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Robust Factorization Machine: A Doubly Capped Norms Minimization

Chenghao Liu∗ Teng Zhang †‡ Jundong Li§ Jianwen Yin†‡ Peilin Zhao¶

Jianling Sun†‡‖ Steven C.H. Hoi∗

Abstract

Factorization Machine (FM) is a general supervised
learning framework for many AI applications due to its
powerful capability of feature engineering. Despite being
extensively studied, existing FM methods have several
limitations in common. First of all, most existing FM
methods often adopt the squared loss in the modeling
process, which can be very sensitive when the data for
learning contains noises and outliers. Second, some re-
cent FM variants often explore the low-rank structure of
the feature interactions matrix by relaxing the low-rank
minimization problem as a trace norm minimization,
which cannot always achieve a tight approximation to
the original one. To address the aforementioned issues,
this paper proposes a new scheme of Robust Factor-
ization Machine (RFM) by exploring a doubly capped
norms minimization approach, which employs both a
capped squared trace norm in achieving a tighter ap-
proximation of the rank minimization and a capped `1-
norm loss to enhance the robustness of the empirical
loss minimization from noisy data. We develop an ef-
ficient algorithm with a rigorous convergence proof of
RFM. Experiments on public real-world datasets show
that our method outperforms the state-of-the-art FM
methods significantly.

1 Introduction

Factorization Machine (FM) [15, 16] represents a family
of general-purpose supervised learning techniques in
machine learning and data mining, which provides an
efficient mechanism for modeling feature interactions
in a latent space. Unlike linear models (e.g., Support
Vector Machines) that only learn a feature weight vector
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w ∈ Rd, where d is the number of features, FM also
learns a pairwise feature interaction matrix Z ∈ Rd×d
to model the pairwise interactions between features.
Specifically, it models the feature interaction matrix
via a factorized formula, Z = VV>, where V ∈ Rd×k
and k � d is a hyperparameter indicating the rank of
the factorized matrix. FM has been widely explored in
various machine learning and data mining applications
including classification [15], recommendation [11] and
search ranking [10]. Despite its widespread usage, the
performance of FM is severely affected by the choice
of the low-rank structure of the underlying feature
interaction matrix.

To explore a suitable low-rank structure of the fea-
ture interaction matrix, many recent studies have im-
proved FM [2, 21, 9] by imposing the trace norm (a.k.a.
nuclear norm, the sum of the singular values of the da-
ta matrix) regularization ‖Z‖∗ [19], which is known to
be the tightest convex lower bound on the matrix rank.
Specifically, following the recent advances on low-rank
optimization with trace norm penalty [17], Blondel et
al. [2] presented an efficient greedy coordinate descent
algorithm with global convergence; Yamada et al. [21]
formulated the objective function as a semidefinite pro-
gramming and derived an efficient optimization proce-
dure with Hazan’s algorithm [4]. Although the trace
norm is capable of introducing low-rank structure and
learning potential correlations from data samples, the
approximation error between the rank minimization and
the trace norm constraint cannot be neglected in prac-
tical applications [18] . For example, as the non-zero
singular values change, the trace norm value will change
together but the rank value will remain the same. Thus,
it is highly desired to find a more effective way in ex-
ploiting the low-rank structure to better approximate
the rank minimization problem.

Meanwhile, most existing FM methods often as-
sume the labeled data in training set are clean and pre-
cise, and thus adopt the standard loss function to model
the relations among the data and the label. In fact, the
standard loss function remains agnostic to the unavoid-
able noise present in the input signals. Consequently, the
learnt models have an ambiguous understanding of the
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correlation between features and labels and thus exhibit
remarkable sensitivity towards small data perturbation-
s. Since the outliers are significantly different from the
normal data and could mislead the training process, the
learned model will not be optimal and the prediction
performance could be jeopardized.

To address the aforementioned issues, we develop
a novel framework for Robust Factorization Machine
(RFM) based on a Doubly Capped Norms Minimization
approach. The key idea is to reformulate the objective
function of FM by employing two types of capped norm-
s. First of all, we propose to leverage a capped squared
trace norm to replace the trace norm. In this way, it on-
ly minimizes the singular values that are smaller than
a given threshold and treating other large singular val-
ues as a fixed value, which is able to achieve a tighter
and more robust approximation of the rank minimiza-
tion. Second, instead of using the standard square loss
or hinge loss, we propose a new capped `1-norm loss
to enhance the robustness of the empirical loss mini-
mization from noisy training data. In addition, in order
to tackle the new formulation of the objective function
that is non-convex and non-smooth, we develop an effi-
cient optimization algorithm with rigorous convergence
analysis. We also empirically validate the efficacy of the
proposed method by conducting extensive experiments
on real-world datasets, and the results show that our
method outperforms the state-of-the-art FM methods
in both the binary classification and recommendation
tasks.

