonstrate that our
FARRIS is efficient and feasible.
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The rest of the paper is arranged as follows. Section 2
provides some preliminaries. In section 3, we introduce
the problem formulations including system model, problem
statement, threat model, and design goals. The detail of
the proposed FARRIS is shown in section 4. In section 5,
the analysis of the correctness, security and performance is
given. Section 6 reviews some related work. Conclusions are
drawn in section 7.

2 PRELIMINARIES

In this section, we review some feature-related techniques
and cryptographic primitives, which serve as the basis of
our FARRIS. The details are described as follows.

2.1 Image Feature Representation Based on CNN

Convolutional neural network (CNN) is a class of deep,
feedforward artificial neural networks. Due to the great
success of Krizhevsky et al. [28] in ILSVRC’121, CNN-based
deep learning models have become increasingly common in
the vision community, and have been used widely in image
classification and image detection. In the literature of [28],
[29], the deep CNN demonstrates the powerful capability of
learning rich feature representation that is higher discrimi-
native than traditional hand-engineered methods. Because
of the low quality and high variety of person images, it
is hard to succeed in performing person Re-ID without
effective feature representation. In 2014, both Yi et al. [30]
and Li et al. [31] first introduced a siamese neural network
to determine whether a pair of person images observed by
different cameras belongs to the same person of interest or
not. Utilizing the powerful feature representation capability
of CNN, these two methods obtain positive results in per-
son Re-ID. Since then, deep CNN based person Re-ID has
become popular.

2.2 Kernels Based Supervised Hashing (KSH)

In recent years, hashing has been widely used in large-scale
vision applications. With the help of hashing techniques,
high-dimensional data vectors can be encoded into short
hash codes so as to reduce the storage costs and improve
computation efficiency. Some classic hashing methods, such
as product quantization (PQ) [32], iterative quantization
(ITQ) [33], and KSH [34] have currently been proposed.
The former two methods are unsupervised hashing and
are hard to achieve better accuracy, especially in large-
scale database. KSH is a kernel-based supervised hashing
technique, where some techniques related to the kernel are
already well studied in [35]. KSH employs the labeled data
to learn compact hash codes that preserve the similarity
between original data. The main idea of KSH is to mini-
mize similar pairs’ distances while maximizing the distances
for dissimilar pairs in the Hamming space. As presented
in [34], KSH’s performance outperforms that of some state-
of-the-art methods including LSH [36], PCAH [37], and
LDAH [38].

1. namely, ImageNet Large Scale Visual Recognition Challenge 2012.

2.3 Secret Sharing

In this paper, we employ the secret sharing [39] mechanism
to construct the privacy-preserving Hamming distance com-
putation protocol. The main thought of secret sharing is to
split any data (called secret) into n meaningless data (called
shares), each of which does not reveal any information of the
original secret data, but collecting the specific k shares can
reconstruct the original secret data, known well as (k, n)
threshold secret sharing. In [39], Shamir gives a practical
solution to achieve (k, n) threshold secret sharing by using
interpolation of polynomials over a finite field. In this pa-
per, we adopt the Chinese Remainder Theorem (CRT) [40]
for the convenience of integer operation. More specifically,
let the secret be α, and denote its k distinct shares as
{α1, α2, · · · , αk}. Assume that each share αi satisfies the
following requirement,

αi = α mod mi, (1)

where the set of positive integers {mi}(1≤i≤k) is pairwise
coprime, viz., gcd(mi,mj) = 1 (i 6= j, and 1 ≤ i, j ≤ k).
Based on the standard CRT, the secret α (0 ≤ α < M) can
be reconstructed by computing

α =

(
k∑

i=1

αici

)

(mod M), (2)

where M =
∏k

i=1 mi, and ci = Miti (Mi =
M

mi

, and tiMi ≡

1 mod mi , for all 1 ≤ i ≤ k). Certainly, if only k-1 distinct
shares are available and α > mi1mi2 · · ·mik−1

, one does not
exactly reconstruct the secret α.

2.4 Merkle Hash Tree (MHT)

An MHT is a complete binary tree [41], which can be often
used to verify the integrity and validity of data so as to
protect the data from tampering and forging, even deletion.
In MHT, there are two types of tree nodes, leaf node and
non-leaf node. For the former, the hash value is generated
by hashing its corresponding data value. In addition, the
hash value of the latter can be obtained through hashing
the hash value of its all next child nodes. According to this
working principle, any changes of the data value will affect
the hash value of the root node.

a b c d

H1,1=hT(a) H1,2=hT(b) H1,3=hT(c) H1,4=hT(d)

H2,1=hT(H1,1||H1,2) H2,2=hT(H1,3||H1,4)

H3,1=hT(H2,1||H2.2)

Fig. 2. The Merkle hash tree construction.

Here, we give a toy instance to further show the con-
struction of MHT, shown in Fig. 2. Assume that a, b, c, d are
four verified data values, where a < b < c < d. hT (·) is
a general collision-resistant hash function. ”‖” indicates the
concatenation of the hash values of two nodes. First, we
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compute the hash values of four data: H1,1 = hT (a), H1,2 =
hT (b), H1,3 = hT (c), H1,4 = hT (d). These hash values
are associated with four leaf nodes, respectively. Next, the
hash values of the two non-leaf nodes from the interme-
diate level are obtained separately by hashing the hash
values of their child nodes. As illustrated in Fig. 2, we get
H2,1 = hT (H1,1‖H1,2), H2,2 = hT (H1,3‖H1,4). At last, we
compute the root node’s hash value H3,1 = hT (H2,1‖H2,2).
Under the assumption of a collision-resistant hash function
with hT (·), the adversaries cannot forge the data because of
the uniqueness of H3,1.

3 PROBLEM FORMULATION

In this section, we present the system model, problem
statement, threat model, and design goals, respectively.

3.1 System Model

In this paper, we propose a secure person Re-ID scheme
in the cloud, as depicted in Fig. 3. It mainly contains four
parties: Content Owner (CO), Cloud Storage Server (CSS),
Cloud Data Server (CDS), and Authorized User (AU).

• The CO first extracts feature vectors from the plain-
text surveillance videos, constructs corresponding
feature indexes. Then, the CO employs the CRT-
based secret sharing method to send the shares of the
indexes to CDSs. Meanwhile, all encrypted surveil-
lance videos and their corresponding identities are
outsourced to CSS.

• The CSS provides the storage service to the COs, and
returns the surveillance videos, which contain key
frames similar to the query person image. Besides,
CSS is responsible for responding to the AUs’ chal-
lenges.

• The CDS has some data storage space to store shares
submitted by users. Furthermore, CDS provides
computational powder to perform modulus addition
operation over feature indexes’ shares, where the
computational results are sent to the CSS.

• The AU authorized by CO splits the query feature
index into shares, and randomly sends them to a
certain number of CDSs, where no key is involved.
Once obtaining the returned results, AUs can decrypt
them privately with the help of the key. Here, we
assume that the encryption key is shared through a
secure channel. Also, AUs can submit the challeng-
ing information to CSS for verifying the correctness
of the returned data. Note, CO can also be viewed as
a specific AU.

3.2 Problem Statement

Considering that many COs have a large amount of surveil-
lance videos, but they possess the limited computation and
storage resources. To achieve privacy protection, video data
should be encrypted before being outsourced into CSS. Giv-
en an image of a person of interest, AU can obtain the best
matching encrypted surveillance videos from CSS, and also
has an ability to verify the correctness of the returned Re-
ID results. In this case, we need to overcome the following

Authorized usersContent owners

Feature index share

Intermediate results

Query index share

Encrypted video files

Returned matching videos

Challenge Response

CDS CDS CDS

Cloud storage servers

......

... ... ...

Fig. 3. The infrastructure of Re-ID.

challenges because that all outsourced surveillance videos
and query information are encrypted during the matching
process.

• Since it takes more time to identify the existence of
some person over large-scaled video data, an efficient
feature representation in binary form is necessary to
improve the matching speed. In addition, a secure
Hamming distance computation protocol is demand-
ing, without compromising the involved persons’
privacy during person Re-ID.

• To reduce the costs of the key management, a key-
less mechanism could be constructed to support the
transformation of the uploaded feature vectors into
the meaningless contents.

• In order to guarantee the correctness of the returned
results, a verification mechanism is required to resist
the tampering behavior from the CSS or the adver-
sary.

