
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

1-2019

Large scale online multiple kernel regression with application to Large scale online multiple kernel regression with application to

time-series prediction time-series prediction

Doyen SAHOO
Singapore Management University, doyens@smu.edu.sg

Steven C. H. HOI
Singapore Management University, chhoi@smu.edu.sg

Bin LIN
Wuhan University

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Theory and Algorithms Commons

Citation Citation
SAHOO, Doyen; HOI, Steven C. H.; and LIN, Bin. Large scale online multiple kernel regression with
application to time-series prediction. (2019). ACM Transactions on Knowledge Discovery from Data. 13,
(1), 9:1-33.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4383

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4383&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4383&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4383&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

9

Large Scale Online Multiple Kernel Regression with
Application to Time-Series Prediction

DOYEN SAHOO and STEVEN C. H. HOI, Singapore Management University

BIN LI, Wuhan University

Kernel-based regression represents an important family of learning techniques for solving challenging re-

gression tasks with non-linear patterns. Despite being studied extensively, most of the existing work suffers

from two major drawbacks as follows: (i) they are often designed for solving regression tasks in a batch

learning setting, making them not only computationally inefficient and but also poorly scalable in real-world

applications where data arrives sequentially; and (ii) they usually assume that a fixed kernel function is given

prior to the learning task, which could result in poor performance if the chosen kernel is inappropriate. To

overcome these drawbacks, this work presents a novel scheme of Online Multiple Kernel Regression (OMKR),

which sequentially learns the kernel-based regressor in an online and scalable fashion, and dynamically ex-

plore a pool of multiple diverse kernels to avoid suffering from a single fixed poor kernel so as to remedy the

drawback of manual/heuristic kernel selection. The OMKR problem is more challenging than regular kernel-

based regression tasks since we have to on-the-fly determine both the optimal kernel-based regressor for each

individual kernel and the best combination of the multiple kernel regressors. We propose a family of OMKR

algorithms for regression and discuss their application to time series prediction tasks including application to

AR, ARMA, and ARIMA time series. We develop novel approaches to make OMKR scalable for large datasets,

to counter the problems arising from an unbounded number of support vectors. We also explore the effect of

kernel combination at prediction level and at the representation level. Finally, we conduct extensive experi-

ments to evaluate the empirical performance on both real-world regression and times series prediction tasks.

CCS Concepts: • Computing methodologies → Online learning settings; Online learning settings; •

Theory of computation → Online learning theory;

Additional Key Words and Phrases: Online learning, multiple kernel regression, large-scale kernel learning,

time-series prediction

ACM Reference format:

Doyen Sahoo, Steven C. H. Hoi, and Bin Li. 2019. Large Scale Online Multiple Kernel Regression with Appli-

cation to Time-Series Prediction. ACM Trans. Knowl. Discov. Data 13, 1, Article 9 (January 2019), 33 pages.

https://doi.org/10.1145/3299875

This research is supported by the National Research Foundation Singapore under its AI Singapore Programme [AISG-

RP-2018-001], and the National Research Foundation, Prime Minister’s Office, Singapore under its International Research

Centres in Singapore Funding Initiative. This research is also supported by the MOE project of Humanities and Social

Science (18YJCZH072), the Academic Team Building Plan for Young Scholars from Wuhan University (Whu2016012), and

the Fundamental Research Funds for the Central Universities (1203-410500077/413000031).

Authors’ addresses: D. Sahoo and S. C. H. Hoi, School of Information Systems, Singapore Management University, 80

Stamford Road, Singapore 178902; emails: {doyens, chhoi}@smu.edu.sg; B. Li, Economics and Management School, Wuhan

University, Wuhan 430072, P. R. China; email: binli.whu@whu.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

1556-4681/2019/01-ART9 $15.00

https://doi.org/10.1145/3299875

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 1, Article 9. Publication date: January 2019.

© ACM, 2019. This is the author's version of the work. It is posted here by permission of ACM for
your personal use. Not for redistribution. The definitive version was published in ACM Transactions
on Knowledge Discovery from Data, 13, 1, 2019
https://doi.org/10.1145/3299875

https://doi.org/10.1145/3299875
mailto:permissions@acm.org
https://doi.org/10.1145/3299875

9:2 D. Sahoo et al.

1 INTRODUCTION

Kernel methods have been extensively studied for regression tasks and found successes in many

real-world applications [53, 54]. In contrast to linear regression methods, kernel-based regression

methods are able to tackle challenging non-linear regression tasks using the kernel trick that im-

plicitly maps data from the original space to a high or even infinite dimensional space by means

of a kernel function. Although a variety of kernel methods have been proposed for regression

tasks [53], most conventional kernel methods suffer from two major drawbacks. First of all, they

are often designed for solving regression tasks in a batch learning setting. This often results in a

high re-training cost when new training data becomes available, making them poorly scalable in

many real-world applications where data arrives sequentially. Second, they usually assume that

prior to the learning task, a fixed kernel function is given either by manual selection or via cross

validation. This could result in poor performance if the chosen kernel is inappropriate in a new

environment, which happens commonly for some real-world applications, such as time series pre-

diction where data observations can be non-stationary and the optimal kernel function may change

over time.

To overcome the above drawbacks, we propose a novel scheme of Online Multiple Kernel Re-

gression (OMKR), which sequentially learns a kernel-based regressor with multiple kernels in an

online fashion for regression tasks. On one hand, the proposed OMKR technique, as an online

learning method that often makes simple incremental update for a new training data example,

avoids the expensive re-training cost of conventional batch kernel methods, and thus significantly

improves the efficiency and scalability, especially when handling data stream applications. On the

other hand, OMKR explores a pool of multiple diverse kernels to remedy the drawback of using

a single fixed kernel by existing kernel-based regression methods that often suffer considerably

when the single kernel is inappropriate. The proposed OMKR problem is however very challenging

since we not only need to sequentially learn the optimal kernel-based regressor for each individual

kernel in the pool, but also need to simultaneously decide the best way of combining the multiple

kernel regressors on the fly at every learning round. We tackle the challenges by (i) exploring two

online kernel regression algorithms, Widrow-Hoff learning [60] and NORMA learning [26], for

online regression tasks with each individual kernel; and (ii) determining the best combination of

the multiple kernel regressors by applying two online learning techniques: Hedge algorithm [13]

that can track the best kernel regressor, and Online Gradient Descent(OGD)[68] that can find the

optimal linear combination. To validate the efficacy of the proposed method, we conduct extensive

experiments by evaluating the proposed algorithms on both real-world regression and time series

datasets, in which our empirical results show that OMKR outperforms conventional single kernel

online regression approaches for most cases, especially for time series prediction tasks.

Due to the curse of kernelization [32], methods that perform online learning with kernels suffer

from an unbounded number of support vectors (SVs). This problem is more severe in the case of

multiple kernels, especially if there are some poor performing kernels. Further, existing work in

Online Multiple Kernel Learning (MKL) attempts to combine predictive power of multiple kernels

only at the prediction level, and does not try to exploit multiple kernel combination at representa-

tion level. To address these issues, we develop algorithms for large scale OMKR, which are based on

kernel approximation techniques [43, 61, 62]. We demonstrate through extensive experiments the

scalability of the proposed methods, often coupled with improved performance. We also evaluate

kernel combination strategies, and empirically study the behavior of combining multiple kernels

at a prediction level and at the representation level.

We discuss a natural extension of the OMKR algorithms to the process of online learning for

time-series prediction. In particular we explore how OMKR can automatically determine the ap-

propriate window size to be considered for the learning procedure, and show how it can be applied

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 1, Article 9. Publication date: January 2019.

Large Scale Online Multiple Kernel Regression with Application to Time-Series Prediction 9:3

for Autoregressive (AR), Autoregressive Moving Average (ARMA) and Autoregressive Integrated

Moving Average (ARIMA) time-series modeling. Further, we present how OMKR can also be useful

for online learning for non-linear time-series prediction.

We note that a short version of this work appeared in ACM SIGKDD 2014 [47]. We offer sub-

stantially new content and empirical studies.

The rest of the article is organized as follows: In Section 2, we review the related work,

specifically focussing on contributions in literature in the domain of online learning and MKL. In

Section 3, we present the main framework for OMKR. This is followed by the presentation OMKR

algorithms for large-scale learning in Section 4. We discuss the application time-series prediction

in Section 5. In Section 6, we present our detailed experimental results, and finally conclude in

Section 7.

2 RELATED WORK

Our work is related to the fields of online learning and learning with kernels, which we review in

the context of OMKR. We also discuss the computational challenges associated with using kernel-

based models in the online setting. We also review work associated with time-series prediction.

2.1 Online Learning

Online learning refers to a class of scalable algorithms that learn sequentially from streamlining

data [7, 20, 21, 52, 63], and they have been extensively explored indifferent contexts and applica-

tions [9, 37, 65]. The general problem setting is to receive instances one at a time, make a prediction

for each instance, and based on the feedback available, update the model. In this work, our focus

is on supervised online learning tasks. Many early supervised online learning algorithms were

designed for linear models, starting with the Perceptron [44]. More recently a series of First -Order

online learning algorithms were developed based on the maximum-margin principle, including

OGD [68] and Passive Aggressive Algorithms [9, 10]. The first-order algorithms were further ad-

vanced by second -order algorithms that improved convergence by considering second-order infor-

mation [12]. Another closely related area is in supervised online learning is prediction with expert

advice [13, 29, 59], where predictions from multiple experts are weighted and update in every on-

line iteration. One of the most well-known algorithms is the Hedge Algorithm [13], which was a

direct generalization of Weighted Majority Algorithm [29].

A major drawback of these approaches is the inability to learn non-linear patterns in the data,

thus limiting there real-world applications. A solution for this was developed through online learn-

ing with kernels [26] (and more recently Online Learning with Deep Neural Networks [48]). Many

extensions to this paradigm were proposed, specifically in the context of regression: Naive Online

Regret Minimization (NORMA) [26], Online Passive Aggressive Regression [9], Sparse Implicit

Online Learning with Kernels (ILK and SILK) [51], Kernel Least Mean Squares [31], Primal Online

Algorithm (PRIONA) [5], and Quantized Kernel Least Mean Squared Algorithm [8]. While these

methods provide with promising directions to learn non-linearity, their empirical performance is

heavily reliant on the choice of the kernel, a difficult task, which is specifically more challenging

in the online setting where traditional validation data is not available, and the appropriate kernel

selection has to be done on the fly. Furthermore, usage of a single kernel function may restrict the

complexity of the pattern that is learnable, in particular if different kernels can offer complemen-

tary information. Also, in scenarios with multimodal data, using a single kernel to combine all the

data sources may not be feasible.

Another problem with existing online kernel methods is the curse of kernelization, where the

number of SVs is unbounded. In the online setting, every instance that suffers a non-zero loss

becomes a SV, which results in updating the prediction function such that every new prediction

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 1, Article 9. Publication date: January 2019.

9:4 D. Sahoo et al.

requires a kernel function computation with all the SVs in memory. In particular, in the context of

regression, this problem is more severe as usage of popular regression loss functions (e.g., squared

loss) would result in a non-zero loss on every instance, which would result in every instance be-

coming a SV. To address the scalability concerns of kernel-based online learning, many studies

focus on the budget issue [6, 10]. These speed up the algorithms by bounding the number of SVs.

Some well-known example algorithms include Forgetron [11], Projectron [41], and the Bounded

Online Gradient Descent (BOGD) [66], Sparse passive aggressive online learning with kernels [33,

34]. Recently, kernel approximation strategies have been proposed to address the scalability con-

cerns [32], and kernel approximation via random features with re-parameterization [39].

2.2 Multiple Kernel Learning

Kernel methods have gained popularity due to their ability to learn non-linear patterns in the data

[50]. Several Kernel methods have been applied to regression tasks [54]. Most kernel methods often

assume that a predefined parametric kernel is given a priori, where the parameters are chosen

either manually or via cross validation. Kernel learning aims to learn an effective kernel from data

automatically. Some studies have attempted to learn kernel functions or matrices from labeled and

unlabeled data. Examples include marginalized kernels [25], idealized kernel learning [27], graph-

based spectral kernel learning [4, 19], and non-parametric kernel learning [17, 67]. These methods

often follow a batch (and transductive) learning setting and thus are difficult to be applied in an

online learning scenario.

A prevalent kernel learning technique is MKL [28], which aims to find the optimal combination

of multiple kernels. Unlike most existing MKL techniques that are batch learning [15, 28, 55], our

work focuses on online regression tasks, and is related to existing online MKL studies that focus on

classification tasks [18, 23, 46] and that address structured prediction [36]. Existing studies in On-

line Learning with Multiple Kernels have several limitations as follows: (i) the kernel combination

techniques explored may not be suitable for regression tasks, as they are designed for tracking the

best kernel, and not identifying the best kernel combination; (ii) they can be computationally very

expensive, in particular for regression tasks, where every instance becomes a SV. This is even more

serious for the MKL scenario, where there are many kernel functions, and the poor performing

kernels would tend to accrue more SVs; and (iii) existing approaches do not account for differences

in addressing stationary and concept-drifting applications, or time-series prediction. In our work,

we address all these challenges, in a unified framework for OMKR.

2.3 Learning for Time-Series Prediction

Time-Series prediction is a problem of predicting future values based on current and past values

[24, 42, 49]. Traditionally, this prediction has been done through the usage of AR Models or Kalman

Filters [24]. Recent years have witnessed the popularization of the usage of SV regression for this

task which dates back to 1997 [38], and has been extended to several applications of time-series

prediction [49] (e.g., finance [56], air quality [35], utility load [16], machine reliability[22]). Unlike

the traditional approaches for time-series prediction, kernel-based SV regression have gained pop-

ularity as they can generalize to non-linear processes. These approaches suffer from the following

two major limitations: (i) all of these approaches are designed for the batch setting, and are not

suitable for online settings; and (ii) selection of the appropriate kernel must be done empirically

via some validation setting. Recently, there have been efforts in addressing Online Learning for

Time-Series Prediction [1], which focused on AR and ARMA models. This was followed up with

approaches for ARIMA models [30], and for time-series prediction in scenarios with missing data

[2]. However, these approaches considered only linear models. In contrast, we consider not only

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 1, Article 9. Publication date: January 2019.