Our major contributions are summarized as follows:

• We propose a novel formulation of Robust Fac-
torization Machines (RFM) via a Doubly Capped
Norms Minimization to tackle the limitations of the
vanilla FM;

• We propose an efficient optimization procedure to
tackle the non-trivial optimization task of Robust
Factorization Machines with proved convergence;

• We evaluate the performance of the proposed RFM
on both the binary classification and the recom-
mendation tasks, and validate the efficacy and ro-
bustness of the proposed method.

We believe our work sheds light on the Factorization
Machine research, especially for robust Factorization
Machine. Due to the wide applications of FM, our work
is of both theoretical and practical significance.

2 Robust Factorization Machine

Factorization Machine (FM) proposed in [15] have
recently gained popularity as an effective learning
paradigm for utilizing feature interactions in supervised

learning tasks such as classification or regression. Given
an input feature vector x ∈ Rd, the vanilla FM model
predicts the output with the following equation:

ŷ(x|w,V) = w>x +

d∑
j=1

d∑
j′=j+1

(VV>)jj′xjxj′ ,

where V ∈ Rd×k and w ∈ Rd are the model parame-
ters to be estimated. Following the popular practice in
designing convex variants of FM [2, 21], we consider a
generalized formula by employing a low-rank symmetric
matrix Z ∈ Rd×d to model the pairwise feature interac-
tions:

ŷ(x|w,Z) = w>x +

d∑
j=1

d∑
j′=1

zjj′xjxj′ = w>x + 〈Z,xx>〉,

where zjj′ is an element of Z. Given a training set
[x1, . . . ,xn]> ∈ Rn×d and the corresponding targets
[y1, . . . , yn]> ∈ Rn, model parameters can be learned
by using the principle of empirical risk minimization to
solve the following non-convex problem:

min
w∈Rd,Z∈Sd×d

+

n∑
i=1

`(yi, ŷ(xi|w,Z)) +
α

2
R1(w) +

β

2
R2(Z),

where R1(w), R2(Z) are the regularization terms and `
is an incurred loss function.

In the existing FM methods, they usually apply
hinge loss for the classification task and squared loss for
the regression task. To make the FM model more robust
and improve its generalization ability, a natural way
is to use the absolute loss function instead. However,
if some extreme odd points incur very large residuals,
they will still have significantly negative effects on
the performance of FM model. Inspired by the recent
research work [22, 3, 7], we propose to adopt the capped
`1-norm loss for robust prediction, which has been
successfully used to approximate the `0 norm. For the
classification task, the capped hinge loss is defined as:

`ccapped(yi, ŷ(xi|w,Z)) = min{`hinge(yi,xi,w,Z), ε1}

= min{max{1− yi(w>xi + 〈Z,xix>i 〉), 0}, ε1},
(2.1)

where the true label satisfies yi ∈ {+1,−1}. In this
term, if the error of a sample is larger than ε1, we
consider this sample as an extreme outlier and its error
is capped as ε1 such that its effect to the whole FM
model is fixed. For other normal samples, our objective
will minimize max{1−yi(w>xi+〈Z,xix>i 〉), 0} directly,
which is equivalent to the hinge loss. In this way,
the proposed capped `1-norm is more robust than the
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traditional `2-norm loss in FM. Similarly, the capped
ε-intensive loss for regression task can be written as:

`rcapped(yi, ŷ(xi|w,Z)) = min{`ε(yi,xi,w,Z), ε1}

= min{max{|yi − (w>xi + 〈Z,xix>i 〉)| − ε, 0}, ε1}.
(2.2)

Recently, trace norm regularization has been em-
ployed as the convex relaxation of the rank minimiza-
tion so as to approximate the low-rank structure of the
feature interaction matrix in FM model [2, 21]. However,
there is a non-trivial gap between trace norm minimiza-
tion and the original rank minimization, especially when
noises and outliers exist in the data. In particular, if the
non-zero singular values of matrix Z change, the trace
norm of Z will change simultaneously, yet the rank of Z
stays the same.

