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a b s t r a c t 

Ciphertext-policy attribute-based encryption (CP-ABE) has been regarded as one of the promising solu- 

tions to protect data security and privacy in cloud storage services. In a CP-ABE scheme, an access struc- 

ture is included in the ciphertext, which, however, may leak sensitive information about the underlying 

plaintext and the privileged recipients in that anyone who sees the ciphertext is able to learn the at- 

tributes of the privileged recipients from the associated access structure. In order to address this issue, 

CP-ABE with partially hidden access structures was introduced where each attribute is divided into an 

attribute name and an attribute value and the attribute values of the attributes in an access structure 

are not given in the ciphertext. Though a number of CP-ABE schemes with partially hidden access struc- 

tures have been proposed, most of them only enable restricted access structures, whereas several other 

schemes supporting expressive access structures are computationally inefficient due to the fact that they 

are built in the composite-order groups. To our knowledge, there has been little attention paid to the de- 

sign of expressive CP-ABE schemes with partially hidden access structures in the prime-order groups. In 

this paper, we revisit this problem, and present an expressive CP-ABE scheme supporting partially hidden 

access structures in the prime-order groups with improved efficiency. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

In recent years, there has been an increasing demand for stor- 

ing data to the cloud [2–4] . Users may not like to store his/her data 

containing sensitive information to a public cloud without security 

and privacy guarantee, but they may need to share their data with 

others possessing certain attributes (or credentials). Ciphertext- 

policy attribute-based encryption (CP-ABE) [5] is a mechanism 

meeting this requirement, where each user is given a private 

attribute-key in terms of his/her attributes issued by an attribute 

authority (AA), each message is encrypted under an access struc- 

ture (or access policy) over a set of attributes, and a user can de- 

crypt a ciphertext with his/her private attribute-key if his/her at- 

tributes satisfy the access policy ascribed to this ciphertext. 

Though a ciphertext generated by a CP-ABE scheme (e.g., [5–8] ) 

does not reveal the identities of the recipients, anyone accessible 

to a ciphertext may learn some information about the underlying 

� This paper is an extension to the original publication in ProvSec 2016 [1] . 
∗ Corresponding author at: School of Science, Royal Melbourne Institute of Tech- 

nology (RMIT) University, Melbourne, Australia. 

E-mail address: hui.cui@rmit.edu.au (H. Cui). 

message and the privileged recipients from the access structure 

clearly included in the ciphertext [9–11] . For example, in a cloud 

system storing electrical medical records (EMRs) [12,13] of patients 

as in Fig. 1 , there is a ciphertext on an EMR under an access struc- 

ture “(Patient: NR005289 AND Hospital: City Hospital) OR (Doctor: 

Cardiologist AND Hospital: General Hospital)”. The access structure 

defines that a patient numbered as NR005289 at the City Hospital 

or any Cardiologist at the General Hospital can decrypt the cipher- 

text to obtain the EMR, from which it is not difficult to conclude 

that a patient NR005289 in the City Hospital is suffering a heart 

problem. Definitely, cloud users do not expect such an information 

leakage, so it is crucial to build CP-ABE schemes with attributes 

hidden in the access structures. 

It has been stated in [9] that a CP-ABE scheme with hid- 

den access structures can be built from an attribute-hiding inner- 

product predicate encryption (IPE) scheme [14] , but it is inefficient 

to implement a CP-ABE scheme with fully hidden access structures 

(where the attributes are completely hidden from the ciphertext) 

built from an attribute-hiding IPE scheme [7] . In order to have 

a trade off between fully hidden access structures and efficient 

CP-ABE, many CP-ABE schemes with partially hidden access struc- 

tures (e.g., [9,15–18] ) have been proposed. However, some schemes 

https://doi.org/10.1016/j.comnet.2018.01.034 
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Fig. 1. An architecture of a cloud storage system based on a CP-ABE scheme. 

(e.g., [15–18] ) only allow restricted access structures (expressed 

in AND gates), while other schemes (e.g., [9] ) supporting expres- 

sive access structures are built in the inefficient composite-order 

groups (note that “a Tate pairing on a 1024-bit composite-order el- 

liptic curve is roughly 50 times slower than the same pairing on a 

comparable prime-order curve, and this performance gap will only 

get worse at higher security levels” [19] ). There exist techniques 

(e.g., [19] ) to convert schemes in the composite-order groups to 

that in the prime-order groups, but they cause a significant degra- 

dation in the performance [20] . Consequently, it is desirable to 

construct expressive CP-ABE schemes with partially hidden access 

structures in the prime-order groups. 

1.1. Our contributions 

Generally, generic attribute names contain less sensitive infor- 

mation than concrete attribute values. Take the scenario in Fig. 1 as 

an instance, it is obvious that the attribute values “Cardiologist”

and “NR005289” are more sensitive than the attribute names “Doc- 

tor” and “Patient”. Motivated by this observation, it has been 

suggested to use CP-ABE with partially hidden access structures 

[9,15] which divides each attribute into an attribute name and an 

attribute value, and the attribute values of an access structure are 

not included in the ciphertext. Specifically, the full access structure 

in Fig. 1 is replaced by a partially hidden access structure “(Patient: 
∗ AND Hospital: ∗) OR (Doctor: ∗ AND Hospital: ∗)” to be included 

in the ciphertext. 

