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An Efficient Approach to Model-Based
Hierarchical Reinforcement Learning

Zhuoru Li,†∗ Akshay Narayan,† Tze-Yun Leong†‡
School of Computing, National University of Singapore†

School of Information Systems, Singapore Management University‡
lizhuoru@google.com, {anarayan, leongty}@comp.nus.edu.sg, leongty@smu.edu.sg

Abstract

We propose a model-based approach to hierarchical reinforce-
ment learning that exploits shared knowledge and selective
execution at different levels of abstraction, to efficiently solve
large, complex problems. Our framework adopts a new transi-
tion dynamics learning algorithm that identifies the common
action-feature combinations of the subtasks, and evaluates the
subtask execution choices through simulation. The framework
is sample efficient, and tolerates uncertain and incomplete
problem characterization of the subtasks. We test the frame-
work on common benchmark problems and complex simulated
robotic environments. It compares favorably against the state-
of-the-art algorithms, and scales well in very large problems.

Introduction

In hierarchical reinforcement learning (HRL), an agent solves
large, complex problems by recursively decomposing the root
problem into smaller tasks, and systematically solving the
subtasks at different levels of abstraction. Existing HRL
methods, such as options (Sutton, Precup, and Singh 1999),
hierarchical abstract machines (HAMs) (Parr and Russell
1997), and MAXQ-based (Dietterich 1998) methods that
include a pre-defined task hierarchy, assume different amount
of prior domain knowledge in a task (or action) structure to
speedup the search for good policies or solutions. The task-
specific features or relevant state abstraction information
must be given, through manual specification or automated
learning, for all the methods to work effectively.

Existing HRL methods cannot efficiently solve many real-
world problems involving multiple tasks, changing subgoals,
and uncertain subtask specifications. For example, consider
the duties of a household robot as shown in Figure 1. The
robot performs different tasks at different locations: In the
living room, switch off the television and light, and clean
the table; in the yard, fetch mail and deliver it indoor, etc.
Figure 2 shows a complex hierarchy of the robot’s tasks.

We introduce a new model-based approach to HRL that ad-
dresses two major limitations of the MAXQ-based methods:
First, the full set of tasks, including minor subtasks lower in
the hierarchy, has to be clearly specified, which may be infea-
sible in real life. For example, to switch off the television, the

∗Currently affiliated with Google Korea, LLC
Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

robot first needs to navigate to the television location, which
usually cannot be pre-specified. Second, multiple, similar
subtasks have to be learned separately. For example, in Fig-
ure 3, there are multiple, independent navigation subtasks,
one for each destination. The transition model learned for
one subtask cannot be used on the others.

We propose a new framework called context-sensitive re-
inforcement learning (CSRL), that exploits common knowl-
edge in the subtasks1 to efficiently learn the transition dynam-
ics. A main idea is to actively evaluate the different subtasks
as execution choices based on simulation. CSRL is sample
efficient and tolerates uncertain or incomplete specification
of the task hierarchy; it can solve complex, multi-task prob-
lems with more than one million states. In practice, CSRL
assumes the relevant features for each task are given, as in
the MAXQ (Dietterich 1998) safe state abstraction: a state
feature is considered to be irrelevant if it neither affects the
transition of relevant features nor the reward received. CSRL
can learn both the transition and reward functions; this paper
focuses on learning transition functions.