To achieve a tighter approximation and more robust
model, we propose a novel capped trace norm to uncover
the low rank structure of the interaction matrix Z,
which is defined as:

Rε2(Z) =
∑
s

min{λ2
s, ε2},(2.3)

where λs is the singular value of matrix Z and ε2 > 0
is a threshold value. In this term, we can approximate

the rank function by rank(Z) ≈
∑
s min{1, λ

2
s

ε2
}.The

smaller ε2 is, the more accurate the approximation
would be. Note that if all the squared singular values of
Z are greater than ε2, then the approximation error will
become zero. To illustrate the advantage of employing
the capped trace norm, we plot the singular values of
the feature interaction matrix Z with different low-rank
optimization methods. From Figure 1, we can see that
the capped trace norm only penalizes the singular values
that are less than ε2 and ignore other large singular
values. Thus, when large singular values vary, it behaves
the same as low-rank regularization, which weakens the
effect of non-relevant feature interactions and makes FM
robust and stable in real-world scenarios. To this end,
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(a) Trace norm
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(b) Capped trace norm

Figure 1: Singular values of feature interaction matrix Z
by two low-rank regularization methods on “phishing”
dataset.

the proposed Robust Factorization Machine (RFM) can

be formulated as:

min
w,Z

n∑
i=1

`capped(yi, ŷ(xi|w,Z)) +
α

2
‖w‖22 +

β

2
Rε2(Z),(2.4)

where we adopt `2-norm regularization for w. Clearly,
the new objective (2.4) is not convex and not smooth
due to the definition of capped `1-norm loss and capped
trace norm regularization which is difficult to optimize.
In the next section, we will solve it by an efficient
optimization algorithm.
Remark. Note that in literature, there are some ex-
isting work on variational trace norms trying to better
approximate the rank minimization problem. Specifical-
ly, [8, 5] attempted to minimize the k-smallest singular
values, which, though avoids the effect of large singu-
lar values, suffers from the tedious selection of the best
rank parameter. [18, 6] proposed to minimize the sum
of singular values which are smaller than a threshold
value. However, minimizing the sum of capped singular
values would lead to a sparse solution, that is, some s-
mall singular values will become zero while others may
get large values. Our proposed capped trace norm can
alleviate all these issues, since it avoids the cumbersome
rank parameter selection process and minimizes the sum
of capped squared singular values whose solution will be
shrunk near to zero.

Besides, independent of our study, the same prob-
lem setting as robust Factorization Machine has been
addressed very recently [14]. The key difference between
the proposed method and the method by [14] (named
as “RFM-PB” for short) is that they model uncertain-
ty as bounded set based variability in the input sig-
nals. For each data point x, it associates uncertainty
vector u ∈ Rds.t.|uj | ≤ ηj ,∀j ∈ {1, . . . , d} by charac-
terizing the noises in the linear term and the matrix
Σ ∈ Rd×ds.t.|Σjj′ | ≤ ρjj′ ,∀j, j′ ∈ {1, . . . , d} is used to
capture noises induced by the quadratic term. The pre-
diction function under interval uncertainties takes the
form: ŷ(x|w,Z,u,Σ) = w>(x+u)+〈Z+Σ,xx>〉, which
results in the following minimax optimization problem:

min
w,Z

max
u,Σ

n∑
i=1

`(yi, ŷ(xi|w,Z,u,Σ)) +
α

2
R1(w) +

β

2
R2(Z).

While in contrast, our approach enhances the robust-
ness of FM by simply capping the prediction in the loss
function, i.e., min{`(yi,xi,w,Z), ε1}. Hence, the RFM-
PB performs well when the feature is under perturbed
setting but our approach is not sensitive to the outliers
caused by noisy labels/ratings or features. In addition,
the extra parameter space for RFM-PB is O(d2), while
our algorithm only needs O(1) which is easy to imple-
ment and avoids the tedious parameter tuning. Finally,
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our approach implements the low-rank structure with
the capped trace norm, while RFM-PB does not con-
sider it. We also prove the convergence of the objective
function.

3 Optimization Algorithm

In this section, we develop an efficient optimization
scheme to resolve the RFM problem using the principle
of re-weighted techniques [22, 23, 12, 13]. Specifically,
we first apply the re-weighted method to repeatedly
transform the original objective to a convex relaxation,
and then the proximal gradient method is applied to
solve the subsequent problem. For the classification
task, we can transform the original formulation with
respect to `ccapped(yi, ŷ(xi|w,Z)) as follows:

min
w,Z

n∑
i=1

ei`hinge(yi,xi,w,Z)2 +
α

2
‖w‖22 +

∑
s

min{λ2
s, ε2},

(3.5)

where ei = 1/(2`hinge(yi,xi,w
′,Z′)) if 0 < error ≤ ε1;

and 0 otherwise. w′,Z′ are the solution obtained from
the previous stage. This new objective function can
be solved via the iterative re-weighted optimization
strategy.

