
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

11-2019

Agile earth observation satellite scheduling: An orienteering Agile earth observation satellite scheduling: An orienteering

problem with time-dependent profits and travel times problem with time-dependent profits and travel times

Guansheng PENG

Reginald DEWIL

Cédric VERBEECK

Aldy GUNAWAN
Singapore Management University, aldygunawan@smu.edu.sg

Lining XING

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Programming Languages and Compilers Commons, and the Theory and Algorithms

Commons

Citation Citation
PENG, Guansheng; DEWIL, Reginald; VERBEECK, Cédric; GUNAWAN, Aldy; XING, Lining; and
VANSTEENWEGEN, Pieter. Agile earth observation satellite scheduling: An orienteering problem with
time-dependent profits and travel times. (2019). Computers and Operations Research. 111, 84-98.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4403

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4403&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4403&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4403&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4403&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Guansheng PENG, Reginald DEWIL, Cédric VERBEECK, Aldy GUNAWAN, Lining XING, and Pieter
VANSTEENWEGEN

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/4403

https://ink.library.smu.edu.sg/sis_research/4403

Computers and Operations Research 111 (2019) 84–98

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

Agile earth observation satellite scheduling: An orienteering problem

with time-dependent profits and travel times

Guansheng Peng
a , b , Reginald Dewil c , Cédric Verbeeck

d , Aldy Gunawan
e , Lining Xing

a , ∗,
Pieter Vansteenwegen

b

a College of System Engineering, National University of Defense Technology, Changsha, 410073, China
b KU Leuven Mobility Research Center - CIB, Leuven, 3001, Belgium
c VU Amsterdam, School of Business and Economics, 1081 HV Amsterdam, the Netherlands
d EDHEC Business School, 24 Avenue Gustave Delory, 59057 Roubaix, France
e School of Information Systems, Singapore Management University, 178902 Singapore

a r t i c l e i n f o

Article history:
Received 14 November 2018
Revised 28 March 2019
Accepted 29 May 2019
Available online 15 June 2019

Keywords:
Agile satellite scheduling
Time-dependent transition time
Time-dependent profits
Iterated local search

a b s t r a c t

The scheduling problem of an Agile Earth Observation Satellite is to schedule a subset of weighted obser-

vation tasks with each a specific “profit” in order to maximize the total collected profit, under its opera-

tional constraints. The “time-dependent transition time” and the “time-dependent profit” are two crucial

features of this problem. The former relates to the fact that each pair of consecutive tasks requires a tran-

sition time to maneuver the look angle of the camera from the previous task to the next task. The latter

follows from the fact that a different look angle of an observation leads to a different image quality, i.e.,

the collected profit. Since the specific look angle of a task depends on its observation start time, both the

transition time and the profit are “time-dependent”. We present a concept of “minimal transition time”

to displace the transition time. On this basis, a bidirectional dynamic programming based iterated local

search (BDP-ILS) algorithm is proposed, equipped with an insert procedure that avoids a full feasibility

check. The bidirectional dynamic programming approach is integrated into the algorithm in order to ef-

ficiently evaluate a solution or an insert move when time-dependent profits are considered. Two types

of experiments (with and without the time-dependent profits) are designed to evaluate the performance.

The results without time-dependent profits show that our algorithm outperforms the state of the art

in terms of solution quality and computational time. When time-dependent profits are considered, our

BDP-ILS algorithm performs very well on smaller instances with a known optimal solution and on larger

instances compared to four reference algorithms.

© 2019 Published by Elsevier Ltd.

1. Introduction

The mission of an Earth Observation Satellite (EOS) is to ac-

quire images of targets on the Earth surface, in response to obser-

vation requests. Each target is associated with a profit that can be

collected once the target is successfully scheduled. The scheduling

problem of an EOS is to select and schedule a subset of weighted

imaging tasks under the operational constraints in order to maxi-

mize the collected profit. EOSs have been extensively employed in

earth resources exploration, natural disaster surveillance, and mili-

tary reconnaissance.

∗ Corresponding author.

E-mail address: milan.jirasek@fsv.cvut.cz (L. Xing).

The Agile Earth Observation Satellite (AEOS) is a new generation

of EOS, e.g., the well-known PLEIADES satellite in France. It can be

mobile on three axes (roll, pitch and yaw), thus allowing maneu-

verability for image acquisitions as well as for transitions between

observations. The exclusive mobility of pitching axes enables the

agile satellite to observe a target before or after its upright pass

(called the “nadir point”). As illustrated in Fig. 1 , the satellite ob-

serves the target at three different observation start times, each

with a different pitch angle during a specific period, called the Vis-

ible Time Window (VTW). An observation is defined as the satellite

observing a target at a specific moment. The Observation Window

(OW) is the time duration required for an observation. Due to the

satellites’ agility, the VTW is much longer than the OW for each

observation, and the OW should be determined within the VTW.

On the one hand, this potentially increases the effectiveness of the

whole system, allowing the satellite to observe more targets in a

https://doi.org/10.1016/j.cor.2019.05.030
0305-0548/© 2019 Published by Elsevier Ltd.

Published in Computers and Operations Research,
Vol 111, November 2019, Pages 84-98
DOI 10.1016/j.cor.2019.05.030

https://doi.org/10.1016/j.cor.2019.05.030
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2019.05.030&domain=pdf
mailto:milan.jirasek@fsv.cvut.cz
https://doi.org/10.1016/j.cor.2019.05.030

G. Peng, R. Dewil and C. Verbeeck et al. / Computers and Operations Research 111 (2019) 84–98 85

Fig. 1. An agile satellite images a target at different observation start times on orbit
1.

given period. On the other hand, the scheduling of an AEOS be-

comes more difficult since the search space is considerably larger.

Furthermore, “time-dependent transition time” and “time-

dependent profits” are two crucial features in AEOS scheduling.

Firstly, for each pair of consecutive observations, a transition time

is required to change the look angles (roll, pitch, and yaw) of the

satellite from the previous task to the next task. Therefore, the

time between two consecutive observations should be longer than

this transition time. The length of the transition time is determined

by the angular changes on these three axes, but only the pitch an-

gle depends on the observation start time, as can be seen in Fig. 1 .

Consequently, for each pair of consecutive observations, their tran-

sition time is time-dependent. Secondly, the collected profit also

depends on the observation start time, because the images taken

at different pitch angles have different image quality (profit). Un-

doubtedly, these two “time-dependent” features significantly in-

crease the complexity of the scheduling.

Overall, this research solves the AEOS scheduling problem with

time-dependent transition time and time-dependent profits. This

problem can be modeled as the Orienteering Problem (OP) with

time-dependent travel times, time-dependent profits and time

windows, since only a subset of candidate vertices should be se-

lected and sequenced, in order to maximize the total collected

profit within a limited available time. Inspired by the existing

methods for the OP (Vansteenwegen et al., 2009; Verbeeck et al.,

2014), we present an efficient heuristic algorithm based on Iter-

ated Local Search (ILS) and Bidirectional Dynamic Programming

(BDP). The ILS combines a remove procedure and an insert pro-

cedure which avoids a full feasibility check of the transition time

constraint. The BDP approach is integrated into the ILS in order

to accurately and efficiently evaluate the solution. The first agile

satellite of China, the AS-01 satellite, is considered in our work.

Note that this agile satellite is not as agile as PLEIADES since its

image is produced by the movement of the satellite on its track.

Therefore, its look angles are fixed when imaging a target.

In the next section, a literature overview is presented and

in Section 3 , a rigorous problem description and a mathematical

model are given. In Section 4 the heuristic algorithm is described

in detail and in Section 5 , the experimental results are presented.

Section 6 provides our conclusions and further work.

2. Literature review

The scheduling of AEOS has been proven to be NP-hard

(Lemaître et al., 2002). Very limited research has been conducted

on the AEOS scheduling, probably due to the challenging com-

plexity. Gabrel et al. (1997) study the scheduling problem for a

semi-agile satellite which is weakly mobile on pitch axes and roll

axes. Several algorithms are proposed for this problem, based on

graph-theoretic concepts. Lemaître et al. (2002) provide a compre-

hensive description of the early research on the AEOS scheduling.

Four algorithms (a greedy algorithm, a dynamic programming

algorithm, a constraint programming algorithm and a local search

algorithm) are proposed to solve a simplified AEOS scheduling

problem. Cordeau and Laporte (2005) present a tabu search

heuristic which is derived from the algorithm developed for the

Vehicle Routing Problem with Time Windows (VRPTW). In order

to obtain better solutions, they relax the time window constraint

to allow a mixture of feasible and infeasible solutions during the

search. Habet et al. (2010) study the AEOS scheduling problem

with fixed transition times. They propose a tabu search algorithm

based on consistent and saturated configurations to optimize a

convex evaluation function. A secondary objective that minimizes

the sum of the transition times is introduced. Pralet and Verfail-

lie (2013) consider the time-dependency of transition times and

define a so-called Time-dependent Simple Temporal Network to

model this constraint. Some techniques based on constraint prop-

agation are proposed to solve the model. Unfortunately, the above

mentioned techniques work only when a single orbit is considered.

In practice, however, each target can be observed during several

consecutive orbits for each day, and thus has more than one VTW.

Therefore, our problem considers scheduling during multiple or-

bits, since this is more realistic for the daily management of AEOS.

A few papers consider scheduling satellites with multiple or-

bits. Tangpattanakul et al. (2015) investigate the AEOS scheduling

problem with two objectives: maximizing the total profit and en-

suring fairness among users by minimizing the maximum profit

difference between users. In this study, as in ours, a single satellite

is considered. Bianchessi and Righini (2008) consider multiple or-

bits and multiple satellites. They work on the scheduling problem

of the COSMO-skyMed satellite constellation, where the acquisition

and the download of satellite images are considered simultane-

ously. A constructive algorithm with look-ahead and back-tracking

capabilities is developed in order to solve large-size instances in a

short time. Both studies do not consider the time-dependency of

transition times.

