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Abstract. With the emergence of smart phones and the popularity of
GPS, the number of point of interest (POIs) is growing rapidly and
spatial keyword search based on POIs has attracted significant atten-
tion. In this paper, we study a more sophistic type of spatial keyword
searches that considers multiple query points and multiple query key-
words, namely Aggregate Keyword Routing (AKR). AKR looks for an
aggregate point m together with routes from each query point to m.
The aggregate point has to satisfy the aggregate keywords, the routes
from query points to the aggregate point have to pass POIs in order
to complete the tasks specified by the task keywords, and the result
route is expected to be the optimal one among all the potential results.
In order to process AKR queries efficiently, we propose effective search
algorithms, which support different aggregate functions. A comprehen-
sive evaluation has been conducted to evaluate the performance of these
algorithms with real datasets.

Keywords: Aggregate keyword query - Query processing -
Route planning

1 Introduction

The emergence of smart phones and the popularity of GPS have spawned a
revolution in mobile location-based capabilities. Many users of mobile Apps are
voluntary information contributors. For example, many mobile Apps that pro-
vide location-based services allow users to upload and update the description of
locations, e.g., Foursquare'. With the help of these User Generated Contents, the
number of point of interest (POIs) is growing rapidly. Accordingly, the searches
conducted by users are no longer only about spatial features but also textual
contents. A spatial keyword query that aims at finding a POI which is closest

! https://www.foursquare.com.
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Fig. 1. Example of aggregate keyword routing

to the query point and meanwhile is relevant to the requested keywords is one
example. Besides, Aggregate Nearest Neighbor (ANN) query [12], which finds the
aggregate point with the smallest aggregate distance for a given set of spatial
points and a given set of query points, is also a hot research topic.

In this paper, we study a more sophistic type of spatial keyword searches
that considers multiple query points and multiple query keywords. Before we
formally introduce the query, let’s consider the following scenario, as detailed in
Example 1. Function keyword(P) takes in a set of POIs P as input and returns
the set of keywords associated with any POI p € P, and function poi(R) takes
in a set of routes R as input and returns the set of POIs passed by any single
route r € R.

Example 1. Alezx, Bob, and Carol want to organize a barbecue in a park. On
their ways to the barbecue venue, they need to purchase beer, meat, and fruit for
the barbecue and magazines and cards to pastime during the barbecue. Assume
Fig. 1 plots all the POIs. In order to facilitate planing of the barbecue, they want
to conduct a search that takes in their home locations (i.e., q1, g2 and q3 in
Fig. 1), and two set of keywords, namely task keywords k; = {beer, meat, fruit,
magazine, card} and aggregate keywords k, = {park, barbecue}, as input, and
output a gathering point m and three routes ry, ro, T3 from their home locations
to m respectively. To be more specific, the query is expected to satisfy following
three conditions: (i) the gathering point m needs to satisfy the textual requirement
represented by ko such as my and mg in Fig. 1, i.e., keyword({m}) 2 Kq; (%)
the set of POIs passed by three routes, denoted by poi(U3_,1;), is able to satisfy
the textual requirement represented by ky, i.e., keyword(poi(U3_,7;)) D kyi; and
(iii) for any other answer set (m’,U?_r!) that satisfies the above two conditions,
the aggregate distance (e.g., avg, maz, sum) of U3_,r; does not exceed that of
U3_,7} in order to guarantee that the search returns the optimal solution. For
example, if maximum is the selected aggregate distance function, mo and the
three solid-line routes form the solution.

The search conducted in Example 1 considers spatial condition represented
by the set of query points @ and textual conditions represented by the two sets
of keywords, denoted as x, and k¢, and expects a single answer point, together
with routes from each individual query point to the answer point. The textual



condition requires the answer point to satisfy one set of keywords k,, and the
POIs passed by the routes to cover the other set of keywords ky; while the
spatial condition requires the routes to provide the optimal solution for certain
given distance functions. Accordingly, this spatial keywords search is named as
Aggregate Keyword Routing (AKR).

AKR is challenging and time consuming. It expects an aggregate point m
and a set of routes U;r; from each query point to m as the result, but there are
a great number of such possible routes. Consequently, the search space for the
qualified routes for a given aggregate point is very large. Not to mention that
the search space for the aggregate points could be large too. In fact, AKR query
is NP-Hard.