It is obvious that the loss term of the reformulation
in (3.5) is similar to the `2 loss in the original FM except
that there are some weights ei introduced for each da-
ta sample. In particular, a sample with a lower residual
will have a higher weight, which is consistent with the
robustness concern of RFM. To optimize the problem
(3.5), we adopt the same strategy as the traditional FM
by employing a two-block coordinate descent algorithm
[2]. In particular, we develop the optimization algorith-
m that alternates between minimizing with respect to
w and Z until convergence. When the algorithm termi-
nates, it returns the final w and Z. In the following, we
will discuss solutions for each subproblem.
w-subproblem: By fixing the feature interaction ma-
trix Z, we have:

min
w∈Rd

∑n
i=1 ei`hinge(yi,xi,w,Z)2 + α

2 ‖w‖
2
2,(3.6)

which is similar to the standard linear model except
the constant bias term incurred by Z. We can solve
(3.6) by applying vanilla gradient descent method [15].

Z-subproblem: By fixing the weight vector w,
we obtain:

min
Z

n∑
i=1

ei`hinge(yi,xi,w,Z)2 +
β

2

∑
s

min{λ2
s, ε2}.

Unfortunately, the capped trace norm is non-convex
and non-smooth. We propose to solve it by applying
the multi-stage convex relaxation technique [22, 23].

Specifically, we define a singluar value decomposition of
the symmetric matrix Z as Z = PΣP> =

∑
s λspsp

>
s .

P is an orthogonal matrix with columns ps ∈ Rd
and Σ = diag(λ) is a diagonal singular matrix in
ascending order. Denote the index set whose singular
value is smaller than ε2 as M = {s|λs ≤ ε2}, and their
corresponding eignvectors as PM . It is easy to verify
Tr(P>MZZ>PM ) =

∑
s∈M λ2

s. Thus, the Z-subproblem
can be formulated as:

min
Z

n∑
i=1

ei`hinge(yi,xi,w,Z)2 +
β

2

∑
s

Tr(P>MZZ>PM ),

(3.7)

which is convex if the matrix parameter PM is fixed.
We use the proximal gradient descent to optimize it
iteratively. At each round, the residual of each sample
is ri = yi−w>xi−〈Z,xix>i 〉, and the subgradient with
respect to Z is:

∇Z =

n∑
i=1

eiπixix
>
i + βPMP>MZ,(3.8)

where πi =


−ri + ε1, ri ≥ ε1;

−ri − ε1, ri ≤ −ε1;

0 otherwise

. Thus, Z is pro-

jected onto the positive semidefinite cone with Z =
ΠSd×d

+
(Z − η∇Z), where η is the step size. Our opti-

mization method is summarized in Algorithm 1.

Algorithm 1 Optimization Algorithm for the Proposed
Robust Factorization Machine (RFM).

Input: Training data {(xn, yn}Nn=1 and parameters
α, β, ε1, ε2.
Initialization: ei = 1 for i = 1, 2, . . . , n;
while not converge do

Update w according to (3.6);
Update Z and PMP>M according to (3.7);
Compute ei = 1 for i = 1, 2, . . . , n according to
(3.5);

end while
Output: model parameter w, and Z.

Remark. Note that we only need to compute PMP>M
instead of PM and P>M . Suppose P = [PM ,PM̄ ], where
M̄ = {s|λs > ε2} and PM̄ are singular values whose
corresponding singular vectors are larger than ε2. It is
easy to see that PMP>M = I−PM̄P>

M̄
. Since Z is a low-

rank matrix, by setting a proper ε2, the size of the set M̄
would be very small. Thus, we can efficiently compute
PM̄P>

M̄
via truncated SVD, and then update PMP>M

accordingly.
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4 Convergence Analysis

In this section, we prove the convergence of our opti-
mization algorithm, where a local optimum can be ob-
tained.

Lemma 4.1. According to [20], any two hermitian ma-
trices A,B ∈ Rn×n satisfy the inequality (λi(A), λi(B)
are singular values sorted in the same order)

n∑
i=1

λi(A)λn−i+1(B) ≤ Tr(A>B) ≤
n∑
i=1

λi(A)λi(B).

