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Abstract—Code reuse attack (CRA), specifically reusing and
then reconstructing the codes (gadgets) already existed in
programs and libraries, is widely exploited in software attacks.
Admittedly, determination of the location of the gadgets con-
sisted of target instructions along with control flow transfer
instructions, is of critical importance. Address Space Random-
ization (ASR), which serves as an effective technique to mitigate
CRA, increases the entropy by randomizing the location of the
code or data, and baffles adversaries from figuring out the
memory layout. Currently, variable randomization methods
of high granularity are proposed by scholars to prevent
adversaries from deducting memory layout. However, their
credibility on alleviating CRA is yet to be confirmed, especially
when the suitable pointer is exposed to adversaries. In this
paper, we focus on studying what kinds of function leakage
can lead to a CRA more likely. A function risk assessment
model focusing on function coupling is proposed to quantify
the risk caused by the suitable function pointer leakage and
it is extended to assess the risk of the whole program and
library under the memory leakage. Our experimental results
show that popular open-source software is vulnerable when
certain code pointer is leaked to adversaries and even severer
when the system library is accessible. In addition, suggestions
to eliminate function coupling and evaluate the availability of
randomization methods are further discussed.

Keywords-Code Reuse Attack; Randomization; Risk Assess-
ment; Memory Leakage;

I. INTRODUCTION

The memory war is effectively an arms race between

offense and defense [1]. Code injection is one of the classic

attacks by transferring control flow to the injected shellcode.

However, Data execution prevention (DEP) [2] prevents code

injection by restricting the execution of data segments. To

bypass the non-executable data policy, attackers start to use

Code Reuse Attack (CRA), which hijacks the control flow

of programs by reusing several existing code (gadgets) and

has been proven to be Turing complete [3].
Since CRA needs to obtain the accurate addresses of

the used gadgets, Address Space Randomization(ASR) is

proposed by remapping the memory layout to make it more

difficult for attackers to guess the memory layout as their

offline analysis are not accurate. Address space layout ran-

domization (ASLR) [4], belonging to ASR, randomizes the

base address of the memory segment, has been widely used

in operating system. However, attackers can use information

leakage to get a memory address, and then guess the memory

layout according to this address. Function-level randomiza-

tion is also one kind of ASR, which randomizes the order

of the function in memory to achieve finer granularity of

the randomization. Compared with ASLR, it increases the

entropy of randomization and makes offline analysis more

difficult. But in the case of information leakage, its entropy

does not seem to be able to measure its effectiveness. This

is also true of fine-grained randomization.
When the memory address of a function is leaked, the

attacker can traverse the internal information of the func-

tion through the program vulnerability. A function often

includes arithmetic instructions, stack pivot instructions,

stack pop/push instructions, and control transfer instructions

(such as direct or indirect function calls, function return

instructions, and direct or indirect jump instructions). An

attacker can find the location of other functions by reading

the function calls. The gadgets chain in CRA can be con-

structed by using the return instruction, the indirect jump

instruction, and the indirect function call instruction. One

issue here is up for debate: what kinds of functions make

it easy for an attacker to finish the attack under information

leakage? It is necessary to explore the function risk under

memory leakage. In this paper, we propose a function risk

metric model which can be exploited by both adversaries

and defenders. It measures the function risk focusing on the

prudent attacker, and it is extended to measure the overall

program.
In summary, this paper makes the following contributions:

• We establish an attack model under information leakage
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of a pointer which can bypass randomization methods.

• We establish a function risk assessment model focusing

on function coupling, which memory permission mod-

ification functions, indirect function instructions and

system calls are taken into consideration;

• We make an empirical study of the attack model and

the assessment model and give some suggestions to

eliminate function coupling and evaluate the availability

of randomization methods.

This paper is organized as follows: Section II describes the

background of this paper including CRA, randomization and

information leakage. Section III sets up the model of attacks.

Security metric of function coupling risk is discussed in

section IV. Our experimental results are shown in section V.

Section VI discusses the advantage and limitation of the

model and gives suggestions for future randomization. Fi-

nally, related works and conclusions are illustrated in section

VII and VIII.