Large Scale Online Multiple Kernel Regression with Application to Time-Series Prediction 9:5

kernels to induce non-linearity, but also use multiple kernels in order to automatically perform

kernel selection.

3 ONLINE MULTIPLE KERNEL REGRESSION

In this section, we present the proposed OMKR scheme. We will first motivate the problem by

introducing the formulation of batch MKL. We then present our OMKR framework, the detailed

algorithms for addressing different challenges, and finally theoretical analysis of OMKR.

3.1 Problem Setting

Consider a set of training examples {(xt ,yt), t = 1, . . . ,T }, where xt ∈ Rd , yt ∈ R and a collec-

tion ofm kernel functions K = {κi : χ × χ → R, i = 1, . . . ,m}. MKL aims to learn a kernel-based

prediction model by identifying the best linear combination of the m kernels, that is, a weighted

combination θ = (θ1, . . . ,θm). The learning task can be cast into the following optimization [28]:

min
θ ∈Δ

min
f ∈HK (θ)

1

2
| f |2HK (θ)

+C
T∑

t=1

�(f (xt),yt), (1)

where Δ = {θ ∈ Rm
+ |θT

1m = 1}, K (θ) (·, ·) = ∑T
i=1 θiκi (·, ·) and �(f (xt),yt) is a convex loss

function.

The above convex optimization problem of regular batch MKL can be solved by different

schemes [15, 55, 64]. Despite being studied extensively, it remains very challenging when solv-

ing the batch MKL for large-scale applications. Besides, similar to most batch kernel methods,

regular MKL has some drawbacks as follows: (i) the trained model, if it is not re-trained with new

data, may work poorly for non-stationary data in a new environment; but (ii) the re-training cost

is extremely expensive for data streams, making it non-scalable.

3.2 OMKR Framework

To overcome the limitations of MKL for a regression task, we propose a new scheme of OMKR

by applying the emerging online MKL principle [18] for tackling regression tasks, which attempts

to sequentially learn the online multiple-kernel regressor given a new data example using a two-

step updating scheme as follows: (i) update the set of kernel-based regressors for each individual

kernel; and (ii) update the weights for combining the multiple kernel regressors. In the following,

we discuss the details of the proposed algorithms for tackling online regression tasks at each of

the two steps.

3.2.1 Learning Online Kernel-Based Regressors. The goal of this task is to learn a regression

function ft ∈ Hκ in an online setting, where Hκ a reproducing kernel Hilbert space (RKHS) in-

duced by a given specific kernel κ ∈ K . We solve this task by exploring two online regression so-

lutions: Kernel Widrow-Hoff [60] and NORMA [26], which follows the same principle of OGD [68]

for online convex optimization and but optimizes two slightly different objective functions.

Kernel Widrow-Hoff Learning. Given a sequence of data instances (xi ,yi), i = 1, . . . ,T , the goal

of kernelized Widrow-Hoff learning is to minimize the total cumulative loss over the whole re-

gression task L defined as follows:

L = ΣT
t=1�(ft (xt),yt) � ΣT

t=1Lt (ft), (2)

where ft (xt) is the prediction made by a kernel regressor on the t th instance, �(ft (xt),yt) denoted

by Lt (ft) for short, is a convex loss function. Following OGD [68], we have the following online

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 1, Article 9. Publication date: January 2019.

9:6 D. Sahoo et al.

update rule given a data instance (xt ,yt):

ft+1 ← ft − ηt∇Lt (ft), (3)

where ηt > 0 is a learning rate parameter that can be either a small constant ηt = η used in

Widrow-Hoff [60] or a factor depending on t . When choosing the squared loss for �:

�(ft (xt),yt) = (ft (xt) − yt)2,

we have the online updating rule expressed explicitly as

ft+1 (·) ← ft (·) − ηt (ft (xt) − yt)κ (xt , ·). (4)

NORMA. The above method has two potential drawbacks. First, it may lead to overfitting when

dealing with noisy data. Second, due to the use of squared loss, almost every training instance will

be added as SVs (unless ft (xt) is identical to yt), making the prediction function computationally

intensive when handling large-scale datasets. To overcome these drawbacks, we explore another

online regression scheme by following the idea of NORMA [26], which replaces Lt (ft) by the

following regularized loss:

Lt (ft) =
λ

2
| | f | |2Hκ

+ �(ft (xt),yt). (5)

By the OGD principle, we have the online updating rule as

ft+1 ← (1 − ηtλ) ft − ηt∇�(ft (xt),yt), (6)

where ηt > 0 is the learning rate parameter. Instead of using the square loss, we exploit the ϵ-

insensitive loss function which is defined as

�(ft (xt),yt) = max (0, |yt − ft (xt) | − ϵ),

where ϵ represents the width of the insensitivity zone. We can further modify the loss function by

making ϵ as a variable of the optimization:

�t (ft , xt) = max(0, |yt − ft (xt) | − ϵ) + νϵt , (7)

where ν > 0 is a parameter, and ϵt is a variable to be updated in online learning process. Using the

above loss function, we can derive the online updating rule for NORMA:

ft+1 ←
{

(1 − ηtλ) ft + ηt ∗ sдn(d)κ (xt , ·) if |d | > ϵt

(1 − ηtλ) ft otherwise
(8)

ϵt+1 ←
{
ϵt + (1 − ν)ηt if |d | > ϵt

ϵt − ηtν otherwise
, (9)

where we denote d = yt − f (xt).

Remark. For both of the above methods, at the end of each online learning round, we can express

the prediction function of the regressor as a kernel expansion [50]:

ft+1 (x) = Σt
i=1αiκ (xi , x),

where the αi coefficients are computed based on the updating rules in (4) or (8). When αi � 0, the

ith instance is often called as a SV. Thus, the time complexity for prediction is linear with respect to

the number of SV’s. When using the squared loss, we will have αi � 0 for almost every instance,

leading to a large number of SVs. By contrast, when using the ϵ-insensitive loss, whenever the

difference between the prediction on the ith instance fi (xi) and yi is small enough, i.e., within the

ϵ tube, we have αi = 0, which thus generates a much smaller SV size and significantly improves

the prediction efficiency.

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 1, Article 9. Publication date: January 2019.

Large Scale Online Multiple Kernel Regression with Application to Time-Series Prediction 9:7

3.2.2 Learning the Best Kernel Combination. The previous online kernel regression method al-

lows us to learn a set of kernel regressors f i
t ∈ Hκi

, i = 1, . . . ,m with respect to the pool of multiple

diverse kernelsK . The idea of OMKR is to learn an effective regressor Ft (x) by combining the set

of multiple kernel regressors:

Ft (x) =
m∑

i=1

w i
t f

i
t (x), (10)

where w i
t ∈ R denotes the combination weight for the i-th kernel regressor. The remaining prob-

lem then is to determine the appropriate combination weights wt for the set of kernels. We note

that this is a very challenging task since we may not have prior knowledge for empirical perfor-

mance of each kernel, and the optimal combination weights may even change over time in the

online learning process especially when dealing with non-stationary data.

One naive solution is to simply adopt a uniform combination for all the kernels, i.e., w i
t = 1/m,

which does explore all the kernels, but often results in sub-optimal performance, as observed in

our empirical studies. In this section, we attempt to learn the best kernel combination weights

by exploring two different online learning algorithms: the Hedge algorithm [13] and the OGD

algorithm [68]. We will first present each algorithm in detail and finally discuss their strengths

and weaknesses for different scenarios.

Hedge Algorithm. The Hedge algorithm is the most popular online algorithm for solving the

problem of decision-theoretic online learning or known as prediction with expert advice [7, 59].

Specifically, by treating each online kernel regressor as an expert, the Hedge algorithm aims to

minimize the regret of the learner for the regression task, which is the difference between the

learner’s cumulative loss and the cumulative loss of the best kernel regressor. In theory, Hedge

can achieve an optimal upper bound of regret O (T lnm) with T learning rounds and m kernel

regressor experts. It is thus an ideal online learning algorithm for tracking the best online kernel

regressor especially when there is some kernel regressor significantly dominates the rest.

Specifically, the Hedge algorithm runs in a fairly simple way. Consider the OMKR problem,

at the beginning, the combination weights wt are initialized as a uniform distribution, i.e., w i
1 =

1/m, i = 1, . . . ,m. At the end of each learning round, according to the performance of the multiple

kernel regressors, the weights are updated by

w i
t+1 = w

i
t β

�i
t , i = 1, . . . ,m, (11)

where β ∈ (0, 1) is a discounting (learning rate) parameter, and �it denotes the loss suffered by the

ith kernel regressor at round t , i.e., �it = �(f
i

t (xt),yt). Finally, we normalize all w i
t+1’s to ensure

the combination weights as a distribution.

We refer to the proposed OMKR algorithm that adopts the Hedge algorithm as the Deterministic

OMKR (Hedge) algorithm, as shown in Algorithm 1. In the algorithm, we can update each kernel

regressor f i
t+1 by adopting either the Widrow-Hoff learning in (4) or NORMA in (8).

Although Hedge is ideal for tracking the best kernel regressor, it is not always perfect for solving

a practical OMKR problem since our goal is to learn the best combination of multiple kernels.

In the following, we present an OGD based algorithm that attempts to learn the optimal linear

combination of multiple kernel regressors.

OGD Algorithm. Our goal is to learn the optimal combination weight vector wt ∈ Rm for com-

bining the multiple kernel regressors. It can be cast into the following online optimization:

wt+1 ← arg min
w
�(w�ft (xt),yt) � (w�ft (xt) − yt)2, (12)

where ft (xt) is a vector representing the predictions made by all the kernel regressors on instance

xt , and � is a loss function denoting the loss suffered by the OMKR. We simply adopt the squared

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 1, Article 9. Publication date: January 2019.

9:8 D. Sahoo et al.

ALGORITHM 1: Deterministic OMKR (Hedge)

INPUT:

- Kernels: κ (·, ·) : χ × χ → i = 1, . . . ,m
- Discounting Parameter: β ∈ (0, 1)
- Step size parameter for each kernel: η
- Regression parameters: λ and ν for OMKR(NORMA)

Initialization: f1 = 0, w1 =
1
m 1

for t = 1, . . . , T do

Receive instance: xt

Predict ŷt =
m∑

i=1
wi

t f
i
t (xt)

Reveal true value yt

for i = 1, . . . , m do

Set �it = �(f
i
t (xt),yt);

Update f i
t+1 = Equation (4) OR (8)

Update wi
t+1 = w

i
t β

�∗it where �∗it = (f i
t (xt) − yt)2;

end for

Set wi
t+1 =

w i
t

Wt
whereWt =

m∑
i=1

wi
t , i = 1, . . . ,m

end for

loss in our solution (though it may also include a regularizer). Following the OGD, we can derive

the updating rule as follows:

wt+1 ← wt − ηw (ŷt − yt)ft (xt), (13)

where ηw is a learning rate parameter, and ŷt = w
�

ft (xt).
Using the above OGD algorithm for learning the optimal combination weights, we propose

another OMKR scheme, called Deterministic OMKR(OGD), as shown in Algorithm 2. Like in

OMKR(Hedge), we can also update each kernel regressor by either Widrow-Hoff in (4) or NORMA

in (8).

ALGORITHM 2: Deterministic OMKR (OGD)

INPUT:

- Kernels: κ (·, ·) : χ × χ → i = 1, . . . ,m
- Learning rate parameter: ηw

- Step size parameter for each kernel: η
- Regression parameters: λ and ν for OMKR(NORMA)

Initialization: f1 = 0, w1 = 0

for t = 1, . . . , T do

Receive instance: xt

Predict ŷt =
m∑

i=1
wi

t f
i
t (xt)

Reveal true value yt

for i = 1, . . . , m do

Set �it = �(f
i
t (xt),yt);

Update f i
t+1 = Equation (4) OR (8)

end for

Update wt+1 = wt − ηw (ŷt − yt) ft (xt)
end for

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 1, Article 9. Publication date: January 2019.

Large Scale Online Multiple Kernel Regression with Application to Time-Series Prediction 9:9

Remark. In online MKL work related to classification [18, 23], Hedge algorithm was used to

combine multiple predictions. In contrast, our proposed OGD approach interprets the kernel pre-

dictions as new rich features which can be combined linearly. In terms of update rules, Hedge

makes multiplicative updates while OGD makes additive updates. Further, for the combination

weight vector wt , Hedge always keep wt a distribution (w i
t ≥ 0 and

∑
i w

i
t = 1) while OGD is able

to learn any real-valued vector for wt . In general, both Hedge and OGD have their different merits.

Hedge is good at tracking the best kernel regressor, while OGD is good at learning the optimal

combination of multiple kernel regressors. However, OGD often suffers from slow convergence

rate. In practice, the empirical performance of OMKR(Hedge) and OMKR(OGD) may vary a lot in

different scenarios. Due to the nature of multiplicative update of Hedge, it converges quickly, and

in an online setting, may tend to achieve better performance than OGD, if the dataset is small, or

if the pattern changes due to non-stationarity. We conduct more in-depth analysis through our

extensive experimental studies in Section 6.

3.3 Theoretical Analysis

Without loss of generality we assume that ∀ i, ∀ t , κi (xt · xt) ≤ 1, and �t (f i
t (xt),yt) ≤ 1. We will

demonstrate how the loss suffered by the OMKR algorithms has sub-linear regret with respect to

the best fixed kernel model.

