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Abstract. Online social networks release user attributes, which is im-
portant for many applications. Due to the sparsity of such user attributes
online, many works focus on profiling user attributes automatically. How-
ever, in order to profile a specific user attribute, an unique model is built
and such model usually does not fit other profiling tasks. In our work,
we design a novel, flexible general user profiling model which naturally
models users’ friendships with user attributes. Experiments show that
our method simultaneously profile multiple attributes with better per-
formance.

Keywords: General user profiling · Multi-roles affiliation model · Social
networks

1 Introduction

The rapid growth of social network websites such as Facebook, LinkedIn and
Twitter attracts a large number of Internet users. However, only a small propor-
tion of these users intentionally or unintentionally disclose their attributes like
occupation, education and interests, which are important to many online applica-
tions, such as recommendation, personalized search, and targeted advertisement.
Research on user profiling has focused on various kinds of user attributes, rang-
ing from demographic information like gender [2,8], age [5,10] and location [1–3],
to user preference information like political orientation or interests.

In most of these works, in order to profile a specific user attribute, a unique
model is built and such model usually does not fit other profiling tasks. In
our paper, we propose a general user profiling model to profile multiple user
attributes simultaneously. Since social network users connect to other users reg-
ularly, many works [1,4,11] leverage the principle of homophily [7] to profile
attributes via social connections. The basic assumption is that users are more
likely to connect with those sharing same attribute values. Based on the observed
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features from the connected friends, user’s attributes can be obtained by directly
applying a majority vote or its variations [6].

However, this assumption oversimplifies the complexity of online social net-
works. In real life scenarios, users become friends only because of certain
attributes and those attributes make different degrees of contribution. Thus,
as our second contribution, we quantify the different linking factors for each
attribute entry. For instance, compared to both being Democrats, both working
at Google might be more likely to link two users together. That is to say, the
linking factor of attribute entry Google is larger than that of attribute entry
Democrat. Note that which attributes are more likely to link users are automat-
ically inferred from data rather than pre-defined.

2 Model

In this section, we proceed to introduce our multi-roles affiliation model(MRA).
Figure 1 illustrates the essence of our model. We start with a bipartite graph A
where the nodes in the top represent users, the nodes in the bottom represent
attribute values( or roles), and the edges indicate attribute affiliations. We also
observe the social network G of those users. In our model, there are two important
intuitions.

First, each attribute entry of the users corresponds to a specific role. MRA
models users’ preference towards each role with a bipartite attributes affiliation
network as Fig. 1(a). Formally, we assume that there is a set of N users. Each
user u = 1, 2, · · · , N has a latent group membership indicator zuk ∈ {0, 1} for
each attribute entry (or role) k = 1, 2, · · · ,K. In Fig. 1(a), roles are indicated
as a, b, c. Note that each indicator zuk of user u is independent. Each user can
belong to multiple roles simultaneously.

Second, we use a set of link factors π to capture the probability that users
sharing a certain attribute value are linked together. For example, πk is the
probability of users taking the same role k to be linked together. Note that for
different roles k1 and k2, their contribution to the link formation is different,

Fig. 1. (a) Bipartite attributes affiliation graph. Squares: attribute values, Circles:
users. (b) Social network of users.
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which is quantitatively measured by πk1 and πk2. As in [14], we define the prob-
ability of creating an edge (u, v) between a pair of users u, v as:

δuv = 1 −
∏

k∈{Cuv}
(1 − πk) (1)

where Cuv is the set of attribute entries u and v share (or roles they both take).
We can see that the equation above already ensures that pairs of users that share
more attributes are more likely to link together. To allow for edges between users
who do not share any attribute, we also introduce an additional role, called the
ε-role, which connects any pair of users with a very small probability ε. We
simply set it to be the random link probability.

3 Inference

Given partially observed binary user attribute entries F = {fuk : u ∈
{1, · · · , N}; k ∈ {1, · · · ,K}} and the user social network G, we aim to find
the full attributes affiliation graph A and link factors π = πk : k = 1, · · · ,K}.
We apply the maximum likelihood estimation, which finds the optimal values of
π and graph A so that they maximize the likelihood L(A,π) = P (G, F |A,π):

arg max
A,π

L(A,π) =
∏

(u,v)∈E

p(u, v)
∏

(u,v) �∈E

(1 − p(u, v)) (2)

We employ the coordinate ascent algorithm to solve the above optimization
problem. The algorithm iterate the following two steps. First, we update π by
keeping A fixed. Then we update A while keeping π fixed. To start the process,
we need to initialize A. Note that A is indeed a set of latent group membership
indicator zuk ∈ {0, 1}. For those partially observed binary user attribute entries
F , we keep those zuk to be the same as fuk. For others, we randomly generate
zuk by using the ratio calculated from F and G.