II. BACKGROUND

We first review the basics of important concepts (namely,

the code reuse attack strategy and fine-grained memory

and code randomization) that are vital to understanding the

remainder of this paper.

A. Code Reuse Attack

Code Reuse Attack (CRA) hijacks the control flow of a

program by reusing several existing code (gadgets) without

injecting external code into memory and has been proven

to be Turing complete. Adversaries can use CRA and code

injection to bypass the security mechanism, such as ASLR

and DEP. For example, if an attacker wants to execute

some code with the protection of DEP, the first step is to

chain some gadgets to disable DEP. Without DEP protection,

EIP is overwritten so as to point to the beginning of the

shellcode which is injected before, then the shellcode will

be successfully executed.

To accomplish a CRA, one of the challenges concerning

the attacks’ solution is to ensure the exact address of each

gadget in the memory space. Since ASLR randomizes the

base address of the target program, it makes the attacker

unable to obtain these addresses off-line without information

leakage vulnerability or brute force.

B. Randomization

With CRA applied widely, security researchers have

proposed a variety of randomization strategies. The main

idea of which is to randomize the position of the target

program’s code and data segments in the memory space to

increase the difficulty of gadget chain execution as expected.

Randomization techniques are classified into four main cat-

egories: Base address randomization [4], [5], Function-level

randomization [6], [7], [8], [9], Basic block-level randomiza-

tion [10], [11], [12]and Instruction-level randomization [13],

Table I
DIFFERENT RANDOMIZATION TECHNIQUES.

Randomization Techniques Description
Base address Randomization Randomize base address

Function-level Randomization Randomize function locations
Basic-block-level Randomization Randomize basic block locations
Instruction-level Randomization Randomize instruction locations

or replace instruction sequence

[14], [15], [16]. Those randomization techniques are listed

in table I.

ASLR, attached to base address randomization, random-

izes the base address of stack, heap, code segment and

libraries. Computer programs written by the high-level lan-

guages such as C/C++ are mostly composed of functions.

Function-level randomizations reorder the location of func-

tions, and thus the addresses of gadgets are shifted by the

randomizations, which baffle adversaries from figuring out

the memory layout. Function-level randomization is mainly

designed against the off-line analysis from where adversaries

obtain gadgets for the CRA. Other fine-grained random-

ization schemes are similar to function-level randomization

by utilizing different granularity location displacement or

equivalent instruction substitution to invalidate the off-line

analysis.

C. Memory Leakage

All the methods mentioned in section II-B increase the in-

formation entropy of randomness. Albeit with the existence

of information disclosure vulnerability, drawbacks of some

randomization techniques will be exposed. Information dis-

closure serves as auxiliary within an attack, with which the

pointer errors are generated through the memory corruption

bugs. Simultaneously, the memory layout is revealed with

these pointers. Information disclosure is the most destructive

techniques to bypass the randomization algorithms, which

is exploited in many attacks, such as CVE-2013-2839[17]

and CVE-2014-0322[18]. When the location of some code

in memory is obtained by adversaries, the known memory

space relevance can be used in the off-line analysis to

speculate the actual memory layout, thus bypassing the

protection of randomization.

In this paper, we only consider the memory leakage with

which program vulnerabilities are exploited to read memory

information through functions such as Write(). And informa-

tion disclosure at the macro level, such as the disclosure of

user identity information by side channel attack, is beyond

the scope of this paper.

III. ASSUMPTION AND ADVERSARY MODEL

We now turn on our assumptions and adversary model.

The adversary model is a theoretical foundation for section

IV.
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A. Assumption

This paper is concerned with attacks that bypass fine-

grained randomization approaches, namely ones that give

the attacker a leaked pointer in a function, then addresses

of remaining functions are obtained by reading transfer

instructions inside the function and then arbitrary malicious

operations can be executed by reusing these code. Thus, we

assume the adversary is able to exercise one of these pre-

existing vulnerability and obtain the leaked pointer.

In what follows, we assume that the target platform

uses the following mechanisms to mitigate the execution of

malicious operations:

• Non-Executable Memory: We assume that the security

model of non-executable memory is applied to the stack

and heap. Hence, the adversary cannot inject code into

the program’s data area.

• ASLR: We assume that address space layout random-

ization is applied to the target platform.