The exact and approximate algorithms to solve the AKR problem are avail-
able, i.e., Task Assignment and Routing (TAR) and Center Based Assignment
(CBA) proposed in [1]. Our solution outperforms TAR in terms of efficiency,
while it achieves a higher accuracy than CBA. Furthermore, we take into account
the average aggregate distance function, which was not discussed in [1], and
extend all algorithms to support the new function.

In summary, this paper makes following major contributions.

— We propose novel search algorithms to process AKR queries, namely Tree
Expansion (TE) and TE-ext, which are efficient and effective.

— Our algorithms support both maximum and average aggregate distance
functions, and we extend the existing algorithms proposed in [1] to support
the average aggregate distance function too.

— We conduct comprehensive experimental study to evaluate the performance
of our algorithms with real POI data in different scales. The results demon-
strate the efficiency and correctness of our algorithms in different aggregate
functions and data scales.

The remaining of this paper is organized as follows. Section2 reviews the
related work. Section 3 formally defines the problem of Aggregate Keyword Rout-
ing. In Sect. 4, we present algorithm TE and its extension. For structural clarity,
we only consider maximum as the aggregate distance function in Sect. 4; while
we present the variances of algorithms to support AKR query using average as
the aggregate distance function in Sect. 5. In Sect. 6, we analyze the worst-case
time complexity of the algorithms. Section 7 reports our experimental evaluation
results. Finally, we conclude our paper in Sect. 8.

2 Related Work

AKR query combines aggregate nearest neighbor (ANN) with semantic similar-
ity. In the following, we mainly review existing works related to ANN query,
spatial keyword query and AKR query.

2.1 ANN Query and Spatial Keyword Query

Aggregate Nearest Neighbor (ANN) is a traditional problem. In the literature,
ANN and many of its variances have been studied. [12] proposes the ANN query,



and analyzes the average function situation. [13] considers maximum, minimum,
and average aggregate distance functions under R-tree. [5] explores the ANN
query in high dimension. [10,11] solve the ANN query without indexing. [14]
incorporates Voronoi diagrams into R-tree to take advantages of the strength
from both structures. [15,19] study ANN query in road networks. [4] finds a
group from aggregate points and minimizes the total distance from query points
to group. [16,17] explore the merged aggregate nearest neighbor query. [23] con-
siders road network’s Voronoi graph and solves ANN problems for both sum
and maximum functions. [9] studies ANN in uncertain databases, and proposes
effective pruning methods to reduce the search space.

Spatial keyword queries have also been well studied recently. [3] proposes
IR2-tree, which integrates R-tree and signature files; and [21] proposes bR*-tree
that combines R*-tree with bitmap and keyword MBR. IR-tree [2,8] attaches
each MBR with inverted lists, and supports ranking queries in respect to both
spatial proximity and semantic similarity. [7] studies top-k aggregate neatest
keyword query. [22] studies aggregate keyword nearest neighbor query, which
finds the nearest neighbor with certain keywords. [6] considers direction-aware
spatial keyword search, which considers keyword’s direction. [20] proposes IL-
Quadtree, which is based on inverted index and the linear quadtree, and develops
an efficient algorithm to tackle top-k spatial keywords search. [18] considers the
multi-approximate keyword routing problem.

2.2 AKR Query

The AKR problem was first studied in [1]. The authors proposed an exact algo-
rithm and an approximate algorithm, namely Task Assignment and Routing
(TAR) and Center Based Assignment (CBA) respectively.

TAR is a two-phase algorithm, which consists of Search and Assignment
Phase and Task Finishing Phase. In Search and Assignment Phase, existing
ANN search algorithms are used to determine access order, i.e., the priority
of the potential aggregate points, where a technique called early termination
is applied to reduce the number of possible points. Then candidate POIs on
the routes from each query point to the aggregate point are determined. In Task
Finishing Phase, the algorithm searches for optimal routes and prunes the useless
routes, taking advantages of the heap data structure.

CBA, on the other hand, is an approximation algorithm. It first locates an
aggregate point m that is close to all query points. Afterwards, a nearest neighbor
search around m generates a set of POIs which need to be passed. Finally, the
result routes are computed through a heuristic approach, which starts from the
shortest path and then inserts a POI into the path.