Lemma 4.2. Let Z = PΣP>, Σ = diag(λ) be one
diagonal singular matrix in ascending order and M =
{s|λs ≤ ε2} be the set of index whose singular values

are smaller than ε2. Similarly, Ẑ = P̂Σ̂P̂> is the
updated parameter after Z with diagonal singular matrix
Σ̂ = diag(λ̂) in ascending order and M̂ = {s|λ̂s ≤ ε2}
is the set of index whose singular values are smaller than
ε2. Then we have:∑

s

min{λ̂2
s, ε2} − Tr(P>M ẐẐ>PM )

≤
∑
s

min{λ2
s, ε2} − Tr(P>MZZ>PM ).(4.9)

Proof. According to the definition of PM and Z, it is ap-
parent that: Tr(P>MZZ>PM ) = Tr(PMP>MPΣ2P>) =∑
s∈M λ2

s. The RHS of inequality (4.9) is equivalent to:∑
s∈M

λ2
s +

∑
s/∈M

ε2 −
∑
s∈M

λ2
s =

∑
s/∈M

ε2.(4.10)

According to the definition of P̂ , M̂ and Lemma 4.1, we
know that Tr(P>M ẐẐ>PM ) = Tr(PMP>M P̂Σ̂2P̂>) ≥∑
s∈M λ̂2

s. Since M̂ denotes the total eigenvalues of Ẑ
that are smaller than ε2, no matter how the index set

M̂ varies from M , we could obtain that
∑
s∈M̂ λ̂2

s +∑
s/∈M̂ ε2 ≤

∑
s∈M λ̂2

s +
∑
s/∈M ε2. Therefore, via the

LHS of inequality (4.9), we have:∑
s∈M̂

λ̂2
s +

∑
s/∈M̂

ε2 − Tr(P>M ẐẐ>PM )

≤
∑
s∈M

λ̂2
s +

∑
s/∈M

ε2 −
∑
s∈M

λ̂2
s =

∑
s/∈M

ε2.(4.11)

Combining inequality (4.10) and (4.11) completes the
proof.

Lemma 4.3. Given ei =

{
1

2di
, 0 < di ≤ ε2;

0, otherwise,
, and

∀di, d̂i > 0, we could obtain the following inequality:

min{d̂i, ε2} − eid̂2i ≤ min{di, ε2} − eid2i(4.12)

Proof. Beginning with an obvious inequality

di − 2d̂i +
d̂2i
di

=
d2i − 2did̂i + d̂2i

di
=

1

di
(di − d̂i)2 ≥ 0,

thus we have d̂i − d̂2i
2di
≤ di

2 .If di < ε2, it is clear that

min{d̂i, ε2} ≤ d̂i, and thus

min{d̂i, ε2} −
d̂2i
2di
≤d̂i −

d̂2i
2di
≤ di

2
= min{di, ε2} −

d2i
2di

.

If di ≥ ε2, then ei = 0. As min{d̂i, ε2} ≤ ε2 =
min{di, ε2}, Eq. (4.12) also holds. Hence, Eq. (4.12)
always holds.

Theorem 1. By fixing the parameter w, Algorithm 1
decreases the objective value of (2.4) at each iteration
until it converges.

Proof. Let Ẑ be the optimal solution to Eq. (3.7) and λ̂s
is its singular value. First of all, the objective function
(3.7) is convex and its gradient is Lipschitz continuous.
As the projection step is convex and closed, according
to [1], if the step size is small enough, the proximal
gradient descent method is guaranteed to improve the
objective function value at each step. Therefore, after
minimizing the objective using the proximal gradient
descent at each iteration, it is guaranteed that

n∑
i=1

ei`hinge(yi,xi,w, Ẑ)2 +
β

2

∑
s

Tr(P>M ẐẐ>PM )

≤
n∑
i=1

ei`hinge(yi,xi,w,Z)2 +
β

2

∑
s

Tr(P>MZZ>PM ).

(4.13)

According to the definition of di, we apply Lemma 4.3
to the parameters Z and Ẑ:

n∑
i=1

min{`hinge(yi,xi,w, Ẑ), ε1} −
n∑
i=1

ei`hinge(yi,xi,w, Ẑ)2

≤
n∑
i=1

min{`hinge(yi,xi,w,Z), ε1} −
n∑
i=1

ei`hinge(yi,xi,w,Z)2.