Theorem 3.1. After receiving a sequence of T instances, the cumulative loss suffered by OMKR

(Hedge) using the Widrow-Hoff Algorithm is bounded as

LOMKR ≤
ln(1

β
)

1 − β
min

1≤i≤m
F (κi , �,D) +

ln(m)

1 − β
, (14)

where

F (κi , �,D) = min
f ∈Hκ

⎡⎢⎢⎢⎢⎣
ΣT

t=1 (f (xt) − yt)2

1 − η +
| | f | |2

η

⎤⎥⎥⎥⎥⎦ . (15)

Here, LOMKR is the total loss suffered at each prediction, and due to the convexity of the loss function,

we have

LOMKR = ΣT
t=1�(Σ

m
i=1w

i
t f

i
t (xt),yt) ≤ ΣT

t=1Σm
i=1w

i
t �(f

i
t (xt),yt),

and by choosing β =
√

T√
T+
√

ln m
, we get

LOMKR ≤ �	1 +

√
lnm

T
min

1≤i≤m
F (κi , �,D) + lnm +

√
T lnm
� ,

where D is a sequence of instances.

Proof. The proof follows from combining the proof of Hedge Algorithm and the Widrow-Hoff

Regression. Let ϕi
t = | | f i

t − f | |22 for any f ∈ Hκi
. Also, let Δt denote the change in f during each

update, such that Δt = η(ft (xt) − yt)κ (xt , ·). We also define �t = ft (xt) − yt as the signed error

suffered by ft , and �∗t = f (xt) − yt be the signed error suffered by f :

ϕi
t+1 − ϕi

t = | | f i
t+1 − f | |22 − || f i

t − f | |22
= | |Δt | |22 − 2(f i

t − f) · Δt

= η2�i2
t κ (xt · xt) − 2η�tκ (xt , ·) · (f i

t − f)

≤ η2�i2
t − 2η�2t + 2η�t �

∗
t

= η2�i2
t − 2η�i2

t + 2η

[(
�it

√
1 − η

) (
�∗t√
1 − η

)]
.

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 1, Article 9. Publication date: January 2019.

9:10 D. Sahoo et al.

The inequality follows from the assumption κ (xt · xt) ≤ 1.

ϕi
t+1 − ϕi

t ≤ η2�i2
t − 2η�i2

t + η(1 − η)�i2
t +

η

1 − η �
∗2
t

= −η�i2
t +

η

1 − η �
∗2
t .

(16)

In the above equation, we use the algebraic inequality ab ≤ (a2 + b2)/2. From this, by assuming

f1 = 0, and using a telescoping sum, it is very simple to prove that

Li
W H ≤ min

f ∈Hκ

⎡⎢⎢⎢⎢⎣
ΣT

t=1 (f (xt) − yt)2

1 − η +
| | f | |2

η

⎤⎥⎥⎥⎥⎦ , (17)

where Li
W H

is the cumulative loss suffered by the regression function learnt by the Widrow-Hoff

Algorithm in the RKHS by the ith kernel. As number of instances T grows large, the average loss

per instance vanishes. Plugging this result into the Hedge Algorithm gives us the bound, which

shows that the regret of OMKR is in O (
√
T). The choice of β maybe overestimated because of the

assumption that the loss suffered by the algorithm is T . �

Theorem 3.2. After receiving a sequence of T instances, the cumulative loss suffered by OMKR

(OGD) using the Widrow-Hoff Algorithm is bounded as

LOMKR ≤ min
1≤i≤m

F (κi , �,D) +
ηGT

2
+

C

2η
, (18)

whereG is constant that upper bounds the gradient of the loss function, andC is a constant that upper

bounds the distance between any two weight vectors w, and

F (κi , �,D) = min
f ∈Hκ

⎡⎢⎢⎢⎢⎣
ΣT

t=1 (f (xt) − yt)2

1 − η +
| | f | |2

η

⎤⎥⎥⎥⎥⎦ . (19)

By choosing η =
√

C
GT

, we get:

LOMKR ≤ min
1≤i≤m

F (κi , �,D) +
√
CGT ,

where D is a sequence of instances.

Proof. The proof follows from combining the proof of OGD and the Widrow-Hoff Regression.

OGD provides a sub-linear regret with respect to the best linear combination of its input features,

which in this case is the output of individual kernel experts. If the loss of the optimal combination

is denoted by �(w∗), it follows the �(w) < �(w∗) ∀w.

We define the optimal kernel expert as w̃ which corresponds to a one-hot vector, i.e., it is an

indicator vector corresponding to the optimal expert. Since �(w̃) < �(w∗), we get the result in the

theorem. �

Next, we present the analysis of OMKR based on NORMA. The loss function of NORMA in the

t th iteration for the ith kernel is denoted as

�t (f i
t) =

λ

2
| | f | |2Hκ

+max(0, |yt − ft (xt) | − ϵt) + νϵt . (20)

There are two sets of parameters to be updated as follows: f and ϵ . The loss function is convex in

both these parameters. Since the update rule takes the form of OGD [68], both f and ϵ are learnt

via the same update rule. Thus, we incorporate ϵ into the prediction function f .

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 1, Article 9. Publication date: January 2019.

Large Scale Online Multiple Kernel Regression with Application to Time-Series Prediction 9:11

Lemma 3.3. After receiving a sequence of T instances, the cumulative loss suffered by NORMA

regression is bounded as

LN ORMA ≤ min
f ∈Hκ

T∑
t=1

(
λ

2
| | f | |2Hκ

+max(0, |yt − ft (xt) | − ϵt) + νϵt

)
+

√
C2G2T , (21)

where G2 is constant that upper bounds the gradient of the loss function, and C2 is a constant that

upper bounds the distance between any two weight vectors inHκi
.

Proof. Let ϕi
t = | | f i

t − f | |22 for any f ∈ Hκi
.

ϕi
t+1 − ϕi

t = | | f i
t+1 − f | |22 − || f i

t − f | |22
= | | f i

t − η∇�it (f i
t) | |2 − || f i

t − f | |22
= η2 | |∇�it (f i

t) | |2 − 2η∇�it (f i
t) (f i

t − f).

Using a telescoping sum of all terms over time, we get

ϕi
T − ϕ

i
0 = −2η

T∑
t=1

(f i
t − f)∇�it (f i

t) + η2
T∑

t=1

| |∇�it (f i
t) | |2

≤ −2η
T∑

t=1

(f i
t − f)∇�it (f i

t) + η2G2T .

The last inequality holds due to the assumption that | |∇�it (f i
t) | |2 < G2. Thus, we can get

LN ORMA ≤ Lf + | | f i
0 − f | |2 − || f i

T − f | |2 + η2G2T

≤ Lf +
| | f i

0 − f | |2

2η
+
ηGT

2

≤ Lf +
ηGT

2
+
C2

2η
,

where LN ORMA is the total loss suffered by NORMA algorithm, and Lf is the cumulative loss

suffered by any function f in Hκi . The last inequality holds due to the assumption that | | f i
0 −

f | |2 ≤ C2. Setting η = C2

G2T
, we get the result in the lemma. �

Theorem 3.4. After receiving a sequence of T instances, the cumulative loss suffered by OMKR

(Hedge) using the NORMA Algorithm is bounded as

LOMKR ≤
ln(1

β
)

1 − β
min

1≤i≤m
F (κi , �,D) +

ln(m)

1 − β
, (22)

and by choosing β =
√

T√
T+
√

ln m
, we get

LOMKR ≤ �	1 +

√
lnm

T
min

1≤i≤m
F (κi , �,D) + lnm +

√
T lnm
� ,

where D is a sequence of instances, and

F (κi , �,D) = min
f ∈Hκ

T∑
t=1

(
λ

2
| | f | |2Hκ

+max(0, |yt − ft (xt) | − ϵt) + νϵt

)
+

√
C2G2T

Proof. The proof follows from combining the results of Hedge and Lemma 1, in a similar way

as done in Theorem 1. �

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 1, Article 9. Publication date: January 2019.

9:12 D. Sahoo et al.

Theorem 3.5. After receiving a sequence of T instances, the cumulative loss suffered by OMKR

(OGD) using the Widrow-Hoff Algorithm is bounded as

LOMKR ≤ min
1≤i≤m

F (κi , �,D) +
ηGT

2
+

F

2η
, (23)

whereG is constant that upper bounds the gradient of the loss function, andC is a constant that upper

bounds the distance between any two weight vectors w, and

F (κi , �,D) = min
f ∈Hκ

⎡⎢⎢⎢⎢⎣
ΣT

t=1 (f (xt) − yt)2

1 − η +
| | f | |2

η

⎤⎥⎥⎥⎥⎦ . (24)

By choosing η =
√

F
GT

, we get

LOMKR ≤ min
1≤i≤m

F (κi , �,D) +
√
FGT ,

where D is a sequence of instances and

F (κi , �,D) = min
f ∈Hκ

T∑
t=1

(
λ

2
| | f | |2Hκ

+max(0, |yt − ft (xt) | − ϵt) + νϵt

)
+

√
C2G2T .

Proof. The proof follows by combining the result of Lemma 1 and OGD, in similar fashion as

Theorem 2. �

3.4 Speed-Ups by Reducing Number of Support Vectors

A major short coming of the above approach is the quadratic time-complexity in running time of

the algorithm, i.e., for a dataset withT instances, the running time is inO (T 2). This is because of the

curse of kernelization, where every new prediction requires a kernel function computation with

all the older SVs in the dataset (and when squared loss is used, all instances invariably become

SVs). This can often be infeasible for large datasets, which restricts the ability to use the above

algorithms for online learning on large datasets. To speed this process up, we propose faster ap-

proximation schemes. Specifically we propose (i) budgeting strategies to limit the number of SVs;

and (ii) functional approximation schemes to approximate the kernel functions without explicitly

computing the kernel function with all the SVs.

Even though a non-zero loss is suffered often, particularly when the squared loss is used, many

of these instances could potentially be noisy, or the loss suffered would be so small that the α
coefficient assigned to the SV would be insignificant, which would lead to an insignificant impact

on the prediction function. Moreover, as often observed in online learning applications, the data

could exhibit concept drift [14], in which case many of the old SVs may actually harm the prediction

function performance, in addition to adding to the computational cost. Further, not all kernels

are good candidates for prediction, especially when their weights are low. In addition, not all the

historical instances are good candidates for making the prediction, particularly in a non-stationary

setting. With this motivation, we propose stochastic update and budget online kernel learning

strategies.

3.4.1 Stochastic Update for OMKR. An update to a kernel regressor involves adding a new SV.

If SVs are not added to less important kernels, the time taken for prediction by these kernels is

significantly reduced. The intuition is if there is only one good kernel or a small subset of good

performing kernels, it is only these should be given more data to learn the function, and the poor

kernels are still allowed to make predictions (but with limited data), which takes much lesser com-

putational time. We define a probability sampling denoted by qi
t , which determines the probability

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 1, Article 9. Publication date: January 2019.

Large Scale Online Multiple Kernel Regression with Application to Time-Series Prediction 9:13

of a kernel being selected for updates.

qi
t =

|w i
t |

max1≤j≤m |w j
t |
. (25)

This indicates that higher the absolute weight, the higher is the probability, and the best kernel has

a probability of 1. When OMKR(Hedge) is used the weights can never be negative. In case of OGD

updates in weights, there is a theoretical possibility for the weights to become negative, and hence

we take absolute values to compute qi
t , so as to account for weights having the maximum impact

on the prediction. To prevent kernels with low weights, that do not have a significant impact to the

prediction, from completely losing out, we introduce a smoothing parameter δ ∈ (0, 1). The idea

is to add a small component of uniform weights. The new probability of a kernel being selected

for update is denoted by

pi
t = (1 − δ)qi

t +
δ

m
. (26)

Here,δ is a small value. A similar idea was used in [3], to tradeoff between exploration and exploita-

tion. Using p we sample a subset of kernels based on Bernoulli Sampling, i.e.,mi
t = Bernoulli (pi

t).
Only those kernels that are selected will be chosen for an update. The steps are described in

Algorithm 3.

ALGORITHM 3: Stochastic OMKR scheme

INPUT:

- Kernels: κ (·, ·) : χ × χ → i = 1, . . . ,m
- Update Parameter: β ∈ (0, 1) if Hedge or ηw for OGD

- Smoothing Parameter: δ ∈ (0, 1)
- Step Size Parameter for each kernel: η
- Regression parameters: λ,ν for OMKR(NORMA) NORMA)

Initialization: f1 = 0, w1 =
1

m 1

for t = 1, . . . , T do

Receive instance: xt

Predict ŷt based on Hedge or OGD combination

Reveal true value yt

qi
t =

|w i
t |

max
1≤j≤m

|w j
t |
, i = 1, . . . ,m

pi
t = (1 − δ)qi

t +
δ
m , i = 1, . . . ,m

Samplemi
t = BernoulliSamplinд(qi

t), i = 1, . . . ,m
for i = 1, . . . , m do

Set �it = �(f
i
t (xt),yt)

if mi
t == 1 then

Update f i
t+1 = Equation (3) OR (6)

end if

end for

Update wt+1 based on Hedge or OGD

end for

3.4.2 Budget OMKR. As the number of SVs grows in an unbounded manner, it significantly

increases the computational cost, particularly in the case of multiple kernels. There have been

several approaches in literature to address the issue of setting a budget in the context of online

learning with kernels (mostly for single kernel methods). A budget τ is specified, and the number

of SVs is not allowed to exceed this number. These are broadly classified into three categories:

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 1, Article 9. Publication date: January 2019.

9:14 D. Sahoo et al.

Removal, Projection, and Merging. Removal refers to replacing old SVs with new ones when the

budget is exceeded based on a certain criteria. Projection refers to finding a common space to

project new support vectors on when budegt is exceeded. Merging refers to merging a new support

vector with an existing one when the budget is exceed.

