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Lightweight Privacy-preserving Ensemble
Classification for Face Recognition

Zhuo Ma ‡ , Yang Liu *‡, Ximeng Liu ‡ , Member, IEEE , Jianfeng Ma, Member, IEEE ,
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∗ Corresponding author
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Abstract—The development of machine learning technology and visual sensors is promoting the wider applications of face recognition
into our daily life. However, if the face features in the servers are abused by the adversary, our privacy and wealth can be faced with
great threat. Many security experts have pointed out that, by 3D-printing technology, the adversary can utilize the leaked face feature
data to masquerade others and break the E-bank accounts. Therefore, in this paper, we propose a lightweight privacy-preserving
adaptive boosting (AdaBoost) classification framework for face recognition (POR) based on the additive secret sharing and edge
computing. Firstly, we improve the current additive secret sharing based exponentiation and logarithm functions by expanding the
effective input range. Then, by utilizing the protocols, two edge servers are deployed to cooperatively complete the ensemble
classification of AdaBoost for face recognition. The application of edge computing ensures the efficiency and robustness of POR.
Furthermore, we prove the correctness and security of our protocols by theoretic analysis. And experiment results show that, POR can
reduce about 58% computation error compared with the existing differential privacy based framework.

Index Terms—Privacy-preserving, AdaBoost, Face Recognition, Additive Secret Sharing

F

1 INTRODUCTION

A LONG with the development of machine learning, face
recognition has become the second popular biomet-

ric authentication technology next to the fingerprint. Due
to the security and convenience, people are enjoyable to
choose the face feature based biometric authentication on
protecting their property. For example, as early as 2013,
PayPal provides the service of checking in and paying with
face for more than 22 million users in England [1]. And in
2014, the presentation of hierarchical learning architecture
for face recognition leads to the accuracy reaching to more
than 99.5%, which further guarantees the dependability and
practicality of the face recognition service [2]. Although the
performance of machine learning based face recognition
technology has far exceeded traditional methods [3], it is
still a consensus that the memory space and computational
power requirement for its training process is quite high.
For instance, in a large-scale face recognition dataset for
people of different ages, there are 3.31 million images of 9131
subjects that the machine learning model has to learn [4]. To
lower the cost and satisfy the high demand for computing
capability, many app operators prefer to outsource their
intensive computation and extreme volume of data to the
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cloud server [5]. Nevertheless, for most of the face recog-
nition applications, it is required that thousands of users
can get the feedback in seconds. Since the cloud servers
are usually far away from the service request location,
meeting the demand for such degree of latency may lead
to high pressure on data communication speed and robust-
ness. Thus, a new paradigm edge computing is adopted
to solve this problem. Edge computing is one of the hot
spots that arises dramatic interests of industry investment
and research [6]. By placing the computing and storage
center at the Internet’s edge close to image collection device,
the paradigm can effectively decrease the communication
latency and strengthen the robustness [7].

However, due to the lack of privacy protection in most
practical applications, the face feature data for machine
learning are usually outsourced to servers without encryp-
tion and at the risk of being eavesdropped and abused [8].
Once the adversaries do achieve their goals, it may not
only lead to the infringement of portrait rights, but also
the severe damage to the property of users. More seriously,
the face recognition surveillance in public spaces has arisen
the social debate about the invitation to personal privacy
[9]. Many people complain that they walk through a market
just like going through a reticent trial, because their faces are
ceaselessly matched against a government gallery of culprits
by the ubiquitous cameras and they even do not know
where these “inquisitors” are. Thus, a novel face recognition
framework is needed to undertake the recognition task
without disclosure of personal face features.

For privacy preservation of ensemble learning, the most
common way is to use the differential privacy technology.
Wang et al. [10] choose the differential privacy based deep
learning framework to implement the client privacy of de-
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tecting credit card fraud. However, due to the addition of
Laplace distribution or Gaussian distribution based random
noise, the stronger privacy we want to obtain, the greater
computation error the differential privacy would introduce
[11]. The other method to preserve privacy that does not
cause such great error is homomorphic encryption (HE). In
recent years, plenty of HE based frameworks for machine
learning are proposed, like the SecureML designed by Pay-
man Mohassel et al. [12] and the DeepZeroID [13]. Although
great interests are put on HE, many people point that the
nature of high time-complexity and intensive memory con-
sumption makes it unpractical in real-world applications.
Accordingly, we now need a errorless and efficient frame-
work to address the privacy problem of face recognition.

For this purpose, we propose a lightweight privacy-
preserving AdaBoost face recognition framework (POR)
based on additive secret sharing secret. In POR, all of the
face features and pivotal machine learning parameter are
computed in the encrypted form. However, the previously
proposed secure exponentiation and logarithm functions are
not additive or cannot converge effectively when the inputs
are not between 0 and 1 [14], which can cause them unusable
in most machine learning based applications. Therefore, by
utilizing the single-precision floating-point number repre-
sentation, we expand the effective input ranges to arbi-
trary input range. Then, a series of interactive protocols
are designed to efficiently complete the computation of the
forward stagewise algorithm and linear addition process of
AdaBoost. By calling the basic linear secure functions and
Maclaurin Series to approximate the exponentiation and
logarithm functions, the protocols are efficient in compu-
tation and can cause controllable error. Moreover, because
of narrowing the distance between the image acquisition
device and the cloud servers, edge computing is also one
of the keys to make our framework more practical in ap-
plication. Specially, the basic classifier is alterable in POR,
but it has to be privacy-preserving. The contributions of this
paper can be summarized as follows.

• We propose an AdaBoost based framework POR for
protecting the privacy of both the user face features
and the service provider’s pivotal learning param-
eters in ensemble neural network. By adopting the
additive secret sharing and the edge computing tech-
nology, POR is more efficient and less error-prone.

• We improve the existing additive interactive pro-
tocols for exponentiation and logarithm functions
by expand the effective input range from 0 to 1 to
arbitrary inputs.

• A series of interactive protocols are specially de-
signed for the different training stage of AdaBoost.
The protocols ensure that the data in the forward
stagewise process and linear addition of weak classi-
fiers are computed in the encrypted form.