Background: The mathematical model underlying all the
HRL methods is the semi-Markov decision process (SMDP).
Recall that a Markov decision process (MDP) is a tuple
〈S,A, P, R〉 where S is the set of states, A is the set of
actions, P is the transition function that describes the proba-
bility of transiting to the next state, and R(s, a) is the reward
function for executing action a in s. In factored representa-
tion, a state s is specified as a list of state variables/features.
For problems with infinite horizons, a discounted factor γ
is introduced to bound the accumulated reward. An SMDP
extends an MDP, such that each action may take multiple
time steps to complete (Puterman 1994), i.e. P (s′, τ |s, a) is
the probability of transiting to a state s′ in τ steps, after exe-
cuting action a in s. The transition function can be computed
by P (s′|s, a) = ∑

j P (s′, τ = j|s, a)γj .
A reinforcement learning (RL) (Kaelbling, Littman, and

Moore 1996; Sutton and Barto 1998) agent plans and acts in
an unknown environment modeled as an MDP to maximize
the cumulative reward. We adopt the common R-MAX (Braf-
man and Tennenholtz 2003) directed exploration approach to
balance exploration and exploitation.

1Through contextual independence of state variables conditioned
on the action executed in the underlying model, hence the name.
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Figure 1: Household robot
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Figure 2: Task hierarchy for the household robot

Overview

In CSRL, we adopt the concepts from the MAXQ frame-
work, but modify the definitions of tasks and task hierarchy.
We further introduce the notion of fragments to allow better
generalization and sharing of experiences.

Definition 1 (Task) The tuple 〈Ii, Gi, Fi, Ai, Ti, Ri〉 repre-
sents task i, where Ii is the input set, which indicates when
a task is applicable; Gi are the task goal states/terminating
states; Fi is the set of relevant features, Ai is the set of ap-
plicable actions for task i, Ti and Ri are the transition and
reward functions respectively, local to the task.

A task is a unit of execution; it is a “smaller” MDP for
accomplishing a subgoal of the problem. The definition
is similar to an option (Sutton, Precup, and Singh 1999),
where Ii and Gi corresponds to the option’s initiation set and
termination condition. The subset 〈Fi, Ai, Ti, Ri〉 of the task
tuple forms a well-defined factored MDP.

Definition 2 (Fragment) A fragment j is a tuple
〈Fj , Aj , Tj〉, where Fj is the set of relevant features,
Aj is the set of applicable actions and Tj is the local
transition function.

A fragment does not have goal states or local reward func-
tions, and can be used to describe either multiple tasks that
share the same transition function, but differ in goals or a task
with incomplete specification (such as unknown goals). Frag-
ments can be automatically generated by combining tasks
with the same relevant features and actions. For example, in
Figure 3, the MAXQ hierarchy includes multiple navigation
subtasks, one for each possible destination. In contrast, in
Figure 4, the CSRL hierarchy combines all the experiences
into a single fragment to improve navigation, regardless of
the destination. Fragments cannot be executed directly, it is
used to facilitate efficient learning of task transition functions.
However, the agent can directly execute the ancestor task of
the fragment in the hierarchy.

The general CSRL hierarchy is shown in Figure 5. We
define a node in the hierarchy to be either a task or a fragment.
It is similar to a MAXQ hierarchy, but with two differences:
(i) a task can be decomposed into fragments as well as smaller
tasks; (ii) the primitive actions no longer appear as the leaf

nodes, since they are defined inside each node. The set of
relevant features for a node is always a subset of its parent
node. This formulation requires no more information than
the MAXQ hierarchy with state abstraction information, as
introducing fragments allows the program to specify tasks
without goal states.

Learning Task Transition Functions

The task learning mechanism in CSRL allows efficient learn-
ing of transition dynamics for every node in the task hierarchy.
In CSRL, if two tasks share some common relevant features,
then the experience in any task is used to improve the model
in both tasks. Incorporating the fragments also allows experi-
ences to be shared efficiently across tasks.

We use N to denote the set of non-root nodes in the hier-
archy, and X is a subset of N . CSRL examines the features
that are unique to a set of nodes, and partitions the set of state
features into components.

Definition 3 (Unique function (Uni)) The function Uni re-
turns the unique features for a subset of nodes, X , under
consideration. Uni(

⋂
i∈X Fi) =

⋂
i∈X Fi −

⋃
j∈X Fj .

Definition 4 (Components of F ) For a subset of nodes X ,
Uni(

⋂
i∈X Fi) is called a component if it is non empty. The

set of components form a partition over the set of features.