The only papers considering time-dependent transition times

are (Liu et al., 2017) and (He et al., 2018). Liu et al. (2017) de-

velop an Adaptive Large Neighborhood Search (ALNS) algorithm for

a single agile satellite. He et al. (2018) extend this ALNS algorithm

to schedule multiple satellites. In this ALNS, six removal operators

and three insertion operators are designed for the search, and a

fast insertion method is presented to confine the propagation of

the transition time changes, based on the “time slack” of each se-

lected task. According to the time slack, an extra task can easily

be inserted by shifting its neighboring tasks earlier or later. How-

ever, this method ignores the fact that the other tasks could also

be shifted, which may allow more insertions. Based on a modeling

analysis of the time-dependent transition time, we specifically de-

sign an insertion procedure in our heuristic, inspired by the work

on the Time-Dependent Orienteering Problem (TDOP) (Gunawan

et al., 2014; Verbeeck et al., 2014). Furthermore, in order to build

a linear mathematical model, Liu et al. (2017) simplify the transi-

tion time between two observations to a constant value. Still, this

86 G. Peng, R. Dewil and C. Verbeeck et al. / Computers and Operations Research 111 (2019) 84–98

simplified model cannot be solved by the commercial solver CPLEX

for instances involving more than 12 tasks. In this paper, we

present a better mixed integer linear model in which the time-

dependent transition times are considered and which can be

solved for instances with up to 100 tasks.

Some variants of the AEOS scheduling problem are discussed

in the literature. Liao and Yang (2007) developed an imaging order

scheduler for the FORMOSAT-2 satellite considering weather uncer-

tainty. Lagrangian relaxation and linear search techniques are pro-

posed to solve the problem. Grasset-Bourdel et al. (2011) worked

on the automatic planning of activities of a constellation of AEOSs.

The scheduling of observation missions and data downloads are si-

multaneously considered in their model. These studies focused on

some specific characteristics of the AEOS scheduling, which cannot

be compared with our work.

In addition to the time-dependent transition time, the time-

dependent profit is another crucial feature in our problem. In prac-

tice, the commercial value of a satellite image is significantly in-

fluenced by its image quality which depends on the observation

start time. However, very few works on AEOS scheduling have

considered the image quality and its time-dependency. Wolfe and

Sorensen (20 0 0) define the “window constrained packing problem”

to model the AEOS scheduling problem, with a particular quality

function associated with each VTW. It differs from our work by

the fact that the image quality not only depends on the observa-

tion start time, but also depends on the observation duration. In

other words, observations have no fixed duration, and preference is

given to the observations with longer duration. Moreover, the tran-

sition time is not considered. Liu et al. (2017) have modeled it as a

user-imposed constraint. They assessed the image quality of an ob-

servation on a ten-level scale over its VTW, and the profit of each

observation can be awarded only if the minimum requirement is

satisfied. However, in their model, the image quality is irrelevant

to the scheduling, since the VTWs can be reduced beforehand to

only the part that guarantees enough quality.

The “time-dependent profit” feature has been studied in the

variants of other combinatorial optimization problem, such as Ve-

hicle Routing Problem with Time-Dependent Rewards (VRP-TDR)

(Yi, 2003), Orienteering Problem with Time-Dependent Rewards

(OP-TDR) (Ekic et al., 2009; Erkut and Zhang, 1996). These prob-

lems arise from several real-life applications: blood transportation

to Red Cross Centers (Yi, 2003), the repairing maintenance system

(Afsar and Labadie, 2013) and the disaster relief chain (Ekici and

Retharekar, 2013). Several exact and heuristic methods have been

proposed to tackle the problem. However, in both of the problems,

the profit of each vertex monotonously decreases over time, mean-

ing that each visit is naturally scheduled as early as possible for a

maximal collected profit. Our problem considers time-dependent

profit with a non-monotonic function according to the practical

need of satellite images. To the best of our knowledge, this feature

has not been studied in the literature.

3. Problem description

In the daily management of an agile satellite, requests (targets

with each a given geographic position and profit) from different

users are collected. A single orbit is defined as the time interval

that the satellite flies in the sunshine when circling the earth once

(normally 45 min). The scheduling horizon (one day) is split into

multiple orbits according to the prediction of the satellite orbit tra-

jectory. Based on the visibility analysis, for each target, its VTWs

and the look angles (roll, pitch and yaw) per second during its

VTWs are calculated beforehand. Thus, each target is modeled by

multiple tasks, one in each orbit when the target can be observed.

Each task for a given target is defined by its VTW and its time de-

pendent profit.

3.1. Assumptions

In practice, scheduling an AEOS is rather complicated due to

the many constraints and user requirements. Therefore, a number

of assumptions are made in order to simplify the problem, ignoring

some non-significant constraints.

1) Only spot targets that can be observed in one pass are con-

sidered in our model. Polygon targets and stereo tasks are not con-

sidered in this study.

2) The limitation of energy on board is not taken into account.

Due to the development of new technology, the solar panel can

provide enough power for the satellite.

3) The scheduling of downloading images and the on-board

memory constraint are not considered because they are not the

focus of our study. More importantly, our work is developed based

on the previous work by Liu et al. (2017) . Despite the presence of

the on-board memory constraint in their model, it is not consid-

ered in their algorithm and experiments. Therefore, in order to en-

sure a direct comparison, we ignore the limitation of the on-board

memory, as well as the scheduling of downloading data.

3.2. Variables

As the input of the AEOS scheduling problem, a set of possi-

ble targets is required, denoted by T = { 1 , . . . , N} , where N is the

number of targets to be scheduled. For each target I ∈ T , we define:

• P I : the profit of target I ;
• d I : the duration of observing target I ;
• b k

I : the binary parameter which equals 1 only if target I has a

visible time window during orbit k , otherwise b k
I = 0 ;

Each target I can be divided into multiple tasks i k (k ∈ O), where

O is the set of orbits and k is the orbit index. Each task i k refers

to a visible time window [st k
i , et k

i] , where st k
i and et k

i represent the

start and the end time, respectively. When target I is scheduled on

task i k with its observation start time h k
i (st k

i < h k
i < et k

i) , an actual

profit p k
i (h k

i) is collected. The maximum profit p k
i (h k

i) is equal to

its corresponding target profit P I . The duration d k
i of task i k is equal

to the duration of its corresponding target I . For each pair of con-

secutive tasks i k and j k , a transition time trans k
i j (h k

i , h
k
j) is defined,

depending on their observation start times h k
i and h k

j .

To facilitate the discussion of the model, we drop the super-

script k when discussing the scheduling during orbit k if this does

not provoke ambiguity.

3.3. Minimal transition time

The time-dependent transition time is similar to the time-

dependent travel time in the Time-Dependent Vehicle Routing

Problem (TDVRP) (Malandraki and Daskin, 1992) or the Time-

Dependent Orienteering Problem (TDOP) (Verbeeck et al., 2017).

The major difference is that in the TDVRP and TDOP, the travel

time only depends on the departure time of the previous vertex.

However, the transition time in AEOS scheduling depends on both

the observation start times of the two consecutive tasks. Fig. 2

gives an example of four different transitions between the obser-

vations of target A and target B. The four satellite icons represent

four observations with different observation start times when the

satellite is moving on its track. The former two are the observa-

tions of target A with their pitch angles π1
A , π

2
A (dotted arrow),

and the latter two are the observations of target B with π1
B , π

2
B

(solid arrow). The total change of the look angles are calculated

by �g = | �γ | + | �π | + | �ψ | , where �γ and �ψ represent the

change of the roll angle and the yaw angle. The roll angle only de-

pends on the geographical locations of targets relative to the satel-

lite track. We assume �γ between target A and B equals 20 ◦ and

G. Peng, R. Dewil and C. Verbeeck et al. / Computers and Operations Research 111 (2019) 84–98 87

Fig. 2. Four different pairs of observations for target A and target B.

Fig. 3. The change of the transition time between task i and task j with different observation start times of task j .

is not time-dependent but constant. Since our AS-01 satellite is a

semi-agile satellite where the image is produced by the movement

of the satellite, | �ψ | can be approximated to zero. The transition

time between two consecutive observations is calculated based on

the following piecewise linear function:

trans i j =

⎧ ⎪ ⎪ ⎨

⎪ ⎪ ⎩

11 . 66 , �g ≤ 10

5 + �g/ v 1 , 10 < �g ≤ 30

10 + �g/ v 2 , 30 < �g ≤ 60

16 + �g/ v 3 , 60 < �g ≤ 90

22 + �g/ v 4 , �g > 90

, (1)

where v 1 , v 2 , v 3 , v 4 are four different angular transition veloci-

ties, which we consider as given, describing the mobility of the

satellite. For our AS-01 satellite, the angular velocity values are

v 1 = 1 . 5 ◦/s, v 2 = 2 ◦/s, v 3 = 2 . 5 ◦/s, v 4 = 3 ◦/s . As shown in Fig. 2 , the

larger the change of the pitch angle, the larger the transition time.

Consequently, the transition time is determined by the observation

start times of both tasks.

To simplify the transition time, we propose a concept of “mini-

mal transition time”. It represents the minimal required transition

time that allows the observation of the next task to happen as

early as possible when the ending time (or the starting time) of the

previous task is given. This concept exploits the AEOS property that

moving the camera is faster than moving the satellite, which is il-

lustrated in recent work (Pralet and Verfaillie, 2013). To intuitively

demonstrate it, Fig. 3 shows how the transition time changes with

different observation start times of the next task j when observ-

ing two consecutive tasks i and j . The white rectangle represents a

visible time window, and the colored rectangles represent the ob-

servation windows at different observation start times. We found

that given an ending time of the previous task i , the later the ob-

servation of the next task j starts, the larger the waiting time is.

The time interval TI (h i , h j) is the period between the observation

start times of the two tasks, and trans ij (h i , h j) is their transition

time. The waiting time is equal to the time interval TI (h i , h j) minus

its transition time trans ij (h i , h j) and the duration d k
i of task i . It can

be described as the following formula:

∀ h i ∈ [st i , et i] , ∀ h j , h
′
j ∈ [st j , et j] , h j ≤ h

′
j ⇒ (h j − trans i j (h i , h j))

≤ (h
′
j − trans i j (h i , h

′
j)) (2)

Based on this rule, the minimal transition time mintrans ij (h i) can

be defined as the transition time for which the waiting time is the

smallest. The corresponding observation start time of the next task

j is its earliest possible start time es j , given that the observation of

task j starts at h j . Any observation that starts later than es j always

satisfies the transition time constraint. The calculation process of

the earliest start time and the minimal transition time is defined

as EarliestStartTime ij (h i). The minimal transition time only depends

on the observation start time of the previous task, the same as

the time-dependent travel time in TDVRP and TDOP. Consequently,

some existing methods for the TDVRP or TDOP can be utilized for

reference (Gunawan et al., 2014; Verbeeck et al., 2017).