One naive method to build a CP-ABE scheme with partially 

hidden access structures is to simply remove the attribute names 

from the access structure of the ciphertext. The resulting scheme, 

however, suffers off-line dictionary attacks [1] , by running which 

an adversary can determine whether an attribute value is associ- 

ated with an access structure if the space of the attribute values 

is not sufficiently large. To overcome this challenge and build an 

expressive CP-ABE scheme with partially hidden access structures 

in the prime-order groups, Cui et al. [1] applied the “randomness 

splitting” [21] technique to the Rouselakis–Waters CP-ABE scheme 

[20] to hide the sensitive attribute values from the ciphertext. In 

this way, an access structure with only attribute names (i.e., at- 

tribute values are not present) is sent along with the ciphertext. 

Besides, to convince a user that he/she is a privileged user to the 

resulting “anonymous” ciphertext, Cui et al. [1] combined a com- 

mitment scheme [22] on the message to the corresponding cipher- 

text such that a user can check the correctness of the decryption 

result. In this paper, we revisit the expressive CP-ABE scheme with 

partially hidden access structures in the prime-order groups given 

in [1] , and improve its efficiency by removing the commitment 

scheme without weakening the security. In the proposed expres- 

sive CP-ABE scheme with partially hidden access structures in the 

prime-order groups, the encryption and decryption algorithms add 

no exponentiation or pairing calculations to that of the underly- 

ing Rouselakis–Waters scheme [20] , while the expressive CP-ABE 

scheme with partially hidden access structures in the prime-order 

groups in [1] adds several exponentiation operations to that of the 

underlying Rouselakis–Waters scheme [20] . 

In summary, the proposed expressive CP-ABE scheme with par- 

tially hidden access structures in this paper is similar to the one 

in [1] except that the former improves the efficiency of the latter 

by removing the commitment scheme yet allowing a user to check 

whether he/she is a privileged recipient of a ciphertext without in- 

cluding the associated attribute values. 

1.2. Related work 

Attribute-based encryption (ABE) was introduced by Sahai and 

Waters [23] , which was then formulated into key-policy ABE (KP- 

ABE) and CP- ABE [24] . In a KP-ABE scheme, the ciphertext is as- 

sociated with an attribute set and the private attribute-key is as- 

cribed to an access policy, while the situation is reversed in a CP- 

ABE scheme. Nevertheless, a CP- ABE scheme is more flexible than 

a KP-ABE scheme because the access policy in the latter is de- 

termined once the user’s private attribute-key is issued. The first 

CP-ABE scheme was proposed by Bethencourt, Sahai and Waters 

[5] , but it was secure under the generic group model. The first CP- 

ABE scheme secure in the standard model was presented by Che- 

ung and Newport [6] , but it only supported the access structures 
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in AND gates. The first CP-ABE scheme enabling advanced access 

structures was designed by Goyal et al. [25] based on the num- 

ber theoretic assumption. The first large universe CP-ABE scheme 

in the prime-order groups was built by Rouselakis and Waters 

[20] , where the size of the attribute space is polynomially un- 

bounded. CP-ABE schemes with partially hidden access structures 

(e.g., [15,16,18] ) were presented to better preserve privacy, but they 

were selectively secure or allowed restricted access structures (ex- 

pressed in AND gates). Lai, Deng and Li [17] gave a fully secure 

CP-ABE scheme with partially hidden access structures, but it only 

supported the restricted access structures. Later, Lai, Deng and Li 

[9] proposed a fully secure and expressive CP-ABE scheme to par- 

tially hide access structures, but it had an efficiency issue due 

to the use of bilinear pairings in the composite-order groups. To 

overcome the inefficient implementation of the composite-order 

groups, Cui et al. [1] presented an expressive CP-ABE scheme with 

partially hidden access structures in the prime-order groups. In 

this paper, we revisit the expressive CP-ABE scheme with partially 

hidden access structures in the prime-order groups in [1] , and fur- 

ther improve its efficiency. 

1.3. Organization 

The rest of this paper is organized as follows. In Section 2 , 

we briefly review the definitions that are related to this paper. In 

Section 3 , we describe the framework for CP-ABE with partially 

hidden access structures, and then define its security model. In 

Section 4 , we give a concrete expressive CP-ABE scheme with par- 

tially hidden access structures, and analyze its security and perfor- 

mance. Finally, we conclude this paper in Section 5 . 

2. Preliminaries 

We review some basic cryptographic notions and definitions 

that are to be used in this paper in this section. 

2.1. Bilinear pairings and complexity assumptions 

Let G be a group of a prime order p with a generator g . We 

say that ˆ e : G × G → G 1 is a bilinear map [26] if it is Bilinear such 

that for all g ∈ G , and a, b ∈ Z p , it holds that ˆ e (g a , g b ) = ˆ e (g, g) ab , 

and Non-degenerate such that ˆ e (g, g) � = 1 . 

Decisional (q − 1) assumption [20] . The decisional (q − 1) 

problem is that for any probabilistic polynomial-time (PPT) algo- 

rithm, given 
−→ 
y = 

g, g μ, 

g a 
i 
, g b j , g μ·b j , g a 

i b j , g a 
i /b 2 

j ∀ (i, j) ∈ [ q, q ] , 

g a 
i /b j ∀ (i, j) ∈ [2 q, q ] with i � = q + 1 , 

g 
a i b j /b 2 

j ′ ∀ (i, j, j ′ ) ∈ [2 q, q, q ] with j � = j ′ , 
g μa i b j /b j ′ , g 

μa i b j /b 2 
j ′ ∀ (i, j, j ′ ) ∈ [ q, q, q ] with j � = j ′ , 

it is difficult to distinguish ( 
−→ 
y , ˆ e (g, g) a 

q +1 μ) from ( 
−→ 
y , Z ), where 

g ∈ G, Z ∈ G 1 , a, μ, b 1 , . . . , b q ∈ Z p are randomly chosen. 

