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ABSTRACT
This work proposes a deep neural network approach known as the
column-structured deep neural network (COL-DNN-R) for predict-
ing crowd density in an indoor environment using historical Wi-Fi
traces of individual visitors. With a structure designed to minimize
feature engineering, COL-DNN accepts raw features such as crowd
density, opening and closing hours and peak visitor counts for ex-
tracting features. The extracted features are used by a regression
model R for predicting the crowd densities. Standard regression
models such as MLP, RF and SVM can be used as R. Experiments
are performed to investigate the effect of feature representation and
model structure on the prediction accuracy. Experiment results show
the best prediction accuracy is obtained using features extracted by
COL-DNN and using MLP as the regression model, i.e., R = MLP .
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• Information Systems → Geographic Information Systems; In-
formation Systems Applications; Spatial-Temporal Systems;
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1 INTRODUCTION
Crowding is a side effect experienced by popular venues. It decreases
economic value and experience of visitors. Taken to the extreme, it
may lead to severe incidents such as a stampede. To improve the
safety and the experience of their visitors, venue operators strive to
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pre-empt or respond effectively to large crowd as early as possible.
Hence, accurate look-ahead prediction of crowd densities plays a
crucial role in this aspect of their daily operational needs.

Naive formulation of crowd density prediction entails a regression
task predicting future crowd densities using past crowd densities.
Due to the challenge of building a good feature vector for each
venue manually, many recent works [15] do not attempt to develop
their crowd estimation models using additional features about the
crowd. Our approach overcomes this challenge by building feature
vectors for any venue automatically. And unlike computer vision-
based solutions like [5, 14, 16], our approach uses Wi-Fi traces of
visitor positions over time. Thus, our approach is not constrained by
physical layouts and quality of videos.

Motivated by the recent applications of deep neural networks
(DNN) [3, 11], we propose a column-structured DNN (COL-DNN-
R) for predicting indoor crowd densities. Considered a first use
of DNN for crowd density prediction, COL-DNN is structured us-
ing prior knowledge of input features common to the venues. The
column structure simplifies the network structure and reduces the
number of parameters to optimize. Consequentially, such a network
structure simplifies search for the optimal parameters, reduces the
training duration and achieves good prediction accuracy while mini-
mizing feature engineering.

To evaluate and compare the performance of our proposed ap-
proach, experiments were conducted using real Wi-Fi dataset com-
prising records of visitors’ positions obtained from a large venue
operator. The records were aggregated to give the hourly crowd
densities at the venues. The trained model predicted crowd density
at selected venues from one to five hours into the future. Compared
with the benchmark models, our experiment results show that COL-
DNN-MLP has the best prediction accuracy.

The contributions of this paper are as follows:

• Our proposed approach derives additional features on the
crowd automatically.

• In the experiments using real Wi-Fi datasets, we improve the
prediction accuracy over existing approaches by 20.07% using
the additional features.

• We further improve the prediction accuracy by 24.35% using
COL-DNN-MLP .

3152341.3152349
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2 RELATED WORK
A recent survey [15] of approaches for estimating crowd density and
size of crowd reveals several works based on visual inspection of
crowded scenes. Examples of such works include [6] and [16]. [6]
uses convolutional neural network (CNN) to estimate crowd density.
Some network connections are removed and two CNNs are cascaded
to improve classification accuracy and speed. [16] uses CNNs for
crowd counting. CNN is pre-trained using whole images to derive
high level features. The features are mapped using recurrent network
layers with memory cells to local counting numbers. The output
quality from such approaches is typically affected by the quality of
the crowd imagery. Our work side-steps such challenges by using
Wi-Fi data comprising position records of the visitors.

Other approaches on estimating crowd densities are also known.
For instance, [5] generates crowd density maps automatically using
local features. The generated crowd density maps are used to en-
hance detection and tracking of high density crowds and study the
effect of different obfuscation levels on the context-awareness of
the crowd. Local crowd density is used with regular motion patterns
for crowd change detection and event recognition. [14] evaluates
several regression models and feature types for determining the size
of crowd. That work finds local features that yield better results than
the holistic features or histogram features. [7] explores the use of
pseudo-landmark points to improve the prediction accuracy without
increasing the cost of prediction. Unlike these works, the structure
of our proposed COL-DNN-R is suitable for extracting non-visual
data automatically.

Systems built for studying crowd movement are also known. For
instance, [2] proposes an approach for gathering large dataset us-
ing mobile application. The collected data is analyzed and used
for planning program and perimeter design. [1] presents a hybrid
indoor/outdoor positioning and navigation system. User mobility
patterns are mapped for predicting potential bottlenecks and hotspots.
[10] introduces Indoor-ALPS. This location prediction system uses
temporal-spatial features on an ensemble of four classifiers to cre-
ate individual daily models that predict movement of users. Unlike
these works, we minimize the effort spent on feature engineering by
proposing DNN with structure suitable for non-image data.

[13] propose a multi-factor neural network attention model for
fusing multiple groups of features by training it with a hidden
representation-based attention mechanism. It is shown to perform
better than the HME gating network [8]. Like [13], our neural net-
work (NN)-based approach uses features represented using vectors
but minimizes feature engineering of the features. No need for an
attention mechanism seen in [13], our NN-based approach is simpler
and more straight-forward. The weights and parameters are tuned by
error-backpropagation and a gradient descent method. We find our
NN-based approach to be capable of producing the desired responses
after training.

3 PROBLEM STATEMENT
This work addresses the problem of predicting future values of
aperiodic time series. The shape of the density chart depends on time
and space. Each data point may differ from the seasonal data. Hence,
this is a prediction problem of irregular seasonal time series.