3.3 Threat Model

In our scheme, CDS is considered as an honest-but-curious
party, which is honest to carry out the pre-defined protocols,
but curious with the private data related to COs and AUs,
e.g., feature index shares and intermediate computational
results. In addition, the CSS is assumed to be semi-honest-
but-curious, which is also applied in [24], [25], [26]. Different
from honest-but-curious model, this model not only takes into
account the fact that CSS may return a false fraction of the
person Re-ID results to AUs for the sake of concealing data
loss accidents or its commercial interests , but also assumes
that the partial malicious CDSs are allowed to collude with
each other to share their information, in which the number
of the involved CDSs mainly relies on k in the (k, n) secret
sharing scheme. Only if the number of the involved CDSs is
less than k, can our scheme keep the original feature vectors
confidential to CDSs. It should be stressed that CDSs cannot
collude with CSS in our scheme. Based on the information
available to CDSs and CSS, we consider two threat models
here, which are also used in these schemes [21], [22], [42].
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Known Ciphertext Model. The CDS only learns about
the shares sent by the COs and AUs. Meanwhile, the en-
crypted outsourced surveillance videos and the processed
results obtained from CDSs are available to CSS.

Known Background Model. In this stronger model, the
CDS and CSS can obtain more information than that in the
known ciphertext model. They can leverage the statistical
information to infer specific contents in a query image. The
CDS and CSS can even gain some person images, but know
nothing about the relations between their plaintext feature
vectors and corresponding encrypted versions.

3.4 Design Goals

In order to address the above two threat models, we employ
CRT-based secret sharing technique to develop a secure
person Re-ID scheme, which achieves privacy-preserving
query person matching over encrypted surveillance videos.
In this case, our FARRIS should achieve the following goals:

• Data Privacy. FARRIS should guarantee the feature
indexes and the outsourced video data not to be
leaked. In addition, the query privacy should be
protected during person Re-ID.

• Query Unlinkability. Considering that the queries are
available to the CDSs during the person Re-ID, the
queries should be unlinkable for privacy protection.

• Secure Multi-user Support. Due to the variation in
the amount of users, the scalability and extensibility
of the system should be preserved in FARRIS. Fur-
thermore, users should not learn about the private
information of feature indexes from each other.

• Results Verification. FARRIS should have a verification
mechanism to allow AUs to check the correctness of
the results returned by CSS who is assumed to follow
the semi-honest-but-curious model.

4 PRIVACY-PRESERVING PERSON RE-ID SCHEME

In the plaintext domain, person Re-ID reveals the privacy
of persons of interest in surveillance videos. Also, with an
increasing amount of the videos, individuals and enterprises
with limited resources suffer from high computation over-
heads and great storage costs. To solve these issues, we
propose a novel privacy-preserving person Re-ID scheme
over encrypted outsourced surveillance videos. More details
are presented in this Section.

4.1 Notations

To facilitate understanding of FARRIS’s concrete construc-
tion, we first define some notations, as shown in TABLE 1.

4.2 Proposed FARRIS

Prior to the construction of FARRIS, we first introduce how
to extract the feature vectors from the surveillance videos.
First, we extract the person images from the surveillance
videos by using the existing person detection methods
in [43]. Note that key frames are considered as candidates
for the person images. The key frame, namely, I-frame, is a
single video frame, which determines the beginning or end
of a transition. Due to the information integrity of the key

TABLE 1
Notation descriptions in FARRIS scheme.

Notations Descriptions
K MAC1 key of CO
hT (·) Hash function for Merkle hash tree
(k, n) Threhold for secret sharing
M = {m1, · · · , mn} Prime set for secret sharing
D = {d1, · · · , dn} CDS set
V = {v1, · · · , vm} Video file set
C = {c1, · · · , cm} Ciphertext set for V
ID = {id1, · · · , idm} Identity set of V
M = {M1, · · · ,Mm} MAC set for C
P = {p1, · · · , pℓ} Person image set
Fi = {fi1, · · · , fid}1≤i≤ℓ Feature vector for image i
Ii Index for pi
Ii,j Ii’s share for CDS dj
Q = {q1, · · · , qd} Feature vector for query Q
TQ Index for Q
TQ,j Q’s share for CDS dj

1 Message Authentication Code.

frame, it is often taken as the main reference by P-frame and
B-frame to compress the video data. In this paper, the key
frame mainly represents the I-frame which contains persons
only. The rationale of this decision is to reduce temporal
redundancy to improve the matching efficiency. Then, we
employ the AlexNet CNN based HIPHOP feature [4] to
represent person Re-ID features. Moreover, we introduce
KSH technique to convert high-dimensional HIPHOP fea-
tures into short binary hash codes, which can be considered
as feature vectors in our FARRIS.

Now we present a basic FARRIS, as shown in Fig. 4,
where we will show how to actually construct an efficient
Re-ID over encrypted cloud video data. The basic FARRIS
contains a tuple of five algorithms as follows.

100...101

001...110

... 

110...010

Extract Preprocess

CO

CSS

Return

...

Feature 

Indexes

AU

Preprocess

001...100
Extract

...

...

...

Modular Addition

Query Index
Reconstruction

...

...

...

CDS

IDs

Feature Vectors

 Query Vector

Encrypt

Submit

Matching Videos

Fig. 4. Framework of basic FARRIS scheme.

KeyGen: In general, secure text/image retrieval schemes,
such as [21], [22], [25], [26], [42], without concerning about
the encryption details of the outsourced multimedia data,
they focus on the feature encryption and how to match
among encrypted features. Likewise, as for the outsourced
surveillance videos, we encrypt them directly by using the
traditional symmetric encryption (e.g., AES). Furthermore,
different from the aforementioned retrieval schemes, the
encryption for the indexes either from COs or AUs is keyless
in FARRIS, whereas the key is necessary for the former. The
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key-free characteristic will largely reduce the costs of the key
management and storage. The fact behind this advantage is
that we adopt the secret sharing technique to process the
feature indexes. It can allow users to split their data into
multiple obfuscated shares, where no encryption keys are
involved, and the original data can be reconstructed as long
as one aggregates a certain number of shares.

IndexBuild: As shown in the step 1©, CO encrypts al-
l video files V = {v1, · · · , vm} into the ciphertext set
C = {c1, · · · , cm} one by one. Then, the feature vectors
Fi = {fi1, · · · , fid}1≤i≤ℓ are extracted from person images,
which are key frames obtained from the plaintext videos V .
Next, we carry out a preprocessing operation to generate
feature indexes to avoid information leakage of feature
vectors to CDSs and CSS. After that, CO splits each feature
index into n shares by using the CRT method. Algorithm 1
provides the generation of feature indexes’ shares.

Algorithm 1: Generation of feature indexes’ shares

Input: Person image set P = {p1, · · · , pℓ}, prime set
M = {m1, · · · ,mn}

Output: Feature index’s shares Ii,j (i ∈ [1, ℓ], j ∈
[1, n])

1 Build the feature vector set F = {F1, · · · ,Fℓ};
2 for i = 1 to ℓ do
3 Padding zeros→Ri;
4 Random permutation→ Xi;
5 Substitution in odd/even number manner→ Yi;
6 Scale transformation→ Zi;
7 Set feature index Ii = Zi;
8 while not at the end of set M do
9 Compute share Ii,j = Ii mod mj ;

10 end
11 end
12 return All shares of all feature indexes.

More specifically, some modifications should be done for
feature vectors in advance for achieving secure Hamming
distance computation. The details are presented as follows:

• CO pads z zeros into Fi. Thus, the dimension of Fi

would be extended to (d+ z), denoted as

Ri = {fi1, · · · , fid, 0, · · · , 0
︸ ︷︷ ︸

z

}.

• After padding operation, CO randomly permutates
the positions of all elements of any feature vectorRi.
The permutation operation converts Ri into

Xi = {fig1 , · · · , fig(d+z)
}.

• When getting Xi, CO randomly chooses a positive
odd number to replace 1, and a positive even number
instead of 0. Here, the range of selected odd or even
is set [1, Γ]. Note that 1/0 at different positions of Xi

may correspond to different odd/even number. Ac-
cording to the above replacement rule, CO modifies
all feature vectors Xi as

Yi = {f
′
ig1

, · · · , f ′
ig(d+z)

}.

• Following the third modification, CO continues to
modify the values of the elements of Yi. Here, we
leverage the scale technique [44] to further protect
the information of Fi from being disclosed. The scale
modification can be done using

u′ = u · s+ ε,

where u is the value of an element in Yi, s is a scale
factor as well as positive constant, and ε is a random
noise whose value is uniformly distributed, namely
ε ∼ U(0, γ), (γ ≤ s). Here, s is public and is allowed
to vary for different elements in Yi, and ε is private
to CO. Thus, the feature vector for each person image
pi is finally modified as

Zi = {f
′′
ig1

, · · · , f ′′
ig(d+z)

}.

Then, CO takes Zi as feature index Ii of person
image pi, namely Ii = Zi.