Often, a subset of instances can explain the data as well as the entire data. Further, in a non-

stationary time series setting, it is common to introduce a sliding window so as to give importance

to only the most recent instances. In our case, we have a sliding window of the most recent SVs that

explain the data. This is also particularly helpful in the case of NORMA, where in each iteration,

the old SVs get reduced by a factor of (1 − ηλ) due to the regularization term. As t grows, the α
values of the old SVs get reduced to almost zero. Such SVs can be ignored without any significant

impact to the prediction. Therefore, we propose a parameter τ that restricts the total number of

SVs that are allowed to be stored by each regressor. The older SVs are deleted.

4 LARGE-SCALE ONLINE MULTIPLE KERNEL REGRESSION

VIA FUNCTIONAL APPROXIMATION

The proposed OMKR scheme follows the usage of traditional Online Learning with kernels [26],

and independently learns each kernel regressor for a pool of m different kernel functions. These

predictions are obtained in each online learning iteration and their weighted combination gives

us the final prediction. During the update, first the weights of each kernel predictor updated by

using the Hedge Algorithm [13], and each kernel predictor is also updated. This scheme suffers

from the following two drawbacks:

—They suffer from the curse of kernelization, which means that the number of SVs is un-

bounded. This adds a significant computational burden for the algorithm. In particular poor

performing kernels have a tendency to acquire a lot of SVs, thus taking up computational

resources but not contributing to the final prediction. While the budgeting techniques may

speed up the process, they can still be computationally expensive, as several kernel func-

tion computations may still be required to get reasonable performance. Moreover, budget-

ing techniques are heavily reliant on the selected SVs, which can be noisy or insufficient to

make accurate predictions.

—The design of the original batch MKL is such that it aims to learn the optimal combination

of kernel functions, in order to obtain a single unified kernel function. This means that the

kernel combination is at a feature representation level, rather than at a prediction level.

Unlike this, OMKR simplifies the learning process to two steps where the diverse kernels

learn independently, and the combination of the kernels happens at a prediction level. Cur-

rently, there are no approaches in literature that perform Online Multiple Kernel Leading

by combining kernels at the representation level.

To address these issues, we propose to apply functional approximation techniques to learn the

kernel function [43, 61].

4.1 Functional Approximation for Kernels

The main idea is to construct a kernel induced feature representation z(x) ∈ RD , where D is the

new feature dimension, such that the dot product of instances in this new feature space is able to

approximate the kernel function:

κ (xi , xj) ≈ z(xi)�z(xj). (27)

Following this approximation, the single kernel prediction function takes the following form:

ft+1 (x) = Σt
i=1αiκ (xi , x) ≈ Σt

i=1αi z(xi)�z(x) = w
�
κ z(x), (28)

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 1, Article 9. Publication date: January 2019.

Large Scale Online Multiple Kernel Regression with Application to Time-Series Prediction 9:15

where wκ denotes the weight vector to be learnt in the new feature space that has been induced

by the kernel κ.

Applying OGD [68], and performing online learning on this new feature space allows us to

perform online learning with a single kernel. To extend this to the multiple kernel setting, we

obtainm new feature representations induced by different kernels:

zκi
(x) for i = 1, . . . ,m, (29)

and correspondingly, we need to estimatem different weight vectors wi for i = 1, . . . ,m, in order

to learn the prediction function:

f i (x) = w
�
κi

x. (30)

4.1.1 Fourier Approximation. First, we consider a class of kernels called shift-invariant kernels.

A shift invariant kernel function is one whose result is a function of the distance between the two

input instances, i.e.,

κ (x1, x2) = k (Δx) where

Δx = x1 − x2.

Popular examples of such kernels include Gaussian Kernels, Laplacian Kernels, Cauchy Kernels,

and so on. For this class of kernels, random Fourier Features can be obtained to approximate the

kernel function [32, 43]. Applying inverse Fourier transform to a shift-invariant kernel function,

we get

κ (x1, x2) = k (x1 − x2) =

∫
p (u)eiu

� (x1−x2)du. (31)

Here, p (u) is the probability density function, which is obtained from the Fourier transform of

k (Δx). Consider the Gaussian Kernel function κ (x1, x2) = exp(− | |x1−x2 | |22
2σ 2). The random Fourier

component for this is u with the distribution p (u) = N (0,σ 2I). This kernel is continuous and pos-

itive definite, and applying Bochner’s Theorem, we the kernel function can be expressed as an

expectation of the random variable u [43, 45], such that∫
p (u)eiu

� (x1−x2)du = Eu[eiu
�

x1 · eiu
�

x2]

= Eu[cos(u�x1) cos(u�x2) + sin(u�x1) sin(u�x2)]

= Eu[[sin(u�x1), cos(u�x1)] · [sin(u�x2), cos(u�x2)]].

From the above equation, we can observe that the kernel function, can be represented as a dot

product of the instances in the new representation, in expectation, where the new representation is

z(x) = [sin(u�x), cos(u�x)]�.

However, using only one Fourier component may lead to a large variance. To reduce the variance,

we can sample more random Fourier components. Specifically, we sample D random Fourier

components u1, . . . , uD and obtain the new feature representation as

z(x) = [sin(u�1 x), cos(u�1 x), . . . , sin(u�Dx), cos(u�Dx)]�. (32)

4.1.2 Nyström Approximation. The random Fourier features have two limitations. First, they

are designed for fixed kernel functions, and are not data dependent, which may cause loss of

useful information that could be exploited. Second, they can be used for only shift-invariant

kernels, and not any generalized kernel function. In order to address these issues, we can use the

Nyström Method to perform Singular Value Decomposition (SVD) on the kernel matrix, to obtain

the approximate features.

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 1, Article 9. Publication date: January 2019.

9:16 D. Sahoo et al.

For a dataset with T instances, consider the full kernel matrix denoted by K ∈ RT×T , with rank

r . Applying SVD to this matrix gives us K = VDV
�, where the columns in V are orthogonal, and

D is a diagonal matrix D = diag(σ1, . . . ,σr)). For k < r ,Kk = Σk
i=1σiViV

�
i = Vk Dk V

�
k

is the best

rank-k approximation of K. Given a large kernel matrix, K ∈ RT×T , Nyström method randomly

samples a small subset of B columns, where B T , and constructs a new matrix C ∈ RT×B , and

using this derives a much smaller kernel matrix W ∈ RB×B . Thus, the large kernel matrix can be

approximated as:

K̂ = CW
+
k C
� ≈ K, (33)

where Wk is the best rank-k approximation ofW , and W
+ is the pseudo-inverse of W.

Using this Nystöm approach we can obtain the feature representation z(x) in the induced kernel

space. Instead of considering all instancesT as SVs, we consider a budget of B, where we are given

a maximum of B SVs, where B T . From Equation (33), we can see that the kernel value of two

instances xi and xj can be approximated as

κ̂ (xi , xj) = (Ci Vk D
− 1

2

k
) (Cj Vk D

− 1
2

k
)�

= ([κ (x̂1, xi), . . . ,κ (x̂B , xi)]Vk D
− 1

2

k
) ([κ (x̂1, xj), . . . ,κ (x̂B , xj)]Vk D

− 1
2

k
)�.

Consequently, we can construct a new representation for instance x as

z(x) = ([κ (x̂1, x), . . . ,κ (x̂B , x)]Vk D
− 1

2

k
)�.

4.2 OMKR (Hedge) via Functional Approximation

Next, we briefly describe the OMKR learning strategies based on the new kernel induced feature

representation. We discuss the corresponding algorithm for kernel combination using Hedge Algo-

rithm [13]. Following the approach described in Section 3, the OMKR process can be split into the

following two steps: (i) learning each kernel regressors; and (ii) learning the kernel combination.

Learning Online Kernel-based Regressors. In each online iteration, given an instance x, first we

obtain the new feature representation z(x). This can be obtained using either the Fourier Approx-

imation strategy or the Nyström Approximation strategy described in the previous section. For

the Nyström approach, Online Kernel Learning is performed in the usual manner, till B SVs are

obtained. This is followed by using these B SVs and applying the Nyström method to obtain the

representation z(x). Once the representation z(x) is obtained, the process of learning a single ker-

nel regressor gets reduced to learning a linear model via online learning. Like before, we adopt

learning via OGD [68].

Consider a squared loss function

�(ft (xt),yt) = (ft (xt) − yt)2,

where

f (x) = w
�
κ z(x).

Here, wκ is the linear model to be learnt using the new kernel induced representation z(x). Fol-

lowing, OGD [68], we get the following update rule:

wκt+1 ← wκt
− ηt (ŷt − yt) ft (xt), (34)

where ηt is a learning rate parameter, and ŷt = w
�
κt
ft (xt). Using similar steps, we can derive the

update rule for NORMA [26] based learning, using an ϵ-insensitive loss function.

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 1, Article 9. Publication date: January 2019.

Large Scale Online Multiple Kernel Regression with Application to Time-Series Prediction 9:17

Learning Online Kernel Combination. The next step is to learn the optimal kernel combination.

The final prediction in each online learning iteration usingm different diverse kernel functions is

given by

Ft (x) =
m∑

i=1

w i
t f

i
t (x),

where f i
t (x) represents the output of the kernel function, where the representation zi (x) is induced

by kernel i . Applying Hedge [13], and following the update rule as described in Section 3.2.2, we

get

w i
t+1 = w

i
t β

�i
t , i = 1, . . . ,m.

This entire scheme is outlined in Algorithm 5.

4.3 OMKR (OGD) via Functional Approximation

For learning OMKR using functional approximation with OGD combination of kernels, the learned

model becomes fundamentally different to all the OMKR approaches described above. The above

approaches split the MKL procedure into two steps: learning the kernel regressors indecently,

followed by combining the multiple predictions using Hedging. However, following the principle

of the original batch MKL optimization:

min
θ ∈Δ

min
f ∈HK (θ)

1

2
| f |2HK (θ)

+C
T∑

t=1

�(f (xt),yt). (35)

Here, we can see that the original intention is to learn the optimal kernel function, as a combi-

nation of multiple kernels. This means that the combination of multiple kernels is to be at the

representation level, and not the prediction level. While the above approaches offer a resembling

effect to exploit the representation powers of different kernels, they do not combine the kernels at

a representation level to learn the ideal kernel function.

We propose OMKR (OGD) via a Functional Approximation, that enables learning the combina-

tion of multiple kernels at a representation level. First we obtain the new feature representation

ALGORITHM 4: OMKR(Hedge) via Functional Approximation

INPUT:

- Kernels: κ (·, ·) : χ × χ → i = 1, . . . ,m
- Update Parameter: β ∈ (0, 1) if Hedge

- Step Size Parameter for each kernel: η

Initialization: f1 = 0, w1 =
1

m 1

for t = 1, . . . , T do

Receive instance: xt

Obtain new feature representation zi (xt) using Fourier or Nyström approach ∀i = 1, . . . ,m

Predict ŷt =
m∑

i=1
wi

t f
i
t (xt) =

m∑
i=1

wi
t (w�κi t zi (xt))

Reveal true value yt

for i = 1, . . . , m do

Set �it = �(f
i
t (xt),yt)

Update wκi t+1 ← wκi t − ηt (ŷt − yt) ft (xt)

Update wi
t+1 = w

i
t β

�∗it where �∗it = (f i
t (xt) − yt)2

end for

end for

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 1, Article 9. Publication date: January 2019.

9:18 D. Sahoo et al.

ALGORITHM 5: OMKR(OGD) via Functional Approximation

INPUT:

- Kernels: κ (·, ·) : χ × χ → i = 1, . . . ,m
- Update Parameter: η for OGD

Initialization: f1 = 0, w1 =
1

m 1

for t = 1, . . . , T do

Receive instance: xt

Obtain new feature representation Z(x) = [z1 (x), . . . , zm (x)]� using Fourier or Nyström approach

Predict ŷt = Ft (xt) = w
�
t Z(xt)

Reveal true value yt

Update wt+1 ← wt − η(ŷt − yt)Ft (xt)
end for

for each instance x by applying the Fourier or the Nyström approximation. Then, we concatenate

all these feature representations from each kernel as

Z(x) = [z1 (x), . . . , zm (x)]�. (36)

Z(x) represents the approximated feature representation induced by the kernel function, which

is a combination of multiple kernels. The aim now is to learn appropriate weights for each of the

features in this new representation. We do so by applying OGD in the new feature representation

to learn the weight vector w, which has the same dimensionality as Z(x).
The multiple kernel prediction function is given by

F (x) = w
�

Z(x). (37)

Using the squared loss function �(Ft (xt),yt) = (Ft (xt) − yt)2, by applying OGD[68], we get the

update rule as

wt+1 ← wt − ηt (ŷt − yt)Ft (xt). (38)

5 APPLICATION TO TIME-SERIES PREDICTION

OMKR can be applied a variety of online regression tasks, especially for mining data streams. A

natural application of OMKR is Time Series Prediction, which is the task of predicting the future

value based on given past values. Kernel methods have been commonly used for solving such

problems [49, 57]. For our problem setting, the aim is to perform online learning for time series

prediction [1]. We first introduce the popular time series prediction models: AR models and ARMA

models. Then, we present how to apply the OMKR framework to online learn for time-series pre-

diction. This is followed by discussing the capturing of non-linearity for time-series prediction

through kernelized models.

5.1 Time Series Models

AR model is used for a univariate time series where the value of the series at a particular time is

linearly dependent on its own previous values. An AR (p) model denotes an AR process of order p,

i.e., yt is described by a noisy linear combination of [yt−1yt−2 . . .yt−p]:

yt = c + Σ
p
i=1ζiyt−i + ϵt , (39)

where c is a constant, ϵt is white noise, and ζi . are the parameters describing the dependency.