3 Problem Formulation

In the context of this paper, a POI p is associated with its location and a set of
keywords x(p) = {41, 92, ..., 0} with k = |k(p)|. An Aggregate Keyword Routing



Table 1. Frequently used notations

Notation | Explanation

P set of POIs

Q set of query points

Tqm a route (g, p1, ..., Pz, m) from point g to point m

Rg,m a route set {UvqeqTq,m} from query points in ¢ to m

RY m the shortest route set from @) to m without passing any other point
L(r) length of route r

Ls(R) length of route set R with aggregate distance function f

Lpmaz(R) | the maximum aggregate distance of R, i.e., MAXvy,erL(T)

Lavwg(R) | the average aggregate distance of R, i.e., ‘—}“ > wrer L(T)

« the aggregate point set

Ka the aggregate keyword set

Kt the task keyword set

) a single keyword

k(R) set of task keywords covered by set R
m a candidate aggregate point

Query (AKR) takes in three parameters as input, i.e., a query point set @, a
task keyword set k¢, and an aggregate keyword set k.. For a given task keyword
set ry, a POI p is considered as a task POL iff k(p) N x4 # 0. Table1 lists the
notations that will be frequently used in the rest of this paper.

In the following, we first present the terms of route, route set, and the aggre-
gate distance of a route set in Definitions 1, 2, and 3 respectively. We then intro-
duce candidate result of an aggregate keywords routing query in Definition 4 and
present the formal definition of AKR in Definition 5.

Definition 1. A route 74, = (s,p1,.... Pz, M) is a point sequence that starts
from point s, goes sequentially through p1 to p, and ends at point m. We denote
length of the route as L(rs ) and the keyword set covered by the route as k(rs m,),

i.e., “(Ts,m) = UVmETs,m"@(pi)'

Definition 2. Given a query point set Q = {q1,q2, -, qn}, we use notation
Rg.m to represent a route set {rg, m, Tgym, ***» Tqn,m} and notation k(R m)
to capture the keyword set covered by any route in R, te., K(Rgm) =
UvreRg.m K(T).

Definition 3. The length of Rg,m is marked as Ly(Rq,m), dependent on the
given aggregate distance function f. For example, if maximum is the aggregate
distance function, we have Lyae(RQm) = MAX;, . eRo . L(Tqm); if average is
the aggregate distance function, we have Lqyg(RQ.m) = ﬁ qu,meRQ,m L(rgm)-

Definition 4. Given an Aggregate Keyword Routing (AKR) query (Q, Kq, Kt),
an aggregate point m and a route set Rg., form a candidate AKR result



(m, Rg,m) if and only if k, C k(m) and k; C K(Rgm). We denote the com-
plete set of candidate AKR results as Ar. As the aggregate point m could be
derived from R m,, we use Rg m to represent a candidate AKR result but skip
m for brevity.

Definition 5. Given an aggregate distance function f, an Aggregate Keyword
Routing (AKR) query (Q, kq, ki) is to locate the candidate result set Ry csuie with
the minimum Ly (Rresult) value, i.e., Ryesuir = argming, . eay Lf(RgQ,m)-

As mentioned above, processing of AKR query is very time consuming. In
fact, it is NP-Hard, as presented in Theorem 1.

Theorem 1. The Aggregate Keyword Routing problem is NP-Hard.

Proof. The classical Euclidean Traveling Salesman Problem (Euclidean TSP)
can be reduced to AKR problem. Given an Euclidean TSP problem, it includes a
start point o, and a set of points S which the salesman should travel to, with all
the points in an Euclidean space. We can construct an AKR problem as follows.
We assign each point in S U {o} unique keywords with its location unchanged.
Let the query point set @ = {o}, the aggregate keyword set k, = {k(0)}, and
the task keyword set r; = {lU,cg%(p)}. Clearly, this AKR query solves the
Euclidean TSP problem. Thus, the AKR problem is NP-Hard. O

4 Tree Expansion

As mentioned in Sect. 2, existing algorithm TAR finds the optimal solution of an
AKR query. However, the algorithm is time-consuming since its time complexity
grows exponentially as the size of input increases. On the other hand, CBA is
efficient, but usually results in inaccurate answers. In this section, we propose a
new algorithm, which is as efficient as CBA, but much more accurate than CBA.