After the feature preprocessing with the above four
modifications, CO splits the Ii into n shares by using

π(Ii) = {Ii,1, Ii,2, · · · , Ii,n} (3)

Ii,j = Ii mod mj , (4)

where π(·) is denoted as a splitting function, which is
mainly based on the modulo prime as present in Eq. 1. The
prime set {mj}1≤j≤n is available for CDSs and CSS.

In fact, all components of Ii execute separately π oper-
ation in FARRIS. Let the w-th component of Ii be Ii(w), its
corresponding shares are

π(Ii(w)) = {Ii,1(w), Ii,2(w), · · · , Ii,n(w)} (5)

and
Ii,j(w) = Ii(w) mod mj . (6)

Finally, CO uploads all encrypted video files C together with
ID = {id1, · · · , idm} to the CSS. Besides, n shares of each Ii
(1 ≤ i ≤ ℓ) are sent to the corresponding CDS, respectively.
The mapping relation between these shares and CDS set D
is represented below:

Ii,j ←→ dj , (1 ≤ i ≤ ℓ, 1 ≤ j ≤ n, dj ∈ D).

QueryGen: As shown in the step 2©, the query index TQ

would be generated by using the above four modifications
before outsourcing. Similar to the splitting process of the
CO’s index, a query user AU splits TQ into n shares, which
meet the requirement below.

π(TQ) = {TQ,1, TQ,2, · · · , TQ,n} (7)

and

π(TQ(w)) = {TQ,1(w), TQ,2(w), · · · , TQ,n(w)} (8)

TQ,j(w) = TQ(w) mod mj , (9)

where TQ,j(w) is the j-th share of the w-th element of TQ.
Then, AU randomly selects k out of shares {TQ,j}1≤j≤n,

and randomly sends to k out of n CDSs, respectively. In
this case, CSS does not send the requests to k CDSs for
reconstructing the secret from k shares because that k CDSs
activated by AU would automatically send their intermedi-
ate results to CSS. It would avoid the interaction between
CDSs and CSS, reducing the communication costs.
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SumComp: As shown in the step 3©, once obtaining the
shares of the query TQ from the query user AU, CDSs start
to calculate the sum between query index share and any
index share stored in CDSs. Given a query index TQ and the
index Ii of any person image pi(1 ≤ i ≤ ℓ), the CDS dj that
is activated by AU carries out the addition operation under

modulo prime mj , denoted as SumQ,pi

j , i.e.,

SumQ,pi

j = (TQ,j + Ii,j) mod mj

= {(TQ,j(1) + Ii,j(1)) mod mj ,

(TQ,j(2) + Ii,j(2)) mod mj,

· · · ,

(TQ,j(g) + Ii,j(g)) mod mj},

(10)

where g denotes the dimension of feature index and is equal
to d+ z.

After computing SumQ,pi

j for any i (i ∈ [1, ℓ]), the CDS

dj submits all intermediate values {SumQ,pi

j }1≤i≤ℓ to CSS.

Since the reconstruction of the final sum SumQ,pi is done by
CSS in FARRIS, the SumQ,pi is a secret to any CDS. Even if
CDSs may collude with each other, this sum is not revealed
if and only if the amount of involved CDSs is less than the
threshold k according to the CRT method.

SimComp: As shown in the step 4©, when getting k inter-

mediate results SumQ,pi

j , the CSS first employs the CRT

method to reconstruct the original sum vector SumQ,pi

between TQ and each Ii. Then, CSS scales down the sum
vector SumQ,pi by the scale factor s used in the feature
preprocessing stage. Let the SumQ,pi be {t1, t2, · · · , tg}, the

scaled version S̃um
Q,pi

can be computed by

S̃um
Q,pi

= {⌊t1/s⌋, ⌊t2/s⌋, · · · , ⌊tg/s⌋}.

Although the CSS has no idea of the original feature
vectors Q andFi, it can still calculate the Hamming distance

between them based on the S̃um
Q,pi

. In the following, we
briefly introduce the calculation process.

As described in the IndexBuild algorithm, the Yi is gen-
erated from Fi by the former three modifications during the
feature vector preprocessing. Assume that Q′ is the coun-

terpart of Yi for the query Q. Apparently, the S̃um
Q,pi

is
exactly the sum of Q′ and Yi only if the random noise ε ≤ s.
As we all know that the number of 1s in the sum of any two
binary vectors with same dimension is equivalent to their
Hamming distance. Furthermore, we also find that all but
the odd number 1 are even in the two binary vectors’ sum. It
means that the Hamming distance can also be calculated by
counting the number of the sum vector’s elements with odd
values. Although Q′ and Yi are dramatically different from
the corresponding original binary feature vectors after the
feature vector preprocessing, the quantity of odd numbers

in the sum S̃um
Q,pi

between them remains unchanged. The
main reason is that the replacement rule (odd↔ 1, even↔ 0)
in the IndexBuild algorithm does not change the parity of
the elements of the original binary vectors’ sum. Moreover,
the quantity invariance of odd numbers is also not affected
by the zero-padding process because that the sum of even
numbers is still even. Based on the above analyses, CSS can
obtain the Hamming distance between Q and Fi directly

from their preprocessed feature vectors’ sum S̃um
Q,pi

by
counting the number of its elements with odd values.

Finally, CSS sorts all Hamming distances, and then re-
turns the related encrypted video set C′ = {c′1, · · · , c

′
q} as

well as its corresponding identity set ID′ = {id′1, · · · , id
′
q}

in the ascend order.

Remark: Now we explain why we need to do the four
preprocessing operations for feature vectors. The padding
zero and random permutation operations aim at solving the
following issue. If the dimensionality of Fi (i ∈ [1, ℓ]) is
small, the CSS can readily employ the exhaustive way to
infer these two original binary vectors from their sum. The
strategy of the odd/even number substitution aims to change
the fact that the number 1 or 0 always remains unchanged
in any secret share. Assume that (1, 0, 0, 1) is modified as
(133, 14, 68, 77) via this step processing. Its share would be
(9, 14, 6, 15) under the prime 31, which would conceal the
original binary vector (1, 0, 0, 1). The scale transformation is
to avoid a universal phenomenon, the parity of a positive
number may stay the same with a certain probability under
modulo prime. As the above example, the odd number
133/77 → 9/15. The even number draws a similar con-
clusion. Through this phenomenon, CDSs may infer the
distribution of 1s and 0s in the original feature vector Fi.

The above basic FARRIS can achieve privacy-preserving
person Re-ID over encrypted outsourced surveillance
videos under the assumption that the cloud server is honest-
but-curious model. However, in real-world applications, the
cloud server is more likely to follow semi-honest-but-curious
model. It means that the cloud server can forge or tamper
person Re-ID matching results. Since the surveillance videos
are outsourced to CSS, we only assume that CSS is semi-
honest-but-curious. To address this problem, we equip basic
FARRIS with a verifiable mechanism to enhance it for
resisting attacks emerged from the semi-honest-but-curious
model. This new version is denoted as enhanced FARRIS.
The critical parts of the enhanced FARRIS are presented as
follows.

Firstly, we need to appropriately modify BuildIndex
algorithm in basic FARRIS. That is because that the MAC
technique is used in our verification mechanism. MAC is
a cryptographic primitive, which is used to achieve both
the integrity and authentication of a message. Due to the
existential unforgeability of MAC, it is considered to be
added into our enhanced FARRIS. Specifically, we em-
ploy the MAC method to generate an MAC value Mi =
MACK(ci‖idi) for any encrypted video file ci associated
with identity idi (i ∈ [1,m]), and MAC key K , where
MAC(·) is a secure MAC scheme (e.g. HMAC2). TakingMi

as element, an MAC setM is finally produced as follows,

M = {M1, · · · ,Mm}

= {MACK(c1‖id1), · · · ,MACK(cm‖idm)}.
(11)

After that, MACsM along with all encrypted video files are
outsourced to the CSS.

Secondly, we give the details of verification algorithm
construction. To be specific, after receiving the Re-ID results
C′, AU first randomly selects a subset C′′ = {c′li}1≤i≤t

2. A specific type of message authentication code based on hash
function and encryption key.
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from the set C′, where {li}1≤i≤t denotes the positions of
the selected encrypted videos in C′, and t ≤ q. Then, AU
sends the challenging information {li}1≤i≤t to CSS. When
obtaining the verification request from AU, CSS constructs
an MHT (shown in Algorithm 2) based on the challenging
information, where assume that the MAC set {M′

li
}1≤i≤t is

the counterpart of {c′li}1≤i≤t in the whole MAC set M. In
this MHT, the hash values of all leaf nodes are calculated
by calling the hash function hT : {0, 1}∗ → {0, 1}κ, which
takes as input the corresponding ciphertext video’s MAC.
For any intermediate node, CSS can obtain its hash value by
hashing the concatenation of its two direct child nodes’ hash
values, where if only one child node exists, father node’s
hash value can be calculated just by hashing this child’s
hash value. In the similar way, CSS computes the hash value
Hroot of the root node. At last, CSS sends Hroot to AU.