Decisional linear assumption [27] . The decisional linear prob- 

lem is that for any PPT algorithm, given g , g x 1 , g x 2 , g x 1 x 3 , g x 2 x 4 , it is 

difficult to distinguish ( g , g x 1 , g x 2 , g x 1 x 3 , g x 2 x 4 , g x 3 + x 4 ) from ( g , g x 1 , 

g x 2 , g x 1 x 3 , g x 2 x 4 , Z ), where g, Z ∈ G, x 1 , x 2 , x 3 , x 4 ∈ Z p are randomly 

chosen. 

2.2. Pseudo-random functions 

Let H : K λ × D λ → R λ be a pseudo-random function (PRF) 

[28] under a security parameter λ with arbitrary finite sets K λ, D λ
and R λ. The advantage of an adversary A against the PRF H is 

Adv 
PRF 
H, A (λ) = Pr [ REAL A H ⇒ 1] − Pr [ RAND 

A 
H ⇒ 1] , 

where the security games are given in Fig. 2 . If the advantage of 

any PPT adversary is negligible in the security parameter λ, then 

H is a secure PRF. 

2.3. Symmetric encryption 

A symmetric encryption (SE) scheme SE with a key space K
and a message space M is composed of an encryption algorithm 

SE .Enc( K, M ) which outputs a ciphertext CT on input a key K (in 

the key space) and a message M (in the message space), and a 

decryption algorithm SE .Dec( K , CT) which outputs M or a failure 

symbol ⊥ on input a key K and a ciphertext CT. 

The scheme SE is secure under chosen plaintext attacks (IND- 

CPA secure), if for any PPT adversary A , the advantage function 

Adv 
IND-CPA 
SE , A (λ) = Pr 

⎡ 

⎢ ⎣ b 
′ = b 

∣∣∣∣∣∣∣

K ← K; b ← { 0 , 1 } 
( M 0 , M 1 , state ) ← A ( 1 λ) 
CT 

∗ ← SE . Enc ( K, M b ) 
b ′ ← A ( par, M 0 , M 1 , state, CT 

∗) 

⎤ 

⎥ ⎦ −1 / 2 

is negligible in the security parameter λ, where | M 0 | = | M 1 | . 

2.4. Access structures and linear secret sharing schemes 

Access structures [8,29] . Denote { P 1 , . . . , P n } as a set of parties. 

A collection A ⊆ 2 { P 1 , ... ,P n } is monotone if ∀ B, C : if B ∈ A and B ⊆C , 

then C ⊆ A . An (monotone) access structure is a (monotone) collec- 

tion A of non-empty subsets of { P 1 , . . . , P n }, i.e., A ⊆ 2 { P 1 , ... ,P n } \ {∅} . 
The sets that are in A are known as the authorized sets, and the 

sets that are not in A are known as the unauthorized sets. 

Linear secret sharing schemes (LSSSs) [8,29] . Let P be a set of 

parties, M be an l × n matrix (i.e., the matrix M has l rows and n 

columns), and ρ: {1, . . . , l } → P be a function mapping a row to a 

party for labeling. A secret sharing scheme � over a set of parties 

P is a linear secret-sharing scheme (LSSS) over Z p if (1) the shares 

for each party form a vector over Z p ; and (2) there exists an l × n 

matrix M called the share-generating matrix for �. For x = 1, . . . , l , 

the x -th row of the matrix M is labeled by a party ρ( i ) with ρ: {1, 

. . . , l } → P being a function to map a row to a party for labeling. 

Assuming that the column vector 
−→ v = ( μ, r 2 , . . . , r n ), where μ∈ Z p 

is the secret to be shared and r 2 , . . . , r n ∈ Z p are randomly chosen, 

and then M 
−→ v is the vector of l shares of the secret μ according to 

�. The share (M 
−→ v ) i belongs to the party ρ( i ). 

Note that every LSSS enjoys the linear reconstruction property 

[29] . Let � be an LSSS for an access structure A , and A be an 

authorized set. Define I ⊆ {1, . . . , l } as I = { i | ρ(i ) ∈ A } . Then the 

vector (1, 0, . . . , 0) is in the span of rows of a matrix M indexed 

by I , and there exist constants { w i ∈ Z p } i ∈ I such that, for any valid 

shares { v i } of a secret μ according to �, it holds that �i ∈ I w i v i = μ. 

These constants { w i } can be found in polynomial time with respect 

to the size of the share-generating matrix M [30] . On the other 

hand, for an unauthorized set A 
′ 
, such constants { w i } do not ex- 

ist. Also, in this case, if I ′ = { i | ρ(i ) ∈ A 
′ } , there exists a vector 

−→ 
w 

such that its first component w 1 is any non-zero element in Z p and 

< M i , 
−→ 
w > = 0 for all i ∈ I ′ , where M i is the i -th row of the matrix 

M [20] . 