Similarly, the latest start time of the previous task can be cal-

culated if the observation start time of the next task is given. The

later the observation start time of the previous task is, the later

the transition finishes. This rule can be expressed as follows:

∀ h j ∈ [st j , et j] , ∀ h i , h
′
i ∈ [st i , et i] , h i ≤ h

′
i ⇒ (h i + trans i j (h i , h j))

≤ (h
′
i + trans i j (h

′
i , h j)) , (3)

where h i and h
′
i represent two observation start times of the pre-

vious task i . The calculation of the latest start time is defined as

LatestStartTime ij (h j).

88 G. Peng, R. Dewil and C. Verbeeck et al. / Computers and Operations Research 111 (2019) 84–98

In this work, since the input data of look angles for each VTW

is given in a table look-up fashion per second, the minimal transi-

tion times are also calculated in discrete form. In order to avoid

duplicate calculations of EarliestStartTime () and LatestStartTime (),

we pre-calculate the minimal transition times between each pair

of candidate tasks for each second during their VTWs. This pro-

cess is based on a dichotomy algorithm and will be introduced in

Section 4.4 .

3.4. Time-dependent profit

In practice, an AEOS should deliver high-quality satellite images

in order to satisfy requirements for image recognition, target de-

tection and so on. The best image quality is obtained at the nadir

point where the satellite observes a target directly below and its

pitch angle is equal to zero. The larger the absolute value of the

pitch angle, the lower the image quality. The nadir point is nor-

mally in the middle of a complete VTW. Both edges of a VTW

have the largest absolute value of the pitch angle and the lowest

profit. Hence, the collected profit of a task depends on its obser-

vation start time. The “time-dependent profit” is a crucial property

of our scheduling problem.

Since the image quality and the absolute value of the pitch an-

gle are negatively correlated, the profit of a task executed at mo-

ment h i is given by the equation below:

p i (h i) = P I ∗ (1 − | π(h i) |
90

) ,

where π (h i) is the pitch angle when scheduling task i at moment

h i , and P I is its corresponding target profit. According to this equa-

tion, the whole target profit can be collected when the pitch an-

gle of an observation is equal to 0, while only half of the target

profit can be collected at the edge of the VTW. In order to address

the time-dependent profit, a trade-off should be made between

scheduling more tasks and obtaining better observation start times

of the scheduled tasks.

3.5. Mixed integer programming model

In this section, we formulate the AEOS scheduling problem as a

mixed integer programming (MIP) model. In this model, three sets

of decision variables are defined:

x k
IJ : binary variable equal to 1 if target I and J are scheduled dur-

ing orbit k and J is scheduled immediately after I , and 0 otherwise.

Two virtual targets S and E are added to the solution as the source

target and end target, respectively.

y k
I : binary variable equal to 1 if target I is scheduled during or-

bit k (with task i k), and 0 otherwise.

h k
i : the observation start time of task i k .

Based on the statements and assumptions above, the mixed in-

teger programming model can be formulated as follows:

Maximize
∑

I∈ T

∑

k ∈ O
p k i (h k i) . (4)

∑

k ∈ O
y k I ≤ 1 , ∀ I ∈ T (5)

∑

J∈ T ∪{ E}
J
 = I

x k IJ =
∑

J∈ T ∪{ S}
J
 = I

x k JI = y k I , ∀ I ∈ T , k ∈ O (6)

∑

J∈ T ∪{ E}
x k SJ = 1 , ∀ k ∈ O (7)

∑

J∈ T ∪{ S}
x k JE = 1 , ∀ k ∈ O (8)

h k i + d k i + mintrans k i j (h k i) − h k j ≤ M(1 − x k IJ) , ∀ I, J ∈ T , k ∈ O (9)

y k I ≤ b k I , ∀ I ∈ T , k ∈ O (10)

st k i ≤ h k i ≤ et k i , ∀ I ∈ T , k ∈ O (11)

p k i (h k i) ≤ P I y
k
I , ∀ I ∈ T , k ∈ O (12)

x k IJ ∈ { 0 , 1 } , y k I ∈ { 0 , 1 } , ∀ I, J ∈ T ∪ { S, E} , k ∈ O (13)

The objective function (4) maximizes the total selected profit. Con-

straints (5) state that each target I can be observed during at most

one orbit. Constraints (6) are the flow balance constraints that en-

sure that the number of predecessors is equal to the number of

successors for each task in the solution. Constraints (7) and (8) ex-

press that for each orbit, the task sequence starts at virtual tar-

get S and ends at virtual target E . Constraints (9) indicates that

every two successive observations during the same orbit must sat-

isfy the required transition time limitation. Constraints (10) enforce

that each target can only be scheduled during an orbit where there

is a VTW for the target. Constraint (11) and (12) restrict the start

time of a task to its visible time window. The domains of decision

variables are defined in constraints (13) .

This mathematical model cannot be directly solved by CPLEX

due to the non-linear transition time constraints (9) and the

non-linear objective function (4) . The transition time between

each pair of tasks is calculated based on the data of look angles

per second during their VTWs which are given in a table look-up

fashion and cannot be directly passed to the solver. In order to

solve this problem, we build a CPLEX model where each moment

during a VTW is regarded as a vertex with each a specific profit.

Each task is now divided into multiple vertices. For example, given

a time step of 5 s for a VTW of 5 min results in 60 vertices. For

each pair of tasks, directed arcs are constructed among all their

vertices for which the transition time constraint is satisfied. So,

between two tasks with a VTW of 5 min, up to (60 ∗60 =)3600

directed arcs can be constructed. Consequently, the scheduling

during each orbit can be modeled by a weighted network model in

which an optimal sequence of vertices with the highest collected

profits should be found. Compared to the simplified MILP model

built by Liu et al. (2017) , our alternative MILP model retains the

time-dependency for the transition time constraint, which is more

practical. However, since each task is replaced by a high number of

vertices, of which many are connected by an arc to many vertices

of other tasks, the size of this network grows exponentially. There-

fore, this alternative MILP model can only be solved to optimality

for smaller instances, as will be illustrated in Section 5.3 .

4. Bidirectional dynamic programming based iterated local

search heuristic

Previous studies proved that the AEOS scheduling problem

with time-dependent transition time is NP-hard, which means it

is unlikely to find the optimal solution within polynomial time

(Lemaître et al., 2002). Moreover, the “time-dependent profit” char-

acteristic considerably enlarges the solution space since not only

the number of scheduled tasks but also the exact times of per-

forming these tasks determine the solution quality.

In this paper, a Bidirectional Dynamic Programming based Iter-

ated Local Search (BDP-ILS) algorithm is developed to tackle the

problem. The choice for this ILS framework is motivated by the

fact that, generally, a very complex problem requires a fast and

G. Peng, R. Dewil and C. Verbeeck et al. / Computers and Operations Research 111 (2019) 84–98 89

Fig. 4. Evaluation of a solution with time-dependent profits.

straightforward solution framework. Moreover, ILS has been imple-

mented successfully before to deal with variants of the orienteer-

ing problem and problems with time windows (Lourenço et al.,

2003; Stützle, 1999; Vansteenwegen et al., 2009). Our algorithm

combines an insert procedure for intensification and a remove pro-

cedure for diversification. The insert procedure is designed based

on several auxiliary features to address the time-dependent transi-

tion time and the visible time window constraints. A Bidirectional

Dynamic Programming (BDP) approach is presented and incorpo-

rated into the insert procedure to efficiently evaluate each insert

move.

The remainder of this section is organized as follows. First, the

auxiliary features that need to be tracked during the search are de-

fined in Section 4.1 , and the auxiliary functions that calculate these

features are presented in Section 4.2 . The framework of BDP-ILS is

explained in Section 4.3 . A pre-processing method is described in

Section 4.4 . Then, Section 4.5 and Section 4.6 discuss the insert

procedure and the remove procedure, respectively.

4.1. Auxiliary features

In order to solve this problem efficiently, we introduce four

auxiliary features that should be kept track of during the search:

the earliest start time, the latest start time, the forward accumu-

lated profit and the backward accumulated profit. In our problem,

a solution comprises several task sequences, each of which is the

scheduled sequence of selected tasks during an orbit.

Firstly, for each task i in a sequence, we record its earliest start

time es i and its latest start time ls i within the sequence when

considering the visible time window constraint and the transition

time constraint (defined in Section 3.3). In this way, a full feasibil-

ity check can be avoided for each possible insertion by only com-

paring the earliest start time and latest start time of the inserted

task. Thus, the computational time can be drastically reduced.

These two features can be directedly obtained based on the pre-

calculation results of minimal transition times (see Section 4.4).

Secondly, for each possible observation start time h i of task i

during [es i , ls i], we define its forward accumulated profit p
fa
i (h i)

and its backward accumulated profit p ba
i (h i) . The forward accumu-

lated profit p
fa
i (h i) represents the maximal collected profit from

the beginning of the sequence up to and including task i at mo-

ment h i (including the profit of task i). It can be expressed as

p fa
i (h i) = max { p fa

j (h j) + p i (h i) , ∀ h j satis f ies transition

const raint } , (14)

where task t j immediately precedes task i in the sequence, and h j
can be any possible observation start time that satisfies the transi-

tion time constraint while observing task i at h i .

Similarly, the backward accumulated profit p ba
i (h i) represents

the maximal profit that can be collected in the sequence after ob-

serving task i at moment h i . The backward accumulated profit is

calculated by:

p ba
i (h i) = max { p ba

j (h j) + p j (h j) , ∀ h j satis f ies transition

const raint } , (15)

where task t j immediately succeeds task i in the sequence, and h j
is its any possible observation start time that satisfies the transi-

tion time constraint after observing task i at h i .

The aim of tracking the forward and backward accumulated

profits is to apply a dynamic programming approach to a solution.

As a result of this method, the best observation start times of each

selected task in the sequence can be determined in order to obtain

a maximal collected profit. The functions that calculate these two

auxiliary features are defined in the next subsection.

4.2. Auxiliary functions

In this section, we present two auxiliary functions to calcu-

late the forward and backward accumulated profits efficiently: For-

wardRecursion () and BackwardRecursion (). Since the profit of a task

depends on its observation start time, an evaluation of a solution

is required to obtain the best observation start time of each task

for a maximal collected profit. Given the earliest start time and

the latest start time of each task in the sequence, a Bidirectional

Dynamic Programming (BDP) approach is introduced to optimize

their observation start times and to evaluate the solution, as shown

in Fig. 4 .