• Fine-Grained Randomization: We assume that the

target platform enforces fine-grained code randomiza-

tion. In particular, we assume a strong fine-grained

randomization scheme which permutes the order of

functions [6].

Notice that, since ASLR is deployed, the first step of our

adversary model is to bypass it with information leakage.

In addition, we also assume that the adversary has the

capability to analyze the vulnerable programs off-line.

B. Adversary Model

With these assumptions, we highlight our adversary model

in Fig.1. In step 1, the adversary finds usable gadgets and the

internal function dependency by off-line analysis. In step 2,

given the leaked pointer, a particular function serving as the

first ascertainable, readable and executable area of the attack

model is located. More importantly, the following steps of

attack model searching available gadgets and function call

instructions start from the informations of this function. In

step 3, from this function, the memory space is searched

forwards and backwards by traversing the function call

instructions in this function until the boundary of a function

is identified. Methods searching for boundaries of functions

in binary codes are categorized in two kinds. The first

category is based on characteristics of function. For example,

in x86, functions without optimization mostly begin with

instructions like push ebp; mov ebp esp; sub esp xxx;
and end with instructions like ret. Consequently, function

space can be determined through features described above.

Another is the heuristic method based on learning. Various

scholars achieve their aim of identifying function space by

training models with enormous features. By applying this

searching technique iteratively on each function found, we

can build a function dependency tree and collect the useful

gadgets. In step 4, we construct the dispatcher with available

Figure 1. Adversarial Model

gadgets and inject it along with the invocation parameters

into the target program’s memory space.

This model collects not only the information of the

gadgets but also the call relation between functions at the

off-line analysis stage. It is the kernel on the demonstration

that the function relationship (coupling) can be used by the

adversary to acquire information about more gadgets.

Another famous way to bypass fine-grained ASR is Just-

in-time ROP (JIT-ROP)[19]. It also requires a leaked pointer

to trigger memory leaks, and the pointer is then applied to

read pointed memory page code. Consequently, a number of

memory pages are disassembled to find required gadgets by

traversing the control flow instructions. But this method is

not suitable for some fine-grained randomization methods.

Modern compilers, such as LLVM, have already equipped

each function with an exclusive section, page access errors

is generated when traversing the contents of page space

external to the function. Moreover, future randomization

methods could conduct access control of finer granularity.

More specifically, when using the current function, reading

errors may occur over the upper and lower memory space

beyond the range of the function. Therefore, the direct

utilization of JIT-ROP is not necessarily successful. During

every searching process, the attack model proposed in this

paper searches for gadgets merely in the internal space of

the determined function instead of moving pointers beyond

the function space. Thus it can defend the defense strategy

of page-guard.

IV. SECURITY METRIC OF FUNCTION RISK

In this section, we give the function risk assessment model

based on the adversary model proposed in Section III. It

studies how function coupling would affect the capability of

an adversary to finish the attack.

A. Function Risk Assessment

Security evaluation of function risk focusing on function

coupling should be concentrated on whether adversaries can

finish attacks with the leaked function pointer.

Here, we first give the overall security evaluation formula

that studies what factors would affect the success of an

attack:

Leak attack ∩ Leak code �= Ø (1)

Leak attack = Attack plan1 ∪ ... ∪Attack plann (2)
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Leak code = Leak func1 ∪ ... ∪ Leak funcn (3)

Where, Leak attack illustrates the possible attacking plans

for an adversary to reach the goal; Leak code represents all

the gadgets available in the leaked functions; Attack plan
comprises the gadget chains that an attacker used to achieve

the attacking purpose; Leak func is a group of the gadgets

the function leaked. We will introduce these definitions of

the symbols in the follow-up in detail.

1) Attack plan: There are a variety of ways for an

adversary to accomplish the attack goal. For example, in

the platform of x86, if adversaries want to use a system call,

they can store the corresponding parameters in the register

of eax and ecx, and then call int 0x80 to complete the

attack.