• By experiments, we further prove the efficiency and
accuracy of POR. The results show that POR can
reduce about 58% computation error compared with
the differential privacy based framework, and the
additional cost of the improved secure nonlinear
functions is only a few millisecond computing time
and no more than 500 bit communication overhead.

2 PRELIMINARIES

In this section, some basic information about the AdaBoost
and several secret sharing based mathematical functions are
introduced.

2.1 AdaBoost
AdaBoost is a boosting classifier which is able to combine
multiple weaker classifiers into a stronger one. In the train-
ing process, the weight vector ω of AdaBoost is successively
updated based on the error rate of weak classifiers. The final
output is the target function f(x) obtained from the cumula-
tive weighted prediction results of per training round. Given
the training dataset D = {(x1, y1), (x2, y2), ..., (xN , yN )},
we can mathematically express the whole training process
as follows.

1) Initiate the weight vector ω before iteration.

ω1 = {ω1,1, ω1,2, ..., ω1,N}, ω1,i =
1

N
. (1)

2) Suppose the weak classifier is Ck(x), where k is
the number of iteration round. The error rate ek of
iteration k is

ek =
N∑
i=1

ωk,i · I(xi), i = 1, 2, ..., N, (2)

I(xi) =

{
0, if C(xi) = yi
1, if C(xi) 6= yi

. (3)

3) Then, the impact factor of Ck(x) in the final output
is computed

λk =
1

2
ln

1− ek
ek

. (4)

4) With λk, the values of ω can be can be updated as

ωk+1 =
ωk,i
σk

e−λkyiCk(xi), (5)

σk =
N∑
i=1

ωk,ie
−λkyiCk(xi). (6)

5) When the termination condition like reach the max-
imum iteration number is satisfied, output O(x).

f(x) = sign(
∞∑
i=1

λiCi(x)), (7)

sign(x) =

{
−1, if x < 0

1, if x > 0
. (8)

2.2 Secret Sharing Based Mathematical Functions
To maintain the security and privacy for machine learning
models, the normal mathematical functions are widely sub-
stituted by secret sharing based ones in our framework. For
convenience of later discussion, we would like to list some
previously proposed protocols [15] [16] [17] [18]. All these
protocols run on two edge servers with a trusted third server
to generate uniformly random values. The inputs u and v
are the data required to be securely computed.

1) Random Bits Protocol. The RanBits(·) dose not have
input and generates arbitrary length of uniformly
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random bit sequence (r0, ..., r`) used for the other
protocols.

2) Secure Comparison Protocol. Set the inputs to be u
and v. By invoking the protocol SecCmp(·), S1 and
S2 can judge which one is larger. If u > v, SecCmp(·)
outputs 1; if u < v, it outputs −1; otherwise, it
outputs 0.

3) Secure Multiplication Protocol. Given the inputs u
and v, the secure multiplication protocol SecMul(·)
masks them with a Beaver’s triplet (a, b, c). And then,
the two edge servers can compute f = u · v without
disclosure of any information about the inputs. To
recover the final computation result, we just have to
collect the secret shares and compute f = f1 + f2.

4) Secure Reciprocal Protocol. Set the input be u. The
Newton-Raphson iterative method base reciprocal
protocol SecInv(·) iteratively approximate to the real
result f = u

v . When the precision is satisfies, the
iteration terminates and SecInv(·) outputs f = f1 +
f2 ≈ u

v .
5) Secure Natural Exponential Protocol. Suppose the

input is u, the Maclaurin Series based protocol
SecExp(·) outputs f1 + f2 = eu. During computa-
tion, the two edge servers iteratively compute the
series to approximate the real result. The input of
SecExp(·) must be in the range of 0 and 1 to make
the series converge, which makes it inapplicable in
most applications.

6) Secure Natural Logarithm Protocol. The protocol
SecLog(·) is based on the modified Maclaurin Series
which by far converges the fastest. However, similar
to SecExp(·), its input is also limited between 0 and
1. Given an input u, SecLog(·) outputs f1+f2 = lnu.

3 SYSTEM MODEL & ATTACK MODEL

3.1 System Model

Image
Collecting
Device VD

Encrypted
Image I

Basic Secure 
Classifier C

Edge Server S1

Edge Server S2

Trusted 
Third Party T

Encrypted
Classification 

Result P1

Encrypted
Classification 

Result P2

Recognition
Service 

Provider P

Strong 
Classifier O1

Strong 
Classifier O1

Additive
Interactive
Protocols

Random r1

Random r2

1 2  P P P 
1 2  O O O 

Fig. 1. System Model

As illustrated in Fig.1, the proposed privacy-preserving
face recognition system comprises five types of participants,
which are Image Collecting Device (V D), Basic Secure Clas-
sifier (C), Edge servers (Si, i ∈ {1, 2}), Trusted Third Party
(T ) and Recognition Service Provider (P).

• The V D can be any IoT device that can operate a
visual task, such as a smartphone or a camera that

is connected to the Internet. The face images are
encrypted here, and then sent to the server which
deploys C.

• The C is a weak privacy-preserving face recognizer,
like the secure support vector machine [19]. It is able
to do the preliminary classification work and outputs
result P = P1 +P2 to Si, but its accuracy is far more
lower than the actual applications require.

• There are two edge servers S1 and S2 in our system
model which are dedicated to doing the complex
computation of POR. All of the interactive protocols
designed in this paper are operated between them.
And they get the encrypted dataset D in additive
secret sharing mode from C as inputs in the training
process of POR. If necessary, the two edge servers
can also possess the capacity to generate uniformly
random values.

• Since the work of T is only responsible for generat-
ing random values ri to mask secret shares of Si, a
lightweight server is deployed as T .

• The P can simply get the final strong classifier by
computing O = O1 + O2. And if the training result
is appropriate, (s)he can then deploy Oi on Si for his
commercial applications or other purposes.

Note that the system model is two-party setting (2PC)
which is the same as the preliminary protocols in Section
2. If multiple edge servers need to be introduced, the only
thing need to do is changing SecCmp(·) and SecMul(·) into
multi-party setting (MPC), because the other three related
functions in Section 2 are all iterative series based, and the
series are only composed of the two functions. From [15]
[16], it can be found that the changes for SecCmp(·) and
SecMul(·) are completely realizable.