In Fig. 4 , the time span [es i , ls i] of each task i is evenly dis-

cretized into a sequence of moments { h i 1 , . . . , h i 2 , . . . , h iR } by us-

ing a time step T step that specifies a discrete time resolution. The

profit of task i at moment h ir is denoted by p i (h ir). Then the se-

quence of selected tasks can be expressed as a time labeled graph,

in which each vertex v ir represents an observation of task i at mo-

ment h ir , and the directed edges represent the possible transitions

between vertices, given the visible time window constraints. The

problem is equivalent to finding a maximal profit path that starts

from the first task and ends at the last task in the sequence. The

BDP calculates the forward accumulated profit and the backward

accumulated profit for each vertex in the graph by recursively us-

ing Eqs. (14) and (15) from two opposite directions.

Based on this approach, a full evaluation of a solution and a

fast evaluation of an insertion can be processed. The full evaluation

calculates these two auxiliary features for a sequence of tasks from

90 G. Peng, R. Dewil and C. Verbeeck et al. / Computers and Operations Research 111 (2019) 84–98

scratch. In this way, at each task, the maximum sum of the forward

and backward accumulated profits equal the maximum total profit

that this sequence of tasks can feasibly achieve. The fast evaluation

of an insertion only calculates these two features of the inserted

task based on its neighboring tasks, and, consequently, can accu-

rately calculate the impact on the total objective function value.

Algorithm 1 shows the pseudo-code of the full evaluation.

Algorithm 1 Bidirectional Dynamic Programming approach.

Input: S c : Current solution;

Output: P S : Total collected profit of solution S c ;

for each orbit k in solution S c do

Find the task sequence { 1 , . . . , n } during orbit k ;

i ← 1 ;

while i ! = n do

ForwardRecursion(i , (i + 1));//calculate forward accumu-

lated profit

i ← i + 1 ;

end while

while i ! = 1 do

BackwardRecursion((i − 1) , i);//calculate backward accu-

mulated profit

i ← i − 1 ;

end while

for each task i in the sequence { 1 , . . . , n } do

Find the vertex v ir ∗ with the highest value of p
fa
i (h ir ∗) +

p ba
i (h ir ∗) ;

h i ← h ir ∗ , p i ← p i (h ir ∗) ;//determine its observation start

time and its collected profit

end for

Choose any task i from { 1 , . . . , n } ;
p { 1 , ... ,n } ← p

fa
i (h ir ∗) + p ba

i (h ir ∗) ; get the total collected profit

of task sequence { 1 , . . . , n }
P S ← P S + p { 1 , ... ,n } ;

end for

Briefly, for each orbit k of the current solution S c , a task sequence

{ 1 k , . . . , n k } is used to find out its maximal profit p { 1 k , ... ,n k } , i.e.,

to optimize the observation start times and the collected profit

for each task in the sequence. Firstly, we recursively calculate the

forward accumulated profit of each vertex from the first task 1 k

to the last task n k . Secondly, the backward accumulated profit of

each vertex can also be calculated from the end to the start. For-

wardRecursion (i, j) and BackwardRecursion (i, j) are defined as the

recursion processes from these two opposite directions, respec-

tively (displayed in Algorithms 2 and 3). After the recursion steps,

the best observation start time and the profit of each task are de-

termined by the vertex with the highest sum of its forward accu-

mulated profit and its backward accumulated profit. This sum is

the total collected profit of the task sequence. The total collected

profit of the current solution S c is the sum of the total collected

profits of all the sequences of tasks during the different orbits.

Algorithm 2 updates the forward accumulated profit from the

previous task i to the next task j . As mentioned above, building an

edge from a vertex v ir of task i to a vertex v jr ′ of task j represents

a possible transition starting from task i at moment h ir and end-

ing at task j at moment h jr ′ . After the pre-calculation of minimal

transition times, for each vertex v ir of task i , the earliest vertex

(moment) of task j can be directly obtained, denoted by a pointer

v ir .ear . Then, we use Eq. (14) to update the forward accumulated

profit for each vertex of the next task. This process requires to tra-

verse all the edges (possible transition) connecting the vertices of

task i and task j . Hence, the time complexity is O (R 2), where R is

the number of vertices each task has on average. However, not all

Algorithm 2 ForwardRecursion(i, j).

Input: { v i 1 , . . . , v iR } : a vertex sequence of the previous task i ;

{ v j1 , . . . , v jR ′ } : a vertex sequence of the next task j;

Define an index variable m ∈ { 1 , . . . , R } for the vertices of task i

and initialize it with 1;

v im .ear ← v j1 ;// Initialize the pointer of vertex v im
for each vertex v ir of task i do

if p
fa
i (h ir) > = p

fa
i (h im) then

Find the earliest vertex of task j that vertex v ir can reach,

and denote it by v ir .ear;

for each vertex v jr ′ from v im .ear to vertex v ir .ear do

p
fa
j (h jr ′) ← p

fa
i (h im) + p j (h jr ′) ;

m ← r;

end for

else

continue;

end if

end for

for each vertex v jr ′ from v im .ear to the last vertex v jR ′ do

p
fa
j (h jr ′) ← p

fa
i (h im) + p

fa
j (h jr ′) ;

end for

Algorithm 3 BackwardRecursion(i, j).

Input: { v i 1 , . . . , v iR } : a vertex sequence of the previous task i ;

{ v j1 , . . . , v jR ′ } : a vertex sequence of the next task j;

for each vertex v ir of task i do

p ba
i (h ir) ← p i (h ir) ;//Initialize its backward accumulated

profit to its profit

end for

Define an index variable v m ← R ′ ;
v jm .lat ← v iR ;
for each vertex v jr ′ of task j do

if p ba
j (h jr ′) + p j (h jr ′) > = p ba

j (h jm) + p j (h jm) then

Find the latest vertex of task t i that can access to vertex

v jr ′ , and denote it by v jr ′ .lat;

for each vertex v ir from v jr ′ .lat to vertex v jm . lat do

p ba
i (h ir) ← p ba

j (h jm) + p j (h jm) ;

m ← r ′ ;
end for

else

continue;

end if

end for

for vertex v ir from the first vertex v i 1 to v jm .lat do

p ba
i (h ir) ← p ba

j (h jm) + p j (h jm) ;

end for

of the edges need to be visited. An improved recursive method is

presented in Algorithm 2 to avoid unnecessary visits.

Specifically, we traverse all the vertices of task i from the earli-

est to the latest. We define a variable m as the subscript of the ver-

tex that owns the maximal forward accumulated profit until now.

If the current vertex v ir has a higher forward accumulated profit

than vertex v im , all the vertices of task j that can be reached by

v im will be updated by summing up the profit of that vertex and

the forward accumulated profit of v im , except the ones that start

later than vertex v ir .ear , i.e., the earliest vertex that vertex v ir can

reach. Then, the variable m is also updated to r . Otherwise, if the

forward accumulated profit of the current vertex is lower, the algo-

rithm will skip to the next vertex. This improved recursive method

ensures that each vertex of task j is visited only once during the

recursion. Thus, the time complexity is improved to O (R). Likewise,

G. Peng, R. Dewil and C. Verbeeck et al. / Computers and Operations Research 111 (2019) 84–98 91

Fig. 5. An example of the fast evaluation.

Algorithm 3 updates the backward accumulated profit from the

next task j to the previous task i . In order to explain this improved

recursive method in detail, a simple example in Fig. 5 is discussed

later.

In previous work with time-dependent profits, some heuristic

algorithms are proposed to address the time-dependency (Afsar

and Labadie, 2013; Ekici and Retharekar, 2013; Victoria et al., 2015).

In their algorithms, when inserting an extra task, all the tasks after

the insert position require an update of the observation start time

and the collected profit. The insertion is considered to be accept-

able only if the total collected profit increases. This method con-

sumes much time due to a large number of unacceptable insert

attempts. Moreover, in our problem, updating the observation start

times of all other tasks means recalculating their transition times,

which is also time-consuming.

Based on the forward recursion and the backward recursion,

a fast evaluation method for an insertion can be implemented.

Algorithm 4 shows the fast evaluation of an inserted task i be-

Algorithm 4 FastEvaluation(i, j, k).

Input: i : the inserted task;

j: the preceding task of i ;

k : the succeeding task fo i ;

Output: p: The total collected profit after the insertion of i ;

F or wardRecur sion (j, i) ;

BackwardRecursion (i, k) ;

Find the vertex v ir ∗ of task i with the highest value of

p
fa
i (h ir ∗) + p i (h ir ∗) ;

p ← p
fa
i (h ir ∗) + p i (h ir ∗) ;

tween its preceding task j and its succeeding task k . We assume

that the accumulated profits of task j and k in the solution are

given, and it is feasible to insert i between j and k . For each vertex

(moment) of the inserted task i during [es i , ls i], its forward accu-

mulated profit is calculated from task j , and its backward accumu-

lated profit is calculated from task k . Afterward, the sum of the

forward accumulated profit and the backward accumulated profit

are calculated for each vertex. The highest value of the sum is

equal to the total collected profit after the insertion. An insertion

that increases the total collected profit will be implemented. Due

to these accumulated profit functions, it is unnecessary to update

the observation starts times of all other tasks when evaluating an

insertion. This drastically reduces the computational time.

By way of illustration, a small example of the fast evaluation

and the improved recursive method is discussed in Fig. 5 . Task 2

is inserted between task 1 and task 3. The circles represent differ-

ent observation start times of a task, and the number in the circle

is its corresponding profit. The directed edges between every two

consecutive tasks represent the possible transitions among the ver-

tices. By using the improved version, only some of the edges need

to be considered, indicated by solid arrows. The rest of the edges,

indicated by dotted arrows, can be omitted. In this example, for

each vertex of task 2, its forward accumulated profit is calculated

from task 1 by ForwardRecursion (), and its backward accumulated

profit is calculated from task 3 by BackwardRecursion ().

For the forward recursion, since v 12 has a larger profit than v 11 ,

the forward accumulated profit of v 21 is updated by p
fa
2 (h 21) =

p
fa
2 (h 11) + p 2 (h 21) = 1 + 1 = 2 . Afterwards, since the profit of v 13

is lower than that of v 12 , there is no need to visit the edges con-

nected to v 13 . For the rest of the vertices of task 2, their forward

accumulated profits are all updated based on the forward accumu-

lated profit of vertex v 12 . The backward accumulated profits of task

2 can also be calculated similarly, illustrated in BackwardRecur-

sion (). Finally, the values of the forward and backward accumulated

profits and their sums are displayed in the table. The total col-

lected profit of this task sequence {1, 2, 3} is the maximum value

of these sums (p { 1 , 2 , 3 } = 7), where task 2 is inserted and observed

at vertex v 22 . The observation start times of other tasks can be eas-

ily determined by applying a backtracking method.