The transition dynamics of any node in the hierarchy can
be factorized into that of its components. We illustrate the
transition function derivation using a taxi example: the agent
controls a taxi, and its goal is to deliver the passenger to
the destination. We formulate the problem using four state
features: the location of the passenger p, the location of the
taxi t, a binary variable in indicating whether passenger is in
the taxi, and the location of the destination d. The Get task
(task 1) uses the first three features while the Put task (task 2)
uses the last three features. Both tasks share the navigation
actions, and each task have a unique action to pickup or
putdown the passenger. The four state features are divided
into three components: Uni(F1) , Uni(F2) , and common
features, Uni(F1 ∩ F2), i.e. (p), (d) and (in, t) respectively.

To compute the transition function, we consider the fol-
lowing cases.
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Action unique to one task: If the action executed is
unique to task 1, i.e. the pickup action, the transition proba-
bility can be decomposed into two factors: features of task
1 (p, t, in), and features unique to task 2 (d). The agent
first predicts the features in task 1. The value of the shared
features F ′

1 ∩ F ′
2 (in and t) only depends on the features

of task 1, (F1). The agent then predicts the unique fea-
tures of task 2 (d), using F2, i.e. P (F ′

1 ∪ F ′
2|F1 ∪ F2, a) =

P (F ′
1|F1, a)P (Uni(F ′

2)|F2, a∅), where a∅ is the default ac-
tion if the action executed is not applicable to the task.

Action common to both tasks: If an action is common
to both tasks (e.g., navigation actions), then the transition
probability is constructed from three factors: features unique
to task 1 (p), features unique to task 2 (d), and, features
common to both tasks (in, t).

The agent first predicts Uni(F ′
1) based on the current

values of F1. The agent then predicts Uni(F ′
2) based on the

current values of F2. Finally the agent predicts the values of
F ′
1 ∩F ′

2 based on their corresponding current values F1 ∩F2.
Hence, if a ∈ A1 ∩A2,
P (F ′

1 ∪ F ′
2|F1 ∪ F2, a) = P (Uni(F ′

1)|F1, a) ·
P (Uni(F ′

2)|F2, a) · P (F ′
1 ∩ F ′

2|F1 ∩ F2, a)
The key observation is that factorization of the transition

model depends on the current action being executed. We can
generalize the previous example to n task problems. For large
problems, we usually compute the task transition function in-
stead of the global transition function, following Theorem 1.

Theorem 1 Given an action a, let Xa = {i | i ∈ N ∧ a ∈
Ai} be the set of nodes where action a is applicable. The
transition function for a task i is given by

P (F ′
i |Fi, a) =

∏

Y :Y ⊆N∧i∈Y

P (Uni(
⋂

j∈Y

F ′
j) |

⋂

j∈Xa∩Y

Fj , a)

The theorem states that the transition function for a task
i is the product of the transition functions of its compo-
nents. The theorem can be easily adapted to compute the
global transition function by including every component. Al-
gorithm 1 gives an overview of the CSRL algorithm. In
the algorithm, m is the exploration threshold; Pk,a denotes
the parent of component Ck with respect to action a (i.e.,
Pk,a = Par(Ck, a)), and is initialized in line 6. The agent
maintains an exploration count, n(Pk,a, a), for the parent
feature and action pair. If the exploration count is smaller
than the threshold, it transits to a fictitious component Cf

k
with probability 1 (line 13), if not, probability values are

Algorithm 1 CSRL Algorithm
1: Input: m, Fi for all tasks i
2: s ← s0, Xa ← {i|a ∈ Ai}
3: for all components k do
4: XCk

← {i|Ck ⊆ Fi} // tasks using Ck

5: for all actions a do
6: Pk,a ← ⋂

i∈XCk
∩Xa

Fi

7: n(Pk,a, a) ← 0; P (·|Pk,a, a) ← ∅

8: end for
9: end for

10: while s 
∈ terminal state do
11: for all components k, action a do
12: if n(Pk,a, a) < m then