Adversary can also accomplish this goal by using the gad-

get pop eax; pop ecx; ret, with the only need to pre-deposit

values of eax, ecx and addresses containing int 0x80
instructions onto the stack. Besides, when adversaries can

take control of the ebx register, they can exploit mov ebx,
eax; ret; mov ebx, ecx; ret at the same goal. In addition, an

adversary can exploit the dispatcher to complete the attack

based on the JOP [20] attack and the COOP attack by

modifying the pointer in the virtual function table. Since

a variety of plans to achieve an attack are effective to

adversaries, any successful plans can lead to severe security

problems in software. We define all the aggregation of

Attack plan as Leak attack, and it contains all possible plan

that attacks can accomplish the goal.

2) Leak func: Each Leak func represents the gadgets

adversaries can find by the leaked function pointer. These

gadgets may be in different functions, but they can be found

by function call graph. Through the program’s vulnerability,

an adversary may not merely locate a function address in

the initial case, and there we use Leak code to represent

all gadgets that an adversary can get through information

leakage. And Leak code is a collection of all Leak func
gadgets.

As shown, there are various attack plans for an adversary

to achieve the attacking goal. As long as the leaked code

is sufficient to finish one of the attack plans, the attack can

be considered to be theoretically successful. Therefore, the

most important factor that affects the success of an attack

is whether the Leak code can be used to finish one attack

plan. If it contains some high-risk functions, attackers may

find many useful gadgets to accomplish the attack. In the

next section, we will discuss how to measure the risk of a

function.

B. Security Metric Model

It’s universally known that the ROOT are capable of

operating system unlimitedly. Therefore, the most direct and

effective attacks of adversaries are conducted by obtaining

system permissions, namely the ubiquitous syscall(int$80)

in system library. Consequently, the functions accessible to

syscall with function correlation are defined as the highest

risk function (Level 1), while the MHR, a bool value,

serves as the criteria of whether the highest risk function

is associated with syscall.
Generally, attackers are inaccessible to the location of

syscall and thus forced to accomplish attacks in a round-

about way by injecting particular malicious codes. Hence,

adversaries tend to exploit the memory permission mod-

ification functions (mprotect, virtualprotect) or the exe-

cutable memory application functions (memalign, memset)
to guarantee the execution of their injected code. Eventually,

functions accessible to the two category functions mentioned

above are defined as the higher risk function (Level 2), while

the HR is the criteria of whether a function can access to

these functions.

Strictly speaking, without the level 1 nor the level 2

risk functions, the function itself is relatively vulnerable

with combination of gadgets. Exploiting the indirect transfer

instructions (e.g. call *%rax, jmp *%rax) for control flows’

recombination, adversaries manage to transfer the execution

flow to the location of desired gadgets. Therefore, functions

that are accessible to indirect transfer instructions are defined

as the medium risk function (Level 3), while the MR is the

criteria of access to indirect transfer instructions.

Scarcely, adversaries are merely to modify certain data or

register values in nondestructive purpose. Referring to func-

tions that are accessible to low-risk function, for example,

capable of partial arithmetical operation, we classified them

as the low-risk function (Level 4). In consideration of CRA’s

proven Turing Completeness, all functional interval instruc-

tions are consequently regarded with potential computation

behaviors and categorized in low-risk function. Especially,

the LR is the criteria of access to arithmetic operations.

Here we introduce a four-dimensional axial vector to

represent individually the risk level in sequence from high

to low. Metric vector α1 = (1, 0, 0, 0) represents for the

highest risk level; α2 = (0, 1, 0, 0) for the high risk level

and so on. Following formulas illustrate the integrated risk

of functions:

RISK FUNC = MHR∗α1+HR∗α2+MR∗α3+LR∗α4

(4)

According to the equation, the integrated risk of a particu-

lar function is obtained as RISK FUNC, through which the

existing risk of a given function can be intuitively judged.

It can be inferred from the diversity of RISK value that 16

different risk value is possibly existed in a given function,

specifically (0, 0, 0, 0) (1, 1, 1, 1). Simultaneously, program

risk value is obtained by accumulating individual function

risk value:

With the RISK FUNC, the risk of a program can be

defined as:

RISK PGM =
∑N

i=1 RISK FUNCi (5)
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Table II
INFORMATION LEAKAGE FROM ”MAIN”

Name POP MOV ARI Indirect call
Nginx 6794 55 3786 246
tar 54716 7848 21442 4168
omnetpp 58 79 10 17
soplex 1103 1861 244 37
bzip2 210 212 31 8
astar 287 232 125 1

With the RISK PGM calculated above, risk value of

a given program can be quantified. With each dimension

representing exact number of risk categorized into corre-

sponding risk level , the program risk of each dimension

can be eventually evaluated, which is of critical importance

to eliminate the program risk of each dimension.