Boolean formulas. Access structures can be described in terms 

of monotonic boolean formulas as well. LSSS access structures can 

be derived from representations as boolean formulas, which are 

more general. There are generic methods to convert a monotonic 

boolean formula into an LSSS matrix 1 A boolean formula can be 

represented as an access tree, in which the AND or OR gates are 

denoted by the interior nodes, and the attributes are denoted by 

1 For the details about how to convert a boolean formula into an equivalent LSSS 
matrix, please refer to [29] . 
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Fig. 2. Games defining security for a PRF. Left: Game REAL. Right: Game RAND. 

the leaf nodes. The number of rows in an LSSS matrix will be equal 

to the number of leaf nodes in its corresponding access tree. 

3. System architecture and security model 

In this section, the framework and the corresponding security 

model of ciphertext-policy attribute-based encryption with par- 

tially hidden access structures are described. 

3.1. Framework 

A CP-ABE scheme with partially hidden access structures con- 

sists of a setup algorithm Setup, a private attribute-key generation 

algorithm KeyGen, an encryption algorithm Encrypt and a decryp- 

tion algorithm Decrypt. 

• Setup(1 λ) → ( pars, msk ). Taking the security parameter λ as 

the input, this algorithm, running by the AA, outputs the public 

parameter pars and the master private key msk . 

• KeyGen( pars, msk , A ) → K A . Taking the public parameter pars , 

the master private key msk and an attribute set A as the input, 

this algorithm, running by the AA, outputs a private attribute- 

key K A . 

• Encrypt( pars, M , (M , ρ , { A ρ( i ) })) → CT. Taking the public pa- 

rameter pars , a message M and an access structure (M , ρ , 

{ A ρ( i ) }) where the function ρ associates the rows of the matrix 

M to generic attribute names, and { A ρ( i ) } are the correspond- 

ing attribute values as the input, this algorithm, running by the 

data owner, outputs a ciphertext CT. 

• Decrypt( pars , CT, K A ) → M / ⊥ . Taking the public parameter pars , 

a ciphertext CT under an access structure (M , ρ , { A ρ( i ) }) and a 

private attribute-key K A over an attribute set A as the input, 

this algorithm, running by the user, outputs a message M if the 

attributes A satisfy the access structure (M , ρ , { A ρ( i ) }), or a fail- 

ure symbol ⊥ otherwise. 

A CP-ABE scheme with partially hidden access structures is said 

to be correct, meaning that for all messages M (in the message 

space), all attribute sets A (in the attribute space) satisfying ac- 

cess structures (M , ρ , { A ρ( i ) }), if ( pars, msk ) ← Setup(1 λ), K A ← 

KeyGen( pars, msk , A ) , CT ← Encrypt( pars, M , (M , ρ , { A ρ( i ) })), then 

Decrypt( pars , CT, K A ) = M . 

3.2. Security definitions 

A CP-ABE scheme with partially hidden access structures should 

preserve confidentiality and anonymity. Below we review the secu- 

rity definitions for these two requirements, following the descrip- 

tion in [1] . 

• Confidentiality. The security game for confidentiality is defined 

by the following game between a challenger algorithm C and an 

adversary algorithm A . 

- Setup. Algorithm C runs the setup algorithm to obtain the 

public parameter pars and the master private key msk . It 

keeps the master private key msk and gives the public pa- 

rameter pars to algorithm A . 

- Phase 1. Algorithm A adaptively issues queries to the key 

generation oracle. For each query on an attribute set A i , al- 

gorithm C returns a private attribute-key K A i to algorithm A . 

- Challenge. Algorithm A outputs two messages M ∗0 , M ∗1 of the 

same size and an access structure (M ∗, ρ∗, { A ρ∗(i ) } ) with 

the constraint that there is no attribute set A i in the key 

generation queries in Phase 1 satisfying the challenge access 

structure (M ∗, ρ∗, { A ρ∗(i ) } ) . Algorithm C randomly chooses a 

bit β ∈ {0, 1}, generates the challenge ciphertext CT ∗ of the 

message M ∗
β

under the access structure (M ∗, ρ∗, { A ρ∗(i ) } ) , 
and sends the challenge ciphertext CT ∗ to algorithm A . 

- Phase 2. Algorithm A continues issuing queries on attribute 

sets to the key generation oracle with the restriction that 

the attribute sets cannot satisfy the challenge access struc- 

ture in the challenge phase. Algorithm C responds as in 

Phase 1. 

- Guess. Algorithm A makes a guess β ′ ∈ {0, 1} for β , and it 

wins the game if β ′ = β . 

• Anonymity . The security game for anonymity is defined under 

chosen-plaintext attacks (ANON-CPA) between a challenger al- 

gorithm C and an adversary algorithm A as follows. 

- Setup. Algorithm C runs the setup algorithm to obtain the 

public parameter pars and the master private key msk . It for- 

wards the public parameter pars to algorithm A and keeps 

the master private key msk . 

- Phase 1. Algorithm A issues key generation queries to algo- 

rithm C. For each key generation query on an attribute set 

A i , algorithm C returns a private attribute-key K A i to algo- 

rithm A . 