We denote by Y
p
t−1 the set of p past values, i.e., Y

p
t−1 = {yt−1,yt−2, . . . ,yt−p }, and thus the equation

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 1, Article 9. Publication date: January 2019.

Large Scale Online Multiple Kernel Regression with Application to Time-Series Prediction 9:19

simplifies to

yt = c + ζ
pY

p
t−1 + ϵt , (40)

where ζ p and Y
p
t−1 are both p-dimensional vectors.

Using such a model for online learning faces two main challenges as follows:

—In the real world setting, it is non-trivial to determine the order p, as it is hard to determine

how many past variables the target would be dependent on.

—If we arbitrarily chose a very large p and expected the model to automatically learn 0 co-

efficients for very old values which the model deems to be irrelevant, then the learning

procedure could converge slowly, and give noisy results.

To address this issue, we consider a pool of k different values p. For example, p ∈ {p1,p2, . . .pk }.
Using these we construct a pool of kernels before applying OMKR. This pool of kernels is given as

K =
{
κ (Y

p1

t , ·), . . . ,κ (Y
pk

t , ·)
}
. (41)

Since we consider linear time series modeling, we consider only linear kernels, i.e., κ (Y
p
1 ,Y

p
2) =

(Y
p
1

�
Y

p
2). These are effectively k different kernel functions for the learning task, where each kernel

function corresponds to a different order of the AR time-series process. This can be directly plugged

into the OMKR framework, to perform Online Learning for Time-Series Prediction, which also

allows us to obtain sub-linear regret with respect to the best performing order p. Apart from the

obvious benefit of not having to manually select the order p, another advantage is that if the

order of the process p is very high, it can first be approximated by a low-order p in the initial

few iterations, leading to faster convergence, followed by slowly adapting to the higher order via

hedging, which could give an improved performance. Thus, this procedure can exploit the faster

convergence due to fewer parameters in the initial stages of online learning, and at the same time,

it enjoys improved performance in the long run, in case higher order processes describe the time-

series better.

We now discuss the extension of this to ARMA time-series modeling. ARMA model is more

sophisticated, and involves a term for the moving average (MA) of the time series. The MA model

is similar to AR model, except that the linear dependence is not on the past values, but the past

errors. An MA(q) model is given by yt = μ + Σ
q
i=1ξiϵt−j + ϵt . Combining AR (p) and MA(q) gives

us an ARMA(p,q) process is given by

yt = c + Σ
p
i=1ζiyt−i + Σ

q
i=1ξiϵt−j + ϵt . (42)

Since the error terms are not directly observable for the MA component, making it very diffi-

cult to estimate the model parameters in the online setting. To alleviate this issue, [1] showed

that an ARMA(p,q) model could be learned online by learning an AR (m + p) model, wherem was

set as m = q · log1−ϵ ((TLMmax)−1). m controls the level of approximation. Under certain assump-

tions (discussed in [1]), Online Learning of an AR (m + p) model could achieve sub-linear regret

compared to the best ARMA(p,q) model. Thus, applying OMKR, to AR models can also obtain

sub-linear regret with respect to the best ARMA(p,q) model.

This approach can further be extended to ARIMA time-series modeling. While ARMA is de-

signed for stationary settings, ARIMA is used for modeling non-stationary series. ARIMA does

so by finding patterns in the differentials of the time series. Consider for example the first-order

differential ∇yt = yt − yt−1, and similarly, the second-order differential as ∇2yt = ∇yt − ∇yt−1. If

the sequence of the differentials ∇dyt satisfies anARMA(p,q) model, then the sequenceyt satisfies

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 1, Article 9. Publication date: January 2019.

9:20 D. Sahoo et al.

and ARIMA(p,d,q) model. Thus, an ARIMA(p,d,q) model takes the following form:

∇dyt = c + Σ
p
i=1ζi∇dyt−i + Σ

q
i=1ξiϵt−j + ϵt . (43)

Following [30], the above model can also be learnt online using only the AR (p) process, except the

time-series here is the differentials. Like before, the optimal value of p can automatically deter-

mined by learning this time-series online through the OMKR framework.

5.2 Online Non-Linear Time Series Prediction

An assumption made by time-series models is that the dependence on the historical signals is

linear. This assumption may not hold true, and motivates the need for having non-linear time

series modeling. Consider the AR model described in Section 5, where

yt = c + ζ
pY

p
t−1 + ϵt . (44)

The above model assumes linear dependency on the previous p values. We use kernels to explore

non-linear dependencies. The kernelized AR (p) model is given by

yt = c + f (yt−1,yt−2, . . . ,yt−p) + ϵt = c + f (Y
p
t−1) + ϵt ,

where f (Y
p
t−1) ∈ Hκ is the prediction of the regression function using a kernel κ.

Next, we propose to construct a pool of multiple kernels for varying values of parameter p ∈
[p1,p2, . . . ,pk], and m kinds of diverse kernels for each p. This gives us the following pool of mk
kernel functions:

K =
{
κi (Y

p1

t , ·), . . . ,κi (Y
pk

t , ·) for i = 1, . . . ,m.
}
. (45)

The above can now be directly plugged into the OMKR framework for solving time series pre-

diction tasks. In comparison to existing kernel methods for times series prediction, the proposed

OMKR solution enjoys the important advantages of avoiding tedious kernel selection and parame-

ter selection and exploiting the power of combining multiple kernels for more accurate prediction.

6 EXPERIMENTS

6.1 Evaluation of OMKR on Stationary Datasets and Non-Linear Time-Series

6.1.1 Datasets. We use five regular regression datasets and seven time series datasets. The data

is from different applications, with a wide range of data size and dimensionality. All data attributes

including the target were scaled to [0, 1]. The algorithms were run on 10 random permutations of

the regular regression datasets to establish robustness. Such permutations are not applicable in

the case of time series. The details of the datasets used can be seen in Table 1.

Datasets D1, and D2 were taken from the UCI repository1, D3-D4 from StatLib,2 D5 is a synthetic

dataset obtained from Delve.3 D6–D10 are datasets from the Santa Fe Time Series Competition

Data4. D6 is stationary, D7 is non-stationary, and unlike other time series data, is not univariate,

but is dependent on 2 attributes, D8 and D9’s stationarity property is unknown, and D10 is char-

acterized by noise. For univariate time series data the attribute column having 20|10 indicates the

choice of 2 kernelized AR (p) process with p = 10, 20 each having its ownm kernel functions.

1http://archive.ics.uci.edu/ml/.
2http://lib.stat.cmu.edu/.
3http://www.cs.toronto.edu/∼delve/data/datasets.html.
4http://www-psych.stanford.edu/∼andreas/Time-Series/SantaFe.html.

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 1, Article 9. Publication date: January 2019.

http://archive.ics.uci.edu/ml/
http://lib.stat.cmu.edu/
http://www.cs.toronto.edu/~delve/data/datasets.html
http://www-psych.stanford.edu/~andreas/Time-Series/SantaFe.html

Large Scale Online Multiple Kernel Regression with Application to Time-Series Prediction 9:21

Table 1. List of Datasets

ID Name # Instances # Attributes

Regression datasets

D1 Abalone 4177 8

D2 Parkinsons 5875 20

D3 Spacega 3107 6

D4 Cadata 20640 8

D5 Add10 9792 11

Time series datasets

D6 Laser 10073 20|10

D7 Physiological 17000 2

D8 Currency Exch. 1 3000 20|10

D9 Currency Exch. 2 3000 20|10

D10 Astrophysical 598 20|10

6.1.2 Kernels. We evaluate the performance of OMKR by using a pool of 24 predefined kernels.

These include four polynomial kernels κ (x ,y) = (xTy)p of degree parameter p = 1, 2, 3, 4, 13 RBF

kernels (κ (x ,y) = e (
−||x−y | |2

2σ 2)
) of kernel width parameter σ in [2−6, 2−5, . . . , 26], 5 Cauchy kernels

(κ (x ,y) = 1

1+
| |x−y | |2

σ 2

) with parameter σ in [2−2, 2−1, . . . , 22], one sigmoid kernel(κ (x ,y) = tanh(xy))

and a Chi-Square Kernel (κ (x ,y) = 1 − Σn
i=1

(xi−yi)2

1
2 (xi+yi)

). Since all our data is scaled to [0, 1], we clip

the kernel prediction to this range, i.e., ŷt = max(0,min(1, ŷt)).

6.1.3 Baselines and Experimental Setting. We conduct two sets of experiments. First, in which

we compare the proposed OMKR scheme against several baselines, and in the second we evaluate

whether the OMKR scheme can generalize its good performance to different learning strategies

for the individual kernel. For the first set of experiments we consider the following baselines:

(i) Passive Aggressive Online Learning [9] for linear online regression; (ii) Kernel Least Mean

Square Algorithm (KNLMS) [31]; (iii) Quantized Kernel Least Mean Squared Algorithm (Q-NLMS)

[8]. For both of these, we evaluate the performance of the algorithms across a variety of kernel

functions, and report the performance of the best (1st) and the second best (2nd) performing

kernel function. Note that these best and second best kernel functions can only be determined

in hindsight; (iv) L2-space MKL [40] for different sets of 3 Gaussian Kernels; (v) Regression(V):

Best Kernel by validation, where the best kernel function is determined on the basis of best

performance on few of the initial instances in the data stream; (vi) Regression(H): Best Kernel in

hindsight; (vii) Uniform OMKR: Uniform weight distribution over kernels (to see if this can elimi-

nate the impact of a poor kernel choice); (viii) Deterministic OMKR (Hedge); and (ix) Deterministic

OMKR (OGD). In the first set of experiments, OMKR based on WH regression is considered.

For the next set of experiments we evaluate both OMKR(WH) and OMKR(Norma) algorithms,

and compare the following: Reg(V), Reg(H), Uniform, OMKR(Hedge), and OMKR(OGD). We then

analyze the performance of efficiency enhancing variants of OMKR and study the tradeoff between

accuracy and efficiency. For the large datasets (D11 and D12), we compare only the budget versions

of all algorithms.

All parameters for the regression tasks (if any), and the best kernel for Regression(V) were

chosen by online validation technique. We performed a grid search and evaluated the performance

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 1, Article 9. Publication date: January 2019.

9:22 D. Sahoo et al.

Table 2. Performance of OMKR as Compared to Baselines for

Kernel-Based Online Regression Tasks

D1 D2 D3 D4 D5

Algorithms Kernel MSE Kernel MSE Kernel MSE Kernel MSE Kernel MSE

PA Linear 0.0150 Linear 0.0589 Linear 0.0285 Linear 0.0358 Linear 0.0096

K-NLMS(1st) RBF(0.5) 0.0075 RBF(0.5) 0.0239 RBF(4) 0.0030 RBF(0.5) 0.0207 RBF(1) 0.0064

K-NLMS(2nd) RBF(1) 0.0075 RBF(1) 0.0326 RBF(2) 0.0031 RBF(0.25) 0.0224 RBF(2) 0.0070

Q-NLMS(1st) RBF(0.25) 0.0091 RBF(0.25) 0.0460 RBF(0.25) 0.0032 RBF(0.25) 0.0288 RBF(0.25) 0.0074

Q-NLMS(2nd) RBF(0.5) 0.0093 RBF(0.5) 0.0495 RBF(5) 0.0033 RBF(0.5) 0.0306 RBF(0.5) 0.0081

L2-S-MKL RBF(0.5,1,2) 0.0080 RBF(0.5,1,2) 0.0277 RBF(0.5,1,2) 0.0048 RBF(0.5,1,2) 0.0233 RBF(0.5,1,2) 0.0071

L2-S-MKL RBF(1,2,4) 0.0083 RBF(0.5,1,4) 0.0295 RBF(0.25,1,4) 0.0094 RBF(0.5,1,4) 0.0233 RBF(0.25,1,4) 0.0061

Reg(V) Linear 0.0085 Linear 0.0512 RBF(32) 0.0041 RBF(32) 0.0594 Linear 0.0096

Reg(H) Cauchy(0.25) 0.0072 Cauchy(0.25) 0.0199 Cauchy(1) 0.0028 Cauchy(0.25) 0.0201 RBF(1) 0.0051

OMKR(Uniform) All 0.0092 All 0.0402 All 0.0160 All 0.0286 All 0.0273

OMKR(Hedge) All 0.0073 All 0.0201 All 0.0029 All 0.0202 All 0.0053

OMKR(OGD) All 0.0082 All 0.0230 All 0.0035 All 0.0216 All 0.0060

Algorithms D6 D7 D8 D9 D10

Kernel MSE Kernel MSE Kernel MSE Kernel MSE Kernel MSE

PA Linear 0.0167 Linear 0.0117 Linear 0.0095 Linear 0.0056 Linear 0.0206

K-NLMS(1st) RBF(1) 0.0030 RBF(4) 0.0026 RBF(4) 0.0004 RBF(4) 0.0013 RBF(4) 0.0085

K-NLMS(2nd) RBF(0.5) 0.0033 RBF(2) 0.0028 RBF(2) 0.0006 RBF(2) 0.0017 RBF(2) 0.0122

Q-NLMS(1st) RBF(0.25) 0.0062 RBF(4) 0.0028 RBF(0.25) 0.0007 RBF(0.25) 0.0023 RBF(0.25) 0.0106

Q-NLMS(2nd) RBF(0.5) 0.0067 RBF(2) 0.0028 RBF(0.5) 0.0008 RBF(0.5) 0.0026 RBF(0.5) 0.0122

L2-S-MKL RBF(0.5,1,2) 0.0027 RBF(0.5,1,2) 0.0035 RBF(0.5,1,2) 0.0029 RBF(0.5,1,2) 0.0048 RBF(0.5,1,2) 0.0213

L2-S-MKL RBF(0.5,1,4) 0.0028 RBF(0.25,1,4) 0.0039 RBF(0.25,1,4) 0.0054 RBF(0.25,1,4) 0.0083 RBF(0.25,1,4) 0.0841

Reg(V) Poly(4) 0.0161 RBF(32) 0.0027 Poly(2) 0.0002 Poly(2) 0.0738 Poly(2) 0.0088

Reg(H) Cauchy(0.25) 0.0024 RBF(4) 0.0026 Linear 0.0002 Linear 0.0004 Linear 0.0087

OMKR(Uniform) All 0.0082 All 0.0044 All 0.0035 All 0.0075 All 0.0277

OMKR(Hedge) All 0.0023 All 0.0025 All 0.0002 All 0.0009 All 0.0075

OMKR(OGD) All 0.0024 All 0.0010 All 0.0003 All 0.0004 All 0.0069

The numbers in bold denote the best performance.

of the parameters on the of first 100 instances or first 10% of the instances, whichever was lesser.