(4.14)

From Lemma 4.2 and the definition of PM , we have:∑
s

min{λ̂2
s, ε2} − Tr(P>M ẐẐ>PM )

≤
∑
s

min{λ2
s, ε2} − Tr(P>MZZ>PM ).(4.15)

Combining the inequalities (4.13), (4.14) and (4.15)
leads to:

n∑
i=1

min{`hinge(yi,xi,w, Ẑ), ε1}+
β

2

∑
s

min{λ̂2
s, ε2}

≤
n∑
i=1

min{`hinge(yi,xi,w,Z), ε1}+
β

2

∑
s

min{λ2
s, ε2}.
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Theorem 2. By fixing the parameter Z, Algorithm 1
decreases the objective value of (2.4) at each iteration
until it converges.

Proof. Let ŵ be the optimal solution of Eq. (3.6). By
minimizing this objective with gradient descent, it is
guaranteed that:

n∑
i=1

ei`hinge(yi,xi, ŵ,Z)2+
α

2
‖ŵ‖2

≤
n∑
i=1

ei`hinge(yi,xi,w,Z)2 +
α

2
‖w‖2.

Similar to inequality (4.14), applying Lemma 4.3 to w
and ŵ, we have:

n∑
i=1

min{`hinge(yi,xi, ŵ,Z), ε1} −
n∑
i=1

ei`hinge(yi,xi, ŵ,Z)2

≤
n∑
i=1

min{`hinge(yi,xi,w,Z), ε1} −
n∑
i=1

ei`hinge(yi,xi,w,Z)2.

Summing over it on both sides, we can obtain:

n∑
i=1

min{`hinge(yi,xi, ŵ,Z), ε1}+
α

2
‖ŵ‖2

≤
n∑
i=1

min{`hinge(yi,xi,w,Z), ε1}+
α

2
‖w‖2.

Corollary 1. Algorithm 1 is guaranteed to converge
finally.

Proof. Algorithm 1 alternatively switches between op-
timizing w and Z while fixing the other factor respec-
tively. Since the objective value of problem (2.4) has a
lower bound 0, according to the principle of Alternating
Optimization and the results of Theorem 1 and 2, we
can obtain this assertion.

5 Experimental Results

In this section, we conduct an extensive set of exper-
iments by evaluating the performance of the proposed
RFM method on two popular types of machine learning
tasks: classification and recommendation. Our goal is
to examine the effectiveness of the proposed method on
real-world data sets and evaluate its robustness perfor-
mance in comparison with the state-of-the-art methods.

5.1 Experimental Testbeds We choose a variety
of publicly available datasets to cover different aspects
of the experimental testbeds for two types of learning
tasks. Specifically, for the classification tasks, we choose
six publicly available datasets from LibSVM1 and UCI

1https://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets

repository2. For the recommendation tasks, we use
the typical Moevielens datasets3 and the collection of
user ratings on Amazon products of music category,
instant video category and patio product category4.
Table 1 gives a summary of the datasets used for our
recommendation experiments.

Classification #Training #Test #Features
phishing 7370 3685 68
protein 12263 4298 357
connect-4 40740 20368 126
w8a 49749 14951 300
IJCNN 49990 91701 22
Covtype 387342 193670 54

Recommendation #Ratings #Items #Users
Movielens-100K 100000 1682 943
Amazon-patio 206250 714791 105984
Amazon-video 717651 426922 23965
Amazon-music 6396350 478235 266414

Table 1: Detailed statistics of the datasets used in the
classification and the recommendation task.

5.2 Baselines and Experimental Setups We
compare the empirical performance of the proposed
RFM with the state-of-the-art variants of FM. The com-
parison between RFM and other methods focused on the
aspects of robustness and low-rank structure of the fea-
ture interaction matrix. As a summary, the compared
algorithms are:

• FM: vanilla FM [15] which uses stochastic gradient
descent as the optimization algorithm.

• CFM: Convex Factorization Machine [2] which
uses the trace norm regularization to model the
low-rank structure of feature interaction matrix for
the recommendation task.

• RFM-PB: A recent robust Factorization Machine
proposed by [14], which models the data uncertain-
ty in the input signals.

• RFM(ours): the proposed RFM method by ex-
ploiting the capped `1-norm loss and the capped
squared trace norm.