C. Metric’s Application

Both the adversary and defender could use this metric

model.

For adversaries, when they are digging out memory

leakage vulnerabilities, High-risk programs could be found

according to the program risk metric model (or the value

of RISK PGM). Then, functions which are easily exploited

to accomplish the attack target are shown with the function

risk metric model (or the value of RISK FUNC). Finally,

the adversary could dig out vulnerabilities of those targeted

functions.

There are two aspects that could use the metric model

for defenders. First, our model can be used to measure

the overall risk of a program, so the designers of security

solutions can put forward lower risk program design or

reinforcement plan to reduce the values of all dimensions

of risk. On the other hand, defenders can find and fix

vulnerabilities for higher risk function calculated by formula

(4) to prevent adversaries from exploiting these functions to

complete the attack target.

V. EXPERIMENT

In this section, we carry out the experimental analysis of

the metric model mentioned above, with the open source

software nginx, gzip to show the application of the metric

model under Linux. These frequently used software are

selected as ideal experimental tools for their compiling

source code without obfuscation or packer featured as open

source as well as convenience in static analysis.

A. Attack Model Experiment

Given the adversaries can locate the address of main

function through information leakage, they can consequently

acquire the number of gadgets from all kinds of ROP

instructions, as shown in Table II. As we can see, an

adversary can get thousands of available gadgets, which are

very likely to meet the needs of one or several attack plan.

Table III
STATISTICS OF ATTACK

Name Function
Number

Related
to
indirect
call

registers of indirect call Attack
paths
number

Nginx 1052 715 rax r13 r15 rdx rcx rbp 7039988
tar 790 718 rax r13 r15 r12 rdx rcx r8

r14 rbx rbp
56376638

omnetpp 2495 2249 rax rbx rcx r8 r12 rsi rdi 4767650
soplex 1499 266 rax rbx r12 rcx rdx 143188
bzip2 129 28 rax 16852
astar 161 6 rax 1386

We assumed that the adversary’s purpose is to exploit

the indirect call instruction to jump to any address. One

attack plan may need three instructions, the first of which is

the indirect call instruction namely call *%rax. In addition,

as the rax registers are overwritten into the address the

adversaries plan to jump to, adversaries need instructions

to modify its value, such as mov %rbx, %rax; RET or pop
%rax; ret. Therefore, we search for the program according

to the target. In the experiment, we use static analysis to get

the function that may accomplish the attack in assumption of

that the adversary use only less than 3 gadgets to complete

the attack plan. Our statistical results are shown in Table

III.

As shown, it’s obvious that most mainstream software

contains indirect function call instructions, among which

rax is the most widely used register. Under the assumption

that information disclosure vulnerability may exist in each

function, with only a function vulnerability, registers are

reachable to be controlled along enormous attack paths to

launch an indirect call by our attack model. In different

programs, the proportion of functions related to indirect

jump instructions varies, as it is relevant to the extent of

function coupling. With stronger coupling of functions, a

single function may be directly or indirectly associated with

more functions contained indirect jump instructions. In sum-

mary, some suggestions are given for software modification

in section VI.

In order to automate the attack model, we have designed

an automated attack process. Suppose there is a stack over-

flow vulnerability in the compress function in bzip2, that is,

an adversary can control the execution stream by modifying

the data in the stack. Then, adversaries can automatically

attack along the path. It is shown in Fig. 2.