We first find the aggregate point m, on the basis of the minimum cover circle,
i.e., a circle that covers all query points and has the smallest radius. Assuming
that the circle is centered at the point o, we search for the aggregate point m
within the neighborhood of o, because the points near o probably have small
maximum distance to the query points. Then, we look for suitable POIs during
the process of generating the routes. We consider the selected aggregate point
m as the root of a tree, and the query points are the leaves of the tree. Initially,
the tree only contains the direct path from all the leaves to the root, without
passing any of the task POI. We then expand the tree by adding suitable POIs
to the paths. As maximum is the aggregate distance function, among the |Q)|
paths from g € @ to the root, it strategically selects the shortest one to perform
the expansion to avoid the case where one of the path becomes very long, until
all the task keywords specified in x; have been covered. The algorithm is named
as Tree Expansion (TE) to reflect the nature of the search.

Before we present the detailed algorithm, we first introduce a min-heap where
each element of the heap is in the form of ((s,p,e),d). Here, (s,p,e) is a three
tuple vector and d indicates the detour caused if a route from s to e needs to take
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a detour at point p, i.e., d = |s,p| + |p,e| — |s, e|]. The notation |a, b| represents
the Euclidean distance between two points a and b. All the elements in the heap
are sorted based on ascending order of d values. We maintain |@Q| min-heaps to
facilitate the expansions of the paths from ¢ € ) to m.

Algorithm 1 lists the pseudo code of TE. It locates the minimum circle cov-
ering all the query points and uses the center of the circle to find an aggregate
point m (line 1), initializes the result set Ry esuit with R%’m, and initializes min-
heap heapli] and an index array leng[i] (lines 2-4). The index array is to record
the length L(rg, ) for each route rg, ,, in the current Ryesyi¢. Thereafter, for
each single query point ¢; € @, it pushes the potential expansion options to
the corresponding min-heap heapli] to enable the tree expansion. To be more
specific, for each direct route {(g;, m), it could be expanded by adding one POI
point. We locate all the POIs points p € P that cover at least one queried task
keyword as the candidate points to enable the expansion, and add ((¢;,p, m), d)
to the heap heapli] as a potential expansion option (lines 5-7). The real expan-
sion is guided by routes in R,csyi: and the elements in heap. Every time, we pick
the path 74, m € Ryesuir with the shortest distance for expansion, following the
top option in heap[i] with the smallest detour. Assume the path ry, , . m» has
the shortest route distance value among all the routes in R,esyit, and the top
element of heaplindex] is e in the format of ((ps, pm,pe),d). The corresponding
expansion is to expand the direct link (ps, pe) to (s, Pm, pe). Note that ps and
pe might not be adjacent because other point(s) might have been added between
ps and p.. Meanwhile, we also check whether k(p,,) is still required by x with
k recording the task keywords not yet been covered by any route in R.cgqy:- We
then perform the expansion if it is valid (line 12), update leng[index] to reflect
the extended length of the route 7y, ... m € Rresuir and update s to remove
the task keywords covered by new POI p,, (line 13). In addition, the new link
between ps and p,, and that between p,, to p. provide new expansion options.
We update the heap heaplindez] to reflect the new expansion options (lines 14—
16). The above expansion continues until all the queried task keywords have
been fully covered.

We plot one example in Fig.2 to illustrate the search. The query points
Q = {q1,92,q3}, the candidate aggregate point is m, and the task keywords
ki = {meat, beer, magazine}. Initially, the tree contains only three direct routes