After receiving the Hroot, AU first generates the MAC
set {M′′

li
}1≤i≤t for {c′li}1≤i≤t with the MAC key K shared

by the corresponding CO. Then, AU builds an MHT by
the method as presented above. Finally, AU checks the
correctness of C′ by identifying whether its own generated
root node’s hash value H ′

root is equal to the Hroot from the
CSS. A formal description of the verification mechanism is
presented in Algorithm 3.

Algorithm 2: Merkle hash tree construction

Input: MACs {Mli}1≤i≤t

Output: A Merkle hash tree
1 T ← ∅ ;
2 Leaf Node set← {hT (Mli)}1≤i≤t;
3 Insert(T , Leaf Node set);
4 New Node set← Leaf Node set;
5 while the size of New Node set ≥ 2 do
6 Leaf Node set← New Node set;
7 New Node set← ∅;
8 while not at the end of Leaf Node set do
9 Left Node← Leaf Node set(1);

10 Right Node← Leaf Node set(2);
11 Inter Node← hT (Left Node||Right Node);
12 Insert(T , Inter Node);
13 New Node set← Inter Node;
14 Delete Leaf Node set(1), Leaf Node set(2)

from Leaf Node set ;
15 end
16 end
17 return T

Remark: As discussed above, AU can verify whether the
Re-ID results C′ are correct or not. However, the verification
failure does not necessarily mean that the returned results
must have been tampered by CSS. A third-party adversary
may modify the results during the transmission. To avoid
the ambiguity, we design an advanced verification mecha-
nism, where a dual MHTs based construction is employed to
check the correctness of Re-ID results. The new verification
mechanism merits the unique determination of the true
counterfeiter.

As shown in Fig.5, with the challenging information
{li}1≤i≤t, CSS builds another MHT CT for {c′li}1≤i≤t as
it builds the tree MT for MAC set {M′

li
}1≤i≤t. Overall,

Algorithm 3: Verification mechanism for CSS returned
results

Input: Returned results C′,M′, the corresponding
identity set ID′, MAC key K

Output: ”True” or ”False”
1 C′ = {c′1, · · · , c

′
q} ,M′ = {M′

1, · · · ,M
′
q},

ID′ = {id′1, · · · , id
′
q};

2 AU sends the challenging information {li}1≤i≤t to
CSS;

3 Build a Merkle hash tree
MT ←MerkleT reeGen({M′

li
}1≤i≤t);

4 Obtain the tree root’s hash value Hroot;
5 CSS publishes the Hroot;
6 AU computes MAC codes for
{M′′

li
← MACK(c′li ||id

′
li
)}1≤i≤t ;

7 Build a Merkle hash tree
MT ′ ←MerkleT reeGen({M′′

li
}1≤i≤t) ;

8 Obtain the tree root’s hash value H ′
root;

9 Check Hroot
?
= H ′

root;
10 If the above equation holds, output “True”; otherwise,

output “False”.
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Fig. 5. The dual Merkle hash trees based verification mechanism.

these two trees are constructed in the same way. The only
distinction is that the inputs to the hash function hT are dif-
ferent at leaf nodes. The tree MT takes as input {M′

li
}1≤i≤t,

whereas {c′li}1≤i≤t for CT . After the tree construction, CSS
publishes their root nodes’ hash values. Likewise, AU also
needs to build the two trees CT ′ and MT ′ to echo the trees
CT and MT , respectively. Assume that the hash values of

the root nodes of CT ′ and MT ′ are represented as HCT ′

root and
HMT ′

root , respectively. Also, their corresponding hash values

in CSS, denoted as HCT
root and HMT

root. If HMT
root = HMT ′

root

holds, AU confirms the Re-ID results are correct; otherwise,
AU justifies that the results are forged. If the verification
fails, AU can further identify whether the true faker is
CSS or the adversary based on the two following cases.
If HCT

root 6= HCT ′

root happens, it shows that the results are

tampered by the adversary. When HCT
root = HCT ′

root and
HMT

root 6= HMT ′

root occur, AU can determine the results have
been tampered by CSS.
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5 ANALYSIS OF OUR FARRIS
In this section, we first give the correctness analysis of
the proposed FARRIS, and then demonstrate its security
and performance over encrypted outsourced surveillance
videos.

5.1 Correctness Analysis

The exact Hamming distance computation depends on
whether the reconstruction of the intermediate results from
CDSs is done correctly or not. In our FARRIS scheme, the
CSS can be guaranteed to correctly reconstruct the original
sum vector SumQ,pi of TQ and Ii if and only if it obtains

the k intermediate values SumQ,pi

j from the k CDSs dj(j ∈
[1, n]).

Theorem 1. Given a j ∈ [1, n], the SumQ,pi

j satisfies:

SumQ,pi

j = {(TQ(1) + Ii(1)) mod mj ,

(TQ(2) + Ii(2)) mod mj ,

· · · ,

(TQ(g) + Ii(g)) mod mj}.

(12)

Proof: Based on Eq. 6 and 9, we rewrite Eq. 10 as

SumQ,pi

j = (TQ,j + Ii,j) mod mj

= {(TQ(1) mod mj + Ii(1) mod mj) mod mj ,

(TQ(2) mod mj + Ii(2) mod mj) mod mj ,

· · · ,

(TQ(g) mod mj + Ii(g) mod mj) mod mj}.

For the sake of presentation, we denote TQ(w), Ii(w) as
a and b, respectively, where w (w ∈ [1, g]). Based on the
knowledge of Subsection 4.2, all components of the prepro-
cessed feature vectors are integers, which means that both
a and b are integers. According to the quotient remainder
theorem, also known as the division algorithm, there exist
unique integers ka/kb and ra/rb such that a = ka ·mj + ra,
and b = kb ·mj + rb, where 0 ≤ ra, rb < mj . Then, we can
obtain

(a+ b) mod mj = (ka ·mj + ra + kb ·mj + rb) mod mj

= ((ka + kb) ·mj + (ra + rb)) mod mj

= (ra + rb) mod mj .

Besides,

(a mod mj + b mod mj) mod mj

= ((ka ·mj + ra) mod mj+

(kb ·mj + rb) mod mj) mod mj

= (ra mod mj + rb mod mj) mod mj

= (ra + rb) mod mj .

So, the following conclusion holds true,

(a mod mj + b mod mj) mod mj = (a+ b) mod mj ,

namely,

(TQ(w) mod mj + Ii(w) mod mj) mod mj

= (TQ(w) + Ii(w) ) mod mj .

Based on this conclusion, we can check that the Theo-
rem 1 is correct.

The Theorem 1 shows that the share of the two original
vectors’ sum is equal to the sum of their corresponding
shares under the same modulo prime. When getting the
shares sent by CDSs, CSS can exactly reconstruct the original
sum by integrating CRT’s conclusions shown in Eq. 1 and
Eq. 2.

Moreover, in order to identify whether the matching re-
sults have been tampered, the enhanced FARRIS can verify
the correctness of the returned results with the following
theorem.

Theorem 2. The returned results are correct under semi-
honest-but-curious model, provided that HMT

root = HMT ′

root .

Proof: As introduced in Subsection 2.4, a Merkle hash
tree (MHT) is constructed by using a number of leaf nodes
and non-leaf nodes. Every leaf node is labeled with a hash
value, which is calculated by hashing a specific data block.
And every non-leaf node is labeled with the hash value of
the concatenation of its two child nodes’ hash values. Based
on the construction process of MHT, the root node’s hash
value of an MHT depends on its hash function and the input
data block. Since the hash function used in MHT is collision
resistant, the input data block is the only factor that affects
the value of the MHT root node. This is why MHT can be
used to verify the correctness of the input data block. HMT

root

is the root nodes’ hash value of the MHT MT , in which the
message authentication codes (MAC) {M′

li
}1≤i≤t are taken

as the input data block. According to the Eq. 11, for any
i ∈ [1, t], {M′

li
}1≤i≤t can be obtained by

M′
li
= MACK(c′li ||id

′
li
)

It indicates thatM′
li

depends on the encrypted surveil-
lance video c′li with ID id′li and MAC key K . In our scheme,
Only CO or AU has the MAC key K , which means that
the CSS does not calculate the MAC values {M′

li
}1≤i≤t

by itself. Therefore, the HMT
root by CSS is as the same as

that of the unaltered {c′li}1≤i≤t equivalents. When obtaining
the matching results {c′li}1≤i≤t, AU itself can calculate the
corresponding MAC values {M′′

li
}1≤i≤t with the help of

MAC key K . Due to the unforgeable property of MAC,

HMT
root = HMT ′

root holds true when the CSS correctly returns
the corresponding matching videos {c′li}1≤i≤t. However,
the CSS or the third party may tamper the returned re-
sults {c′li}1≤i≤t under the semi-honest-but-curious model. If
the tampering occurs, the MAC {M′′

li
}1≤i≤t values will be

altered and differ from the MAC {M′
li
}1≤i≤t stored in CSS,

which leads to HMT
root 6= HMT ′

root . Therefore, we can prove that
the returned results are correct via HMT

root = HMT ′

root .