- Challenge. Algorithm A outputs a message M ∗, two access 

structures (M ∗, ρ∗, { A ρ∗(i ) } 0 ) and (M ∗, ρ∗, { A ρ∗(i ) } 1 ) (i.e., 

the access matrix (M ∗, ρ∗) can be satisfied by the attribute 

sets { A ρ∗(i ) } 0 and { A ρ∗(i ) } 1 ) with the constraint that there 

are no key generation queries in Phase 1 that can satisfy 

(M ∗, ρ∗, { A ρ∗(i ) } 0 ) or (M ∗, ρ∗, { A ρ∗(i ) } 1 ) . Algorithm C ran- 

domly chooses a bit β ∈ {0, 1}, and sends a challenge cipher- 

text CT ∗ for the message M ∗ under the access structure (M ∗, 
ρ∗, { A ρ∗(i ) } β ) to algorithm A . 

- Phase 2. Algorithm A continues issuing the key generation 

queries to algorithm C except that any attribute set A i sat- 

isfying the access structure c (M ∗, ρ∗, { A ∗
ρ(i ) } 0 ) or (M ∗, ρ∗, 

{ A ∗
ρ(i ) } 1 ) are disallowed. Algorithm C responds as in Phase 

1. 

- Guess. Algorithm A makes a guess β ′ ∈ {0, 1} for β , and it 

wins the game if β ′ = β . 

The advantage of algorithm A in the above confidentiality (or 

anonymity) game is defined to be Pr [ β = β ′ ] − 1 / 2 . A CP-ABE 

scheme with partially hidden access structures is said to be in- 

distinguishable (or anonymous) under the chosen-plaintext attacks 

if any PPT adversary has at most a negligible advantage in the 

security parameter λ. Also, a CP-ABE scheme with partially hid- 

den access structures is said to be selectively indistinguishable (or 

anonymous) if an Init stage is added before the Setup phase where 

algorithm A commits to the challenge access structure (M ∗, ρ∗, 
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{ A ρ∗(i ) } ) (or the challenge access structures (M ∗, ρ∗, { A ρ∗(i ) } 0 ) and 

(M ∗, ρ∗, { A ρ∗(i ) } 1 ) . 

4. Expressive ciphertext-policy attribute-based encryption with 

partially hidden access structures in prime-order groups 

In this section, a concrete expressive CP-ABE scheme with par- 

tially hidden access structures in the prime-order groups, as well 

as its security and efficiency analysis are given. 

4.1. Construction 

We present an expressive CP-ABE scheme supporting partially 

hidden access structures in the prime-order groups ABE by im- 

proving the scheme ABE ′ in [1] . Assume that SE = ( SE .Enc, 

SE .Dec) is a symmetric encryption scheme with a key space K and 

a message space M . Let G be a group of a prime order p with a 

generator g , and ˆ e : G × G → G 1 be a bilinear map. 

• Setup. Similar to that in ABE ′ [1] , this algorithm takes the se- 

curity parameter λ as the input. It computes g 1 = g d 1 , g 2 = g d 2 , 

g 3 = g d 3 , g 4 = g d 4 , where u, h, v, w ∈ G, d 1 , d 2 , d 3 , d 4 , α ∈ Z p are 

randomly chosen. The master private key is msk = ( d 1 , d 2 , d 3 , 

d 4 , g α), and the public parameter is pars = ( H, H ′ , g, u, h, w, 

v, g 1 , g 2 , g 3 , g 4 , ˆ e (g, g) α) where H is a collision-resistant hash 

function to map elements in G 1 to elements in K and H ′ is a 

pseudo-random function to map elements in G 1 and M to ele- 

ments in M . 

• KeyGen. This algorithm is the same as that in ABE ′ [1] , which 

takes the public parameter pars , the master private key msk and 

an attribute set A 2 as the input. Let k be the size of A such that 

A 1 , . . . , A k ∈ Z p are the attribute values of A . It computes 

K 1 = g αw d 1 d 2 r+ d 3 d 4 r 
′ 
, K 2 = g rd 1 d 2 + r ′ d 3 d 4 , 

K i, 1 = ((u A i h ) r i v −r ) d 2 , K i, 2 = ((u A i h ) r i v −r ) d 1 , K i, 3 = g d 1 d 2 r i + d 3 d 4 r 
′ 
i , 

K i, 4 = ((u A i h ) r 
′ 
i v −r ′ ) d 4 , K i, 5 = ((u A i h ) r 

′ 
i v −r ′ ) d 3 , 

where r, r ′ , r 1 , . . . , r k , r ′ 
1 , . . . , r ′ 

k ∈ Z p are randomly chosen. It 

outputs a private attribute-key K A = ( K 1 , K 2 , { K i , 1 , K i , 2 , K i , 3 , 

K i , 4 , K i , 5 } i ∈ [1, k ] ). 

• Encrypt. This algorithm mostly follows that in ABE ′ [1] , which 

takes the public parameter pars , a message M and an access 

structure (M , ρ , { A ρ( i ) }) as the input. It randomly chooses a vec- 

tor 
−→ v = ( μ, y 2 , . . . , y n ) ∈ Z n p of which the values are used to 

share μ, and computes v i = 
−→ v · M i (for i = 1 , . . . , l), where M i 

is the vector corresponding to the i -th row of the matrix M . 

Then, it randomly chooses R ∈ G 1 , s i , 1 , . . . , s i, l , s 1, 2 , . . . , s l , 2 , z 1 , 

. . . , z l ∈ Z p , and computes k = H ( R ), τ = H ′ (R, M) , 

C = R · ˆ e (g, g) αμ, D = g μ, E = SE . Enc (k, M) , 

C i = w v i v z i , D i, 1 = g 1 
z i −s i, 1 , E i, 1 = g 3 

z i −s i, 2 , 

D i, 2 = g 2 
s i, 1 , E i, 2 = g 4 

s i, 2 , F i = (u A ρ(i ) h ) −z i . 