4.3. General outline

Algorithm 5 presents the framework of our BDP-ILS algorithm.

Algorithm 5 Bidirectional Dynamic Programming based Iterated

Local Search.

PreProcessing();

S c ← ∅ , S b ← ∅ ;// Current Solution S c and best-found solution

S b
Iter ← 0 ;// Count of iteration

while I ter < I terationN um do

while Can still insert task? do

S c ← InsertProcedure(S c);

end while

if S c is better than S b then

S b ← S c ;

end if

I ter ← I ter + 1 ;

S c ← RemoveProcedure(S c);

Full evaluation of S c ;

end while

return S b ;

The algorithm starts with a pre-processing procedure that identi-

fies for each orbit which ordering of pairs of tasks is possible or

not. This procedure prevents invalid insert attempts and reduces

the computation time later in the process. Then, the algorithm

performs a maximal number of iterations IterationNum . At each

92 G. Peng, R. Dewil and C. Verbeeck et al. / Computers and Operations Research 111 (2019) 84–98

iteration, an insert procedure and a remove procedure are suc-

cessively carried out. The insert procedure is iteratively executed

until no extra tasks can be inserted. In the remove procedure, a

certain number of consecutive tasks are removed from the current

solution for each orbit. After that, a full evaluation is applied in

order to obtain the collected profit. The newly generated solution

can be accepted only if it is better than the best-found solution.

This is the so-called Iterated Local Search with a random walk

acceptance criterion (Lourenço et al., 2003). Notice that after the

remove procedure, a full evaluation of the current solution is re-

quired in order to update the forward and backward accumulated

profits for all remaining tasks.

4.4. Pre-processing

In order to maintain acceptable computational times on large

instances, we present a pre-processing method. This method can

be divided into two parts: the structure of neighboring tasks and

the pre-calculation of transition times.

Firstly, inspired by a recent work (Verbeeck et al., 2017), we

construct the neighboring relation among all the tasks in order to

reduce the number of invalid insertion attempts during the search.

For each task i on the same orbit, we define its preceding neighbor

set V
p

i and its succeeding neighbor set V s
i . A task j is a succeeding

neighbor task of i only if it satisfies the following equation:

Ear liestStar tT ime i j (st i) + d i ≤ et j − d j ,

where EarliestStartTime ij (st i) calculates the earliest start time of

task j based on the time window of task i . This equation indicates

that it is possible for the satellite to observe task j after observing

task i . Conceivably, the succeeding neighbor j of task i also means

task i is the preceding neighbor of task j . An unscheduled task can

be inserted between task i and task j , only if it is a succeeding

neighbor of i and a preceding neighbor of j . Confining the inserted

tasks can avoid a large number of invalid insert attempts and feasi-

bility checks, and therefore significantly reduces the computational

time.

Secondly, we pre-calculate the minimal transition times be-

tween each pair of tasks for each moment during their VTWs by

using the calculations of EarliestStartTime () and LatestStartTime (), as

illustrated in Section 3.3 . After that, once a task is scheduled at

a certain moment, the earliest start time (latest start time) of its

next (previous) task can be directly obtained without any calcula-

tion. We employ a dichotomy algorithm to accelerate these calcu-

lations. For simplicity, we only give the pseudo code of procedure

EarliestStartTime ij (h i) in Algorithm 6 . This procedure calculates the

earliest start time es j of the next task j and its minimal transition

time mintrans ij (h i) after the previous task i is observed at moment

h i .

First of all, the start time st j and the end time et j of task j are

respectively used to check the transition time constraint. If st j sat-

isfies the constraint, it is the earliest start time. If et j is unaccept-

able, no feasible observation start time exists for task t j . Otherwise,

the algorithm tries to search the earliest start time during a spe-

cific time interval [lb, ub] by repeatedly checking its midpoint and

dividing the search interval. The lb and ub are initially assigned

the values of st j and et j respectively and will be altered during

the search. The search ends if the length of the interval is less

than 2 s. Then the ub is recorded as the earliest start time, and

its corresponding transition time is the minimal transition time

mintrans ij (h i).

Despite a considerable amount of memory usage, this pre-

calculation method only costs a few seconds. After the minimal

transition times for each pair of tasks at each moment are pre-

calculated, the computational time needed to calculate the four

Algorithm 6 Procedure EarliestStartTime ij (h i).

Calculate the transition time trans i j (h i , st j) and trans i j (h i , et j) .

if h i + d i + trans i j (h i , st j) ≤ st j then

Return es j = st j and mint rans i j (h i) = t rans i j (h i , st j) ;

else

if h i + d i + trans i j (h i , et j) > et j then

No feasible observation time for task j, Stop;

else

lb ← st j ; ub ← et j ;

while true do

t ← lb +
(ub−lb)

2 ;

Calculate the transition time t rans i j (h i , t) ;

if ub − lb < 2 then

Return es j = ub, mint rans i j (h i) = t rans i j (h i , t) ;

end if

Calculate its transition finish time F trans = h i + d i +

t rans i j (h i , t) ;

if F trans ≤ t then

ub ← t;

else

lb ← t;

end if

end while

end if

end if

auxiliary features (see Section 4.1) for each insertion is significantly

reduced.

4.5. Insert procedure

The time-dependent transition time, the visible time window

and the time-dependent profits increase the complexity and diffi-

culty of an insertion procedure. On the one hand, when inserting

an unscheduled task into a sequence, it should be verified that all

the tasks scheduled after the insert position still satisfy the tran-

sition time and visible time window constraints. This full feasibil-

ity check would require much computational time. On the other

hand, inserting an unscheduled task may decrease the total col-

lected profit, since the observation start times and the collected

profit of the tasks after the insert position may be changed. There-

fore, the main contribution of our insert procedure can be sum-

marized into two parts: an efficient feasibility check in order to

handle the transition time constraint and a fast evaluation when

considering time-dependent profits. The pseudo code of the insert

procedure is presented in Algorithm 7 .

As mentioned in Section 4.1 , the earliest start time and the lat-

est start time are recorded for each task in the solution. These two

auxiliary features are inspired from an evaluation metric (called

“maxshift”) in recent work on TOPTW (Vansteenwegen et al., 2009)

and TDOP (Verbeeck et al., 2014). The difference is that in our al-

gorithm, the observation start time of each task in the current so-

lution is only determined during the evaluation of an insertion. As

shown in Fig. 6 , the earliest start time can be iteratively calculated

from the first task to the last task in the solution by using the aux-

iliary function EarliestStartTime (). The earliest start time of a task is

calculated based on that of its previous task, and the earliest start

time of the first task is equal to the start time of its visible time

window. Likewise, the latest start time of each selected task can be

calculated from the last task to the first task.

In Fig. 6 , when trying to insert task i between task j and task

(j + 1) , task i should belong to the succeeding neighbor set V s
j

of task j and the preceding neighbor set V
p
j+1 of task (j + 1) .

Otherwise, it will be discarded. This step avoids a large number

G. Peng, R. Dewil and C. Verbeeck et al. / Computers and Operations Research 111 (2019) 84–98 93

Fig. 6. An example of insert procedure.

Algorithm 7 InsertProcedure(S c).

for each unscheduled target I do

Find all the tasks (VTWs) of target I;

for each task i of target I do

Find the task sequence { 1 , . . . , n } in the current solution

S c during the orbit of i .

for each insert position ip in { 1 , . . . , n } do

Assume position ip is between task j and (j + 1) ;

if i ∈ V s
j and i ∈ V

p
j+1 then

es i ← Ear liestStar tT ime ji (es j) ;

l s i ← LatestStartT ime i (j+1) (l s j+1) ;

if es i < = ls i then

Evaluate the insertion of i by using

F ast Ev aluat ion (i, j, (j + 1)) ;

Store the insertion as a candidate insertion if the

profit increases;

end if

end if

end for

end for

end for

for each orbit k in the current solution do

Execute the candidate insertion with the highest profit in-

crease during orbit k ;

Remove the other candidate insertions which observe the

same target;

for each task after the inserted task in the current solution

do

Update its earliest start time and forward accumulated

profit;

end for

for each task before the inserted task in the current solution

do

Update its latest start time and backward accumulated

profit;

end for

end for

of invalid insert attempts and reduces computational time. After-

wards, we calculate the earliest and latest start times of task i

based on the earliest start time of task j and the latest start time

of task (j + 1) . This task can be inserted into the position only

if its earliest start time is no later than its latest start time, i.e.,

es i < = ls i . Otherwise, inserting this task will make the solution

infeasible due to the transition time and visible time window con-

straints. As a result of this insert mechanism, the computational

time required to check these constraints for other tasks in the

solution is significantly reduced.

After the feasibility check, a fast evaluation for an insertion

based on the BDP is applied to the solution (see Algorithm 4). This

method can efficiently evaluate an insertion without updating the

observation start times of the other tasks in the solution. Only if

the total collected profit increases, the insertion will be stored as

a candidate insertion. After trying all the unscheduled tasks, the

candidate insertion with the highest profit increase will be exe-

cuted. The other candidate insertions that observe the same tar-

get will not be considered for the next insertion anymore, which

ensures that only one task is scheduled for each target. After in-

sertion, the tasks after the inserted task require an update of the

earliest start time and the forward accumulated profit, and the task

before the inserted task require an update of the latest start time

and the backward accumulated profit. These four auxiliary features

are updated according to the functions listed in Section 4.2 .

4.6. Remove procedure

The remove procedure is used to escape local optima. In this

procedure, one or more tasks are removed from the current so-

lution for each orbit. A remove ratio α is used to indicate how

many consecutive tasks to remove in the solution during each or-

bit. Namely, each time the algorithm removes � α∗| n k |
 consecutive

tasks for orbit k , where | n k | represents the number of scheduled

tasks during orbit k in the current solution. The place where to

start the removal process is randomly chosen from the task se-

quence for each orbit. If during removal the last scheduled task

is reached, it continues after the first task in the current solu-

tion. The removal process is always accepted no matter how the

solution changes. This is called the random walk acceptance crite-

rion in the ILS procedure (Lourenço et al., 2003). After the removal,

94 G. Peng, R. Dewil and C. Verbeeck et al. / Computers and Operations Research 111 (2019) 84–98

Table 1
Results of the scheduling without time-dependent profits for the Chinese instances.