5.2 Security Analysis

In this subsection, we give the security analysis of our
FARRIS in the form of the following theorems.

Theorem 3. In our scheme, it is infeasible for any
polynomial-time CSS to recover the plaintext surveillance
video vi from its ciphertext version ci or its corresponding
MAC valueMi.

Proof: In FARRIS, the general symmetric encryption
is used to encrypt all surveillance video files. Without the
corresponding encryption keys, it is impossible for the CSS
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to learn about the details of the original videos. Only the
authorized users AUs or the key holders COs can access
the encrypted videos. In addition, MAC(·) used to generate
MAC value is a secure MAC scheme with an negligible
probability for breaking such MAC(·). Based on the above
arguments, our scheme achieves the privacy of the out-
sourced surveillance videos and MAC values.

Theorem 4. The proposed FARRIS can prevent the CDSs
and CSS from recovering feature indexes under Known
Ciphertext Model or Known Background Model.

Proof: Each feature index Ii by COs and query index
TQ are encrypted by using the CRT-based (k,n) secret
sharing method. Different from the traditional encryption
algorithms, no key is required in this encryption technique.
And also, the secret sharing technique itself can guarantee
that each share divided from any feature index does not
leak any useful information. Even though the adversary
is allowed to obtain more shares, it could not know the
original feature index if and only if the number of the
obtained shares is less than k under Known Ciphertext
Model.

Furthermore, our FARRIS can support the stronger secu-
rity model, Known Background Model. Under this model,
more statistical information can be obtained by CDS. How-
ever, CDS still knows nothing about the feature indexes
in the plaintext content. Two reasons can be explained as
follows. One is that the secret sharing technique used to
process feature indexes is information theoretically secure,
which is well known and makes each share hidden from
its related independent CDS. The preprocessing operation
before generating the feature index is another reason for re-
sisting the known background attack. Because, the random
replacement rule (odd↔ 1, even↔ 0) makes it impossible
for CDS to deduce the relation between the feature index
and the received share. To achieve this high level of security
in our scheme, the primes and scale factor s are chosen
according to the following requirement, which is discussed
in [44].

s <

(∏k
i=1 mi − ε

Γ

)

, (13)

where {m1, · · · ,mk} are selected primes out of n primes,
and Γ is the maximum intermediate value before the scale
processing. Generally, s should be larger than any prime out
of n primes for obscuring each share. If the above inequality
is satisfied, the individual CDSs know nothing about the
feature indexes either from COs or AUs.

Furthermore, Only COs know how to perform the per-
mutation and padding zeros, as well as the trained pa-
rameters of the feature extraction. This related information
keeps secret from the CDS. Therefore, even if some plaintext
person images and corresponding shares are obtained, CDS
is still unable to build the relationship between the feature
indexes and the corresponding shares. In short, CDS does
not infer the specific contents from the index shares. In
addition, the CSS is less likely to get any information about
the feature indexes. The reason is that all it can get is the sum
between indexes Ii and TQ, and nothing else. Consequently,
CSS learns nothing about the current content of the feature
index Ii and query index TQ.

Theorem 5. Our FARRIS achieves query unlinkability and
multi-user security.

Proof: As discussed before, the preprocessing oper-
ation for feature vectors differentiate the generated query
index TQ from the original feature vector. In particular, the
replacement rule (odd↔ 1, even↔ 0) is done randomly for
every time. Additionally, the noise ε in the scale process is
also selected at random. Based on the two random opera-
tions, the distinct feature indexes TQ are allowed to corre-
spond to the same query Q. So, this non-deterministic index
generation can provide query unlinkability for our scheme
so that CDS could not decide whether the two different
feature indexes come from the same query Q. Besides, the
non-deterministic generation for the query Q also leads to
the changes of the final reconstructed sum vector SumQ,pi ,
thereby limiting CSS to distinguish the query index TQ.

Additionally, the secret sharing technique is used to
securely calculate the Hamming distance, where no key is
required. The keyless characteristic naturally enables our
scheme to support multi-user. Nobody can obtain useful
information from any share. Even if partial CDSs collude
with each other, it is difficult for CDSs to infer the informa-
tion of the related feature indexes as long as the number of
involved CDSs is less than k.

5.3 Performance Analysis

In this subsection, we evaluate the performance of our
scheme in terms of precision, computational overheads, and
communication and storage costs.

Precision: The precision of our scheme is tested on person
Re-ID benchmark: VIPeP [3] dataset, which is one of the
most widely adopted datasets for Re-ID task. The dataset
contains 1264 images taken from 632 persons, each of which
is observed from two different surveillance cameras with
arbitrary viewpoints and various lighting conditions. In the
experiments, we randomly divide 632 people into 582/50
and 532/100 for the training/test set, where this random
partition is repeated 10 times while taking the averaged
performance as the final matching results. As for feature
extraction, we combine the HIPHOP feature [4] and KSH
technique to represent person Re-ID feature. Concretely,
each person image is first resized into a uniform size of
227 × 227, which is required by AlexNet CNN. Following
up, the feature maps from the first and second layer can
be obtained in forward propagation manner. Then, one can
calculate the HIPHOP feature descriptor by the combination
of the fusion and rank technique. Finally, we employ KSH
technique to convert the 84096-dim HIPHOP feature into a
short hash code, which is taken as the final person Re-ID
feature.

The evaluations are performed on a Lenovo laptop run-
ning windows 7-64bit with an I5-7200 2.5GHz processor,
and 8GB Memory. The cumulative matching characteristic
(CMC) curve is used to evaluate the matching precision of
our scheme. CMC indicates that the probability of a query
person in returned results with the different sizes. That is, it
can provide the matching precision for each rank.

TABLE 2 and TABLE 3 show the matching precision
of our scheme on different sized test sets, containing 50
persons and 100 persons, respectively. It is clear that our
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scheme is effective and feasible. From either TABLE 2 or
TABLE 3, the longer hash codes always achieve better
matching rate than the shorter codes. The fact behind the
result is that the hash code with the longer bit lengths can
capture more distinguishing identity information in a space
with large variations regarding viewpoints, lighting, and
postures. It also indicates that the bit length can significantly
affect the matching precision in Re-ID. However, the longer
bit lengths may compromise the Re-ID efficiency because of
high computation and storage costs, which will be discussed
in the analysis of the computation, communication and
storage costs.

In general, the discrimination of the hash codes could
be improved with the increase of the trained samples. As
shown in these two tables, the hash codes in the former test
have the stronger capability to match truth identity than that
in the latter test under the same rank and bit length. For
example, for the rank 1 with 64 bits, the former with 1164
training samples can obtain the matching rate of 34.6%, a
precision value about 12.6% higher than the latter with 1064
training samples. It is worth noting that the rank 1 matching
rate with 64 bits in TABLE 2 is higher than that with 128 bits
in TABLE 3. To some extent, more samples involved in the
training process contribute to the generation of shorter hash
codes, leading to the improvement of Re-ID efficiency.

TABLE 2
Matching rate (%) with different bit length of hash code on the test set

with 50 persons.

Bit length Rank 1 Rank 5 Rank 10 Rank 20 Rank 30
16 bits 17.2 45.0 62.0 83.8 93.2
32 bits 24.4 57.8 72.8 87.0 95.0
64 bits 34.6 64.8 80.2 91.2 95.4
128 bits 39.6 67.4 82.0 93.0 96.6
256 bits 47.4 74.8 87.4 94.2 97.2

TABLE 3
Matching rate (%) with different bit length of hash code on the test set

with 100 persons.

Bit length Rank 1 Rank 5 Rank 10 Rank 20 Rank 30
16 bits 11.5 33.2 47.4 66.2 76.4
32 bits 17.4 43.9 57.9 73.3 82.8
64 bits 22.0 48.7 62.6 74.8 83.1
128 bits 26.9 53.5 66.5 78.1 85.8
256 bits 31.2 59.2 71.8 84.1 90.0

Computation costs: In this subsection, we discuss the com-
putation costs of our scheme in terms of theoretical analysis
and actual computation efficiency analysis. To better analyze
the theoretical costs, we first define some related notations
as shown in TABLE 4.