First of all, in the off-line analysis phase, we have

learned that two functions related to compress function have

instructions that can control the register of the indirect call

instructions. Then, when conducting the actual attack, in the

first step, we use the information disclosure vulnerability

in the compress function. According to the correlation, we

can find uInt64 from UInt32s function, then we traverse

the function space to find the stack pivot instructions to

control the stack frame pointers pointing to our overflow
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Figure 2. An example of attack path

Figure 3. nginx attack paths

point. Then, in the second step, we continue to traverse the

entire function and find the mov, mov, pop,retq instructions

shown in the Fig. 2. The rax register is modified to the

destination address that adversaries want to jump to with the

instructions. Finally, we have found the BZ2 bzCompressInit
function according to the correlation, and use the call

instruction to finish the attack.

We also verify the feasibility of our attack mod-

el through a real vulnerability. CVE-2013-2058 is a

Nginx buffer overflow vulnerability, caused by er-

rors in integer types. This vulnerability occurs in

ngx http read discarded request body, where we start with

this function and use our model to find that there are three

attack paths that can invoke indirect function calls. The

specific attack path is shown in Fig.3. It is known that

adversaries can exploit functions with memory allocation or

memory permission modification, namely posix memalign
and mprotect. According to experiments conducted with the

attack model established, there are 500 functions along with

7446 attacking paths possibly lead to the adversary to locate

the address of posix memalign. Eventually, through proper

parameters to invoke posix memalign, adversaries can apply

the executable permission to memory space.

B. Security Metric

In this section, some system libraries are analyzed ac-

cording to the security metric model. Since the highest risk

functions are generally found in shared libraries, library

libc− 2.13.so is therefore analyzed subsequently. Given li-

brary possesses 1741 functions, of which 1008 are associated

Table IV
SECURITY METRIC OF SHARED LIBRARIES

Name Total
LR

Total
MHR

Total
HR

Total
MR

RISK PGM

Libc.so 1741 1008 29 653 (1008,29,653,1741)
Libm.so 295 0 0 5 (0,0,5,295)
Ld.so 16 7 0 6 (7,0,6,16)
Libncurses.so 310 0 4 4 (0,4,4,310)
Libnsl.so 129 0 0 35 (0,0,35,129)
Libpthread.so 354 221 24 20 (221,24,20,354)
Libresolv.so 91 0 0 2 (0,0,2,91)

with syscall, while 5985955 paths can lead to syscall .

Similarly, several other shared libraries are analyzed, the

results of which are shown in Table IV.

The MHR, HR and MR represents the corresponding

risk level of the whole library function. Through analysis

of these library functions, there are two libraries which

are accessible with syscall that are possibly exploited by

adversaries. According to the value calculated by our model,

adversaries tend to exploit libraries containing amount of

syscall in attacks and locate function pointer leakage acces-

sible to syscall with formula 4 accordingly. Additionally.

when judging the severity (consisting of more high-risk

instructions) of programs or libraries, we cannot rely merely

on the quantity of code but the actual statistics that the

accurate results can be obtained by our risk model.

VI. DISCUSSION

A. Advantages and Limitations

We establish an attack method to bypass randomization.

The traditional evaluation of randomization only evaluates

the randomization itself without the specific analysis of the

application scenario. Our experimental results in this paper

show that the effectiveness of the randomization depends

not only on the randomization method, but also on the

randomized program itself. On the other hand, compared

with the general attack methods, the attack model established

in this paper is closer to the realistic scene with fine-grained

randomization, which can be used for automatic attacks.

There are some limitations for the model proposed in this

paper. With the lack of the industrial deployment scenarios,
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there are fewer examples to verify the model. And the

adversary may use other types of gadgets which are not

mentioned in this paper, so the model can be improved in

the future.

B. Eliminating coupling

Through the analysis of the attack model and our experi-

mental results, it can be concluded that it’s the confirmation

of functional relevance, namely the function coupling, that

makes the adversaries locate other function and successful-

ly complete attack by acquiring gadgets. Hence, in order

to defend attacks relying on function coupling, defenders

should be prudent on how to eliminating function coupling.

In consideration of this, some solutions are given as follows:

1) Hide function call instructions in memory space invis-

ible to adversaries, specifically in sgx or unreadable

memory page, and subsequently replace these instruc-

tions with control flow transfer instructions in original

program locations. Therefore, functional relevance is

inaccessible to adversaries and memory leak is avoided

more or less.

2) Insert some fake functional invoke and baffle adver-

saries from effective analysis. When fake functional

invoke is pointed to particular locations that are likely

to crash down programs, the actual coupling degree

of functions are decreased and memory leak based on

program internal correlation is defended.