Scenario
N t P t

ALNS ILS

(| T |) T s P s P s / P t CPU (s) T s P s P s / P t OutPerform (%) CPU (s)

100_A 179 571 81.8 520.4 0.911 22.06 98.2 568.4 0.995 8.41 13.72
200_A 361 1066 88.8 635.2 0.603 89.69 151.0 894 0.849 24.58 69.20
300_A 523 1484 85.4 640.6 0.435 175.65 167.8 998.6 0.677 24.29 147.14
400_A 716 2075 94.4 654.2 0.317 303.85 188.0 1162.8 0.563 24.63 260.36
500_A 912 2718 91.0 709 0.264 420.61 193.4 1297.6 0.484 21.94 398.85
600_A 1091 3263 97.4 813.4 0.252 504.08 202.4 1399.8 0.433 18.15 478.56
Average 0.464 0.667 20.33

Table 2
Results of the scheduling without time-dependent profits for the worldwide instances.

Scenario
N t P t

ALNS ILS

(| T |) T s P s P s / P t CPU (s) T s P s P s / P t OutPerform (%) CPU (s)

100_W 398 550 100.0 550 1.0 0 0 8.02 100.0 550 1.0 0 0 0.00 5.83
200_W 381 1004 193.0 1004 1.0 0 0 15.50 193.0 1004 1.0 0 0 0.00 10.49
300_W 615 1622 291.0 1622 1.0 0 0 31.61 291.0 1622 1.0 0 0 0.00 25.89
400_W 800 2263 387.4 2254.6 0.996 265.36 390.0 2263 1.0 0 0 0.37 45.77
500_W 985 2693 469.4 2660.2 0.988 398.91 480.0 2686 0.997 0.96 74.10
600_W 1056 3129 439.8 2783.8 0.890 621.47 579.0 3122 0.998 10.81 103.09
Average 0.979 0.999 2.02

the earliest start times of the tasks succeeding the removed tasks

should be updated, using the same method in the insert procedure.

Similarly, for the tasks preceding the removed task, the latest start

times should be updated.

5. Experimental results

Since we are the first to solve the AEOS, considering both time-

dependent transition times and time-dependent profits, we can-

not directly compare the performance of our heuristic with other

approaches. Therefore, we first compare the performance of our

algorithm with the ALNS developed in (Liu et al., 2017) while

solving the AEOS without time-dependent profits (but with time-

dependent transition times). In the second experiment, we eval-

uate the performance of our heuristic for the complete AEOS, in-

cluding both time-dependent profits and transition times.

All the algorithms were implemented in C#, and the exper-

iments were tested on a personal computer Intel Core i5 with

2.5 GHz processor and 8 GB Ram.

5.1. Test instances

As mentioned by Liu et al. (2017) , different physical design and

ability parameters lead to large differences between the AEOS in

different countries regarding capability, constraints and manage-

ment. No common benchmark instances are available for this AEOS

scheduling problem.

However, since we consider the same agile satellite AS-01 as

in Liu et al. (2017) and we want to compare the performance of

our algorithm with theirs, we will use their test instances. The tar-

gets for observation are randomly generated with a uniform distri-

bution in two regions: a Chinese area distribution (3 ◦N-53 ◦N and

74 ◦E-133 ◦E) and a worldwide distribution. The Chinese instances

are much more difficult to solve than the worldwide instances,

since the VTWs in the Chinese instances considerably overlap with

each other, while in the worldwide instances, the VTWs rarely

overlap. The invalid (parts of) VTWs in which the satellite flies in

the dark are removed from the test instances. The profit and the

observation duration of each target are uniformly generated in the

range of [1,10] and [15,30] in seconds. The scheduling horizon is

24 h according to the rules of practical operations and the num-

ber of orbits | O | is around 15. More details on the test instances

and the basic parameters of the AS-01 satellite can be found in the

paper of Liu et al. (2017) .

5.2. Results without time-dependent profits

A crucial novelty of our algorithm is the way we handle the

time-dependent transition times, as discussed in Section 4.4 . In or-

der to evaluate the effect of this novelty, we compare our ILS with

the ALNS algorithm of Liu et al. (2017) without considering the

time-dependent profits. In this case, the BDP is not necessary to

evaluate each insertion, and the full evaluation of a solution after

the remove procedure is removed.

Tables 1 and 2 compare the results of both algorithms on the

Chinese and worldwide instances. All results are based on the av-

erage of 5 runs. In order to make a fair comparison, the maximum

number of iterations of both algorithms is set to 50 0 0. Other pa-

rameters of ALNS can be found in the paper of Liu et al. (2017) .

The scenarios are denoted by “| T |_M”, where | T | is the number of

targets in this instance and “M” is the distribution mode, with “A”

for the Chinese area distribution and “W” for the worldwide distri-

bution. N t and P t respectively represent the number of valid tasks

(i.e., VTWs in the sunshine) and the sum of all the targets’ prof-

its. The number of scheduled targets T s , the collected profit P s and

the average computational time CPU (in seconds) are recorded. The

column P s / P t is the ratio of the scheduled profits compared to the

total target profit. The higher this P s ratio, the better the result.

The OutPerform column shows how many percents our ILS outper-

forms ALNS in terms of the scheduled profits compared to the total

profit.

Table 1 shows the results for the Chinese instances. The sched-

uled profits of our ILS are on average 20.33% higher than those

of the ALNS for these instances. When the number of targets in-

creases, the number of scheduled targets remains stable in ALNS

while this number keeps growing for our ILS. In the instances with

more than 300 targets, the number of scheduled targets and the

collected profit are almost twice those of ALNS. That this percent-

age in itself is rather low is not surprising since the targets in a

specific area are distributed closely together and have overlapping

VTWs. Due to the limited imaging time of the satellite, selecting

targets is required. The results also show that the computational

times of these two algorithms are similar. However, in most cases,

G. Peng, R. Dewil and C. Verbeeck et al. / Computers and Operations Research 111 (2019) 84–98 95

Table 3
Comparison of the optimal solution and the BDP-ILS solution with time-
dependent profits for small instances.

Scenario
N t

CPLEX BDP-ILS

(| T |) P optimal CPU (s) P s Gap (%) CPU (s)

50_A 90 252.19 115.83 251.31 0.35 0.60
80_A 142 410.77 1304.05 405.70 1.23 0.88
100_A 179 494.93 2429.01 487.14 1.57 1.23
50_W 108 242.10 21.26 242.04 0.02 0.47
80_W 154 388.50 70.20 388.38 0.03 0.72
100_W 398 – – 529.04 – 1.51

our ILS algorithm converges much faster than the ALNS, which

means the computation time of our ILS could easily be reduced,

without loss of quality, by reducing the number of iterations. The

comparison of the different number of iterations is discussed in

Section 5.4 .

Table 2 shows that both of the ALNS and the ILS can sched-

ule almost all of the targets in all the worldwide instances except

for the 600-targets instance, which is very different from the re-

sults of the Chinese instances. This is because, in the worldwide

instances, the targets are spread more evenly over all orbits, while

in the Chinese instances the targets only appear in around half of

the orbits (during daytime in China). Therefore, the satellite has

sufficient scheduling time to image most of the targets in these in-

stances. However, in the instance with 600 targets, the best-found

solution of ALNS only has 439.8 targets and 89% of profits on aver-

age while ILS can still schedule 579 targets and 99.8% of profits. It

proves the high-performance quality of our algorithm for large in-

stances. When comparing the computational time, our ILS is many

times faster than the ALNS algorithm. For instances with no more

than 500 targets, our ILS only takes less than 100 s to obtain a sat-

isfactory solution. The computational times of ILS increase much

less with the size of the instances compared to the ALNS. How-

ever, if we compare the computational times of ILS in Tables 1 and

2 , it seems that the complexity of solving this scheduling problem

is more related to the degree of overlap between time windows

(larger in the Chinese instances), rather than to the number of tar-

gets available. We conclude that our ILS is both faster and signifi-

cantly more effective than the only previously published algorithm

for solving the AEOS problem without time-dependent profits.

5.3. Results with time-dependent profits

In order to evaluate the performance in case of time-dependent

profits, we carry out two experiments. The first experiment is a

straightforward comparison of the results obtained by solving our

MILP model (see Section 3.5) with the commercial solver CPLEX

(version 12.8.0) and our BDP-ILS for small instances with 50, 80

or 100 targets. Unfortunately, instances with more than 50 targets

could not be solved due to memory limitations. Since a complete

VTW contains around 300 s, considering each second during the

VTW seems to be unnecessary. Thus, we define a time step T step

to evenly discretize the VTWs and specify the resolution for these

small instances. As can be expected, a large time step can lead

to a loss of solution quality but reduces the computational time

and memory usage. The effect of different values of the time step

will be discussed in Section 5.4 . Fig. 3 shows the results of CPLEX

and our algorithm on small instances with T step = 5 s. Since both

CPLEX and the BDP-ILS require a pre-calculation of minimal tran-

sition times, the required computing time of the pre-processing

is included in the computation time, as displayed in the column

CPU (s). The column Gap represents the percentage gap between the

collected profit of the optimal solution and the collected profit of

our algorithm.

The results in Table 3 prove the validity of our MILP model

and the excessive computational time despite an approximation of

the original input data with T step . The Chinese instances require a

higher computational time than the worldwide instances for CPLEX

with a similar number of tasks (VTWs). Furthermore, this table

illustrates that our BDP-ILS algorithm obtains high-quality results

and has very short computational times on these small instances.

However, due to the memory limitations, larger instances could not

be solved by CPLEX based on our MILP model.

The second experiment evaluates the performance of our algo-

rithm on large instances. We introduce four algorithms to be com-

pared with our BDP-ILS: the Bidirectional Dynamic Programming

based Adaptive Large Neighborhood Search (BDP-ALNS), the “reg-

ular Iterated Local Search”, the Earliest Start based Iterated Local

Search (ES-ILS), and Unidirectional Dynamic Programming based

Iterated Local Search (UDP-ILS). The BDP-ALNS retains the frame-

work of the ALNS by Liu et al. (2017) including the destroy opera-

tors and repair operators which insert unscheduled tasks according

to three randomly selected strategies. But since the original ALNS

does not consider time-dependent profits, we apply the BDP to the

newly generated solution at each iteration of the ALNS. In this way,

the observation start time of each selected task is optimized given

the time-dependent profits. The last three algorithms are all based

on our ILS framework including the insert procedure, the remove

procedure, and the acceptance criterion. The difference is how the

observation start time of each task in the solution is determined

and how the solution quality is evaluated.