As the core part of our FARRIS, the privacy-preserving
Hamming distance computation is composed of five algo-
rithms: KeyGen, IndexBuild, QueryGen, SumComp, and
SimComp. For the computation costs analysis, we only
analyze the latter four algorithms. There are two reasons
for it. First, how to encrypt the surveillance videos and
generate their corresponding MAC values is not an issue
to be solved in our FARRIS, which is already explained in
the previous KeyGen algorithm. Second, no encryption key
is involved to compute the Hamming distance. Hence, we

TABLE 4
Notation descriptions used in computation costs.

Notations Descriptions
Tmo Modulus operation
Tmm Modular multiplication inversion operation
Tpo Permutation operation
Tpz Padding zero operation
Tmu Multiplication operation
Tao Addition operation

do not discuss the computation costs associated with the
KeyGen algorithm here. TABLE 5 lists that the computation
costs for these four algorithms. Especially, IndexBuild may
has greater computation costs because that COs also encrypt
the video files and generate the corresponding MACs. Since
the two operations are not related to the secure Hamming
distance computation, their corresponding costs are not
listed in TABLE 5. Although IndexBuild algorithm has high
computation costs, only one-time operation is required to
carry out offline, and hence the Re-ID efficiency and the
users’ experience are not greatly affected. Except for In-
dexBuild algorithm, it is also found in the TABLE 5 that the
SimComp algorithm is computationally expensive, where
the involved modular multiplication inversion operation is
a major factor. This result can be verified in the following
actual efficiency analysis.

TABLE 5
Computation costs in different algorithms.

Algorithms Tmo Tmm Tpo Tpz Tmu Tao

IndexBuild nℓg N/A ℓ ℓz ℓg ℓg

QueryGen kg N/A 1 z g g

SumComp kℓg N/A N/A N/A N/A kℓg

SimComp ℓg kℓg N/A N/A (k2 − k)ℓg (k − 1)ℓg

“ℓ”: The number of person images by CO;
“z”: The number of padding zeros;
“g”: The dimension of feature index;
“(k,n)”: The threshold of secret sharing;
“N/A”: No related operations.

To guarantee the correctness of Re-ID results, we propose
a new verifiable mechanism, which is an integral part of our
FARRIS. So, it is necessary to analyze the computation costs
with respect to the verification algorithm. In our FARRIS,
the MHT is considered as an authentication technique to
achieve the verification of the Re-ID results. As discussed
in subsection 2.4, we know that the hash function hT needs
to be executed once per node, including root node, inter-
mediate node, and leaf node. Based on the above analysis,
the computation overhead in the verification algorithm typ-
ically relies on the amount of nodes in the MHT. According
to the challenging information {li}1≤i≤t, t identified data
blocks (MACs or encrypted video data) are required to
construct an MHT. It is not difficult to derive that the height
of the corresponding Merkle hash tree is equal to ⌈log2 t⌉+1.
By combining the generation characteristic of the MHT, the
total of the nodes of the MHT can be computed as

N =

⌈log2 t⌉+1
∑

i=1

⌈
t

2i−1

⌉

.



This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2923653, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 12

2000 4000 6000 8000 10000
Number of images

0

50

100

150

200

R
un

in
g 

tim
e 

of
 In

de
xB

ui
ld

 (
m

s)

64-dim
128-dim
256-dim

(a)

2000 4000 6000 8000 10000
Number of images

0

5

10

15

20

25

R
un

in
g 

tim
e 

of
 S

um
C

om
p 

(m
s)

64-dim
128-dim
256-dim

(b)

2000 4000 6000 8000 10000
Number of images

0

50

100

150

R
un

in
g 

tim
e 

of
 S

im
C

om
p 

(×
10

m
s)

64-dim
128-dim
256-dim

(c)

2 4 6 8 10
Number of primes

0

200

400

600

R
un

in
g 

tim
e 

of
 d

iff
er

en
t a

lg
or

ith
m

s 
(m

s)

IndexBuild
QueryGen
SumComp
SimComp

9 9.5

0
20
40

(d)

Fig. 6. Performance analysis in different algorithms: (a) Computational costs in IndexBuild algorithm; (b) Computational costs in SumComp
algorithm; (c) Computational costs in SimComp algorithm; (d) Impact of k in different algorithms (n = k, s = 80, ℓ = 1000, g = 256).

Assume that the computation costs of hT and MAC are
H and A, respectively. The verification algorithm will cost
4NH + tA, in which 4NH is spent in 4 MHTs (AU and CSS
have two trees each), and tA is used in computing the leaf
nodes’ MAC values of the tree MT ′ in AU.

With regard to the actual efficiency analysis, some
experimental simulations written in C++ are conducted
to show the computation costs on different algorithms,
where the (3, 5) secret sharing method with the prime set
{29, 31, 37, 41, 43} is adopted. In order to satisfy Eq. 13, we
set the scale factor s as 47. Besides, Γ is set as 28 for the high
level of feature security and efficient computations.

In Fig. 6(a), we show the computation costs of In-
dexBuild algorithm over different scale person image set.
Obviously, the dataset with the larger size will consume
more time at the same feature dimension. Besides, the
dimension of the feature vector is also an important factor
to affect the costs. If the dimension is greater, more costs
will be spent to carry out the modulus operations, which
are based on each element of the feature vector. The same
trend is observed for SumComp and SimComp algorithms,
shown in Fig. 6(b), and Fig. 6(c), respectively. Relatively
speaking, the former does not yield too much computation
costs. Specifically, when the number of key frames is 10000
and the feature dimension is 256, the entire costs of the 3
CDSs are 23.19 milliseconds only. The reason is that the
SumComp algorithm only involves the modulus addition
operation, which is suitable for CDSs with limited computa-
tion resources to handle. Moreover, we can also notice from
Fig. 6(c) that CSS takes more time than the above algorithms.
When the number of key frames is 10000 and the feature
dimension is 256, CSS needs 1.27 seconds to reconstruct
the 10000 sum vectors. It is obvious that the computation
costs are greater than that in the former with millisecond
level. The modular multiplication inverse used in SimComp
algorithm is the major factor because its efficiency is far
below than modular addition and multiplication. Although
the higher computation costs of SimComp algorithm could
straggle the whole Re-ID efficiency of our scheme, especially
for large-scale dataset, it is easy to solve this problem by
integrating the existing mature parallel techniques. The fea-
sibility of this solution is based on the fact that each element
of the sum vector SumQ,pi can be reconstructed separately
in FARRIS, and thus not interact with each other.

In Fig. 6(d), we also demonstrate the relation between

the number of primes (or individual CDSs) and the compu-
tation costs. It is seen that, as the number of primes grows,
it takes more much time to finish the privacy-preserving
Hamming distance computation because of the increasing
amount of the involved modulus operations. Especially,
the computation costs of SimComp algorithm are far more
than any others. It means that the user experience mainly
depends on the execution speed of SimComp algorithm
under the same conditions. To demonstrate the efficiency of
different algorithms on larger dataset and more CDSs, we
conduct a simulation experiment for 10000 feature vectors
and up to 50 primes selected from the range between 37
and 283. The experimental result is shown in TABLE 6,
where the dimension of feature vector is set to 256, and
the scale factor s is equal to 300 for complying with Eq. 13.
As we can see from TABLE 6, the computational costs of
all algorithms show an upward tendency when the number
of primes increases. It is remarkably obvious that the Sim-
Comp algorithm is the performance bottleneck because of
lots of modular multiplication inversion operations. Under
the same condition, IndexBuild, as well as SumComp, is
faster than SimComp by two orders of magnitude, which
is mainly due to the absence of the modular multipli-
cation inversion. For the same computational level, more
elementary operations are involved to make IndexBuild
cost nearly as twice times as SumComp does on average.
In comparison, the computational costs of QueryGen are
much lower than those of the other algorithms under the
same number of primes, since it only targets a frame image
for a Re-ID request. In Table 6, we also list the total Re-ID
time at the different numbers of primes. Clearly, the timing
performance of Re-ID that is made up of SumComp and
SimComp is mainly influenced by SimComp process.

TABLE 6
A comparison of different algorithms at computational costs (seconds)

with different k where ℓ = 10000, s = 300, and g = 256.