All the datasets are normalized to have zero mean
and unit variance in each dimension. Due to the se-
vere sparsity of the original Amazon datasets, we s-
elect a part of the most active users from the origi-
nal data. The feature numbers for the music catego-
ry, instant video category and patio product category

2https://archive.ics.uci.edu/ml/datasets.html
3http://grouplens.org/datasets/movielens/
4http://snap.stanford.edu/data/web-Amazon-links.html
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Figure 2: The loss function value during iterations.

are 23717, 17960 and 16568, respectively. We evaluate
the performance of our proposed methods by measuring
the accuracy for the classification task and the RMSE
for the recommendation task. We randomly split the
recommendation datasets into training (90%) and test
(10%). To make a fair comparison, all the algorithm-
s are conducted over 5 experimental runs of different
random permutations. For parameter settings, we per-
form grid search to pick the best parameters for each
algorithm with 5-fold cross validation. We tune capped
parameters ε1 in the range of [0.1, 0.2, 0.5, 1, 2, 5], and
ε2 among [0.01, 0.05, 0.1, 0.5, 1, 5, 10]. The regularization
parameters α is in the range of [0.001, 0.01, 0.1], β is a-
mong [0.001, 0.01, 0.1], and the latent dimension d of
FM model is among [5, 10, 20, 30, 40, 50].

Amazon-patio Train RMSE Test RMSE

FM 1.0604±0.0002 1.1697±0.0006

CFM 1.0248±0.0042 1.1592±0.0058

RFM-PB 1.0492±0.0033 1.1610±0.0036

RFM(ours) 0.9839±0.0054 1.1568±0.0051
Amazon-video Train RMSE Test RMSE

FM 1.0425±0.0013 1.0892±0.0016

CFM 0.9651±0.0022 1.0531±0.0028

RFM-PB 0.8973±0.0031 1.0438±0.0023

RFM(ours) 0.8511±0.0034 1.0361±0.0032
Amazon-music Train RMSE Test RMSE

FM 0.9831±0.0023 0.8866±0.0026

CFM 0.7497±0.0042 0.8514±0.0038

RFM-PB 0.9452±0.0025 0.8725±0.0023

RFM(ours) 0.8004±0.0038 0.8460±0.0038
Movielens-100K Train RMSE Test RMSE

FM 0.9901±0.0023 1.0261±0.0026

CFM 0.9324±0.0033 0.9729±0.0040

RFM-PB 0.9864±0.0025 1.0035±0.0020

RFM(ours) 0.8461±0.0023 0.9626±0.0028
Table 3: Comparison of different algorithms in terms of
train RMSE and test RMSE for recommendation task.

5.3 Results of Recommendation and Classifica-
tion Table 2 summaries the performance evaluation
results of the proposed RFM and other baseline algo-
rithms on classification tasks. Table 3 gives the eval-
uation results of the RMSE performance between the
proposed RFM method and other baselines for recom-
mendation task. Figure 2 shows the convergence curve
of the loss function value with FM and RFM. From the
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Figure 3: Evaluation of robustness performances on
noisy datasets: classification (a) and recommendation
(b). We gradually inject noise into the original data from
0 to 30%.

experimental results, we can draw several observations
as follows.

First of all, we see that RFM achieves slightly faster
convergence and lower loss function values than the
vanilla FM. This is consistent with our convergence
analysis and reveals the advantage of the capped trace
norm and capped ell1-norm loss. Second, we observe
that the CFM method using trace norm regularization
outperform the vanilla FM and the improvements seem
to be more significant on the recommendation tasks.
These results confirm the effectiveness and importance
of exploiting the low-rank structure of the feature in-
teraction matrix. Third, comparing with all the meth-
ods, the proposed RFM method generally achieves the
best performance on both recommendation and classi-
fication tasks consistently. The improvements over the
state-of-the-art methods have been confirmed to be sta-
tistically significant according to the test results. More-
over, by examining the two different robust FM variants
(RFM-PB by [14] and our RMF method), we found that
both methods improve the performance of vanilla FM
for most cases, which validates the advantage of endow-
ing FM model with robustness. However, we notice that
the RFM-PB by [14] is not always better than CFM for
many cases; and by contrast, our RMF is consistent-
ly better than CFM. This encouraging results validate
the effectiveness and importance of the proposed doubly
capped norms minimization scheme.

5.4 Evaluation of Robustness Performance For
many real-world applications, data often contains noisy
features due to varied reasons or even wrong annotation
labels/ratings due to malicious attacks. In the previous
experiments, the real-world data sets may contain some
degree of noise which however is unknown. In this
experiment, we aim to explicitly examine the robustness
of the proposed RFM method under different levels of
noise with controlled experiments.