3.2 Attack Model
We assume all of participants in POR are honest-but-curious.
Normally, they receive the messages and response them
fully in accordance with the interactive protocols. But once
given opportunity, they do not refuse to learn anything that
is beneficial to themselves. Furthermore, there are two sim-
ulators π1 and π2 that can simulate the protocol operation
process between S1 and S2. Both of them have the following
abilities: 1) π1 and π2 are polynomial-time simulators; 2) π1
and π2 can generate uniformly random values; 3) According
to the real view of the protocol, π1 and π2 can simulate the
whole protocol operation process. 4) The set Simi stores all
of the values simulated by πi about the protocol operation
process.

Furthermore, we hypothesize that the edge servers can
learning nothing but the messages sent by the other par-
ticipant in accord with the protocol and cannot collude
with each other. V D, C, T and P are all honest. And
there are secure communication channels among the honest
participants. A successful attack in our model means that
Simi and the real view of the protocol are computationally
distinguishable for the adversary A.

4 SECRET SHARING BASED FUNCTIONS

In this section, several secure interactive sub-protocols are
designed to implement the privacy-preserving AdaBoost.
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Compared with the previously proposed protocols [16], the
improved secure natural exponentiation ISExp(·) and the se-
cure natural logarithm ISLog(·) do not have to limit the range
of input. The improvement is seriously important, because,
in AdaBoost, there is no sigmoid function or tanh function
to keep the intermediate value of computation between 0
and 1 for maintaining the effectiveness of Maclaurin Series.
In addition, for brevity, the notion xi is used to represent the
shares possessed by Si, where i ∈ {1, 2}.

4.1 Data Storage Format

Protocol 1 Format Conversion of Single-precision
Input: Secret share x;
Output: Mantissa m and exponent ε;

1: SINGLE-PRECISION(x)
2: m← x
3: ε← 0
4: while m > 1 or m < −1 do
5: m← m/2
6: ε← ε+ 1
7: end while
8: return m, ε
9: end

To overcome the problem that the series converge too
slow when the inputs are far away from 0, we adopt
the single-precision floating-point number representation to
further improve the secure logarithm function. The repre-
sentation conversion can be directly operated on the image
acquisition device or locally computed in the cloud servers.
Moreover, POR can also support the double-precision rep-
resentation, but 32-bit length single-precision secret shares
are secure enough for most applications. Accordingly, only
the single-precision data representation method is presented
here. If required, all of the protocols in our scheme can be
easily expanded into double-precision mode by increasing
the bit-length of mantissa m and exponent ε. The cost
incurred by the expansion is just additional communication
overhead.

Data Representation. The single-precision float-point
representation we adopt is based on the standard format
deployed in IEEE 754-1985, which is also called binary32 in
IEEE 754-2008 [20]. To adapt to our need, several changes on
the original representation are made in our scheme. Firstly,
the number is not stored into a fixed 32-bit storage space,
but one 32-bit float m and one 16-bit integer ε which are
respectively corresponding to the mantissa and the expo-
nent. The sign bit for standard format is served. The bias for
exponent is set to 0, because, for our protocols, it can only
cause extra computations. Above all, for an arbitrary signed
number u, it can be converted into the form

u = m · 2e−bias, bias ∈ {0, 1, 2, ..., 255}, (9)

where −1 ≤ m ≤ 1 and ε is a signed integer.

4.2 Secure Matching of Exponents

With the single-precision type of representation, the expo-
nents of the secret shares to be calculated may not match.

Therefore, one of the most important premise for the secure
function computation is matching the exponents of the
two inputs. Given two secret shares u1 and u2, the secure
matching of exponents protocol SME(·) makes sure them
have same exponents by negotiation. During the process,
the two participants do not expose their own sharing to
each other. And sine the data representation method do not
change the values pf the original inputs, SME(·) introduce
no extra computation errors into the system. In addition, if
the data format is extended to double-precision, SME(·) can
still work. According to the standard definition of double-
precision, its difference with single-precision is the valid bits
lengths of mantissa and exponent. The difference is trivial
for SME(·) and cannot influence the validity of the protocol.

Protocol 2 Secure Matching of Exponent (SME)
Input: S1 has input u1; S2 has input u2;
Output: S1 outputs u1; S2 outputs u2; S1 and S2 both

output ε;
1: S1 has m1, ε1 ← SINGLE-PRECISION(u1).
2: S2 has m2, ε2 ← SINGLE-PRECISION(u2).
3: S1 splits m1 into m1 ← m′1 + m′′1 and computes u′1 =
m′1 · 2ε1 , u′′1 = m′′1 · 2ε1 .

4: S2 splits m2 into m2 ← m′2 + m′′2 and computes u′2 =
m′2 · 2ε2 , u′′2 = m′′2 · 2ε2 .

5: S1 sends u′′1 to S2 and S2 sends u′2 to S1

6: S1 locally matches the exponent of u′1 and u′2 by com-
puting ε← max(ε1, ε2), then updates u1 by calculating
u1 ← u′1 + u′2.

7: S2 locally matches the exponent of u′′1 and u′′2 by com-
puting ε← max(ε1, ε2), then updates u2 by calculating
u2 ← u′′1 + u′′2 .

8: Si returns ui and ε

Secure Matching of Exponent. To make the two shared
numbers have the same exponents, S1 and S2 first have
to convert their inputs into single-precision format u1 =
m1 ·2ε1 and u2 = m2 ·2ε2 by invoking the format conversion
function SINGLE-PRECISION(·). As mentioned before, the
format conversion has been completed in advance. Then
they split the inputs into secret shares u1 = u′1 + u′′1 =
m′1 · 2ε1 +m′′1 · 2ε1 and u2 = u′2 + u′′2 = m′2 · 2ε2 +m′′2 · 2ε2 ,
where m1 = m′1 +m′′1 and m2 = m′2 +m′′2 . Also, we have
m′i 6= 0 and m′′i 6= 0. Next, m′i and m′′i are respectively
distributed to S1 and S2. Locally, S1 updates the value of u1
by computing u1 = u′1 + u′2, and S2 sets u2 = u′′1 + u′′2 . It
can be derived that, to complete the computation, Si have
matched the exponents of the two secret shares, and we still
have u = u1 + u2. Thus, the inputs are securely converted
into single-precision floats with same exponents. Specially,
no matter the sum of mantissas is more than 1 or not, the
final exponent is not influenced and always the larger one
of ε1 and ε2.