It outputs a ciphertext CT = 
(
(M , ρ), C, D , {( C i , D i , 1 , D i , 2 , E i , 1 , 

E i , 2 , F i )} i ∈ [1, l ] , E, τ ). 

• Decrypt. This algorithm mostly follows that in ABE ′ [1] , which 

takes the public parameter pars , a ciphertext 
(
(M , ρ), C, D , {( C i , 

D i , 1 , D i , 2 , E i , 1 , E i , 2 , F i )} i ∈ [1, l ] , E, τ ) and a private attribute-key 

K A for an attribute set A as the input. It computes a set of 
minimum subsets of attributes satisfying (M , ρ) as I M ,ρ . De- 

note { w i ∈ Z p } i ∈I as a set of constants such that if { v i } are 

2 Each attribute is denoted as N i = A i , where N i is the generic attribute name and 
A i is the corresponding attribute value. 

valid shares of the secret μ in terms of the matrix M , then ∑ 
i ∈I w i v i = μ. For an I ∈ I M ,ρ , it computes 

ˆ e (D, K 1 ) ∏ 
i ∈I ( ̂ e (C i , K 2 ) ̂ e (D i, 1 , K i, 1 ) ̂ e (D i, 2 , K i, 2 ) ̂ e (F i , K i, 3 ) ̂ e (E i, 1 , K i, 4 ) ̂ e (E i, 2 , K i, 5 )) 

w i 

= 
ˆ e (g, g) αμ ˆ e (g μ, w ) r 1 d 1 d 2 ̂  e (g μ, w ) r 2 d 3 d 4 ∏ 

i ∈ I ( ̂ e (g, w v i ) d 1 d 2 r 1 + d 3 d 4 r 2 ) w i 
= ˆ e (g, g) αμ. 

It cancels out this value from C to have R ′ , and computes 

M ′ = SE .Dec( H ( R ′ ), E ). It outputs M ′ if τ = H ′ ( R ′ , M ′ ), or ⊥ oth- 

erwise. 

4.2. Security proof 

Theorem 1. Assuming that H ′ is a secure pseudo-random function, 

the decisional (q − 1) assumption holds in G, the decisional linear as- 

sumption holds in G, the scheme SE is IND-CPA secure, and then the 

proposed scheme ABE is selectively indistinguishable and anonymous. 

Proof. The proof is reduced via a sequence of games by conclud- 

ing that these games are computationally indistinguishable from 

each other. To simplify the description, the access structures are 

removed from the ciphertexts. Denote ( C ∗, D ∗, { (C ∗
i , D ∗

i, 1 , D ∗
i, 2 , E 

∗
i, 1 , 

E ∗
i, 2 , F 

∗
i ) } i ∈ [1 ,l] , E ∗, τ ∗) as the challenge ciphertext given to the ad- 

versary during an attack in the real world. Let Z be a random el- 

ement of G 1 , and { Z i , 1 }, { Z ′ 
i, 1 } be sets of random elements of G . 

Denote Z ∗E , Z ∗τ as the elements randomly chosen from the cipher- 

text space and the message space of SE , respectively. A sequence 

of games Game 0 , Game 1 , . . . , Game l , Game l+1 , . . . , Game 2 l+1 , 

Game 2 l+2 , Game 2 l+3 are defined which differ on which challenge 

ciphertext is given to the adversary, where Game 0 is the original 

game, Game 1 changes the term C ∗ to Z , and Game 2 to Game l+1 
change the term D ∗

i, 1 to Z i , 1 one by one for i ∈ [1, l ], and Game l+2 

to Game 2 l+1 change the term E ∗
i, 1 to Z ′ 

i, 1 one by one for i ∈ [1, l ], 

Game 2 l+2 changes the term E ∗ to Z ∗
E , and Game 2 l+3 changes the 

term τ ∗ to Z ∗τ . 

• Game 0 : The challenge ciphertext is CT ∗
0 = ( C ∗, D ∗, { (C ∗

i , D ∗
i, 1 , 

D ∗
i, 2 , E 

∗
i, 1 , E 

∗
i, 2 , F 

∗
i ) } i ∈ [1 ,l] , E ∗, τ ∗). 

• Game 1 : The challenge ciphertext is CT ∗
1 = ( Z, D ∗, { (C ∗

i , D ∗
i, 1 , D ∗

i, 2 , 

E i , 1 , E i , 2 , F 
∗

i ) } i ∈ [1 ,l] , E ∗, τ ∗). 

• Game 2 : The challenge ciphertext is CT ∗
2 = ( Z, D ∗, ( C 1 , Z 1, 1 , D ∗

1 , 2 , 

E ∗1 , 1 , E 
∗
1 , 2 , F 

∗
1 ) , { (C ∗i , D ∗

i, 1 , D ∗
i, 2 , E 

∗
i, 1 , E 

∗
i, 2 , F 

∗
i ) } i ∈ [2 ,l] , E ∗, τ ∗). 

• ������
• Game l+1 : The challenge ciphertext is CT ∗

l+1 = ( Z, D ∗, {( C i , Z i , 1 , 

D ∗
i, 2 , E 

∗
i, 1 , E 

∗
i, 2 , F 

∗
i ) } i ∈ [1 ,l] , E ∗, τ ∗). 