The “regular ILS” is the same as the ILS without considering the

time-dependent profits, where only the earliest start time and the

latest start time are recorded for each selected task. This method

inclines to insert the task with the highest target profit in each in-

sert procedure. The information of time-dependent profits is not

utilized during the search. In order to make a fair comparison, af-

ter the search, the BDP is applied to the best-found solution to op-

timize the observation start time and obtain the highest possible

profit.

As for the ES-ILS, in the insert procedure, the inserted task is

always scheduled at its earliest start time and the profit at that

moment is collected. The insertion is accepted only if the total

collected profit is improved. This insertion mechanism is generally

used in papers of the Orienteering Problem with Time-dependent

Rewards (OP-TDR) (Ekici and Retharekar, 2013), where the profit

of each vertex decreases over time. Scheduling the observations as

early as possible is also frequently used in the satellite schedul-

ing applications. For the same reason as with the “regular ILS”, the

BDP is also applied to the best-found solution in the ES-ILS.

Unlike the BDP-ILS, the UDP-ILS only adopts the ForwardRecur-

sion (), meaning that only the forward accumulated profit is

recorded for each task at each moment. After each insertion, in

order to obtain the maximal collected profit of a task sequence, it

needs to update forward accumulated profit from the inserted task

to the last task. The maximal forward accumulated profit of the

last task is equal to the maximal collected profit of that sequence,

and then the observation start time for each task is determined. It

can be expected that the solution quality of the UDP-ILS and the

BDP-ILS are similar since they are all based on the dynamic pro-

gramming approach. However, when evaluating each insertion, the

UDP needs to update the observation start times of all the tasks

after the inserted task, while only the inserted task requires an up-

date in BDP.

Table 4 compares the four reference algorithms and our BDP-ILS

on the Chinese instances. Since CPLEX solutions are not considered

in this experiment, the time step of these instances is set to 1 s.

The maximal number of iterations of the four algorithms is set to

200 and the remove ratio α is set to 0.1. The columns are the same

as used in Tables 1 and 2 .

96 G. Peng, R. Dewil and C. Verbeeck et al. / Computers and Operations Research 111 (2019) 84–98

Table 4
Results of the scheduling with time-dependent profits for the Chinese instances.

Scenario
N t P t

BDP-ALNS regular ILS ES-ILS UDP-ILS BDP-ILS

(| T |) P s / P t CPU (s) P s / P t CPU (s) P s / P t CPU (s) P s / P t CPU (s) P s / P t CPU (s)

100_A 179 571 0.67 3.26 0.69 1.63 0.77 7.71 0.86 34.51 0.86 8.77
200_A 361 1053 0.41 5.14 0.54 6.43 0.62 41.29 0.71 186.83 0.71 33.13
300_A 523 1474 0.32 8.25 0.42 15.15 0.50 69.38 0.57 221.92 0.58 50.87
400_A 716 2065 0.25 9.01 0.36 31.88 0.43 120.02 0.50 453.31 0.51 100.91
500_A 912 2683 0.19 10.61 0.31 55.52 0.37 180.81 0.43 708.01 0.43 166.76
600_A 1091 3231 0.16 14.20 0.28 79.91 0.33 250.67 0.39 953.30 0.39 228.01

Table 5
Results of the scheduling with time-dependent profits for the worldwide instances.

Scenario
N t P t

BDP-ALNS regular ILS ES-ILS UDP-ILS BDP-ILS

(| T |) P s / P t CPU (s) P s / P t CPU (s) P s / P t CPU (s) P s / P t CPU (s) P s / P t CPU (s)

100_W 398 550 0.94 6.09 0.84 2.57 0.83 5.51 0.96 29.05 0.96 11.15
200_W 381 1004 0.88 10.89 0.82 2.48 0.80 6.58 0.97 43.96 0.97 16.04
300_W 615 1622 0.87 18.01 0.78 5.54 0.80 17.81 0.96 126.40 0.96 32.29
400_W 800 2263 0.87 27.02 0.77 9.42 0.79 31.55 0.95 220.57 0.95 49.65
500_W 985 2693 0.82 33.46 0.73 14.55 0.79 55.09 0.95 398.21 0.94 74.97
600_W 1056 3129 0.72 34.46 0.70 17.46 0.76 78.83 0.91 558.68 0.91 89.90

When comparing the profit, the UDP-ILS and the BDP-ILS per-

form noticeably better than the other three algorithms. It proves

that when the time-dependent profits are considered, the obser-

vation start times of each task should be optimized during the

search. The dynamic programming approach can effectively opti-

mize the observation start times and thus guide the search. The

ALNS of Liu et al. (2017) , extended with the BDP to optimise the

observation start times, is clearly outperformed by the other al-

gorithms. There are two reasons for this: the local search opera-

tors of ALNS are not designed well to allow more candidate tasks

to be inserted and these operators cannot efficiently evaluate the

insertions in case of time-dependent profits. The results of ES-ILS

demonstrates that scheduling the tasks at their earliest start mo-

ments is useless in the case of time-dependent profits with a non-

monotonic distribution. For the computational time, our BDP-ILS

is many times faster than the UDP-ILS, since only the inserted task

requires an update of the forward and backward accumulated prof-

its, benefiting from the bidirectional recursion mechanism. While

in UDP-ILS, the forward accumulated profits of all the tasks fol-

lowing the inserted task should be updated in order to obtain the

maximal collected profit after the insertion.

Table 5 presents the comparison results for the worldwide in-

stances. The same conclusion can be drawn for these results, il-

lustrating that the UDP-ILS and our BDP-ILS still outperform the

other algorithms regarding solution quality. Unlike the results on

the Chinese instances, the BDP-ALNS performs slightly better than

the regular ILS and the ES-ILS for most of the worldwide instances.

This is because in the worldwide instances, most of candidate tasks

can be selected by both the ALNS and ILS. However, the BDP-

ALNS optimizes the observation start times at each iteration while

the regular ILS and the ES-ILS only apply the BDP at the end of

the algorithm, which results in the difference. Even so, the BDP-

ALNS is still outperformed by the UDP-ILS and the BDP-ILS, since

the insert operator of the latter ones can efficiently distinguish

which insertions can improve the solution. For these instances,

more than 90% of the profits are collected in the UDP-ILS or BDP-

ILS solution, since VTWs in the worldwide instances rarely over-

lap each other, and thus most of tasks are scheduled at the nadir

point (the midpoint of a VTW). For the worldwide instance with

500 targets, the profits of UDP-ILS are slightly larger than those

of BDP-ILS. However, a more evident difference is that the BDP-

ILS runs several times faster than the UDP-ILS for the worldwide

instances.

5.4. Sensitivity analysis

In this section, the impact of the design parameters of the BDP-

ILS and the instances is discussed. The first parameter that needs

separate attention is the time step T step used in the instances. It is

interesting to know how much the solution quality and the com-

putational time will change for both our MILP and our algorithm

when setting different values of T step . Table 6 shows the solution

quality of T step with 1, 5 or 10 s on small instances. It can be ex-

pected that a larger T step leads to a reduction of the computational

time and memory usage. We found that CPLEX cannot solve these

instances with T step = 1 s, and even the 100-target worldwide in-

stance with T step = 5 s. Thus, only the gap between the optimal

solution and the BDP-ILS solution with T step = 5 or 10 s are pre-

sented in the table. The results show that the gap between the op-

timal solution and our algorithm is quite small for these small in-

stances, while a very short computational time is required for our

algorithm. As T step increases from 5 s to 10 s, the solution quality

slightly decreases, which infers a conclusion that for the instances

with T step = 1 s, our algorithm can still obtain a high-quality solu-

tion, even though the optimal solution is unknown. A second con-

clusion is that the loss of solution quality for the worldwide in-

stances are particularly smaller as T step increases, compared to the

Chinese instances. Therefore, it is reasonable and effective to re-

duce the computational time for the worldwide instances by set-

ting a larger T step without losing much solution quality.

Now we will analyze the parameters of our algorithm: the max-

imal number of iterations IterationNum and the remove ratio α.

Table 7 presents the comparative results of these parameters tested

on both the Chinese instance and the worldwide instance with 200

targets. Results for other numbers of targets are similar. All the re-

sults are based on five independent runs of the algorithm. The first

row summarises the performance of our algorithm with the basic

setting of these parameters. The column P s is the gap of the col-

lected profit compared to the results in the first row, displayed as a

percentage. The first parameter IterationNum is altered from 200 to

100 or 400. Unsurprisingly, the solutions keep improving and the

computational time increases rapidly when the number of itera-

tions is increased. However, as the number is increased from 200

to 400, the difference in solution quality remains small. It indicates

that our algorithm can converge to a satisfactory solution within

200 iterations. The comparison of different α values shows that

for that Chinese instance, a lower remove ratio (α = 0 . 05) leads to

G. Peng, R. Dewil and C. Verbeeck et al. / Computers and Operations Research 111 (2019) 84–98 97

Table 6
Effect of time step T step for the CPLEX and the BDP-ILS on small instances.

Scenario CPLEX BDP-ILS

T step = 5 T step = 10 T step = 1 T step = 5 T step = 10

(| T |) P s CPU (s) P s CPU (s) P s CPU (s) P s Gap (%) CPU (s) P s Gap (%) CPU (s)

50_A 252.19 115.83 250.13 19.77 248.20 1.84 246.53 2.25 0.42 244.43 2.28 0.26
100_A 494.93 2429.01 488.99 388.31 486.86 4.61 484.47 2.11 1.00 476.83 2.49 0.63
50_W 242.10 21.26 241.25 5.11 242.97 1.21 241.27 0.34 0.34 240.60 0.27 0.23
100_W – – 527.58 1112.28 529.18 4.90 527.84 – 1.06 523.42 0.79 0.70

Table 7
Sensitivity analysis of the design decisions.

Testing Parameter
Parameter Value Chinese instance Worldwide instance

IterationNum α P s CPU (s) P s CPU (s)

basic setting 200 0.1 747.65 32.32 969.57 16.20

IterationNum
100 0.1 745.74 20.19 969.10 9.27
400 0.1 750.81 64.49 970.22 31.83

α
200 0.05 752.63 25.44 96 8.6 8 15.78
200 0.2 739.85 51.18 968.71 22.81

a better solution, while for the worldwide instance, the algorithm

performs better with α = 0 . 1 . The results suggest that changing the

value of α influences the quality of the results, however, determin-

ing the best value for α depends on the specific instance consid-

ered.