Algorithm 1. Tree Expansion (TE) Algorithm

Input: P, Q, ka, kt
Output: R,esuit

1 o:= getCenter(Q), a := {p € P|k(p) 2 Ka}, m := NearestNeighbor(o, o)
2 Rresulr i= UtieQ<Qi,m>, R = Kt
3 for each i € |Q| do
4 heapli] := 0, leng[i] :=|q: € Q, m|
5 for each p € P with k(p) Nkt # 0 do
6 for each q; € Q do
7 d =g, p| + |p, m| — |¢i, m|, push element ((¢;,p, m),d) to heapli]
8 while x # ) do
9 index := argmin;e|q)lengli]
10 e{(ps,Pm,Pe), d) := pop(heap|index])
11 if ps and pe are adjacent in a route in Rresur and kN K(pm) # 0 then
12 update 7¢;,, 4..,m € Rresuit by including pr, in the middle of ps and p.
13 lenglindex] := lenglindex] + d; k := K — K(pm)
14 for each p € P with (p) Nk # 0 do
15 di := |ps, p| + |p, Pm| — [Ps, Pm|, Push ((ps, p,pm), d1) to heaplindex]
16 dz = ‘pm7p| + |p7p€| - ‘pm;pe|7 pUSh <(pm,p,pe),d2> to heap[index}

17 return R,csuit

from query points to m, i.e., Rg m = {{(g1,m), (g2,m), (g3, m)}. At first, (g1, m)
is the shortest route in Rg ., so we expand (g1, m) to (g1, p1, m). Then, (g2, m)
becomes the shortest route, and we expand it to (g2, ps, m). After expansion,
(g2, ps, m) is still the shortest, and we further expand it to (g2, ps,ps,m) to
complete the search.

TE only considers one aggregate point and uses this point to compute the
route set. However, the aggregate point nearest to the center of the circle that
covers all the query points may not be the best choice. As a result, TE may suffer
from high error rate because of this not-ideal aggregate point. In order to reduce
the side effect of selecting a not-ideal aggregate point on the accuracy of the
approximate result, we can extend TE via evaluating multiple aggregate points.
That is, we can evaluate the aggregate points according to their proximity to the
center of the circle (supported by ANN algorithms). For each of the evaluated
aggregate points, we generate the result routes. Parameter R qndidate maintains
the best result route found so far. The evaluation continues until we reach an
aggregate point m such that Lmax(R%M) is longer than Ly,qu(Reandidate)s OF
all the aggregate points have been evaluated. To differentiate from the original
TE algorithm, we name the extended approximation algorithm that evaluate
multiple aggregate points as TE-ext. It is noted that TE-ext is able to find
a result set with higher accuracy, as compared with TE. However, it requires
longer running time in most, if not all, cases. We will report the performance
comparison between TE and TE-ext in the experimental study.

Following the same idea, we extend the CBA algorithm originally proposed
in [1] as well, and discover that the accuracy is improved after the extension.



In the following, we use CBA-ext to represent the algorithm after extension for
convenience.

5 Average Aggregate Distance

In Sect. 4, we presented the TE algorithm, based on maximum aggregate dis-
tance function. In this section, we introduce average as another common and
useful aggregate distance function, and illustrate how TE algorithm and its
extension could be adapted to different distance functions.

First, we explain the necessary changes we have to make to TE in order
to support AKR queries when average is adopted as the aggregate distance
function. We need to change the routing approach in order to have the aver-
age distance of the answer route set as small as possible. The original routing
approach is to assign a new task POI to the shortest route so its impact on
the maximum distance of the route set could be minimized. When considering
average, we want to look for a route with the smallest increase in terms of its
distance after adding a new POI. Hence, we only need to maintain one heap
instead of |@Q| heaps for supporting average aggregate distance function, and all
the elements ((g;, p, m),d) in the heap are still sorted based on ascending order
of the d values. When we perform the expansion, we pop out the top element
from the heap as the corresponding expansion incurs the smallest detour.

Next, we explain how we adjust the extension of TE to support AKR
under average aggregate distance function. The main idea behind the extension
remains valid regardless of the aggregate distance function adopted, as check-
ing multiple aggregate points will not bring any harm to the accuracy. How-
ever, we want to highlight that aggregate points m shall be evaluated based on
Layg (R m) but not Lyyqq (R m)

We also adapt TAR and CBA to support average aggregate distance, and the
performance of all algorithms with respect to two distance functions is evaluated
in the following experimental study.

6 Complexity Evaluation

In this section, we will analyze the worst-case time complexity of our algo-
rithms, as well as TAR and CBA, with respect to two different aggregate distance
functions.