• Game l+2 : The challenge ciphertext is CT ∗
l+2 = ( Z, D ∗, (C ∗

1 , Z 1, 1 , 

D ∗
i, 2 , Z 

′ 
1 , 1 , E 

∗
1 , 2 , F 

∗
1 ) , { (C ∗i , Z i , 1 , D ∗

i, 2 , E 
∗
i, 1 , E 

∗
i, 2 , F 

∗
i ) } i ∈ [2 ,l] , E ∗, τ ∗). 

• ������
• Game 2 l+1 : The challenge ciphertext is CT ∗

2 l+1 = ( Z, D ∗, { (C ∗
i , Z i , 1 , 

D ∗
i, 2 , Z 

′ 
i, 1 , E 

∗
i, 2 , F 

∗
i ) } i ∈ [1 ,l] , E ∗, τ ∗). 

• Game 2 l+2 : The challenge ciphertext is CT ∗
2 l+2 = ( Z, D ∗, { (C ∗

i , Z i , 1 , 

D ∗
i, 2 , Z 

′ 
i, 1 , E 

∗
i, 2 , F 

∗
i ) } i ∈ [1 ,l] , Z ∗E , τ ∗). 

• Game 2 l+3 : The challenge ciphertext is CT ∗
2 l+3 = ( Z, D ∗, { (C ∗

i , Z i , 1 , 

D ∗
i, 2 , Z 

′ 
i, 1 , E 

∗
i, 2 , F 

∗
i ) } i ∈ [1 ,l] , Z ∗E , Z ∗τ

)
. 

The proof is completed by showing that the games Game 0 , 

Game 1 , . . . , Game 2 l+1 , Game 2 l+2 and Game 2 l+3 are computation- 

ally indistinguishable from each other. �

Lemma 1. Assuming that the decisional (q − 1) assumption holds 

in G, and then there is no adversary that distinguishes between the 

games Game 0 and Game 1 . 

Proof. Assume that there exists an adversary algorithm A that can 

distinguish Game 0 from Game 1 . Then we can build a challenger 

algorithm C that solves the decisional (q − 1) problem. The proof 
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Table 1 
Comparison of the storage overheads. 

Public Master Private Ciphertext 
Schemes parameter private key attribute-key 

ABE ′ [1] 11 5 5 k + 3 6 l + 3 + | A | 
ABE 12 5 5 k + 3 6 l + 4 + | A | 

is similar to that in [1] except that the term E ∗ in the challenge 

ciphertext is calculated using the scheme SE with an additional 

element τ ∗, and we omit the details here. �

Lemma 2. Assuming that the decisional linear assumption holds in G, 

and then there is no adversary that distinguishes between the games 

Game j+1 and Game j for j ∈ [1, l ] . 

Proof. Assume that there exists an adversary algorithm A that can 

distinguish Game j from Game j+1 . Then we can build a challenger 

algorithm C that solves the decisional linear problem. The proof 

is similar to that in [1] except that the term E ∗ in the challenge 

ciphertext is calculated using the scheme SE with an additional 

element τ ∗, and we omit the details here. �

Lemma 3. Assuming that the decisional linear assumption holds in G, 

and then the advantage of an adversary that can distinguish between 

the games Game j+ l+1 and Game j+ l for j ∈ [1, l ] is negligible. 

Proof. This proof follows almost the same as that of Lemma 2 , ex- 

cept that the simulation is done over the parameters g 3 and g 4 
instead of g 1 and g 2 . Thus, we omit the details here. �

Lemma 4. Assuming that the symmetric encryption scheme SE is 

IND-CPA secure, and then the advantage of an adversary that can dis- 

tinguish between the games Game 2 l+1 and Game 2 l+2 is negligible. 

Proof. This game Game 2 l+2 is the same as that in the game 

Game 2 l+1 except that in the challenge phase, algorithm C randomly 

chooses Z ∗E in the ciphertext space of SE in place of E ∗ rather than 

creating E ∗ as required. In the view of algorithm A , this game 

Game 2 l+2 is identical to the game Game 2 l+1 except that algorithm 

A breaks the security of the scheme SE . �

Lemma 5. Assuming that H ′ is a secure pseudo-random function, and 

then the advantage of an adversary that can distinguish between the 

games Game 2 l+2 and Game 2 l+3 is negligible. 

Proof. This game Game 2 l+3 is the same as that in the game 

Game 2 l+2 except that in the challenge phase, algorithm C randomly 

chooses Z ∗τ ∈ M in place of τ ∗ rather than generating τ ∗ as re- 

quired. In the perspective of algorithm A , this game Game 2 l+3 is 

identical to the game Game 2 l+1 except that algorithm A breaks the 

security of the pseudo-random function H ′ . �

This completes the proof of Theorem 1 . 

4.3. Performance evaluation and implementation 

In this paper, we propose an expressive CP-ABE scheme sup- 

porting partially hidden access structures in the prime-order 

groups, which improves the efficiency of the one given in [1] . De- 

note l as the number of attributes in an access structure, k as the 

size of an attribute set possessed by each user, χ1 as the num- 

ber of elements in I M ,ρ = {I 1 , . . . , I χ1 } , χ2 as |I 1 | + . . . + | I χ1 | . Let 

| A | be the size of an access structure. Table 1 shows the storage 

complexity of the proposed ABE and the scheme ABE ′ in [1] in 

terms of the sizes of the public parameter, the master private key, 

the private attribute-key and the ciphertext. It is straightforward 

to see that the proposed scheme ABE almost has the same stor- 

age overheads as the scheme ABE ′ in [1] . Table 2 compares the 

Table 2 
Comparison of the computational costs. 