13: P̂ (Cf
k |Pk,a, a) ← 1

14: else
15: P̂ (·|Pk,a, a) ← P (·|Pk,a, a)
16: end if
17: end for
18: if current task is completed or no task selected then
19: ConstructSMDP(s)
20: Solve previous SMDP to get next task i.
21: end if
22: Construct model for task i using Alg 1.
23: Solve model for task i to get a task policy πi.
24: Execute (s, πi(s)) → s′
25: for all components k do
26: n(Pk,a, a) ← n(Pk,a, a) + 1
27: Update P (·|Pk,a, a) with s, s′
28: end for
29: s ← s′
30: end while

updated. If a task is completed, a new task will be selected
(line 18–21), which will be discussed later. It then constructs
the model for task i and solve2 it to obtain the next action to
perform (line 23). Once the action is executed, the state of
the system is updated (lines 25–28).

Alternatively the agent can compute the global transition
function and line 18–21 is no longer necessary. Such variant
can be considered as an improved version of Factored R-
MAX: our method only requires the state abstraction informa-
tion, which might be easier to specify than the full dynamic
Bayesian network (DBN) structure as required by Factored
R-MAX. Similar to the analysis of Factored R-MAX (Strehl

2We use value iteration in our implementation. Other methods
such as prioritized sweeping can also be used to solve the model.
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Algorithm 2 ConstructSMDP(current_state)
1: state_queue.enqueue(current_state)
2: while state_queue not empty do
3: s = state_queue.dequeue
4: if s is new then
5: for all tasks i do
6: [succ, reward, dist] = SimulateTask(s, i)
7: if ¬succ then
8: R(s, i) ← Rmax

9: P (s|s, i) ← 1
10: else
11: R(s, i) ← reward
12: P (·|s, i) ← dist
13: end if
14: for all states s′ in dist do
15: state_queue.enqueue(s′)
16: end for
17: end for
18: end if
19: end while

2007), we can derive the sample complexity of using a global
transition function, ignoring log terms:

O
(

C 2V 3
max

∑
k,a |D(Par(Ck, a))||D(Ck)|

ε3(1− γ)3

)

where |D(Ck)| is the number of possible values for compo-
nent Ck, Vmax = Rmax/(1 − γ) and C is the number of
components.
State space size: The sample complexity does not depend
on the size of the state space; the sample complexity is linear
in the number of parameters in the factorization.
Optimality: The sample complexity analysis implies that if
we solve the learned root transition model, the value function
is ε-optimal to the actual value function with high probability,
except for a small number of steps.

Managing Hierarchical Execution

At the beginning of each episode, or after completing the
current task, the agent must select a new task to execute (line
18–21 in Alg 1). We model task selection as an SMDP, as
shown in Alg 2. The main difference from other approaches
is on how the SMDP parameters are estimated. Since the
transition function is computed for every node in the hier-
archy, the parameters can be more efficiently estimated by
simulating the effect of executing the task policy on the task’s
parent node’s transition function (Alg 3).

In Alg 2, the agent maintains a queue of states to be simu-
lated and proceeds as follows. When the queue is not empty,
a state s is extracted from the queue (line 3). If the state
is new, the parameters R(s, i) and P (·|s, i) are constructed
through simulation (line 6). If the simulation for execut-
ing task i in state s fails, R(s, i) is set to maximum reward
Rmax and P (s|s, i) to 1 (line 8–9). Hence this state is now
a fictitious state and it will be chosen to be executed. If the
simulation succeeds, the agent receives the average reward
and the distribution of terminating states, and constructs the