4.3 Improved Secure Natural Exponential Function

Given an encrypted input u, ISExp(·) can always converge at
ideal speed and output the natural exponentiation f(u) =
eu. The inputs of ISExp(·) support 32-bit and 64-bit floating-
point types, which is the same the exponentiation function
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in almost every microcontroller and computer. Compared
with the previously proposed SecExp(·), ISExp(·) does not
limit the range of input value by virtue of splitting the input
into additive integer part and fractional part. And to achieve
the improvement, what is extra brought by our method
is just two times of secure multiplications and two locally
computed exponents. In addition, even the effective range is
not limited, it is better to keep the inputs no more than 102.
Because if not, even for the frameworks without privacy-
preserving, it may cause intolerable huge calculation for
large-scale datasets. Thus, the actual average computation
time of ISExp(·) in application is actually less the theoretical
analysis result.

Protocol 3 Improved Secure Natural Exponential Function
(ISExp)
Input: S1 has input u1; S2 has input u2; The required

precision is ε
Output: S1 outputs f1; S2 outputs f2;

1: S1 computes u1 ← α1 + β1, where α1 is integer and
0 ≤ β1 < 1.

2: S2 computes u2 ← α2 + β2, where α2 is integer and
0 ≤ β2 < 1.

3: S1 and S2 compute v1, v2 ← SecExp(β, ε), where β ←
β1 + β2 and v ← v1 + v2.

4: S1 computes a ← eα1 and splits it into random shares
a← a1 + a2

5: S1 computes b ← eα2 and splits it into random shares
b← b1 + b2

6: S1 sends a2 to S2 and S2 sends b1 to S1

7: S1 and S2 compute (p1, p2)← SecMul(a, b)
8: S1 and S2 compute (f1, f2)← SecMul(p, v)
9: Si returns fi

Initialization. Si gets its input as ui which satisfies u =
u1 + u2. Set the precision be ε = ε1 + ε2 and distribute εi to
Si. ε is used for judging when to terminate the iteration of
SecExp(·).

Secure Natural Exponentiation. S1 and S2 respectively
split their inputs into integer part and fractional part ui =
αi + βi, where 0 ≤ βi < 1. Then, the edge servers utilize
the old secure natural exponential function to compute
(v1, v2) ← SecExp(β, ε), where v = v1 + v2. Meanwhile,
S1 and S2 locally compute a = eα1 and b = eα2 . a and b are
split into random shares a = a1 + a2 and b = b1 + b2.
ai and bi are then distributed to Si. By twice invoking
the secure multiplication function, S1 and S2 continue to
calculate (p1, p2) ← SecMul(a, b) and output (f1, f2) ←
SecMul(p, v), where p = p1+p2 and f = f1+f2. The entire
computation process can be mathematically expressed as

f(u) = eu = eα+β

= (
∞∑
i=0

1

i!
· αi) · eβ .

(10)

4.4 Improved Secure Natural Logarithm Function
4.4.1 Secure Natural Logarithm Function
Similar to the improved secure natural exponential function,
ISLog(·) also gets rid of the input limit with the help of data
format conversion. For an arbitrary input u, what we should

Protocol 4 Improved Secure Natural Logarithm Function
(ISLog)
Input: S1 has input u1; S2 has input u2; The required

precision is ε
Output: S1 outputs f1; S2 outputs f2;

1: S1 computes m1, ε← SME(u1).
2: S2 computes m2, ε← SME(u2).
3: S1 and S2 compute v1, v2 ← SecLog(m, ε), where m←
m1 +m2 and v ← v1 + v2.

4: S1 computes f1 ← v1 + ε · ln 2
5: S2 computes p1 ← v2
6: Si returns fi

compute in ISLog(·) becomes f(u) = ln(m·2ε) = lnm+ln 2ε,
where 0 < m < 1. SecLog(·) can be directly invoked to
compute lnm, because the series used in SecLog(·) is by far
the fastest to converge in this range of input. And to get
the final result, let S1 or S2 locally do one multiplication
and one addition. Furthermore, it can be observed that,
compared with the original secure function, ISLog(·) do not
introduce any extra error.

Initialization. The initialization process of ISLog(·) is the
same as ISExp(·).

Secure Natural Logarithm. During online computation
phase, S1 and S2 first have to convert the inputs into our
single-precision format. To achieve this, the edge servers
update the values of u1 and u2 by invoking SME(u). Then,
the original secure natural logarithm function is used to cal-
culate (v1, v2) ← SecLog(m). And S1 and S2 respectively
compute f1 = v1 + ε · ln 2 and f2 = v2. the final outputs f
satisfy f = f1 + f2. The details of computation process can
also be expressed as mathematical expression:

f(u) = lnu = ln(m · 2ε) = lnm+ ε · ln 2

= 2 ·
∞∑
i=0

1

2i+ 1
·m2i+1 + ε · ln 2. (11)

5 PRIVACY-PRESERVING ADABOOST BASED
FACE RECOGNITION

In this section, we design a privacy-preserving framework
for the training process of AdaBoost. The framework is
composed of two parts, the secure addition model and the
secure forward stagewise algorithm (FSA). For the former
part, the linear addition of a series of weak classifiers is
computed, which can be locally completed by the secure
addition function. As shown in Fig.2, the FSA is the basis
of the iterative training process of AdaBoost, and the secure
functions proposed in Section 4 are mainly designed for it.
Specially, the weak classifier can be any privacy-preserving
basic classifier, like the SVM in [19] [21] and decision tree
in [22]. Thus, we just utilize the notion C ′k(x) and C ′′k (x) to
denote the secret shares of iteration k classification results.
Moreover, note that the multiplications of two secret shares
in the remaining article are all computed by invoking the
secure multiplication function SecMul(·).