Encrypt Decrypt 

Schemes Expo Pairing Expo Pairing 

ABE ′ [1] 8 l + 4 0 ≤ χ2 + 2 χ1 ≤ 6 χ2 + χ1 
ABE 8 l + 2 0 ≤χ2 ≤ 6 χ2 + χ1 

Table 3 
Computational costs of exponentiation and pairing operations. 

Elliptic Curves (ms) Expo of G Expo of ˆ G Expo of G 1 Pairing 

SS512 1.853 1.896 0.174 2.555 
MNT159 0.649 5.351 1.212 9.237 

computational costs incurred by the encryption and decryption al- 

gorithms between the scheme ABE ′ in [1] and the scheme ABE 
proposed in this paper. It is not difficult to see that the proposed 

scheme ABE is more efficient than the scheme ABE ′ in [1] . 

The scheme ABE ′ in [1] and the scheme ABE in this paper 

are implemented in the Charm framework [31] . Both of them are 

transformed into that in the asymmetric setting (note that the as- 

sumptions and the security proofs in the symmetric groups can be 

converted to the asymmetric setting in a generic way [20] ) before 

the implementation, since the Charm framework is designed under 

the asymmetric groups. Thus, three groups G , ˆ G and G 1 are used in 

the pairing function as ˆ e : G × ˆ G → G 1 . 

The experiments are conducted on a laptop running the 64-bit 

Ubuntu 16.04 with the Intel Core i5-4210U CPU @ 1.70GHz and 

8.00 GB RAM. The Charm-0.43, the Python 3.4 and the PBC library 

(for the underlying cryptographic operations) are installed for the 

implementation. 

The algorithms of both schemes ABE and ABE ′ are simulated 

over elliptic curves SS512 (a symmetric curve with a 512-bit base 

field) and MNT159 (an asymmetric curve with a 159-bit base field) 

to provide the security level of 80-bit. The average running time 

for exponentiation (i.e., Expo) and pairing operations over the 

groups of two curves is summarized in Table 3 . 

We focus on the computational overheads of the Encrypt and 

Decrypt algorithms in both schemes, as the computational over- 

heads of the Setup and KeyGen algorithms in the schemes ABE 
and ABE ′ are close to each other. The performances of the encryp- 

tion and decryption algorithms in the proposed scheme ABE and 

the scheme ABE ′ in [1] are shown in Fig. 3 in terms of the SS512 

and MNT159 curves, respectively. With respect to the MNT159 

curve, the average computation time of running the Encrypt algo- 

rithm to generate a ciphertext with an access policy of 1 attribute 

to 10 attributes ranges from 0.08s to 0.60s for the scheme ABE ′ in 

[1] and 0.05s to 0.40s for the proposed scheme ABE , and the aver- 

age computation time of running the Decrypt algorithm to decrypt 

a ciphertext with an access policy of 1 attribute to 10 attributes 

ranges from 8s to 61s for the scheme ABE ′ in [1] and 8s to 40s for 

the proposed scheme ABE . Concerning the SS512 curve, the aver- 

age computation time of running the Encrypt algorithm of generat- 

ing a ciphertext with an access policy of 1 attribute to 10 attributes 

ranges from 0.03s to 0.30s for the scheme ABE ′ in [1] and 0.03s to 

0.20s for the proposed scheme ABE , and the average computation 

time of running the Decrypt algorithm to get the message from 

a ciphertext with an access policy of 1 attribute to 10 attributes 

ranges from 3s to 26s for the scheme ABE ′ in [1] and 2s to 21s for 

the proposed scheme ABE . 
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(a) Encrypt-SS512 (b) Encrypt-MNT159

(c) Decrypt-SS512 (d) Decrypt-MNT159
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Fig. 3. Performance of the schemes ABE and ABE ′ . 

5. Conclusions 

Ciphertext-policy attribute-based encryption (CP-ABE) has been 

considered as a useful technique to provide data security and pri- 

vacy in cloud storage scenarios, as it enables data owners to up- 

load their data in encrypted forms to the cloud while sharing them 

with users possessing certain credentials or attributes. However, a 

ciphertext produced by a CP-ABE scheme includes a clear access 

structure, which may leak some information about the privileged 

recipients or the underlying message of the ciphertext. To solve 

this problem, it has been suggested to use CP-ABE with partially 

hidden access structures (e.g., [9,15–18] ) to generate the cipher- 

text such that the sensitive attribute values in the access struc- 

ture of a ciphertext can be hidden from the public view. Unfor- 

tunately, many existing CP-ABE schemes with partially hidden ac- 

cess structures (e.g., [9,15–18] ) either only support restricted access 

structures or are built in the inefficient composite-order groups. 

To our knowledge, there are few expressive CP-ABE schemes with 

partially hidden access structures that are built in the prime-order 

groups. In this paper, we revisited the expressive CP-ABE scheme 

with partially hidden access structures in [1] , and improved its ef- 

ficiency. After analyzing the security of the proposed scheme, we 

evaluated its performance by simulating its algorithms and those 

in [1] . 
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