3.1 Update of Link Factors π

By keeping the attributes affiliation graph A fixed, we aim to find π by solving
the following optimization problem:

arg max
π

∏

(u,v)∈E

(1 −
∏

k∈{Cuv}
(1 − πk))

∏

(u,v) �∈E

(
∏

k∈{Cuv}
(1 − πk)) (3)

where the constraints are 0 ≤ πk ≤ 1. We transform this non-convex problem
into a convex optimization problem. We maximiza the logarithm of the likelihood
and change the variables e−xk = 1 − πk:

arg max
x

∑

(u,v)∈E

log(1 − e−∑k∈Cuv
xk) −

∑

(u,v) �∈E

∑

k∈Cuv

xk (4)

where the constraints 0 ≤ πk ≤ 1 become xk ≥ 0. This problem is a convex
optimization of x. We can solve it by gradient descent.
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3.2 Update of Attributes Affiliation Graph A
Given the link factors π, we aim to find appropriate attributes affiliation graph A
for all the users. We use the Metropolis-Hastings algorithm [9] where we stochas-
tically update A using a set of ‘transitions’. Given the current attributes affilia-
tion graph A, we consider two kinds of transitions to generate a new attributes
affiliation graph A′. One is that a latent group membership indicator zuk change
from 1 to 0. The other is that a latent group membership indicator zuk change
from 0 to 1. Note that we fix zuk for those already observed binary user attribute
entries F . Once we have generated new attributes affiliation graph A′, we accept
A′ with probability :

Min(1, L(A′,π)/L(A,π)). (5)

In other words, we initialize A1 = A. We start the process with some A
and then perform a large number of steps, where each step i we take Ai and
apply a random ‘transition’ generating a new attributes affiliation graph A′

i.
At each step, we accept the transition probabilistically based on the ratio of
log-likelihoods. If the transition is not accepted, we do not update Ai.

4 Experiments

4.1 Experimental Setup

We use the Facebook networks of 4 colleges and universities: Georgetown, Okla-
homa and Princeton and UNC Chapel Hill from a date in Sept. 2005 [12]. The
edges here are only intra-school links between users. In these Facebook datasets,
there are 8 user attributes which are ID, student/faculty status, gender, major,
dorm or house and high school. Since ID information is very user specific as well
as high school, we ignore these two attributes. We run experiments on these data
sets.

Next, we introduce natural baseline as well as the state-of-the-art method.
Taking the homophily phenomenon into consideration, we use random guess
within direct neighbors (RA) as our natural baselines. Thus, we predict the k-th
missing attribute entry value by randomly selecting a value of the k-th attribute
entry from the users neighbors. Another baseline is CESNA [13]. This method
detects overlapping communities in networks with node attributes. It statistically
models the interaction between the network structure and the node attributes ,
which makes it capable of determining community membership as well as recover
missing attributes. Using the community membership result and the association
weights between attributes and each community, we obtain the final probability
of each missing attribute for each user. Since attributes assignment probability
obtained from CESNA are continuous values varying from 0 to 1. We choose the
threshold as the one which gives us the largest F1 value. Then we treat this F1
value as the CESNA results.
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4.2 Results and Discussion

We first focus on comparing our model MRA with natural baseline RA here in
Table 1. In order to gain a comprehensive view of the performance, we randomly
hide 10 % of user attributes to 50 % of user attributes in a gradual way. Then
we take an average result for comparison. Note that most of the user attribute
entries are 0, which is determined by the flattening procedure. Also, people care
more about the entries with value 1 in real-world. Thus we provide the precision,
recall and F1 value for value 1 respectively. From the Table 1, we observe that
MRA can achieve higher performance.

Table 1. Results comparing with natural baseline

Georgetown Oklahoma Princeton UNC

P R F1 P R F1 P R F1 P R F1

RA 0.34 0.42 0.38 0.25 0.41 0.31 0.30 0.41 0.35 0.30 0.41 0.35

MRA 0.52 0.36 0.43 0.36 0.37 0.36 0.43 0.36 0.39 0.47 0.37 0.41

Georgetown Oklahoma Princeton UNC
0
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Fig. 2. Experiment results on 4 universities datasets.

Figure 2 shows the comparison between MRA and CESNA in terms of the
F1 value. The x-axis refers to different datasets as mentioned above. Note that
CESNA ignore those users who have no link with others. In the prediction
results, the performance of CESNA is only based on those users who eventu-
ally get community assignment, which is a subset of the whole input users. To
compare performance with CESNA on the same set of users who obtain commu-
nity assignment successfully, the result of our model is named as MRA-confined.
Since our model is able to handle both loosely connected users as well as uncon-
nected users, we also give the performance detail named as MRA for the whole
set of input users. We can see that the performance starts to deteriorate in some
amount due to those uninformative users, which conforms the reality. However,
those results are still better than the baseline results.
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5 Conclusion

In this paper, we developed a general user profiling framework to simultaneously
profile multiple attributes. Our multi-roles affiliation model (MRA) naturally
captures the relationship between users friendship links and user attributes. It
effectively profiles missing attributes for social network users. Moreover, the way
we treat each attribute entry enables our model easily adapting to various kinds
of attributes profiling.
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