Algorithm 3 SimulateTask(s, i)
1: distribution ← ∅,average_reward ← 0
2: for simulation_num: 1 to NUM_SIM do
3: reward ← 0; steps ← 0
4: while True do
5: a ← πi(s); reward ← reward+Ri(s, a)
6: s ← SampleRootTransition (s, a)
7: R(s, i) ← Rmax

8: if steps > NUM_STEPS or s is fictitious then
9: return [False, Null, ∅]

10: end if
11: if s is goal state then
12: Update average_reward with reward
13: Update distribution with s as terminal state
14: Update distribution with duration to complete
15: break
16: end if
17: end while
18: end for
19: return [True, average_reward, distribution]

SMDP transition function and reward function using these
values (line 11–12). Then all the terminating states from
simulation are inserted into the state queue and the process
repeats. In the Alg 3, inside the while loop, the agent obtains
an action from the task policy (line 5) and samples a next
state from the root transition function (line 7). The procedure
returns false if the simulation fails to complete or reaches a
fictitious state in the task (line 9).

Given the policies of the child tasks, CSRL can simulate
the results of executing the task on the root node. Two issues
should be noted. First, the simulation is computationally fast.
The agent is only following a task policy without additional
computations. We report the running time in the experiments
section. Second, if a task simulation fails, the agent receives
maximum reward and will explore the task, leading to a better
task policy. The simulations for a task will not fail forever.

The procedure ConstructSMDP can be recursively
called at any level to construct the parameters. Given a
task policy for any node, we can construct the task selection
SMDP at the parent node. Solving the task selection SMDP
results in a policy for the parent node, which can be used for
simulation at an even higher level.

Multiple CSRLs can also be applied in one problem. Multi-
CSRL is a simple extension where a CSRL instance is treated
like a single action by its parent. Multi-CSRL is suitable
for solving problems that can be decomposed into multiple
independent sub-problems, each of which can be modeled
as a single CSRL instance. In the household robot example,
each room is modeled as a CSRL independent of the others.

Related Work

Recent developments in HRL are mainly based on the op-
tions (Sutton, Precup, and Singh 1999) and the MAXQ (Diet-
terich 1998) frameworks. Some efforts have focused on learn-
ing options or transferring them across multiple MDPs. Mann
et al. (2014) introduce regularization to options that favor
longer duration skills. Silve and Ciosek (2012) propose recur-
sive composition of option models into other option models.
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However, this work focuses on known MDP rather than re-
inforcement learning problems. Levy and Shimkin (2011)
use actor-critic framework that allows concurrent inter- and
intra-options learning. Brunskill and Li (2014) study the
sample complexity of SMDP-RMAX algorithm, and use PAC
analysis to prune options for knowledge transfer. Konidaris
and Barto (2009) propose skill chaining in continuous RL
domains, that segments complex policies into skills that can
be executed sequentially. Bai et al. (2016) show that an MDP
with state abstraction can be converted into a POMDP and
solved efficiently using hierarchical Monte Carlo Tree Search;
this work also does not focus on reinforcement learning.

MAXQ based methods share the same task hierarchy, but
adopt different solution methods. R-MAXQ is a model-based
approach that combines the MAXQ task hierarchy and R-
MAX exploration (Jong and Stone 2008), and uses priori-
tized sweeping to solve the learned model. The more re-
cent Bayesian MAXQ incorporates Bayesian prior to the
MAXQ algorithm (Cao and Ray 2012), but the assumption
on the given priors is not feasible in many domains. Vien
et. al (2014; 2014; 2015) introduce H-UCT that extends
MAXQ with hierarchical Monte-Carlo simulation. However,
Bayesian approaches can be computationally intensive.

Experiments
We test the empirical performance of CSRL on a set of bench-
mark experiments, formulated as a robot HRL agent solving
different tasks. We design the experiments with increasing
state sizes to demonstrate that the proposed methods are scal-
able to handle complex problems. The first experiment does
not require task selection, while the last large-scale, house-
hold robot experiment requires multiple levels of reasoning.
Moreover, the last experiment cannot be solved using exist-
ing methods due to incomplete problem specification at the
lower level: the terminating states for indoor navigation is
not known beforehand. We do not compare our work with the
recent Bayesian MAXQ or H-UCT as they are computation-
ally inefficient in solving the standard benchmarks (Vien and
Toussaint 2015). In all experiments, an episode terminates if
it does not complete in 1000 steps.