The value of Hedge parameter β was fixed to 0.5 in all cases, and the learning rate ηw was fixed

to 0.025 for OGD update of weights). We also conducted sensitivity analysis for the weight update

parameters. The learning rate η for each kernel regression was fixed at 0.1. Since η is the same for

both single kernel and multi-kernel versions, its choice does not affect the comparison between

Single Kernel Regression and OMKR. For budget strategies, we fixed the budget size τ = 500 SVs.

In stochastic OMKR, the smoothing parameter δ was set to 0.05 in all cases. The baselines were

implemented using a learning rate of 0.1, and default parameter settings of the toolbox in [58].

6.1.4 Results and Discussion. Table 2 shows the result of OMKR algorithms in comparison to

the baselines. The Kernel column identifies the kernel function whose performance has been re-

ported. There are several critical observations that are made here. In general, we see there is a

clear advantage of using kernel-based regression over linear regression approaches. Second, we

observe that a variety of different kernels get selected for different datasets and algorithms. This

emphasizes the problem of kernel selection in the online setting. In contrast, our proposed ap-

proach (OMKR) is able to in most cases match the performance of the best kernel function (in

hindsight), and often even beat the this kernel.

The detailed results of single kernel regression against OMKR can be seen in Table 3. Columns

Reg(V) and Reg(H) represent single kernel regression by validation and in hindsight. Columns

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 1, Article 9. Publication date: January 2019.

Large Scale Online Multiple Kernel Regression with Application to Time-Series Prediction 9:23

Table 3. Single Kernel Regression vs. Multiple Kernel Regression

Widrow Hoff Norma

ID Reg(V) Reg(H) Uniform Hedge OGD Reg(V) Reg(H) Uniform Hedge OGD

Regression Datasets

D1 1.00 0.85 1.06 0.89 0.98 1.00 0.36 0.29 0.31 0.26

D2 1.00 0.39 0.79 0.39 0.45 1.00 0.40 0.49 0.40 0.39

D3 1.00 0.69 3.90 0.69 0.82 1.00 0.87 1.55 0.52 0.60

D4 1.00 0.79 1.13 0.79 0.85 1.00 0.77 0.93 0.74 0.67

D5 1.00 0.53 2.85 0.56 0.62 1.00 0.21 0.53 0.21 0.22

Time Series Datasets

D6 1.00 0.13 0.50 0.14 0.14 1.00 0.96 1.68 0.70 0.57

D7 1.00 0.96 1.61 0.93 0.37 1.00 0.98 0.69 0.23 0.15

D8 1.00 0.96 12.40 1.65 1.67 1.00 0.73 0.30 0.15 0.18

D9 1.00 0.01 0.07 0.01 0.01 1.00 0.79 0.65 0.18 0.17

D10 1.00 0.83 2.90 0.84 0.66 1.00 0.67 1.60 0.45 0.54

Note: Each Field is the ratio
MS Ealgorithm

MS EReg(V)
. Lower ratio implies lower MSE. Best ratios are in bold. The results for the

regression datasets are averaged over 10 different permutations. The standard deviation is significantly lower in OMKR

versions.

Uniform, Hedge, OGD represent OMKR with uniform weights, weight updated by Hedge, and

weight updated by OGD, respectively.

With almost no exception both our proposed methods OMKR (Hedge and OGD) outperform

Reg(V) very significantly, at times achieving as low as 1% of error of Reg(V). We should note that

in a real world setting, it is hard to choose a better kernel for unseen data than by a validation

method. Reg(H) is the best kernel in hindsight, and is not known prior to running the experiments.

Despite this, OMKR algorithms significantly outperform Reg(H) in most cases. In cases, where it

OMKR does not beat Reg(H), their performance is very closely matched. Thus, without any a priori

knowledge, OMKR is able to outperform even the best kernel in hindsight. This is because OMKR is

able to identify a linear combination of kernels, which provide complementary information to each

other in order to give a weighted prediction which beats any single best kernel. Uniform OMKR

is affected by the usage of certain poor kernels and its performance is very inconsistent across

datasets. It never beats OMKR(OGD), and beats OMKR(Hedge) in only one case (D1-Norma). This

however is probably an exception, in which the optimal linear combination is close to a uniform

distribution, because of which uniform weights are probably just a lucky guess. The difference in

performance by Reg(V) and Reg(H), and the poor performance by Uniform(OMKR) highlight the

difficulty of choosing the best kernel function for a given task. In terms of efficiency, deterministic

OMKR takes roughlym times the amount of time take by single kernel regression.

Hedge and OGD are suitable in different scenarios. Due to a multiplicative update, Hedge

converges very quickly, by identifying the single kernel that best represents the data, which is

often the case. However, since Hedge only offers a linear combination of the best kernel(s), we

expect the optimal linear combination determined by OGD to outperform Hedge. This does not

happen if the data is not large enough for OGD to converge to optimal linear combination, or

the data is non-stationary such that the appropriate kernel function changes too frequently for

OGD to be able to learn the optimal combination. We plot the cumulative mean squared error

against time for some representative datasets in Figures 1 and 2. It can be seen, that in most cases,

OMKR(Hedge) attains a very low MSE from the beginning and does not improve much further,

whereas, OMKR(OGD) starts with a relatively higher MSE, but it is continuously improving its

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 1, Article 9. Publication date: January 2019.

9:24 D. Sahoo et al.

Fig. 1. Cumulative mean squared error with time (when Widrow-Hoff is used for regression): All results are

displayed for data after the validation stage during which the parameters were determined.

Fig. 2. Cumulative mean squared error with time (when norma is used for regression): All results are dis-

played for data after the validation stage during which the parameters were determined.

Fig. 3. Weight distribution attained by all algorithms.

performance. Referring back to Table 3, it can be seen that in general that OMKR(OGD) has

relative advantage in larger datasets, and OMKR(Hedge) in smaller ones. Additionally, we also

look at the weight distribution attained by the algorithms, which is shown in Figure 3. The

weight distribution by OMKR(Hedge) concentrates largely on the best kernel in hindsight, and

otherwise has weights over certain reasonably good performing kernels. Unlike OMKR(Hedge),

OMKR(OGD) does not have a concentrated distribution of weights over few kernels.

6.1.5 Evaluation of Efficiency Enhancers. The MSE and the time taken by Deterministic, Sto-

chastic, and Budget OMKR are detailed in Tables 4 and 5. Clearly the time taken by both stochastic

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 1, Article 9. Publication date: January 2019.

Large Scale Online Multiple Kernel Regression with Application to Time-Series Prediction 9:25

Table 4. OMKR (Hedge) vs. Stochastic and Budget Strategies

Widrow Hoff Norma

ID Determinisitc Stochastic Budget Det OMKR Stochastic Budget

MSE Time MSE Time MSE Time MSE Time MSE Time MSE TIME

Regression datasets

D1 0.0075 348 0.0079 39 0.0096 74 0.0121 220 0.0113 45 0.0122 68

D2 0.0209 707 0.0488 32 0.0436 109 0.0451 537 0.0544 45 0.0467 102

D3 0.0028 193 0.0035 22 0.0058 54 0.0049 159 0.0050 37 0.0049 53

D4 0.0245 8496 0.0243 376 0.0354 385 0.0477 6397 0.0416 354 0.0413 388

D5 0.0054 1950 0.0096 64 0.0122 183 0.0108 1338 0.0151 112 0.0116 171

Time series datasets

D6 0.0022 4062 0.0034 146 0.0066 427 0.0058 2611 0.0034 182 0.0059 413

D7 0.0025 5728 0.0030 831 0.0088 312 0.0008 5101 0.0017 1118 0.0008 322

D8 0.0003 346 0.0002 15 0.0007 117 0.0005 274 0.0002 136 0.0005 111

D9 0.0009 352 0.0010 56 0.0011 118 0.0006 280 0.0010 119 0.0006 114

D10 0.0074 16 0.0086 3 0.0089 15 0.0047 12 0.0086 6 0.0047 12

Note: Here again, the results of regression datasets are averaged over 10 random permutations. All times are in seconds.

The numbers in bold denote the best performance.

Table 5. OMKR (OGD) vs. Stochastic and Budget Strategies

Widrow Hoff Norma

ID Determinisitc Stochastic Budget Det OMKR Stochastic Budget

MSE Time MSE Time MSE Time MSE Time MSE Time MSE TIME

Regression datasets

D1 0.0082 348 0.0086 43 0.0097 76 0.0105 220 0.0095 48 0.0105 69

D2 0.0230 707 0.0488 35 0.0432 111 0.0442 537 0.0521 49 0.0466 105

D3 0.0034 193 0.0045 24 0.0043 55 0.0055 159 0.0044 40 0.0056 54

D4 0.0261 8496 0.0260 414 0.0311 393 0.0006 6397 0.0322 382 0.0363 396

D5 0.0060 1950 0.0109 70 0.0108 187 0.0115 1338 0.0115 121 0.0121 174

Time series datasets

D6 0.0021 4062 0.0039 160 0.0055 427 0.0048 2611 0.0048 200 0.0048 413

D7 0.0010 5728 0.0011 914 0.0023 318 0.0005 5101 0.0008 1230 0.0006 328

D8 0.0003 346 0.0002 17 0.0004 117 0.0006 274 0.0002 149 0.0006 111

D9 0.0004 352 0.0005 62 0.0005 118 0.0006 280 0.0004 130 0.0006 114

D10 0.0058 16 0.0113 3 0.0066 15 0.0056 12 0.0063 6 0.0056 12

Note: Here again, the results of regression datasets are averaged over 10 random permutations. All times are in seconds.

The numbers in bold denote the best performance.

and budget techniques is significantly lower than Deterministic OMKR. Despite this, in most

cases, the efficiency enhancers give comparable MSEs with respect to Deterministic OMKR. In

many cases, particularly time series, the variants are able to outperform the deterministic version.

This shows their ability to retain important information from the data, and adapt to changes in

the pattern. Stochastic is faster than budget in smaller datasets, but in larger datasets, the number

of SVs in stochastic start dominating even if only for a few kernels, and hence Budget is faster.

6.1.6 Sensitivity to Weight Update Parameters β and ηw . The results are shown in Figures 4

and 5. OMKR(Hedge) is not very sensitive to the value of the discount rate parameter β . There is

a reasonably large range of values of β in which OMKR(Hedge)’s relative performance to other

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 1, Article 9. Publication date: January 2019.

9:26 D. Sahoo et al.

Fig. 4. Sensitivity of OMKR(Hedge) to discount rate parameterβ : We vary β keeping the performance of all

other algorithms fixed.

Fig. 5. Sensitivity of OMKR(OGD) to learning rate ηw : We vary ηw keeping the performance of all other

algorithms fixed.

Table 6. List of Datasets for Evaluation of Large-Scale OMKR

ID Name #Instances #Attributes

L1 Facebook comments 40,949 53

L2 Blog 52,397 280

L3 Year MSD 515,345 90

L4 Twitter 583,250 77

algorithms remains the same. OMKR(OGD)’s sensitivity to the learning rate ηw shows a tradeoff

between large and small learning rates. This behavior is typical of all gradient descent algorithms.

6.2 Evaluation of Large-Scale OMKR Using Functional Approximation

In this section, we evaluate the efficiency and efficacy of the proposed Large Scale OMKR Methods.

Apart from scalability concerns, we also look at the comparison between combination of kernels at

the prediction level vs. the feature representation level (something that was non-trivial to achieve

in previous approaches).

6.2.1 Datasets. For these experiments we consider larger datasets, for which it would be im-

practical to use deterministic OMKR strategies. This is because the runtime complexity of Deter-

minisitc stragies is in O (mT 2) for T instances with m kernel functions, and this time cost can be

very large. We consider four datasets, whose details can be seen in Table 6. All of them were taken

from the UCI repository.5 Like before, the datasets were preprocessed with the features and the

target scaled to lie [0, 1]. L1 is about predicting the volume of comments on Facebook. L2 is a sim-

ilar task, where the total number of comments on a blog in the next 24 hours is to be predicted. L3

is about predicting the year to which the sound belongs based on audio features, and L4 is about

predicting the buzz on Twitter.

5http://archive.ics.uci.edu/ml/.