5.1 Forward Stagewise Algorithm of AdaBoost
To get final strong classifier, AdaBoost deploys the FSA
to iteratively strengthen the target classifier. The output of
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Fig. 2. Privacy-preserving Forward Stagewise Algorithm of AdaBoost

each iteration round is not independent but based on the
previous training result, which can be simply expressed as:

Ok(x) = Ox−1(x) + λkCk(x;αk), (12)

where αk is the optimal parameter of Ck(x). From Eq.12, the
FSA in our scheme is able to be concluded as computing the
proportionality coefficient λk without disclosure of privacy.
And the computation process is composed of the following
four steps.

5.1.1 Initialization of Weight Vector
The first step of FSA is to initialize the weight vector
ω1 = (ω1,1, ω1,2, ..., ω1,N ). Set N be the number of samples.
Let the trusted third party T generate two random shares
vectors:

ω′ = (ω′1,1, ω
′
1,2, ..., ω

′
1,N ), (13)

and
ω′′ = (ω′′1,1, ω

′′
1,2, ..., ω

′′
1,N ). (14)

The elements of ω′1 and ω′′1 satisfy ω′1,i+ω
′′
1,i =

1
N , where

i = {1, 2, ..., N} and ω1 = ω′1 + ω′′1 . It can be observed that
ω1 is actually publicly known. However, due to the fact that
ωk(k > 1) is private and required for our secure functions
as inputs, we still use random shares to initialize them.

5.1.2 Error Rate
Suppose that the weak classifier Ck(x) in iteration round k
has been trained and its output is ~P = (pk,1, pk,2, ..., pk,N ),
where pk,i ∈ {−1, 1}. Denote the training dataset as D =
{(x1, y1) = (x′1 + x′′1 , y

′
1 + y′′1 ), ..., (x

′
N + x′′N , y

′
N + y′′N )},

where yi ∈ {−1, 1}. (x′i, y′i) and (x′′i , y
′′
i ) are respectively

possessed by S1 and S2. Then, let S1 calculate:

e′k =
N∑
i=1

ω′k,i · I(y′i − p′k,i), (15)

and S2 calculate

e′′k =
N∑
i=1

ω′′k,i · I(y′′i − p′′k,i). (16)

Among them, I(xi) is implemented by invoking the
secure comparison function SecCmp(·) which is an online
protocol. Let S1 and S2 respectively have the secret shares
of Ck(x) output ~P ′k = (p′k,1, p

′
k,2, ..., p

′
k,N ) and ~P ′′k =

(p′′k,1, p
′′
k,2, ..., p

′′
k,N ), where ~Pk = ~P ′k + ~P ′′k . They first com-

pute (s′1, ..., s
′
N ) = D.y′ − ~P ′k = (y′1 − p′k,1, ..., y′N − p′k,N )

and (s′′1 , ..., s
′′
N ) = D.y′′ − ~P ′′k = (y′′1 − p′′k,1, ..., y′′N − p′′k,N ).

Then, judge whether si = s′i + s′′i is 0. If do, I(si) = 0, and
otherwise, I(si) = 1. The process can also be expressed as:

I(s′i) =

{
0, if SecCmp(s′i, 0) = 0

1, if SecCmp(si, 0) 6= 0
, (17)

and

I(s′′i ) =

{
0, if SecCmp(s′i, 0) = 0

1, if SecCmp(s′i, 0) 6= 0
. (18)

5.1.3 Impact Factor
The impact actor λk determines how much impact each
weak classifier Ck(x) has on the final output. To obtain it, let
the two edge servers cooperatively compute the reciprocal
of the error rate ek.

1

ek
= τ ′k + τ ′′k = SecInv(e′k, e

′′
k) (19)

Then, λk can be computed by invoking ISLog(·). Let S1

have one share of the impact factor

λ′k =
1

2
ISLog(τ ′k − 1). (20)

And S2 has the other share of impact factor

λ′′k =
1

2
ISLog(τ ′′k ). (21)

5.1.4 Update of Weight Distribution
Before updating the weight distribution ωk, the edge servers
first have to compute the normalization factor σk. It guar-
antees that the probability distribution of dataset samples
has a sum of 1. For efficiency, the intermediate results of
loss Li to compute ωk are restored by the two edge servers
and destroyed until one round of iteration is completed.
By calling the improved secure exponential function, S1

computes

σ′k =
N∑
i=1

ω′k · L′i, (22)

L′i = ISExp(−λ′k · y′i · Ck(x′i)). (23)

Meanwhile, S2 computes

σ′′k =
N∑
i=1

ω′′k · L′′i , (24)

L′′i = ISExp(−λ′′k · y′′i · Ck(x′′i )). (25)
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Fig. 3. Privacy-preserving Linear Addition of Weak Classifiers

Then, S1 and S2 can respectively update the shares of
weight vector by computing

w′k+1,i = SecInv(σ′k) · ω′k,i · L′i, (26)

and
w′′k+1,i = SecInv(σ′′k ) · ω′′k,i · L′′i . (27)

From the above four equations, the privacy-preserving
AdaBoost adopts the exponential function as its loss func-
tion. As shown in Fig.3, during the process of updating
the weight distribution, what AdaBoost concentrates on are
actually the samples that are not correctly recognized. The
weights of misclassified samples are successively increased
until they are be correctly classified. Oppositely, the weights
of correctly recognized sample are decreased.

5.2 Linear Addition of Weak Classifier
As shown in Fig.3, when the iterative training process of
AdaBoost is terminated, we simply use linear addition of
weak classifiers to get the final strong classifier. Before train-
ing termination, the weights of each samples are continually
updated according the classification result. The misclassified
samples are paid more concerns and their weights will be
increased per iteration. On the contrary, the weights for cor-
rectly classified ones will be decreased. And the termination
condition which can be threshold of accuracy or the number
iteration round is determined by the service provider P .
Locally, S1 and S2 respectively compute

O(x′) = sign(
∞∑
i=1

λ′i · Ci(x′i)), (28)

and

O(x′′) = sign(
∞∑
i=1

λ′′i · Ci(x′′i )). (29)

In Eq.28 and Eq.29, sign(·) is a demodulation function.
If the inputs is more than 0, sign(·) outputs 1, otherwise
outputs −1. By applying the secure comparison function,
the two edge servers can work together to compute

O(x′i) +O(x′′i ) = sign(xi)