Robot Pickup and Place: The first experiment involves a
robot moving objects to designated locations. This is a variant
of the HRL benchmark Taxi problem (Dietterich 1998). We
use the 10 × 10 grid world from Diuk et al. (Diuk, Cohen,
and Littman 2008). The problem has 7200 states. The goal is
to pick up an object and place it at the a designated location.
Both the initial and the designated locations of the object
are on the landmarks. The problem is decomposed into Get,
where the robot picks up the object; and Put, where the robot
puts the object at the designated location. There are six
actions: four navigation actions, pickup to pick up the item,
and putdown to put down the item. Each navigation step
costs -1 and a successful putdown leads to +20; executing
pickup and putdown at the wrong state leads to -10.

In this experiment, the agent must first complete Get before
starting Put, thus task selection is not needed.

We compare our method against R-MAXQ, Factored R-
MAX and Factored ε-greedy, which replaces the directed
exploration in Factored R-MAX with ε-greedy exploration.

Factored R-MAX and Factored ε-greedy are given the task
DBN structures for both Get and Put. CSRL and R-MAXQ are
given the relevant feature information. We set the exploration
threshold, m = 1 for all methods. Since R-MAXQ cannot
converge with m = 1, we set m = 5 like other existing
works (Jong and Stone 2008; Cao and Ray 2012).

The results, averaged over 100 runs, are shown in Fig-
ure 6. CSRL converges to the optimal policy in fewer than
100 episodes, while R-MAXQ does not converge even after
1000 episodes. R-MAXQ cannot explore until the subtask
completes. Hence, it requires larger number of episodes to
complete the exploration. CSRL fares better than Factored
R-MAX, despite the fact that it does not know the DBN struc-
ture. Factored ε-greedy converges to a near-optimal policy.
Due to ε-greedy exploration it never stops exploring, and thus
fails to reach the optimal policy.

Pickup and Place—Two Objects: We define an exten-
sion of the previous problem in which there are two objects
in the environment. The agent now has two pickup and two
putdown actions, and the robot can pick up both objects
at the same time. This experiment contains 518400 states.
We do not compare with R-MAXQ as it needs at least 1472
episodes to complete exploration (92 non-landmark locations,
8 designated locations, 2 objects).

We compare CSRL with Factored R-MAX Random and
Factored ε-greedy Random. These two methods use random
task selection. We also compare with SMDP-RMAX (Brun-
skill and Li 2014) for task selection, but use Theorem 1 for
task learning. The results of an average of 100 runs are shown
in Figure 7. CSRL has the best results, both in terms of aver-
age and accumulated rewards. CSRL and SMDP-RMAX have
almost the same performance for the first 50 episodes, as they
use the same task learning approach. Once CSRL has learned
the accurate task dynamics for all the tasks, it converges to
a better policy than SMDP-RMAX, as it can utilize the root
transition function to construct the parameters for the SMDP
at the top level. For the 500 episodes tested, SMDP-RMAX
performs similarly to random task selection, showing that
it requires many more samples to converge. We have also
tested CSRL with up to eight objects in various settings, and
found that it performs well in all the experiments.

Household Robot Experiment: The final experiment is
the household robot problem presented in the Introduction,
modeled using Webots (Michel 2004) simulator. Recall that
this problem cannot be modeled using existing HRL meth-
ods, as the destination of indoor navigation is not known
beforehand.