Algorithms k = 30 k = 40 k = 50
QueryGen 2.32× 10−4 2.63× 10−4 3.61× 10−4

IndexBuild 0.623 0.726 0.822
SumComp 0.276 0.377 0.435
SimComp 20.4 27.5 34.7

Total Re-ID Time 20.7 27.9 35.2

Besides, we further test the complexity of the different
algorithms with the same number of primes for our FARRIS,
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where larger key frames collection size ℓ = 50000, 80000,
and 100000 than that of TABLE 6 are tested. The corre-
sponding results are demonstrated in TABLE 7. It is not hard
to find a homogeneous relationship in timing consumption
among different algorithms if compared to TABLE 6. Specif-
ically, it indicates that the largest computational costs occur
in SimComp, following by IndexBuild, SumComp, and
QueryGen in descending order. Also, a characteristic shared
by the above algorithms except for QueryGen is that the
time complexity rises as the dataset size increases. Based on
the construction of QueryGen, it has nothing to do with the
number of key frames. Therefore, the timing consumption
of QueryGen keeps unchanged at different dataset sizes. It
takes about 59.28 seconds to carry out person Re-ID for a
given query request when the number of key frames is set
to 100000. The matching costs can be sharply reduced by
using parallel techniques. The reason is that each dimension
of any feature vector does not communicate with others
during the course of SumComp and feature reconstruction
in SimComp. If the given g servers share the equivalent
configuration, the total Re-ID time is reduced to 1/g of the
original time theoretically, without considering task alloca-
tion and communication costs during the parallel process.
Besides, the Re-ID is typically performed on the cloud
servers, which occupy sufficient computational resources to
ensure the efficiency performance. It means that our FARRIS
is efficient in practical applications.

TABLE 7
A comparison of different algorithms at computational costs (seconds)

with different ℓ where k = 10, s = 180, and g = 256.

Algorithms ℓ = 50000 ℓ = 80000 ℓ = 100000
QueryGen 1.72× 10−4 1.72× 10−4 1.72× 10−4

IndexBuild 1.98 3.09 3.79
SumComp 0.349 0.563 0.705
SimComp 29.7 47.8 58.5

Total Re-ID Time 30.1 48.4 59.3

Note that the scale modification u · s + ε (hereafter
referred to as SM ) in the feature preprocessing is a critical
step before executing the above algorithms. To some extent,
it increases the computational costs of the whole Re-ID
system by introducing ample multiplication and addition
operations. However, it can further improve the security
of the feature vector. Here, we add some experiments to
show its necessity to the establishment of our FARRIS.
For better illustration purpose, we view an image as a
feature vector. Examples of image shares with/without SM
are shown in Fig. 7, where shares are generated by using
modulo prime 151 operations based on CRT-based secret
sharing technique. The results from the second row of Fig. 7
show that the partial content of each image is leaked when
directly carrying out mod 151 operations for all pixels of
the image. In this case, when obtaining the image share
without SM , CDS can immediately know the rough content
of the original image. It means that the privacy of the feature
vector cannot be guaranteed. On the contrary, the image
shares with the SM look like random noise images, with
the scale factor s = 160, and random noise ε ∈ (0, 160).
And it suggests that images after SM do not reveal any
visual information.

Fig. 7. Examples of images with/without the scale modification. First
row: ten original person images randomly selected from VIPeR [3].
Second row: the corresponding shares of the first row without the scale
modification; Third row: the corresponding shares of the first row with
the scale modification.

Furthermore, the SM is robust against the histogram
analysis. For simplicity, we select the first two columns
of Fig. 7 to count their respective histograms. It can be
observed from Fig. 8 that the distributions without SM
still resemble those of the corresponding original images.
It is easy for the attacker to infer useful information by
analyzing the statistical histogram. However, with the SM ,
the generated histograms follow a uniform distribution,
which are clearly displayed in the third column of Fig. 8. It is
very difficult for the attackers to extract useful information
from this type of histograms.

TABLE 8
Comparison of SSIM and information entropy with/without SM .

Image
SSIM Entropy

without SM with SM without SM with SM
1 0.6452 0.0467 7.0583 7.2330
2 0.2950 0.0273 6.9136 7.2333
3 0.2679 0.0461 7.2125 7.2324
4 0.2796 0.0162 7.1399 7.2322
5 0.1684 0.0378 7.1607 7.2337
6 0.5536 0.0407 7.0171 7.2345
7 0.5221 0.0440 7.0500 7.2329
8 0.5690 0.0580 6.9193 7.2326
9 0.5016 0.0411 6.9718 7.2327
10 0.5723 0.0336 6.9945 7.2340

In addition, we also adopt the structural similarity (S-
SIM) index [45] and information entropy to measure the
difference between the original feature and the feature share
with/without SM . The results are shown in TABLE 8, in
which images correspond to those in the first row of Fig. 7
one by one. For example, the image labeled 1 in TABLE 8
refer to the first image in the first row of Fig. 7. Obviously,
the SSIM values after SM are far below those before SM
operation. It implies that the internal structure of the feature
is more unrecognizable than the latter. As for the informa-
tion entropy, the higher it is, the more uniform the feature
element value distribution is, which means that the feature
privacy can be better protected. According to the figures in
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Fig. 8. The histograms for the first two columns of Fig. 7. Left: the original images. Middle: the image shares without SM . Right: the image shares
with SM .

TABLE 8, the average information entropy for the images
with SM is 7.2331, while 7.0438 for images without SM
operation. Theoretically, for an image under modulo prime
151, the upper limit of its information entropy is about
7.2384. Therefore, we can conclude that the SM indeed
introduces more randomness to the feature elements and
conceal the feature information better.
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Fig. 9. Performance analysis in different algorithms. (a) Computational
costs in QueryGen algorithm; (b) Computational costs in Verification
algorithm.

In Fig. 9(a), we show the computation burden of query
index with the different feature dimensions during Query-
Gen process. As the dimension size escalates, the corre-
sponding costs also increase. However, the gain of the
computation costs is relatively trivial. For example, when
the dimension size is 4096, it takes around 0.26 milliseconds,
and almost negligible in the total timing cost of FARRIS.
What’s more, the feature vector in FARRIS is encoded into
a compact hash code, the dimension of which is usually
much lower than 4096 in practical applications. Except for
the costs taken for QueryGen process, AU also needs some
computation costs to verify whether the returned results
have been tampered by building the dual MHTs. Fig. 9(b)
shows that the computation costs in the Verification process

grow with the increase of the Re-ID results, again it does not
take much time. Specifically, about 18.59 milliseconds are
required to verify the correctness of 1024 results. In general,
these costs on the millisecond level are relatively low and
do not affect the user Re-ID experience, which is suitable
for resource-limited AUs, such as mobile users. It should be
noted that, given a fixed t, the construction time of the MHT
in AU is slightly longer than that in CSS due to the need
for generating the MAC set {M′′

li
}1≤i≤t for AU itself. In the

experimental simulation of Verification algorithm, we adopt
the SHA256 hash function to compute the MHT nodes’ hash
values and MACs.

TABLE 9
Communication and storage costs in different algorithms.

Algorithms Communication costs (bits) Storage costs (bits)

IndexBuild
nℓg|P |

+m(|E|+ |D|+ |A|)
nℓg|P |

+m(|E|+ |D|+ |A|)
QueryGen kg|P | kg|P |
SumComp kℓg|P | kℓg|P |
SimComp q(|E|+ |D|) kℓg|Γ|+ q(|E|+ |D|)
Verification tlog2q + 2|H| 4N |H|+ t|A|

Communication and storage costs: To express these two
types of costs more clearly, we assume that |P | is the bit-
length of the maximum prime selected by the (k, n) secret
sharing method. Denote |E| , |D|, |A|, |H |, and |Γ| as the
bit-length of the encrypted video file with the maximum
file size, ID, MAC, hT value, and Γ, respectively. TABLE 9
gives the theoretic analysis of the communication and s-
torage costs caused by different algorithms in FARRIS. In
IndexBuild algorithm, each preprocessed feature vector in
ℓ person images is divided into n shares, and sent into the
corresponding CDS. After that, it generates nℓg|P | commu-
nication and storage costs, respectively. Besides, these two
types of the costs will further increase by m(|E|+ |D|+ |A|)
due to the generation of m encrypted video files, IDs, and
MACs. Given a preprocessed feature index TQ, AU splits
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it into k shares, and randomly submits them to k out of
n CDSs. It is easy to compute the communication and
storage costs presented in QueryGen algorithm in this table.
Different from QueryGen algorithm, ℓ person image shares
in SumComp process are involved to compute the sum

SumQ,pi

j between TQ,j and each Ii,j (i ∈ [1, ℓ]) in k CDSs dj ,
which produces ℓ times as much as the costs in QueryGen
process. After the reconstruction of all ℓ sum vectors, CSS
will scale them down by the scale factor s. As a result,
kℓg|Γ| bits are used to store the final reconstruction data
in SimComp process. AU requests for returning the q most
related videos and corresponding IDs, and thus CSS gener-
ates q(|E|+ |D|) bits of data in response to the request, and
followed by storing the data in AU. In verification process,
AU sends the challenging information {li}1≤i≤t with tlog2q
bits to CSS. When obtaining the challenging request, CSS
builds the dual MHTs to respond, which requires 2|H | bits
for storing the hash values of two root nodes, and in total
uses 2N |H | bits for hashing N nodes. Accordingly, the AU
also generates the dual MHTs to justify the correctness of the
Re-ID results, in which an extra storage costs with t|A| bits
are introduced to store t MACs computed by itself, except
the costs as the same as that of constructing the dual MHTs
in CSS.