=

{
1, if SecCmp(xi, 0) = 0 or 1
−1, if SecCmp(xi, 0) = −1

,
(30)

Thus, after operating all of the interactive protocols
about the AdaBoost training process, S1 and S2 take the

two secret shares O′ and O′′ of the strong classifier. If
the accuracy of the final classifier reaches the degree that
P requires, P is able to decrypt it by simply computing
O = O′ + O′′. And given the test dataset Q = {(u1, v1) =
(u′1+u

′′
1 , v
′
1+v

′′
1 ), , ..., (u

′
R+u′′R, v

′
R+v′′R)}, the test accuracy

can be obtained by calling S1 and S2 to compute:

AccuracyT =

∑R
i=1 I(vi − pi)

R
× 100%. (31)

Furthermore, the privacy-preserving AdaBoost is a uni-
versal ensemble learning model for most image recognition
task. Consequently, if necessary, the weak classifier in our
framework can be substituted by any other basic classifier,
like cart decision tree or Fisher linear discriminant without
influence of the privacy-preserving feature.

5.3 Extension for Multiclassification
The original AdaBoost is a binary classification model which
is not appropriate for some face recognition tasks. Therefore,
we also implement a variant of privacy-preserving Adboost
called AdaBoost.M1. The variant dose not change the influ-
ence of the weak classifier on final output, but does a little
adjustment for the weight update process.

Firstly, the impact actor λk becomes

λ′k = SecInv(1− e′k)− 1, (32)

and
λ′′k = SecInv(−e′′k). (33)

Then, since we can not know which kind of classification
should be biased in the multiclassification condition, wk,i is
increased by λk times for only the correct classifiers. And for
the error classifiers, wk,i stay the same values. S1 updates
the weight vector by computing

w′k+1,i = w′k,i · λ
1−I(y′i−p

′
k,i)

k . (34)

And S2 computes

w′′k+1,i = w′′k,i · λ
I(y′′i −p

′′
k,i)

k . (35)

Finally, the output also has a little changes. Set ξ ∈
{ξ1, ξ2, ...}, where ξ is the set of all possible classification
results. S1 and S2 have to respectively compute

O(x′) = argmax
ξ

(
∞∑
i=1

ISLog(SecInv(e′i)− 1) · I(y′ − ξ′)),

(36)
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and

O(x′′) = argmax
ξ

(
∞∑
i=1

ISLog(SecInv(e′′i )) · I(y′′ − ξ′′)).

(37)
By multiple invoking the secure comparison function,

we can get the classification result with maximum possibil-
ity, which is just the result of function argmaxξ(·).

6 THEORETICAL ANALYSIS OF POR
6.1 Correctness Analysis of POR

In the training process of POR, we preserve the iterative
approximation method to compute the nonlinear functions.
Therefore, the details of theoretical correctness analysis are
given to prove that the differences of outputs between POR
and the original AdaBoost learning model is negligible.

We first have to give Lemma 1 which has been proved
correct in our previous work.
Lemma 1. SecAdd, SecMul, SecInv, SecCmp, SecExp,
SecLog and the protocols made of the linear combination of them
are correct.
proof. The secure matching exponent protocol SME(·)
is based on the single-precision float-point type addition
which is a commonly used function in operating system. Its
outputs is actually another representation format of secret
shares. Consequently, it dose not introduce any errors into
our framework. Set the output of the secure exponential
function SecExp(·) be θ+ε, where θ is the real exponentiation
result and ε is the computation error close to zero. We have
the output of ISExp(·) = (θ+ ε) · eβ , where β is the integer
part of input. And the output can be also transformed into
ISExp(·) = θ · eβ + ε · eβ . It can be discovered that the
error of ISExp(·) is ε · eβ . If the iteration number is kept
large enough, the error can always maintain at a very low
degree, just like what we have done in the processor. Then,
by calling our secure format transformation protocol SME(·),
the original logarithm is converted into computing SecLog(·)
and one times secure addition. On the grounds of nature
of logarithm, the conversion can not introduce any errors.
Above all, the sub-protocols in Section.4 are proved to be
correct. And due to the fact that the interactive protocols of
POR are linear combinations of the sub-protocols, we can
guarantee that POR is correct and its error is also negligible.
�

6.2 Security Analysis of POR

Firstly, we give the definition of privacy in secure multi-
party computation as follows [23].
Definition 1. We say that a protocol π is secure if there exists
a probabilistic polynomial-time simulator S that can generate
a view for the adversary A in the real world and the view is
computationally indistinguishable from its real view.

Our proof of POR security is based the following three
lemmas.
Lemma 2 [23]. A protocol is perfectly simulatable if all its sub-
protocols are perfectly simulatable.
Lemma 3 [23]. If a random element r is uniformly distributed on
Zn and independent from any variable x ∈ Zn, then r±x is also
uniformly random and independent from x.

Lemma 4. SecAdd, SecMul, SecInv, SecCmp, SecExp,
SecLog and the protocols made of the linear combination of them
are secure.

Based on the above lemmas, we prove that the simulator
can generate a view of POR which is computational distin-
guishable from the real world view for the the adversary
A.

Theorem 1. The protocol SME is secure in the semi-honest
model.
proof. The view of SME for S1 is V iew1 =
{u1,m1,m

′
1,m

′′
1 ,m

′
2, e1, e2, e}. Since e1, e2 and e are ex-

ponents known by both of two edge servers, they can be
regarded as constant that do not influence security. Then,
mi and its splits can be expressed as the multiplication of
a constant and u1 whose result is two uniformly random
values. According to Lemma 3, the result of m′1 + m′2 is
still uniformly random. Consequently, V iew1 is simulatable
and it is unable to find an effective polynomial algorithm
to distinguish V iew1 and the simulated view for S1. In a
similar way, it can be prove that V iew2 is also simulatable
and computational distinguishable. �

Theorem 2. The protocol ISExp is secure in the semi-honest
model.
proof. For the protocol ISExp, the view of S1 is V iew1 =
{u1, ε1, v1, α1, β1, a, a1, b1, a2, p1, f1}, where u1 = α1 + β1.
According to the system model we set in Section 3, the edge
servers possess the ability to generate uniformly randoms.
Thus, a1, b1 and a2 are all uniformly randoms. Owing to the
fact that the intermediate values v1, p1 and output f1 are
results of SecExp and SecMul, they are also all uniformly
randoms on the basis of Lemma 4. As a consequence, V iew1

is simulatable and computationally indistinguishable from
the simulated view. In the same way, the simulator can also
generate a polynomial-time indistinguishable view for S2.
�

Theorem 3. The protocol ISLog is secure in the semi-honest
model.
proof. For the protocol ISLog, the view of S1 is V iew1 =
{u1, ε1, v1,m1, e}. From Lemma 4 and the proof of SME,
ISExp, we have got that v1, m1 are uniformly random val-
ues. ε1 and e are trivial constants. Thus, same as the security
proof of ISExp, we can prove that V iew1 and V iew2 are
simulatable and computationally indistinguishable. �

Theorem 4. The interactive protocols for the forward stagewise
process of POR is secure in the semi-honest model.
proof. In Section 5, we know that there are four interactive
sub-protocols for the forward stagewise algorithm in POR.
And the sub-protocols can be express as the polynomi-
als based on SecAdd, SecMul, SecInv, SecCmp, SME,
ISExp and ISLog, all of which have been proved to be
perfectly similatable. Consequently, according to Lemma 2,
we can recursively deduce that Theorem 4 does hold.

Theorem 5. The interactive protocol for the linear addition of
weak classifier is secure in the semi-honest model.
proof. The interactive protocol for the linear addition of
weak classifier is only based on SecAdd, SecMul and
SecCmp. Similar to the proof of Theorem 4, we can deduce
that Theorem 5 can also hold.
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7 EXPERIMENTS

In this section, we use experiments to prove the correctness
and efficiency of POR and its component protocol, ISExp(·)
and ISLog(·). To experiment the performance of POR for face
recognition, we adopt the data from the standard face recog-
nition evaluation database FERET [24]. For comparison with
the existing differential privacy based framework, we then
choose the same database and weak classifier with [25] for
experiments. The original data is encrypted and sent to the
two edge servers on a laptop with an Intel(R) Core(TM) i5-
7200 CPU @2.50GHz and 8.00GB of RAM. Two computers
equipped with an Intel(R) Core(TM) i5-7400 CPU @3.00GHz
and 8.00GB of RAM are deployed as the edge servers.

7.1 Performance of POR
Before the experiments, we first select 1000 face images
from FERET for the training of AdaBoost. Among them,
the training set includes 750 images and the remaining
is for test. Each type of their features is with respect to
an independent treshold based weak classifier. And every
feature of single image is stored in a 32-bits float, because
ciphertext of length ` = 32 is secure enough for most
applications. Under this condition, the size of weight vector
ω is set to 1 × 750. For efficiency and practicality, we also
deploy the NumPy library of Python to concurrently operate
the matrix computation. All of the following experiments
use the same configuration, except the one for comparison
with the differential privacy method.

Fig. 4. Computation errors of POR for different iterative numbers.

Fig. 5. Computation errors of POR for different ensemble weak classi-
fiers.

Since the interactive protocols of POR comprise secure
component functions implemented by iterative series, we
evaluate the computation errors of POR in different num-
bers of iteration round. It can be seen in Fig.4 that the orders
of computation error are almost linearly decreased with the
rise of iteration times. This is mainly determined by the

nature of Maclaurin Series and Newton-Raphson iterative
method. The computation error orders of the two methods
are both negatively correlated with the iteration times. And
they form the basis of our secure approximate functions.
Furthermore, we experiment whether the computation er-
rors of POR have obvious rise in the training process. Set
the iteration number of secure component functions be 8.
From Fig.5, it can be observed that the trend of computa-
tion errors is exactly ascending, but the rate of increase is
quite slow. After addition of about 2000 weak classifiers,
the computation error only got one order of magnitude
bigger, from 10−13 to 10−12. The phenomenon indicates
that the effect of iterative training process on computation
error is dramatically small and totally tolerable for most
applications.

TABLE 1
The influence of data representation type for computation error

Type single-precision double-precision

Reachable Accuracy 10−45 10−308

Moreover, the data representation format is just a variant
of the one used in modern computers and does not change
the real values of inputs. As long as the inputs and the
intermediate computation values are in the representable
range, the data representation type and SME(·) do not intro-
duce any extra error but influence the reachable accuracy as
illustrated in Table.1.

TABLE 2
Runtime and message size of POR for training set and test set

Overhead Runtime(s) Message Size(MB)

Training Dataset 249.243 93.16

Test Dataset 2.763 0.29

To prove the efficiency of POR, we further examine the
communication overhead of POR. As illustrated in the Table
2, with 100 weak classifiers which also means 100 times
iteration, POR only spend several minutes and no more
than one hundred millibyte communication load to finish
the training job. And due to fact that the test process do not
have to iterate but only respectively compute the test results
of each weak classifier, its runtime and communication load
are only about three seconds and hundreds of kilobytes,
which is much less than the training process. Diving to the
bottom of the secure functions, we can discover that their
overhead are mainly determined by the secure multiplica-
tion. Therefore, given the feature data size as 1× µ and the
overhead of SecMul(·) as τ , we theoretically obtain the time
complexity of POR as O(µ · τ), where τ is influenced by the
length of data `.

We then compare the computation error of training and
testing process with differential privacy (DP) method [25] as
shown in Fig.6 and Fig.7. For consistency, the decision tree is
chosen as weak classifier in the experiment. And the training
data is from a publicly accessible dataset published by the
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Fig. 6. Performance comparison with differential privacy based method
for training dataset.

Fig. 7. Performance comparison with differential privacy based method
for test dataset.

Federal Election Commission for classification of individual
economic level [26]. For simplicity, the abbreviation non-
p.p in Fig.6 and Fig.7 presents the original method without
privacy preserved and the p.p has the contrary meaning.
It can be discovered that POR dramatically outperform
the DP based method under privacy preserved condition.
Because of the introduction of Laplace noise, the data utility
of DP based method is obviously affected and the final
classification error even reaches almost 60%. Oppositely,
our framework only introduce negligible errors into the
computation of AdaBoost. Therefore, we can guarantee that
the final classification accuracy is the same as the original
AdaBoost ensemble result.