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 1, Article 9. Publication date: January 2019.

http://archive.ics.uci.edu/ml/

Large Scale Online Multiple Kernel Regression with Application to Time-Series Prediction 9:27

Table 7. Large-Scale Online Multiple Kernel Regression

Algorithm L1 Time (s) L2 Time (s)

OMKR (Budget) 7.300e−04±0.0e+00 533 5.258e−04±0.0e+00 1051

FOMKR (Hedge) 5.748e−04±3.0e−06 6.5 4.793e−04±9.8e−06 8

FOMKR (OGD) 5.742e−04±6.2e−06 6.5 5.037e−04±2.2e−06 8

NOMKR (Hedge) 6.389e−04±0.0e+00 24 5.310e−04±5.4e−19 401

NOMKR (OGD) 6.059e−04±4.6e−19 24 4.864e−04±7.7e−19 401

Algorithm L3 Time (s) L4 Time (s)

OMKR (Budget) 3.502e−02±0.0e+00 14097 5.574e−05±0.0e+00 6671

FOMKR (Hedge) 6.455e−03±6.0e−06 253 9.412e−06±1.7e−07 71

FOMKR (OGD) 6.600e−03±5.8e−06 253 9.413e−06±4.8e−07 71

NOMKR (Hedge) 1.149e−02±1.2e−17 894 2.093e−05±5.3e−20 1033

NOMKR (OGD) 1.016e−02±1.7e−18 894 1.365e−05±7.6e−19 1033

Note: The numbers represent the final cumulative error obtained by the algorithms. All numbers represent the

final cumulative error obtained by the algorithms results are averaged over multiple permutations. The best per-

formances are in bold.

6.2.2 Experimental Settings. For this set of experiments, we consider only 13 RBF kernels

κ (x ,y) = e (
−||x−y | |2

2σ 2)
) of kernel width parameter σ in [2−6, 2−5, . . . , 26]. As the datasets are suffi-

ciently large, it is infeasible to run OMKR(Deterministic) for these datasets. We evaluate the per-

formance of naive OMKR with Budget Strategies. We also evaluate the performance of FOMKR

and NOMKR with Hedge combination of kernels at the prediction level, and also using OGD com-

bination. In this scenario, we consider the evaluation based on only the mean squared error. For

the learning rate, we performed experiments with η = 0.01 and η = 0.001 and reported the best

performance of each algorithm. For Budget OMKR, we set a budget of τ = 500. For Fourier and

Nyström Approximation based strategies, we set the parameters such that the total dimensional-

ity of the new instance obtained from each kernel is 40 features. We further perform analysis of

the sensitivity of the algorithm performance with the chosen dimensionality.

6.2.3 Results and Discussion. The results of the analysis of Large-Scale OMKR algorithms can

be seen in Table 7. In general we can see that the OMKR variants are significantly better at ap-

proximating the kernel function than a naive budget approach. In all datasets, the Approximate

OMKR approaches are able to significantly outperform the budget approach. Further, in general

we are able to observe that Fourier Features are able to give the best performance. This is a likely

result of the fact that we have used RBF kernels for our experiments. It is possible that choosing a

higher level of approximation for Nyström features could possible give better results (and the same

would apply to Fourier Features). However, Nyström features are relatively more computationally

expensive. Having said that, we used RBF kernels only for the purpose of fair comparison between

the algorithms. Nyström approach enjoys the ability to even use any arbitrary kernel function, and

is not restricted to shift-invariant kernels. Thus, with a better choice of kernels in the predefined

pool of kernels, Nyström approximation could potentially give better results.

Also, the approximation methods are much faster than the naive budget methods for OMKR.

In all cases for the large datasets, we can see that the OMKR approximation techniques are much

faster than the budget techniques. Fourier OMKR is the fastest, followed by Nyström OMKR. This

is because Fourier OMKR just involves a simple projection for obtaining new features followed

by another projection to obtain the classifier. In general, the proposed approximation techniques

offer a promising direction to perform scalable OMKR.

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 1, Article 9. Publication date: January 2019.

9:28 D. Sahoo et al.

Fig. 6. Performance of FOMKR(Hedge) and FOMKR(OGD) with varying number of approximated features.

The Fourier Dimensionality size refers to the number of features obtained per kernels. The total number of

features ism times this number. For example, 40 features per kernel corresponds to 520 features for FOMKR

(wherem = 13).

6.2.4 Feature Fusion vs. Prediction Fusion. Here, we evaluate the performance of two-types of

kernel combination approaches. Using the functional approximation approach, we can combine

the kernel predictions, or we can combine the approximate features obtained from each kernel,

and learn a single predictor. Additionally, the performance of both these types of algorithms would

depend on the level of approximation or the number of features obtained from each approximation.

We conduct experiments for varying levels of approximation using Fourier and Nyström methods

on both the smaller datasets (D3, D5, D6, and D7) and the large scale datasets (L1, L2, L3, and L4).

These analyses can be visualized in Figure 6 for Fourier feature based OMKR, and in Figure 7 for

Nyström method based OMKR.

For the case of Fourier features, we observe that it is in general a stiff competition between the

prediction level combination (FOMKR(Hedge)) and the feature level combination (FOMKR(OGD)).

We do observe a trend that using more features usually helps, but when it increases too much, the

algorithms probably suffer from convergence challenges, and there is performance degradation.

In most cases we can see that for a fewer number of features, OGD combination gives a better

performance, and as the number of features increases, Hedge combination starts giving improved

performance. This is probably due to the fact that Hedge combination uses multiplicative updates

over predictors which have fewer number of features, whereas OGD needs to operate on all fea-

tures simultaneously, and thus starts facing challenges in quick convergence in the online setting.

Having said that, the performances are quite similar, and largely depend on the dataset. Probably,

for those scenarios where a specific 1–2 kernels could be identified as the best representation of the

data, the performance of FOMKR(Hedge) would be better, and in the scenarios where all kernels

are relatively weak representations, FOMKR(OGD) would give a better performance.

For the case of Nyström features, we observe the OGD combination invariably achieves better

performance than Hedge combination. While this result is contrary to the one seen in the case

of Fourier features, this can be explained by the fact that Nyström features in general obtained

a worse performance than Fourier Features while approximating RBF kernels. This leads to the

realization that each individual kernel obtained from Nyström features contributes with relatively

weak predictive ability. Consequently, Hedging which tries to track the best predictor does a poor

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 1, Article 9. Publication date: January 2019.

Large Scale Online Multiple Kernel Regression with Application to Time-Series Prediction 9:29

Fig. 7. Performance of NOMKR(Hedge) and NOMKR(OGD) with varying number of approximated features.

The Nystrom Dimensionality size refers to the number of features obtained per kernels. The total number of

features ism times this number. For example, 40 features per kernel corresponds to 520 features for NOMKR

(wherem = 13).

job in comparison to OGD which tries to optimally ensemble a set a weak predictors. This observa-

tion is consistent with ensemble approaches such as boosting. However, this does not necessarily

imply that Nyström methods are inferior to Fourier Features, as Nsytröm method can generalize to

any type of kernel function, and unlike Fourier Features is not restricted to shift-invariant kernels.

6.3 Evaluation of OMKR for Application to Time-Series Prediction

In this section, we evaluate the performance of OMKR when applied to time-series prediction.

Specifically, we focus on the problem of identifying the optimal window size of historical data

while performing online learning for time-series prediction. For experiments on Online Learning

of non-linear time-series prediction, see Section 6.1.

6.3.1 Datasets. We follow the experiments in [30], and consider four synthetic time series set-

tings, and one real world time-series data. After obtaining the sequence, the values are normalized

to lie between [0,1]. Consider an ARIMA model given as:

∇dyt = c + Σ
p
i=1ζi∇dyt−i + Σ

q
i=1ξiϵt−j + ϵt . (46)

The first sequence is a stationary time-series, S1 is generated from an ARIMA(p,d,q) model, with

d = 1, ζ = [0.6,−0.5, 0.4,−0.4, 0.3] and ξ = [0.3,−0.2]. The noise terms are uniformly distributed

asN (0, 0.32). The second sequence is a non-stationary time-series model generated by two sets of

parameters, with the first half generated by d = 1, ζ = [0.6,−0.5, 0.4,−0.4, 0.3] and ξ = [0.3,−0.2]

and the second half generated by d = 1, ζ = [−0.4,−0.5, 0.4, 0.4, 0.1] and ξ = [0.3,−0.2]. For S2

the noise terms are distributed as Uni = [0.5, 0.5]. Sequence S3 is a non-stationary time-series

with ζ = [0.6,−0.5, 0.4,−0.4, 0.3] and ξ = [0.3,−0.2], but with d = 1, 2, 3 for the first, second, and

third parts of the sequence respectively. S4 is generated by ARIMA model with ξ = [0.3,−0.2] and

ζ (t) = [−0.4, 0.5, 0.4, 0.4, 0.1] × (t
104) + [0.6,−0.5, 0.4,−0.4, 0.3] × (1 − t

104). Finally, we also use a

real world time-series dataset S5, which is the daily index value of the Dow Jones Industrial Av-

erage from 1885–1962. S1, S2, S3, and S4 comprise 10,000 instances each, while S5 has 35,000

instances.

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 1, Article 9. Publication date: January 2019.

9:30 D. Sahoo et al.

Table 8. Application of OMKR to Multiple Window Sizes as Each Kernel

for Online Learning for ARMA Time-Series Prediction

Algorithm S1 S2 S3 S4 S5

AR(10) by OGD 0.000650 0.000726 0.000371 0.000554 0.000161

AR(20) by OGD 0.000429 0.000524 0.000196 0.000294 0.000096

AR(30) by OGD 0.000360 0.000453 0.000138 0.000214 0.000072

AR(40) by OGD 0.000324 0.000406 0.000110 0.000177 0.000057

AR(50) by OGD 0.000300 0.000371 0.000094 0.000156 0.000048

AR(60) by OGD 0.000282 0.000344 0.000084 0.000143 0.000041

AR(70) by OGD 0.000269 0.000322 0.000078 0.000133 0.000036

AR(80) by OGD 0.000259 0.000306 0.000074 0.000125 0.000033

AR(400) by OGD 0.005593 0.010046 0.004760 0.000667 0.000184

AR(800) by OGD 0.059990 0.063424 0.027564 0.001335 0.015066

OMKR(Hedge) 0.000261 0.000298 0.000086 0.000111 0.000029

The numbers in bold denote the best performance.

Table 9. Application of OMKR to Multiple Window Sizes as Each Kernel for Online

Learning for ARIMA (d = 1) Time-Series Prediction

Algorithm S1 S2 S3 S4 S5

ARIMA(10) by OGD 0.018026 0.007869 0.000511 0.006375 0.000913

ARIMA(20) by OGD 0.017414 0.007317 0.000370 0.006301 0.000818

ARIMA(30) by OGD 0.017189 0.007135 0.000317 0.006277 0.000789

ARIMA(40) by OGD 0.017076 0.007060 0.000290 0.006250 0.000777

ARIMA(50) by OGD 0.016821 0.007050 0.000273 0.006225 0.000773

ARIMA(60) by OGD 0.016688 0.007059 0.000262 0.006198 0.000772

ARIMA(70) by OGD 0.016509 0.007076 0.000256 0.006189 0.000775

ARIMA(80) by OGD 0.016450 0.007119 0.000252 0.006148 0.000778

ARIMA(400) by OGD 0.018305 0.010037 0.002530 0.006092 0.001145

ARIMA(800) by OGD 0.089543 0.027797 0.009196 0.00790 0.002851

OMKR(Hedge) 0.016353 0.006764 0.000261 0.005968 0.000768

The numbers in bold denote the best performance.

6.3.2 Baselines and Experimental Setting. We evaluate the time-series for predicting both

ARMA (where the next instance in the time-series is to be predicted) and ARIMA (where the next

differential in the time-series is to be predicted) target values obtained from the five sequences. We

compare against varying window sizes from [10, 20, 30, 40, 50, 60, 70, 80, 400, 800]. These window

sizes correspond to multiple kernels, and are used in the OMKR framework, which is our proposed

method. The algorithms are evaluated on the basis of final mean squared error obtained after the

entire online learning process is over. The hedge discount rate parameter is set as β = 0.5 like in

the experiments before, and the learning rate for each window size is set as 0.01.

6.3.3 Results and Discussion. The results of application of OMKR to time-series prediction can

be seen in Table 8 for ARMA and Table 9 for ARIMA. In most cases, the OMKR variant is able

to achieve the best result as compared to any other individual selection of window size. In some

cases, such as in S1 and S3, even though the OMKR performance is not the best by a significant

margin, it is very close to the performance of the best window size. These results demonstrate

the ability of OMKR to automatically identify the appropriate window size, and simultaneously

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 1, Article 9. Publication date: January 2019.

Large Scale Online Multiple Kernel Regression with Application to Time-Series Prediction 9:31

leverage on complementary information from other window sizes to enhance the prediction per-

formance while doing online learning for time-series prediction. It should further be noted that

the appropriate window size for the task is not known before hand.

7 CONCLUSION

This work proposes a family of OMKR algorithms for kernel based regression using a pool of

predefined kernels. They overcome the challenges of existing work, which are largely designed

for a batch setting and assume that the appropriate kernel function is known. OMKR sequentially

learns the kernel based regressor in an online and scalable fashion, and dynamically explores a

pool of multiple diverse kernels to avoid problems of poor kernel choice by manual or heuristic

selection. However, due to the unbounded number of SVs while learning the model online, OMKR

faces severe computational limitations. To address these issues we proposed kernel approximation

based strategies, and developed Fourier OMKR and Nyström OMKR algorithms. These algorithms

had the added advantage that a combination of kernels at the representation level could also be

learnt. Next, we demonstrated application of OMKR to online learning for time-series prediction by

showing how the OMKR framework allowed to choose appropriate window-sizes while predicting

for ARMA and ARIMA models. We also discussed application to online learning for non-linear

time-series prediction. We conducted extensive empirical evaluation and demonstrated the ability

of OMKR algorithms to automatically adapt to the best kernel combination from the data during

the online learning procedure.

REFERENCES

[1] Oren Anava, Elad Hazan, Shie Mannor, and Ohad Shamir. 2013. Online learning for time series prediction. In COLT,

Vol. 30. 172–184.

[2] Oren Anava, Elad Hazan, and Assaf Zeevi. 2015. Online time series prediction with missing data. In International

Conference on Machine Learning. 2191–2199.