6 RELATED WORK

In this paper, person Re-ID mainly refers to person retrieval.
To some extent, person Re-ID can also be regarded as the
issue of image-to-video retrieval for two reasons. First, a
static image is taken as a query image in these two retrieval
issues. Second, the goal of both tasks focuses on identi-
fying which videos within the video dataset are the best
matches for a given visual input. Since query images and
database videos contain different types of spatiotemporal
information, searching videos using images is an asym-
metric issue [9], which poses a challenge to the image-to-
video retrieval. In general, a video with one second duration
comprises 24 up to 30 frames. It means that even a few
videos can cause tremendous data storage. For example,
12 videos, each of which is recorded for an hour, contain
over one million images. Based on the result, it becomes
infeasible to directly employ the image retrieval technique
to solve the asymmetric issue. An alternative technique,
namely temporal aggregation, is to remove the inter- or
intra-frame redundancies in video for acquiring more com-
pact representations [16]. Most of the temporal aggregation
algorithms fall into two categories: local features based
reduction [11], [12] and holistic aggregation [9], [13]. The for-
mer aims at reducing the number of local features extracted
from each frame of the video such that the matching speed is
improved. It is widely accepted that the local features based
reduction can achieve better matching due to its ability to
capture more-refined feature information. By contrast, the
latter compresses multiple frames information of video into
a compact global feature vector, thus the video retrieval us-
ing query image can be dramatically accelerated. However,
resource-constrained users cannot afford high computation
overheads and storage costs as the amount of video data
increases.

Due to the popularity of cloud computing technique,
users tend to store their multimedia data to the cloud
server in consideration of costs saving and convenience.
However, the privacy of the outsourced data may be leaked
by the cloud [46], [47]. In cloud computing environment,
the problem of privacy-preserving retrieval over encrypted
data has been studied for many years. In early days, most
of the research schemes, such as [48], [49], [50], [51], mainly
focus on SE technique, which takes text files as the objective.
As far as we know, Song et al. [48] developed the first
SE scheme to allow the users to search over encrypted
text files. Using this scheme, the large computation costs
will be generated because of the word-wise operation for
both encryption and search. Worse still, the lack of index
is also a disadvantage. To mitigate the above issues, Bloom
filter technique was introduced by Goh [49] to construct a
secure index for improving the search speed. Furthermore,
Curtmola et al. [50] leveraged the inverted index to obtain
better search efficiency. The above SE schemes are based on
symmetric encryption, in which the private key for encryp-
tion and decryption is the same, making key distribution
inconvenient. An alternative direction in SE is developed to
perform secure search on encrypted data by utilizing public
key mechanism. The first public key SE was presented by
Boneh et al. [51] in 2004. With this scheme, the search
efficiency decreases as the encrypted keywords in each text
file increase. The above SE schemes can achieve searching
over encrypted text files under the assumption of honest-but-
curious threat model. However, in a practical application, the
cloud server may return a fraction of false matching results
to users to reduce computational overhead or conceal data
loss. In other words, the cloud server should be semi-honest-
but-curious. To address this problem, Sun et al. [25] proposed
a scalable search authorization based on the file level. Using
this scheme, a larger number of attributes readily lead to
high computation costs, which limits the practical deploy-
ment. Miao et al. [26] constructed a verifiable search scheme
based on bilinear map. With this scheme, an independent
private audit server is employed to verify the correctness of
the returned search results. Also, some dynamic operations
(e.g., document addition, modification and deletion) are not
allowed. In [27], Liu et al. proposed a novel verifiable SE
scheme, which not only supports dynamic operations but
also allows multiple users to participate. Recently, some
SE approaches with various functionalities have been put
forward, such as secure multi-keyword ranked search [52],
[53], [54], semantic search [55], and other functionalities [56],
[57], [58].

From the perspective of computer vision, person Re-ID
can be treated as image retrieval problem to some exten-
t [59]. Therefore, we can take encrypted image retrieval
as a powerful reference to investigate secure person Re-Id
over cloud video data. With the rapid development of the
imaging devices (e.g., digital cameras, smart phones), the
amount of image data is increasing dramatically. Therefore,
the approaches related to secure image retrieval have also
been studied extensively in recent years. The work in [18]
presented the three distance-preserving methods for feature
protection, ensuring the distance between features remains
approximately invariant before and after encryption. Two
secure efficient search indexes based on order-preserving
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encryption [60] and min-hash algorithm were introduced to
perform privacy-preserving retrieval for large scale image
databases in [19]. But the retrieval performance is not suffi-
cient to serve the practical application. Another method [61]
has been introduced for secure image retrieval by using
homomorphic encryption (HE). The high computation com-
plexity and communication costs, however, are beyond the
reach of users. In [21], Xia et al. employed the asymmet-
ric scalar-product preserving encryption technique [62] to
encrypt image features, while a watermark-based proto-
col was designed to perform the privacy-preserving copy-
deterrence. Yuan et al. [42] discussed the problem of secure
content-based large-scale image search. The lightweight
multi-level HE is used for image retrieval process in this
literature. A very recent work [22] was proposed to achieve
high accuracy and efficiency of privacy-wise image retrieval.
Its main idea is to use transformed convolutional neural
network to extract high accuracy feature while devising a
hierarchical index tree to boost retrieval speed. Huang et
al. [23] developed a secure relevance feedback mechanism
to improve retrieval performance while maintaining the
user privacy. However, the above secure image retrieval
schemes need to perform the feature extraction/encryption
independently, which brings inconvenience to users. Con-
sidering the universality of JPEG image format, Cheng et
al. [63], [64] proposed secure image retrieval schemes for
JPEG images, where the feature extraction/encryption is
needless, but it is indispensable in the schemes [18], [19],
[21], [22], [23], [42], [61]. However, the characteristic of the
feature statistical invariance before and after encryption is
vulnerable to feature guessing attacks. The same problem
also exists in [65].

Up to date, much less work has been done for privacy-
preserving video retrieval. In [17], Lu et al. provided a
feasible solution, where visual features extracted from a set
of frames of the video can be protected by using distance-
preserving encryption. During video retrieval, the cloud
server can calculate the similarity between encrypted videos
through accumulating the distances of their corresponding
features, without learning about the query and database
videos in the plaintext. Although the retrieval approaches
over encrypted text files/images have been developed for
many years, no such scheme that can support privacy-
preserving person Re-ID over encrypted outsourced videos
as well as simultaneous verifiable retrieval exists. Therefore,
we propose FARRIS to achieve the above goals by com-
bining the keyless secret sharing method and MHT tech-
nique. Furthermore, FARRIS is compatible with any secure
retrieval scheme that takes Hamming distance as matching
measure. TABLE 10 gives the comparison of our scheme
with other related schemes under different functionalities.

7 CONCLUSIONS

In this paper, we propose a novel privacy-preserving person
Re-ID scheme over outsourced surveillance videos, which
provides high accurate feature in the binary form by syn-
thesizing the CNN model and KSH technique. In order to
securely measure the similarities among feature vectors, we
construct a privacy-preserving Hamming distance compu-
tation protocol based on CRT-based secret sharing. Besides,

TABLE 10
Functional comparison in various schemes.

Schemes Func 1 Func 2 Func 3 Func 4 Func 5

[4], [8] !

[17], [21], [23], [42] !

[25], [26], [27] ! !

[22] ! !

Basic FARRIS ! ! ! !

Enhanced FARRIS ! ! ! ! !

“Func 1”: Person Re-ID;
“Func 2”: Privacy preserving;
“Func 3”: Keyless feature encryption;
“Func 4”: Verifiable search;
“Func 5”: Compatibility.

a dual MHTs based verification mechanism is proposed to
identify the correctness of the matching results. The security
analysis shows that our FARRIS can guarantee person Re-ID
efficiently, without revealing the privacy of related persons.
Furthermore, the theoretic analysis and practical simulation-
s demonstrate that FARRIS is effective and feasible.

In the future, we plan to investigate the optimal rela-
tionship between the dimension of feature index and the
number of cloud servers, which aims at achieving better
user experience as well as preserving the privacy of users.
Moreover, we will further improve the efficiency of secure
person Re-ID in a real-world environment.
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