3) Insert some fake control flow transfer instructions, and

fabric an enclosure with unity of those transfer instruc-

tions through construction of transfer instructions’

target location, with which analysis of adversaries

conducted based on functional relevance would be

invalid.

Solutions above can be realized with from source-code

to binary-code and attributed to secondary reinforcement of

existed programs. Although they can effectively alleviate

attacks based on program internal relevance, we strongly

recommend that program developer and program language

designer can optimize their solutions at the stage of pro-

graming and compiling.

VII. RELATED WORK

Modern Operating Systems (OS) use DEP to disable

shellcode execution. Therefore, in order to bypass the data

execution protection, Code Reuse Attack (CRA) uses the

program’s existing code(gadget) is generated. CRA includes

ret2lib [21], ROP [3], and Jump-oriented programming

(JOP) [20]. Nowadays, OS introduces the security mech-

anism of ASLR [4] to randomize the layout of memory

segments, which increases the difficulty of the attacker

on guessing the actual address. However, the attacker can

bypass ASLR when they exploit the address leakage vul-

nerability to obtain reusable code memory address. For

the ASLR limitations, the scholars proposed more granular

randomization methods. For example, [16], [10], [15], re-

spectively, they use function randomization, instruction ran-

domization, and instruction equivalent replacement method

to defend against CRA. However, the JIT-ROP [19] proposed

by Snow et al. can bypass the these defenses by information

disclosure and ROP attack. In the design of function-level

randomization, Marlin randomizes the internal structure of

the executable code by randomly shuffling the function

blocks in the target binary [7]. They integrate Marlin into

the bash shell that randomizes the target executable before

launching it. Bin FR [6] parses the binary directly, which do

not rely on the source code, and implements function-level

randomization and random padding in the code segment of

the binary to shuffle the internal layout of the code segment.

The code reuse attack uses information disclosure to

obtain the information needed for attack, such as memory

layout speculation, memory out-of-bounds read and write,

read object content, key address information acquisition and

other techniques. And attackers use the key address informa-

tion to construct the gadget chain to implement attack [22].

Protection schemes are always combined with randomiza-

tion and memory page privilege protection. Readactor [23]

defines the scope of controllable object access to prevent

memory discloses across the boundary. XnR [24] uses read

and execute mutex to prevent disclosure of critical address

information, Giuffrida C et al. [8] proposes an approach to

the operating system that minimizes the range of readability

of the program, making the attacker’s guessing ability lower,

but these are fixed strategies and there is false code reading

problem. The encryption of visible pointers and the runtime

re-randomization [25] is a strong defense mechanism against

both brute-force attacks and memory disclosure exploits.

Kangjie Lu et al. present a novel mechanism, ASLR-Guard,

which completely prevents the leaks of code pointers, and

render other information leaks useless in deriving code

address [26]. An alternative line of defense is to invalidate

the leaked information or use destructive reads to prevent the

execution of what was read [27]. Adrian Tang et al. present

Heisenbyte, a system of thwarting memory disclosure at-

tacks using destructive code reads [28]. In the development

of adaptive and fine-grained strategy, proposing a more

detailed information disclosure mitigation scheme can use

the function risk model proposed in this paper. Therefore,

in the presence of memory address information leakage case,

the security metric of function randomization provides a new

direction of exploration against code reuse attacks.

VIII. CONCLUSION

In this paper, we have established an attack model with

leakage information of certain given code pointer based on

attack features, which can bypass the fine-grained random-

ization. The function risk is quantified for the first time by

judging whether the attacks are completed through leakage

of the function pointer. Our experimental results have shown
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that enormous individual function leakage will lead to ef-

fective attacks to specific targets. Hence, we propose that

functions’ coupling should be eliminated by programmers

to alleviate the threat resulted by information disclosure. As

for the fine-grained randomization, our experimental results

have illustrated that the judgment criteria depends on the

randomization methods and moreover on the randomized

program itself. Therefore, we suggest that future randomiza-

tion evaluation should be the main basis of judging whether

codes can be hidden or not rather than the transfer distance

of the code.
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