[3] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. 2002. The nonstochastic multiarmed bandit

problem. SIAM Journal on Computing 32, 1 (2002), 48–77.

[4] Olivier Bousquet and Daniel J. L. Herrmann. 2003. On the complexity of learning the kernel matrix. In Advances in

NIPS. 415–422.

[5] Dominik Brugger, Wolfgang Rosenstiel, and Martin Bogdan. 2011. Online SVR training by solving the primal opti-

mization problem. Journal of Signal Processing Systems 65, 3 (2011), 391–402.

[6] Giovanni Cavallanti, Nicolò Cesa-Bianchi, and Claudio Gentile. 2007. Tracking the best hyperplane with a simple

budget perceptron. Machine Learning 69 (2007), 143–167.

[7] Nicolo Cesa-Bianchi and Gabor Lugosi. 2006. Prediction, Learning, and Games. Cambridge University Press.

[8] Badong Chen, Songlin Zhao, Pingping Zhu, and José C. Príncipe. 2012. Quantized kernel least mean square algorithm.

IEEE Transactions on Neural Networks and Learning Systems 23, 1 (2012), 22–32.

[9] Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram Singer. 2006. Online passive-aggressive

algorithms. Journal of Machine Learning Research 7 (Dec. 2006), 551–585.

[10] Koby Crammer, Jaz Kandola, and Yoram Singer. 2004. Online classification on a budget. In Advances in NIPS. MIT

Press, Cambridge, MA.

[11] Ofer Dekel, Shai Shalev-Shwartz, and Yoram Singer. 2008. The forgetron: A kernel-based perceptron on a budget.

SIAM Journal on Computing 37, 5 (2008), 1342–1372.

[12] Mark Dredze, Koby Crammer, and Fernando Pereira. 2008. Confidence-weighted linear classification. In 25th Inter-

national Conference on Machine Learning. ACM, 264–271.

[13] Yoav Freund and Robert E. Schapire. 1995. A desicion-theoretic generalization of on-line learning and an application

to boosting. In Computational Learning Theory, Vol. 904. Springer, Berlin, 23–37.

[14] Joao Gama, Indre Zliobaite, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid Bouchachia. 2014. A survey on concept

drift adaptation. ACM Computing Surveys 46, 4 (2014), 44.

[15] Mehmet Gönen and Ethem Alpaydın. 2011. Multiple kernel learning algorithms. Journal of Machine Learning Research

12 (2011), 2211–2268.

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 1, Article 9. Publication date: January 2019.

9:32 D. Sahoo et al.

[16] Yujun He, Youchan Zhu, and Dongxing Duan. 2006. Research on hybrid ARIMA and support vector machine model in

short term load forecasting. In 6th International Conference on Intelligent Systems Design and Applications (ISDA’06).

IEEE, vol. 1, 804–809.

[17] Steven C. H. Hoi, Rong Jin, and Michael R. Lyu. 2007. Learning nonparametric kernel matrices from pairwise con-

straints. In ICML. ACM, 361–368.

[18] Steven C. H. Hoi, Rong Jin, Peilin Zhao, and Tianbao Yang. 2013. Online multiple kernel classification. Machine

Learning 90, 2 (2013), 289–316.

[19] Steven C. H. Hoi, Michael R. Lyu, and Edward Y. Chang. 2006. Learning the unified kernel machines for classification.

In KDD. ACM, 187–196.

[20] Steven C. H. Hoi, Doyen Sahoo, Jing Lu, and Peilin Zhao. 2018. Online learning: A comprehensive survey. arXiv:

1802.02871.

[21] Steven C. H. Hoi, Jialei Wang, and Peilin Zhao. 2014. Libol: A library for online learning algorithms. Journal of Machine

Learning Research 15, 1 (2014), 495–499.

[22] Wei-Chiang Hong and Ping-Feng Pai. 2006. Predicting engine reliability by support vector machines. International

Journal of Advanced Manufacturing Technology 28, 1–2 (2006), 154–161.

[23] Rong Jin, Steven C. H. Hoi, and Tianbao Yang. 2010. Online multiple kernel learning: Algorithms and mistake bounds.

In Algorithmic Learning Theory, Vol. 6331. Springer, Berlin, 390–404.

[24] Rudolph Emil Kalman. 1960. A new approach to linear filtering and prediction problems. Journal of Basic Engineering

82, 1 (1960), 35–45.

[25] Hisashi Kashima, Koji Tsuda, and Akihiro Inokuchi. 2003. Marginalized kernels between labeled graphs. In ICML,

Vol. 3. 321–328.

[26] J. Kivinen, A. J. Smola, and R. C. Williamson. 2004. Online learning with kernels. IEEE Transactions on Signal Processing

52, 8 (2004), 2165–2176.

[27] James T. Kwok and Ivor W. Tsang. 2003. Learning with idealized kernels. In ICML. 400–407.

[28] Gert R. G. Lanckriet, Nello Cristianini, Peter Bartlett, Laurent El Ghaoui, and Michael I. Jordan. 2004. Learning the

kernel matrix with semidefinite programming. Journal of Machine Learning Research 5 (Dec. 2004), 27–72.

[29] Nick Littlestone and Manfred K. Warmuth. 1989. The weighted majority algorithm. In 30th Annual Symposium on

Foundations of Computer Science. IEEE, 256–261.

[30] Chenghao Liu, Steven C. H. Hoi, Peilin Zhao, and Jianling Sun. 2016. Online ARIMA algorithms for time series

prediction. In 13th AAAI Conference on Artificial Intelligence.

[31] Weifeng Liu, Puskal P. Pokharel, and Jose C. Principe. 2008. The kernel least-mean-square algorithm. IEEE Transac-

tions on Signal Processing 56, 2 (2008), 543–554.

[32] Jing Lu, Steven C. H. Hoi, Jialei Wang, Peilin Zhao, and Zhi-Yong Liu. 2016. Large scale online kernel learning. Journal

of Machine Learning Research 17, 1 (2016), 1613–1655.

[33] Jing Lu, Doyen Sahoo, Peilin Zhao, and Steven C. H. Hoi. 2018. Sparse passive-aggressive learning for bounded online

kernel methods. ACM Transactions on Intelligent Systems and Technology 9, 4 (2018), 45.

[34] Jing Lu, Peilin Zhao, and Steven C. H. Hoi. 2016. Online sparse passive aggressive learning with kernels. In 2016 SIAM

International Conference on Data Mining. SIAM, 675–683.

[35] Weizhen Lu, Wenjian Wang, Andrew Y. T. Leung, Siu-Ming Lo, Richard K. K. Yuen, Zongben Xu, and Huiyuan Fan.

2002. Air pollutant parameter forecasting using support vector machines. In 2002 International Joint Conference on

Neural Networks (IJCNN’02). IEEE, vol. 1, 630–635.

[36] André F. T. Martins, Noah A. Smith, Eric P. Xing, Pedro M. Q. Aguiar, and Mário A. T. Figueiredo. 2011. Online

learning of structured predictors with multiple kernels. In Proceedings of the Fourteenth International Conference on

Artificial Intelligence and Statistics. 507–515.

[37] Edward Moroshko and Koby Crammer. 2013. A last-step regression algorithm for non-stationary online learning.

Artificial Intelligence and Statistics 451–462.

[38] K.-R. Müller, Alexander J. Smola, Gunnar Rätsch, Bernhard Schölkopf, Jens Kohlmorgen, and Vladimir Vapnik.

1997. Predicting time series with support vector machines. In International Conference on Artificial Neural Networks.

Springer, 999–1004.

[39] Tu Dinh Nguyen, Trung Le, Hung Bui, and Dinh Phung. 2017. Large-scale online kernel learning with random feature

reparameterization. In 26th International Joint Conference on Artificial Intelligence (IJCAI’17). 2543–2549.

[40] Motoya Ohnishi and Masahiro Yukawa. 2017. Online learning in L 2 space with multiple Gaussian kernels. In 25th

European Signal Processing Conference (EUSIPCO’17). IEEE, 1594–1598.

[41] Francesco Orabona, Joseph Keshet, and Barbara Caputo. 2008. The projectron: A bounded kernel-based perceptron.

In ICML. ACM, 720–727.

[42] Sophocles J. Orfanidis. 1988. Optimum Signal Processing: An Introduction. Macmillan Publishing Company.

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 1, Article 9. Publication date: January 2019.

Large Scale Online Multiple Kernel Regression with Application to Time-Series Prediction 9:33

[43] Ali Rahimi and Benjamin Recht. 2008. Random features for large-scale kernel machines. In Advances in Neural Infor-

mation Processing Systems. 1177–1184.

[44] Frank Rosenblatt. 1958. The perceptron: A probabilistic model for information storage and organization in the brain.

Psychological Review 65, 6 (1958), 386.

[45] W. Rudin. 1990. Fourier Analysis on Groups. Wiley-Interscience Publication.

[46] Doyen Sahoo, Steven Hoi, and Peilin Zhao. 2016. Cost sensitive online multiple kernel classification. In Asian Con-

ference on Machine Learning. 65–80.

[47] Doyen Sahoo, Steven C. H. Hoi, and Bin Li. 2014. Online multiple kernel regression. In 20th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining. ACM, 293–302.

[48] Doyen Sahoo, Quang Pham, Jing Lu, and Steven C. H. Hoi. 2018. Online deep learning: Learning deep neural networks

on the fly. In 27th International Joint Conference on Artificial Intelligence (IJCAI’18). 2660–2666. DOI: DOI:https://doi.

org/10.24963/ijcai.2018/369

[49] Nicholas Sapankevych and Ravi Sankar. 2009. Time series prediction using support vector machines: A survey. IEEE

Computational Intelligence Magazine 4, 2 (2009), 24–38.

[50] Bernhard Schölkopf and Alexander J. Smola. 2002. Learning with Kernels. MIT Press.

[51] Li Cheng S. V. N. Vishwanathan Dale Schuurmans, Shaojun Wang, and Terry Caelli. 2007. Implicit online learning

with kernels. In NIPS, Vol. 19. MIT Press, 249.

[52] Shai Shalev-Shwartz. 2007. Online learning: Theory, algorithms, and applications. Ph.D. Thesis. The Hebrew

University.

[53] John Shawe-Taylor and Nello Cristianini. 2004. Kernel Methods for Pattern Analysis. Cambridge University Press.

[54] Alex J. Smola and Bernhard Schölkopf. 2004. A tutorial on support vector regression. Statistics and Computing 14, 3

(2004), 199–222.

[55] Sören Sonnenburg, Gunnar Rätsch, Christin Schäfer, and Bernhard Schölkopf. 2006. Large scale multiple kernel learn-

ing. Journal of Machine Learning Research 7 (2006), 1531–1565.

[56] Francis E. H. Tay and Lijuan Cao. 2001. Application of support vector machines in financial time series forecasting.

Omega 29, 4 (2001), 309–317.

[57] U. Thissen, R. Van Brakel, A. P. De Weijer, W. J. Melssen, and L. M. C. Buydens. 2003. Using support vector machines

for time series prediction. Chemometrics and Intelligent Laboratory Systems 69, 1 (2003), 35–49.

[58] Steven Van Vaerenbergh and Ignacio Santamaría. 2013. A comparative study of kernel adaptive filtering algorithms.

In 2013 IEEE Digital Signal Processing Workshop and IEEE Signal Processing Education. Software available at https:

//github.com/steven2358/kafbox/. DOI:https://doi.org/10.1109/DSP-SPE.2013.6642587

[59] V. G. Vovk. 1995. A game of prediction with expert advice. In COLT. ACM, 51–60.

[60] Bernard W.idrow and Marcian E. Hoff. 1960. Adaptive switching circuits. MIT Press Cambridge, MA.

[61] Christopher K. I. Williams and Matthias Seeger. 2001. Using the Nyström method to speed up kernel machines. In

Advances in Neural Information Processing Systems. 682–688.

[62] Lingfei Wu, Ian E. H. Yen, Jie Chen, and Rui Yan. 2016. Revisiting random binning features: Fast convergence and

strong parallelizability. In 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

ACM, 1265–1274.

[63] Yue Wu, Steven C. H. Hoi, Chenghao Liu, Jing Lu, Doyen Sahoo, and Nenghai Yu. 2017. SOL: A library for scalable

online learning algorithms. Neurocomputing 260 (2017), 9–12.

[64] Zenglin Xu, Rong Jin, Irwin King, and Michael R. Lyu. 2008. An extended level method for efficient multiple kernel

learning. In NIPS. 1825–1832.

[65] Haiqin Yang, Zenglin Xu, Irwin King, and Michael R. Lyu. 2010. Online learning for group lasso. In 27th ICML. 1191–

1198.

[66] Peilin Zhao, Jialei Wang, Pengcheng Wu, Rong Jin, and Steven C. H. Hoi. 2012. Fast bounded online gradient descent

algorithms for scalable kernel-based online learning. In Proceedings of the 29th International Conference on Machine

Learning. Omnipress, 1075–1082.

[67] Jinfeng Zhuang, Ivor W. Tsang, and Steven C. H. Hoi. 2011. A family of simple non-parametric kernel learning algo-

rithms. Journal of Machine Learning Research 12 (2011), 1313–1347.

[68] Martin Zinkevich. 2003. Online convex programming and generalized infinitesimal gradient ascent. In 20th Interna-

tional Conference on International Conference on Machine Learning.

Received July 2007; revised October 2018; accepted November 2018

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 1, Article 9. Publication date: January 2019.

https://doi.org/10.24963/ijcai.2018/369
https://doi.org/10.24963/ijcai.2018/369
https://github.com/steven2358/kafbox/
https://github.com/steven2358/kafbox/
https://doi.org/10.1109/DSP-SPE.2013.6642587

	Large scale online multiple kernel regression with application to time-series prediction
	Citation

	TKDD1301-09