6.1 Maximum Aggregate Distance Function

For our algorithm TE, it takes O(|P|) to decide m and O(|Q||Pllog(|P])) to
initialize |()| min-heap heap[i]. Then, it invokes the while-loop to perform the
expansion, up to |x¢| times. For each execution of the loop, it takes |Q| to locate
the index of the route 74, m € Ryesuwr With the shortest length, and it inserts
at most |P| elements to the heap. Therefore, the maximum size of the heap



is |k¢||P], and the time complexity is O(|k¢||P|log(|k¢||P])). The overall time
complexity is O(|1r|(Q] + | P| log([e|| ).

Next, we analyze the time complexity of TAR. In Search and Assignment
Phase, it takes O(|P|) to decide m and it checks at most |a| aggregate points. In
Task Finishing Phase, there are | Q| heaps, and most time is spent on pushing and
popping heap elements. It pushes elements into heap at most 25! |P| times, and
each push involves |P| elements. Hence, the time complexity is O(2/%t!|P|?|r|
log(|P])). In total, the time complexity of TAR is O(|P| + |a|(2!%!|P|?|k,]|Q
log(|PI).

For CBA, it takes O(|P]) to locate the aggregate point m, too. The time
complexity of every execution of the loop is O(|Q| + |kq4|), while it is repeated
for || times. Consequently, the total time complexity is O(|P|+|r¢|(|Q|+ |5¢]))-

When we also consider extensions, we need to multiply the routing cost by |«/.
As the result, the time complexity of TE-ext is O(|o||x¢|(|Q| + | P| log(|¢||P])))
and the time complexity of CBA-ext is O(|P| + |a||r¢|(|Q] + |k¢]))-

6.2 Average Aggregate Distance Function

For TE, it only needs to use one heap during the search and the expansion
is guided by the top element of the heap. Accordingly, the time complexity is
changed to O(|x¢||P|log(|x¢||P])). Based on the worst-case time complexity, TE
runs faster with average aggregate distance function.

For TAR, its time complexity remains unchanged when the aggregate dis-
tance function is changed from maximum to average. However, we want to
highlight that its real performance under maximum is better than that under
average, as some of its optimizations become less stronger under average.

For CBA, it needs to check all |@Q| routes in order to find the one with the
smallest detour to accommodate a new POI, so its time complexity is changed
to O(|P| + |Q||k¢|?), and it becomes slower when aggregate distance function is
changed from maximum to average.

We should point out that TAR and the extension version of approximate
algorithms use ANN algorithm to enumerate aggregate points. As ANN is not
the focus of our paper, we skip the time complexity of the ANN algorithms.

7 Experimental Evaluation

In this section, we evaluate the performance of all algorithms using real datasets.
In the following, we first introduce the experimental settings and then report
the experimental results. All the experiments are performed on a Windows 10
machine with an Intel Core i7-4790 CPU and 32 GB memory.

7.1 Experimental Setup

Dataset. We use two real POI datasets, namely Shanghai and New York,
with their main characteristics presented in Table 2. Shanghai dataset has in total



Table 2. Characteristics of the dataset

Dataset # of POls | # of keywords | # of distinct keywords
Shanghai from Amap 1,229,313 | 2,950,336 1,361
New York from FourSquare | 132,263 249,918 711

Table 3. Query parameters

Parameter Range

Query Point Number (|Q]) 2,4, 6,8, 10, 12

Aggregate Point Number (|a) |1, 10, 100, 1000, 10000

Task Keyword Number (|x¢|) |2, 4, 6, 8, 10

Task Keyword Popularity (px,) | 1, 10, 100, 1000, 10000

Area Size (AS) 0.3%, 0.9%, 3%, 9%, 30%, 90%

1,229, 313 POIs, covering 2,950, 336 keywords (i.e., 2.4 keywords per POI). The
number of distinct keywords is 1,361, so every keyword corresponds to 903 POIs
on average. New York dataset has in total 132,263 POlIs, covering 249,918 key-
words (i.e., 1.89 keywords per POI). The number of distinct keywords w.r.t.
New York dataset is 711. The number of POIs corresponding to one keyword
w; could be very different from that of another keyword wj, e.g., the number of
convenience stores is much larger than the number of museums. In addition, the
number of keywords associated with one POI could be also very different from
that associated with another POI, e.g., a shopping mall POI could have a long
list of keywords such as shopping, dinning, bank, cinema, supermarket, while a
rail station could have only one keyword.