The state variables or features are the robot’s location
and orientation, as well as 10 binary variables that indicate
whether a task is complete. The size of the state space is
1638400 (400 cells, 4 orientation, 10 binary variables). There
are 17 actions: move forward, turn left/right, one unique
action for each of the 10 tasks (such as turning off the tele-
vision), and one action to open the door for each room. The
reward for navigation actions and opening doors is -1. The
reward for the tasks’ unique actions is 40 if it completes the
task, and -5 for attempting actions at wrong locations. The
navigation actions have stochastic effects, while the others
are deterministic.
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Figure 6: Robot pickup and place
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Figure 7: Pickup and place: 2 objects
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Figure 8: Household assistive robot

We model the problem as a Multi-CSRL, which treats each
CSRL instance as a single action. Each dotted rectangle in
Figure 2 represents a CSRL instance. The root level has
eight actions: each of the four rooms has its own CSRL and a
GoTo(Room) action in the corridor. The agent chooses actions
by constructing a root level SMDP, which is similar to the
task selection SMDP in a CSRL. We run the experiment using
Multi-CSRL and multiple Factored R-MAX (Multi-FRMAX)
with the exploration threshold m = 1 for both methods.
Multi-FRMAX is extended in a similar way but it follows
a fixed order of execution—living room, kitchen, bedroom
and yard; if the starting location is in a room, it completes
all tasks in the room, enters the corridor, and completes the
remaining tasks according the list.

The results are shown in Figure 8. The most important
observation is a huge improvement on average performance
for Multi-CSRL at around the 25th episode, the value of the
policy increases from about -1200 to more than 100. This
is because Multi-CSRL features very efficient multi-layer
directed exploration: task learning first indicates an unknown
component-action pair by making it transit to a fictitious state,
reflected in the value function for all the tasks that includes
this component-action pair. The hierarchical execution of the
room CSRL treats these tasks as another layer of fictitious
states, and directs the agent to explore these tasks. Finally,
the root level notices the room CSRL having fictitious states,
and directs the agent to visit the room. Once the exploration
is complete, a near optimal policy is immediately reached.
Instead, Multi-FRMAX converges to a sub-optimal policy,
indicating that SMDP task selection leads to much better
performance than fixed order task selection. Multi-CSRL
also has better accumulated reward, as sharing the navigation
fragments minimizes the amount of exploration required.
Unlike Multi-CSRL, which has a sudden improvement in
average reward, Multi-FRMAX’s improvement in average
reward is more smooth. This shows that without a multi-layer
directed exploration mechanism as in Multi-CSRL, more
episodes are required to complete all the exploration steps.

In terms of computational time, both methods have sim-
ilar performance. The running time is the average of 10
independent runs, on a Xeon E5-2643 v2 3.50GHz using a
single thread. Multi-CSRL completes 100 episodes in 610.8
seconds, while Multi-FRMAX completes in 616.7 seconds.
When a task is selected, both Multi-CSRL and Multi-FRMAX
have similar per-step computation cost as both use value iter-
ation to solve a task. However, Multi-CSRL learns a better
policy which involves smaller number of steps per episode,
and this also shows that simulation is computationally effi-
cient and does not result in a longer running time.

Discussion and Conclusion

We have introduced CSRL, which includes a task learning
mechanism that learns both the task and the global tran-
sition dynamics, and a hierarchical execution mechanism
handling task selection by formulating and solving the under-
lying SMDP. We have empirically shown that, by simulation
on learning the global transition functions, CSRL performs
much better than other state-of-the-art algorithms, and is
scalable to problems with over one million states. CSRL is
also able to handle various problems that cannot be solved
by many existing HRL methods. For ease of exposition and
as in most MAXQ based HRL methods, we have assumed
safe state abstraction with manual specification of the rele-
vant features. This assumption can be relaxed by extending
the framework with automated feature learning and feature
selection mechanisms. Future work could also include knowl-
edge transfer to target problems that share similar hierarchies.
Each CSRL instance in the Multi-CSRL setting can be ab-
stracted as a rule and transferred across similar domains.
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