6. Conclusions and further work

In this paper, we study the AEOS scheduling problem with

time-dependent transition times and time-dependent profits. This

problem arises from the fact that the observation start time of

an observation influences its image quality and the transition

time. This problem is formulated as a mixed integer programming

model. A Bidirectional Dynamic Programming based Iterated Local

Search algorithm (BDP-ILS) is developed to solve the problem.

In order to handle the time-dependent transition times, we

present a concept of “minimal transition time” and specifically de-

sign a fast insert procedure to avoid a full feasibility check of each

insert attempt. We compare our algorithm with the state-of-the-

art ALNS algorithm for the same scheduling problem but without

time-dependent profits. The results for one set of benchmark in-

stances show that our algorithm performs on average 20.33% better

than the state-of-the-art algorithm while the computation times

are similar. For the other set of available benchmark instances, our

algorithm performs slightly better in terms of solution quality, but

the computational time is much shorter.

When considering time-dependent profits, a bidirectional dy-

namic programming approach is proposed and incorporated into

the ILS heuristic in order to efficiently and accurately evaluate the

solution during the search. The results of our algorithm are com-

pared with the optimal results found by solving the MIP model

presented in Section 3.5 for a set of small instances. The results

prove that our algorithm can find a high-quality solution within a

short computational time. Four reference algorithms are presented

to evaluate the performance of our BDP-ILS algorithm for large in-

stances. The results illustrate that the dynamic programming ap-

proach that optimizes the observation start times for each insert

move can effectively improve the solution when time-dependent

profits are considered. Furthermore, our BDP-ILS requires very

small computational time due to the bidirectional recursion mech-

anism.

Further research could focus on developing algorithms for mul-

tiple satellites scheduling where the size of instances are typically

huge, and a workload-balancing between different satellites should

be enforced. Also the scheduling of downloading images should be

considered during satellite scheduling in the future. Moreover, this

work can be extended to AEOS scheduling problems with uncer-

tainty in which the presence of clouds over targets reduces the

images quality, and thus the success probability of observations.

Therefore, according to the prediction of clouds, a different ob-

servation start time leads to a different success probability. In or-

der to improve the expected total profit, each target can be ob-

served more than once. To the best of our knowledge, this problem

has not yet been studied. Furthermore, our Bidirectional Dynamic

Programming approach for the time-dependent profits can be ex-

tended to other combinational optimization problems such as the

vehicle routing problem or the job shop scheduling problem.

Acknowlegements

This work was supported by the National Natural Science Foun-

dation of China (No. 71501180 , 71801218 , U1501254 and 61773120)

and the China Scholarship Council. The authors would like to thank

Xiaolu Liu for providing the code of her algorithm and useful com-

ments.

References

Afsar, H.M. , Labadie, N. , 2013. Team orienteering problem with decreasing profits.
Electron. Notes Discrete Math. 41, 285–293 .

Bianchessi, N. , Righini, G. , 2008. Planning and scheduling algorithms for the COS-
MO-SkyMed constellation. Aerosp. Sci. Technol. 12 (7), 535–544 .

Cordeau, J.-F. , Laporte, G. , 2005. Maximizing the value of an earth observation satel-
lite orbit. J. Oper. Res. Soc. 56 (8), 962–968 .

Ekic, A. , Keskinocak, P. , Koenig, S. , 2009. Multi-robot routing with linear decreas-
ing rewards over time. In: 2009 IEEE International Conference on Robotics and
Automation, pp. 958–963 .

Ekici, A. , Retharekar, A. , 2013. Multiple agents maximum collection problem with
time dependent rewards. Comput. Ind. Eng. 64 (4), 1009–1018 .

Erkut, E. , Zhang, J. , 1996. The maximum collection problem with time-dependent
rewards. Nav. Res. Logist. 43 (5), 749–763 .

Gabrel, V. , Moulet, A. , Murat, C. , Paschos, V.T. , 1997. A new single model and derived
algorithms for the satellite shot planning problem using graph theory concepts.
Ann. Oper. Res. 69 (0), 115–134 .

Grasset-Bourdel, R. , Verfaillie, G. , Flipo, A. , 2011. Building a really executable plan for
a constellation of agile earth observation satellites. IWPSS-International Work-
shop on Planning & Scheduling for Space . Darmstadt

Gunawan, A. , Lau, H. , Yuan, Z. , Fügenschuh, A. , 2014. A mathematical model and
metaheuristics for Time Dependent Orienteering Problem. Angewandte Math-
ematik und Optimierung Schriftenreihe. Helmut-Schmidt-Univ., Univ. der Bun-
deswehr Hamburg .

Habet, D. , Vasquez, M. , Vimont, Y. , 2010. Bounding the optimum for the problem of
scheduling the photographs of an agile earth observing satellite. Comput. Op-
tim. Appl. 47 (2), 307–333 .

https://doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0001
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0001
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0001
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0002
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0002
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0002
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0003
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0003
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0003
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0004
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0004
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0004
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0004
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0005
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0005
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0005
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0006
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0006
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0006
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0007
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0007
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0007
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0007
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0007
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0008
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0008
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0008
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0008
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0008
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0009
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0009
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0009
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0009
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0009
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0010
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0010
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0010
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0010

98 G. Peng, R. Dewil and C. Verbeeck et al. / Computers and Operations Research 111 (2019) 84–98

He, L. , Liu, X. , Laporte, G. , Chen, Y. , Chen, Y. , 2018. An improved adaptive large neigh-
borhood search algorithm for multiple agile satellites scheduling. Comput. Oper.
Res. 100, 12–25 .

Lemaître, M. , Verfaillie, G. , Jouhaud, F. , Lachiver, J.-M. , Bataille, N. , 2002. Select-
ing and scheduling observations of agile satellites. Aerosp. Sci. Technol. 6 (5),
367–381 .

Liao, D. , Yang, Y. , 2007. Imaging order scheduling of an earth observation satellite.
IEEE Trans. Syst. Man Cybern.Part C 37 (5), 794–802 .

Liu, X. , Laporte, G. , Chen, Y. , He, R. , 2017. An adaptive large neighborhood search
metaheuristic for agile satellite scheduling with time-dependent transition time.
Comput. Oper. Res. 86, 41–53 .

Lourenço, H.R. , Martin, O.C. , Stützle, T. , 2003. Iterated Local Search. Springer US,
Boston, MA, pp. 320–353 .

Malandraki, C. , Daskin, M.S. , 1992. Time dependent vehicle routing problems: for-
mulations, properties and heuristic algorithms. Transp. Sci. 26 (3), 185–200 .

Pralet, C. , Verfaillie, G. , 2013. Timedependent simple temporal networks: properties
and algorithms. RAIRO 47 (2), 173198 .

Stützle, T. , 1999. Local search algorithms for combinatorial problems - analysis, im-
provements, and new applications. DISKI .

Tangpattanakul, P. , Jozefowiez, N. , Lopez, P. , 2015. A multi-objective local search
heuristic for scheduling earth observations taken by an agile satellite. Eur. J.
Oper. Res. 245 (2), 542–554 .

Vansteenwegen, P. , Souffriau, W. , Berghe, G.V. , Oudheusden, D.V. , 2009. Iterated lo-
cal search for the team orienteering problem with time windows. Comput. Oper.
Res. 36 (12), 3281–3290 .

Verbeeck, C. , Sörensen, K. , Aghezzaf, E.-H. , Vansteenwegen, P. , 2014. A fast solution
method for the time-dependent orienteering problem. Eur. J. Oper. Res. 236 (2),
419–432 .

Verbeeck, C. , Vansteenwegen, P. , Aghezzaf, E.-H. , 2017. The time-dependent orien-
teering problem with time windows: a fast ant colony system. Ann. Oper. Res.
254 (1), 481–505 .

Victoria, J.F. , Afsar, H.M. , Prins, C. , 2015. Vehicle routing problem with time-depen-
dent demand in humanitarian logistics. In: 2015 International Conference on
Industrial Engineering and Systems Management (IESM), pp. 686–694 .

Wolfe, W.J. , Sorensen, S.E. , 20 0 0. Three scheduling algorithms applied to the earth
observing systems domain. Manage. Sci. 46 (1), 148–166 .

Yi, J. , 2003. Vehicle routing with time windows and time-dependent rewards: a
problem from the american red cross. Manuf. Serv. Oper. Manage. 5 (1), 74–77 .

http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0011
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0011
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0011
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0011
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0011
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0011
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0012
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0012
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0012
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0012
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0012
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0012
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0013
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0013
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0013
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0014
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0014
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0014
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0014
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0014
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0015
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0015
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0015
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0015
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0016
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0016
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0016
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0017
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0017
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0017
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0018
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0018
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0019
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0019
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0019
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0019
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0020
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0020
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0020
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0020
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0020
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0021
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0021
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0021
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0021
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0021
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0022
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0022
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0022
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0022
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0023
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0023
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0023
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0023
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0024
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0024
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0024
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0025
http://refhub.elsevier.com/S0305-0548(19)30151-0/sbref0025

	Agile earth observation satellite scheduling: An orienteering problem with time-dependent profits and travel times
	Citation
	Author

	Agile earth observation satellite scheduling: An orienteering problem with time-dependent profits and travel times
	\numberline {1}Introduction
	\numberline {2}Literature review
	\numberline {3}Problem description
	\numberline {3.1}Assumptions
	\numberline {3.2}Variables
	\numberline {3.3}Minimal transition time
	\numberline {3.4}Time-dependent profit
	\numberline {3.5}Mixed integer programming model

	\numberline {4}Bidirectional dynamic programming based iterated local search heuristic
	\numberline {4.1}Auxiliary features
	\numberline {4.2}Auxiliary functions
	\numberline {4.3}General outline
	\numberline {4.4}Pre-processing
	\numberline {4.5}Insert procedure
	\numberline {4.6}Remove procedure

	\numberline {5}Experimental results
	\numberline {5.1}Test instances
	\numberline {5.2}Results without time-dependent profits
	\numberline {5.3}Results with time-dependent profits
	\numberline {5.4}Sensitivity analysis

	\numberline {6}Conclusions and further work
	Acknowlegements
	References