Specifically, to evaluate the robustness of the RFM
model and to validate its immunity to the threat of out-
liers, we conduct experiments on the phishing dataset
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Train ACC Test ACC Train ACC Test ACC Train ACC Test ACC
phishing w8a protein

FM 94.01 ± 0.06 93.35 ± 0.10 99.12 ± 0.06 98.86 ± 0.07 80.56 ± 0.04 79.75 ± 0.06

CFM 94.57 ± 0.13 93.51 ± 0.10 98.86 ± 0.04 98.79 ± 0.08 80.68 ± 0.10 79.94 ± 0.13

RFM-PB 93.93 ± 0.12 93.57 ± 0.08 99.10 ± 0.12 98.99 ± 0.10 79.92 ± 0.14 79.94 ± 0.12

RFM(ours) 95.87 ± 0.26 94.59 ± 0.33 99.56 ± 0.06 99.10 ± 0.06 82.52 ± 0.20 80.34 ± 0.18

IJCNN Covtype connect-4

FM 96.45 ± 0.12 96.66 ± 0.09 78.12 ± 0.16 77.31 ± 0.10 89.16 ± 0.18 88.52 ± 0.16

CFM 94.72 ± 0.13 92.77 ± 0.10 78.01 ± 0.20 77.99 ± 0.18 89.21 ± 0.13 88.95 ± 0.23

RFM-PB 96.75 ± 0.12 97.12 ± 0.08 78.61 ± 0.22 78.83 ± 0.14 89.73 ± 0.14 89.39 ± 0.10

RFM(ours) 98.22 ± 0.16 97.83 ± 0.15 80.16 ± 0.26 79.65 ± 0.25 89.88 ± 0.23 89.90 ± 0.31

Table 2: Comparison of different algorithms in terms of train accuracy and test accuracy for classification task.

for the classification task and Movielens-100K for the
recommendation task. We inject noise into the original
data from 0 to 30% each time and evaluate the robust-
ness of the model via test RMSE for recommendation
task and test error rate for classification task. All these
noises are set to be the wrong labels/ratings with ran-
domly chosen instances. It is obvious that the objec-
tive of the proposed RFM could explicitly deal with the
noisy training data and the value of ε1 is used to fil-
ter out the outliers. In this way, RFM protects the FM
model structure from being distorted.

Figure 3(a) shows the results for the classification
task, it is obvious that when the noise increases, the
test error rate of all the methods tend to rise. But
the performance degradation of RFM is remarkably
lower than the baselines. While the percentage of the
noise increases from 10% to 30%, the RFM model is
much more stable than the baselines. Thus, it validates
that RFM model can deal with outliers properly, and
keep the right structure in the training model. Figure
3(b) demonstrates the results for the recommendation
task. Similar with classification task, the performance
degradation of FM gets larger while the performance of
RFM still tends to be stable. Note that the RFM-PB
does not demonstrate its robustness in this setting. The
reason is that RFM-PB only performs well when the
feature is under perturbed setting but RFM is immue
to the outliers from noisy labels/ratings.

5.5 Sensitivity Evaluation of Rank Parameter
d and Capped Trace Norm ε2 We aim to evaluate
the sensitivity of the rank parameter d in the vanilla
FM and the sensitivity of the threshold value ε2 in the
RFM. Both of these hyperparameter control the low-
rank extent of the feature interaction matrix. As we
can see in Figure 4(a), the vanilla FM is sensitive to
the choice of the rank parameter d, but the choice of
a good rank value d is often nontrivial. For example,
on the protein dataset, when d < 10 or d > 20 the
test RMSE changes dramatically. In order to derive the
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Figure 4: Impact of Hyperparameters

best performance, it usually requires the tedious tuning.
Compared with the sensitivity analysis of the rank
parameter d in vanilla FM, Figure 4(b) demonstrates
that RFM is more stable with the threshold value ε2.
When the cost of hyperparameter tuning is restricted,
RFM is more applicable to quickly attain an acceptable
performance.

6 Conclusion

In this paper, we propose a novel framework of Robust
Factorization Machines (RFM) method based on a dou-
bly capped norms minimization approach, where we in-
tegrate both a capped `1 loss and a capped squared trace
norm. We show that the proposed capped squared trace
norm can approximate the rank minimization problem
much tighter than the traditional trace norm, and thus
achieve a better rank minimization approximation. The
capped `1 loss is able to enhance the robustness of
the FM model. However, the non-convexity and non-
smoothness of the new objective function makes the op-
timization problem non-trivial to solve. We thus propose
an efficient optimization procedure to tackle the optimi-
sation task effectively with proved convergence analysis.
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The experimental evaluations were conducted on both
classification and recommendation tasks in comparison
with several FM variants and RFM, in which encour-
aging results validate the effectiveness of the proposed
RFM approach.
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