Queries and Parameters. We randomly generate queries with selected param-
eters to evaluate the performance of different algorithms on various settings.
Each AKR query has three input parameters, the query points @, the aggregate
keyword set k,, and the task keyword set ;. Based on these three input param-
eters, we set five parameters to control query generation, as listed in Table 3.
The values with bold numbers represent the default settings. Parameter |Q)|
determines the number of query points, ranging from 2 to 12; parameter |«|
specifies the qualified aggregate points which is dependent on x,; parameter |r;|
represents the number of queried task keywords; parameter p,., indicates the
popularity of a query task keyword with its value representing the total number
of POIs in P that cover this keyword; parameter AS determines a square-shaped
subarea Sg,p within which query points are randomly generated, and it is rep-
resented as the ratio of the size of the subarea Sg,; to that of the whole search
space. For simplicity, we assume all the query task keywords in «; share the same
popularity.

Algorithms. We implement our proposed TE and TE-ext algorithms, as well
as TAR, CBA and CBA-ext, which are proposed in [1], in total 5 algorithms.
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Fig. 3. Search performance vs. parameter |Q)|

We test their performance for both maximum aggregate distance function and
average aggregate distance function.

7.2 Experimental Results

For every parameter setting, we randomly generate 100 queries for testing and
report their average performance. All the algorithms need to form the candidate
set « for the aggregate points. Therefore, we exclude the cost of forming «
from all the experimental figures. We adopt running time and error rate as

Ly (Rappro) =L f(Rexact) R
Lf(Remact) : appro

refers to the result set returned by an approximate algorithm, while R¢yqc; refers
to the exact search result. Let the error rate be E, the accuracy is ﬁ In other
words, a lower error rate is equivalent to a higher accuracy. When we investigate
the impacts of different parameters, we only report the results corresponding to
Shanghai dataset, as the observations made from New York datasets are similar.

We will briefly present the results of New York dataset at the end of this section.

the main performance metrics with error rate set to

Impact of |Q|. We first evaluate the impact of the size of the query point set on
the performance via changing |Q| from 2 to 12. Figure 3 depicts the result. The
performance gap in different algorithms is obvious and consistent across all the
testing cases. TAR’s running time grows exponentially when |@| increases, and
we also observe that the running time of TAR grows even faster with average
function than maximum function. On the other hand, |Q| does not change the
running time of CBA, TE and their extensions much; while the increase of |Q)|
does help to reduce the error rate of approximate algorithms and their extended
versions. This is because with more query points, the average number of POIs
passed by each route from a query point to the aggregate point decreases, which
makes it easier for the approximate algorithms to find a better answer. However,
there is not much room for further improvement in TE-ext, since the accuracy has
already been very high when |@)| is small. In general, the approximate algorithms
run much faster than their extended versions but their error rates are also higher.

Impact of |a|. Secondly, we change the parameter |a| from 1 to 10,000 and
report the result in Fig. 4. For TAR, CBA-ext and TE-ext, |a| mainly affects the
number of aggregate points enumerated from «. On the other hand, both CBA
and TE only evaluate one aggregate point, so |a| only effects the time required
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to find the aggregate point nearest to the center of query points. We can observe
that when || values are small, an increase of |a| value does not necessarily
increase the running time, as many aggregate points could be filtered out. Note
that we select the query points within a small subarea while the aggregate points
are distributed across the entire search space. However, as |a| becomes much
larger (e.g., |a] = 1000), a further increase of || actually increases the number
of aggregate points that require evaluation and hence the running time. On the
other hand, unlike |@|, the increase of |a| does not decrease but increase the
error rate.

Impact of |x¢|. We now study the impact of parameter |k¢|. The result is plotted
in Fig. 5. Compared with |Q)|, |x¢| has an even bigger impact on the performance
of TAR. However, its impact on CBA and TE is less significant. This is because
both algorithms only evaluate one route set, for the selected aggregate point,
without enumerating all the possible route sets. As |k;| becomes bigger, the route
set needs to pass by more POI points which increases the cost of generating one
route. In general, TE and TE-ext are able to achieve a much lower error rate.