7.2 Performance of Secure Exponentiation and Loga-
rithm Functions

To overcome the input range limit of previous proposed
secure functions, we improve the algorithms of the secure
exponentiation and secure logarithm functions. Since the
two functions are the important components of POR, we
evaluate and compare their performance with the previ-
ously proposed functions by experiments. Specially, for
convenience of comparison, the numbers of iteration round
in the following are set to an identical value 20.

Fig.8 and Fig.9 illustrate the computation error variation
of ISExp(·), SecExp(·), ISLog(·) and SecLog(·) with different
order of inputs. In Fig.8, the computation error of ISExp(·)
remains negligible until the input closes to 50. Compared
to SecExp(·), the upward tendency of computation errors
for our method is much slower. And if the inputs are no
more than 1, ISExp(·) is able to reach the same precision
as SecExp(·). Moreover, when the input is large enough,
it can be found that the computation error can always

Fig. 8. Computation errors of ISExp and ISLog for different size of input.

Fig. 9. Computation errors of ISExp and ISLog for different size of input.

reach an intolerable value. The reason is that, according
to the correctness analysis in Section 6, the error grows
exponentially and is sure to get the predefined precision at
a very quick speed. The only way to solve this problem is to
increase the iterative times of the deployed series and delay
its appearance. And the phenomenon is also common in the
modern processor. Unlike ISExp(·), we do not have worry
about the error explosion problem for ISLog(·), because
no extra error is introduced by our algorithm compared
to SecLog(·). As shown in Fig.9, the computation error of
ISLog(·) is also much lower than SecLog(·), and can always
remain the same negligible order.

Fig. 10. Runtime of ISExp and SecExp for different length ` of the input.

For evaluation of the efficiency, we examine the runtime
and message size of ISExp(·) and SecExp(·) under different
length of ciphertext length `. As shown in Fig.10 and Fig.11,
both of the runtime and message size of ISExp(·) are a little
larger than SecExp(·). And the differences increase along
with the addition of `. This is because two extra secure
multiplications are introduced for improvement and the
overhead of secure multiplication is strongly influenced by
the data length. Meanwhile, we can also see that the extra
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Fig. 11. Communication message sizes of ISExp and SecExp for differ-
ent length ` of the input.

overhead is rather small and totally acceptable compared to
the benefits it provides.

Fig. 12. Runtime of ISLog and SecLog for different length ` of the input.

Fig. 13. Communication message sizes of ISLog and SecLog for differ-
ent length ` of the input.

Furthermore, we examine the runtime and message size
of ISLog(·) and SecLog(·). To make the comparison clearer,
we utilize bar charts to show the experiment results in
Fig.12 and Fig.13. As mentioned before, the extra overhead
introduced by ISLog(·) is just some simple local computation
which can be finished in no more than one millisecond.
Therefore, the differences of overhead between the two
functions are almost indistinguishable.

8 RELATED WORK

Face recognition has always been a hot-spot problem in
the image manipulation field. Especially in these years, it
is increasingly appearing in our daily life. AdaBoost is one
of the most outperformed and robust classifier applied in
the machine learning based human face recognition [27].

It can ensemble several weak classifiers to form a stronger
one. Abdelhameed Ibrahim et al. [28] deploy the AdaBoost
classifier to recognize the human thermal faces and reach an
incredible accuracy 99%. On basis of the nature of AdaBoost,
most of its face recognition architectures are hierarchical and
robust [29]. The research of Li et al. [30] illustrate that the
principal component analysis (PCA) + AdaBoost method
for face recognition is one of the most robust architecture
for low resolution images. In addition, there are many other
implementation of face recognition, such as the convolu-
tional neural networks [31] and the semi-supervised sparse
representation [32] and the trunk-branch ensemble convo-
lutional neural networks (TBE-CNN). And the TBE-CNN
also deploy the ensemble method to extract the features of
complementary information and patches images of the facial
components for the convolutional neural networks.

In the last decade, the privacy of face recognition ar-
rest the attention of researchers and the public with the
popularization of automatic face recognition. Until 2014,
the privacy-preserving recognition algorithms can be clas-
sified into two types Eigenfaces and SciFi [33]. For Eigen-
faces, Erkin et al. [34] utilize the multiparty computation
to implement a privacy-preserving Eigenfaces recognition
on conventional hardware. Sadeghi et al. [35] also present
an efficient privacy-preserving face recognition scheme with
the HE and Yao’s garbled circuits (GC) based cryptographic
building blocks. Later, Schneider et al. [36] succeed to opti-
mize the Goldreich-Micali-Wigderson (GMW) protocols and
low the depth of GC to improve the efficient of privacy-
preserving face recognition. As for SciFi, in 2010, Osadchy
et al. [37] first introduce the system SciFi for the privacy-
preserving computation of face recognition. It is specific
for avoiding the privacy leakage of surveillance in public
places. And Bringer et al. [38] discover that the GC based
method outperform the Hamming distance based SCiFi. In
recent years, more advanced techniques are deployed to
improve the performance of privacy-preserving face recog-
nition. To protect the privacy of outsourced computation of
face recognition in cloud server, Xiang et al. [39] propose
the an additively homomorphic Paillier encryption scheme.
Zhuang et al. [40] propose FRiPAL with dimensionality re-
duction techniques. Moreover, Mao et al. [41] combine deep
learning and edge computing for privacy-preserving face
recognition. Recently, the differential privacy technology is
also deployed to protect the privacy of the image features.
Othman et al. [42] use the differential privacy to disturb the
face images for hiding the age, gender and race information.
Wang et al. [43] utilize the differential privacy method to add
pixelization on images for securly sharing them.

9 CONCLUSION

In this paper, we propose an additive secret sharing and
edge computing based lightweight framework for protect-
ing the privacy in face recognition. We first improve the
existing secure exponentiation and logarithm functions by
getting rid of their limit on input range. Then, we use
them to design a series of interactive protocols for privacy-
preserving ensemble classification of AdaBoost. These pro-
tocols make it possible that all of the image features are
computed under encrypted status between the two edge
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servers.Experiments prove that our framework has more
accuracy and higher efficiency than the existing differential
privacy based framework.
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