Impact of p,,. Next, we study the impact of the popularity p,, of query task
keywords with the result plotted in Fig. 6. It is observed that p,, value affects the
performance of CBA and TE significantly. In addition, when p,., reaches very big
values, CBA and TE do not have much advantage over their extended versions
in terms of running time. Similarly, their extended versions do not demonstrate
much advantage over their original algorithms in terms of error rate. This is
because when the density of task POIs becomes very high, there are always task
POIs around a given aggregate point. In addition, we also observe that when
maximum is selected as the aggregate distance function, the increase of py,
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value helps to reduce the error rate. This is because as the density of task POIs
increases, the position of aggregate point becomes less sensitive and the impact
of a wrong aggregate point becomes smaller. However, when average is selected
as the aggregate distance function, the error rate corresponding to very small
pr, values is low. The reason behind is that as the density of task POIs is very
low, the average length of the exact route is expected to be very large which
becomes less sensitive to the errors. As p,, increase its values, the length of the
result set decreases and the error rate increases. However, once p,, reaches a
large value, a further increase of its value helps to decrease the error rate.

Impact of AS. Last but not least, we analyze the impact of parameter AS,
which reflects the distance between query points. The results are plotted in
Fig. 7. We observe that the values of AS do not change the algorithms’ running
time much. As for the error rate, an increase of AS value helps to improve the
error rate performance when maximum is selected as the aggregate distance
function. This is because as points are further from each other, the aggregate
point that is nearest to the center of the query points is expected to have a
better accuracy.

Performance Evaluation on Different Datasets and Statistical Results.
We test all algorithms over two different datasets, Shanghai and New York
dataset. Note Shanghai dataset is around 10 times larger than New York dataset.
Table 4 reports the average performance of different algorithms under two dif-
ferent datasets. We report the results based on four metrics, including average
running time (ART), average error rate (AER), mazimum running time rate
(MRTR), and mazimum error rate (MER). Let QU be the set of queries in our
evaluation, and let ¢; and e; be the running time and error rate of each query



Table 4. Statistical data in Shanghai and New York

Metrics ART (ms) AER MRTR MER
Aggregate function | Max. | Avg. Max. | Avg. | Max. | Avg. | Max. | Avg.
Shanghai | TAR 590.46 | 3153.53 | - - 31.39 1 18.90 | - -
CBA 0.29 0.30/0.50 |0.22 | 2.91| 3.03|2.32 |1.31
CBA-ext | 43.96 79.17/0.26 |0.18 | 8.26| 8.96|1.91 |1.00
TE 3.09 3.57/0.28 10.07 | 2.99| 3.21|1.71 |0.74
TE-ext 27.13| 191.93/0.05 0.02 | 2.71| 7.03/0.56 |0.19
New York | TAR 34.44 | 181.76 |- - 51.73|32.34 |- -
CBA 0.01 0.01/0.62 10.29 | 8.33| 5.81/2.25 |1.22
CBA-ext 0.37 0.53/0.37 10.24 | 8.60| 6.04/2.01 |1.22
TE 0.19 0.18/0.35 [0.09 | 5.69| 7.27|1.88 |0.77
TE-ext 0.76 3.25/0.09 10.03 | 6.89| 5.33/1.07 |0.52

t; . ) i
qu; € QU respectively. ART is set to EC’]?Q;UQIU; AER is set to Z‘““"Q;UQ'UE;

MRTR is set to mawquieQU(%), where t denotes the ART of queries which have
same parameters as qu;; and MER is set to mazqu,cqu(e;). In general, the algo-
rithms become efficient but inaccurate if maximum aggregate distance is used.
TAR is 15 times slower than TE-ext, and its MRTR is high so its performance
is not stable. CBA is the most efficient, but the least effective with the accuracy
far below that of TE-ext algorithm. Compared with TAR, TE-ext has high accu-
racy (ranging from 92% to 98%) too, with respect to all two aggregate distance
functions.

8 Conclusion

In this paper, we study the AKR problem, and propose novel approximate algo-
rithms to process AKR queries. The algorithms support both maximum and
average aggregate distance functions, two commonly used distance functions in
practice. Our TE-ext algorithm is efficient since it is 15 times faster than the
exact algorithm, whereas it is effective and achieves the accuracy of at least 91%.
In this paper, our AKR query only returns one result, while we plan to extend
the search to return top-k results in the near future. In addition, we are also
exploring AKR, query on road networks.
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