Formally, the future crowd densities yr,t = {yr,t+1, · · · ,yr,t+hA }

is represented as a probability distribution P(yr,t |y
prev
r,t , {w

j
r,t }j ∈[1:P ])

where r denotes the venue, t denotes the time, yprevr,t = {yr,t , · · · ,yr,t−hB }
denotes the previous crowd densities, yr,t−τ denotes the crowd den-
sity τ time steps before t , wj

r,t denotes the set of P additional fea-
tures, hA denotes the look-ahead hours and hB denotes the number
of preceding hours.

For instance, given P = 3 additional features of opening hour, clos-
ing hour, and peak count of crowd, one representation of {wj

r,t }i={1,2,3}

is wj
r,t = {0, · · · , 0, 1, 0, · · · , 0} ∈ B24 for i = {1, 2} and the number

of peak count w3
r,t ∈ N.

The previous crowd densities yprevr,t and the set of additional

features wj
r,t can be represented as a set of vectors {xi }i ∈[1:P+1],

where x1
r,t = yprevr,t and xir,t = wj

r,t for j ∈ [1 : P]. Then, the
problem can be viewed as building a regression model which predicts
yr,t using {xir,t }i ∈[1:P+1] for all r .

4 PREDICTION OF CROWD DENSITY
To predict crowd density with minimum feature engineering, we
propose a modular deep neural network (DNN) architecture known
as COL-DNN-R. From Figure 1, the modules of COL-DNN-R are
the Feature Extraction Module (FEM) and the Regression Module
(RM). The weights of neurons in FEM are trained offline using
previous crowd densities yprevr,t and the set of additional features
wi
r,t . Training of regression model R in RM commences only after

the weights of neurons in the FEM are trained.

Figure 1: Modular architecture of COL-DNN-R comprising
FEM and RM.

4.1 Feature Extraction Module
As seen in Figure 1, the Feature Extraction Module (FEM) has two
column-structured layers (f1,f2) and three fully connected layers
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(f3,f4,f5). Raw features entering the column-structured layers are
transformed and channeled to the fully-connected layers. It enters the
RM comprising two fully-connected layers and a regression model.
We call features coming from the FEM as the extracted features
xext . The structure of FEM is based on the types and the dimension
of data. This work uses raw features comprising the previous crowd
densities, the opening hour and the closing hour and peak crowd
count to predict the crowd densities.

Neurons in the f1 column-structured layer (input layer) use linear
activation function while neurons in the f2 column-structured layer
(hidden layer) use Rectified linear unit (ReLU) as the activation func-
tion. Neurons at the fully-connected f3,f4, f5 layers are interleaved
between the linear and the ReLU activation functions. Such a design
of a five-layer FEM has lesser number of weights compared to a
five-layer fully-connected neural network. Consequentially, time to
train the FEM to reach convergence is reduced.

The number of columns is M and the number of the input neurons
at the i-th column is N x

i when data is {xi |i ∈ [1 : M]} (xi ∈ RN
x
i ).

Each column-structured layer is matched to a numerical input vector.
The number of types of inputs determines the number of columns,
i.e., M .

FEM propagates the raw features to the RM in the following
manner. Given {xi }i ∈[1:M ], the outputs of the f2 column-structured
layer is

yf 2,i = f ReLU (W f 1,ixi + bf 1,i ), (1)

where f ReLU (x) =max(0,x),W f 1,i ∈ RN
x
i ×RN

f 2,i
is the weights

between f1 and f2 column-structured layer and bf 1,i ∈ R is the bias.
There are N f 2,i hidden neurons in the f2 column-structured layer.
The input of the f3 fully-connected layer is obtained by combining
yf 2,i using

xf 3 =
M∑
i=1

(W f 2,iyf 2,i + bf 2,i ). (2)

The activation functions of the f3 layer is the identity function. The
same structure and process as a standard multi-layer perceptron
(MLP) is employed for f3, f4, and f5 layers. Hence, the output of
FEM yf 5 is

yf 5 = MLP f (xf 3), (3)

where MLP f is the function mapping the input to the output of a
3-layer MLP.

MLP f (x) =W f 4 f ReLU (W f 3x + bf 3) + bf 4. (4)

The output of FEM yf 5 is also referred to as the extracted feature
xext to the RM.

4.2 Regression Module
The Regression Module (RM) has the regression model R which is
trained for prediction using xext . The layers have the same structure
and process as a standard MLP. Yet, it can predict more accurately
than just MLP without the FEM. This is possible because it accepts
xext as the input.

ReLU is used as the activation function of the hidden neurons in
the r2 layer. At the r3 layer, the number of neurons is dependent on
the number of outputs. For instance, the output of mth neuron at the

final layer is the predicted crowd densitym hours later. Hence, the
predicted crowd densities from 1 − hA hours later is presented as
follows:

ypred = (y
pred
1 ,y

pred
2 , · · · ,y

pred
hA

) = MLPr (xext ) (5)

where ypredm is the predicted density m hours later, and MLPr repre-
sents the map of MLP as follows:

MLPr (x) =W r2 f ReLU (W r2x + br1) + br2 (6)

Knowing that fully connected layers r1, r2 and r3 is actually an
MLP, it can be regarded as a regression model R. This means R

can be any other regression models such as support vector machines
(SVM) and random forests (RF). If another regression model is used
with the trained FEM, the new regression model has to be trained
before it can be used for prediction. As seen in bottom of Figure 1,
the input to RM is the extracted features xext .

4.3 Training
Our proposed COL-DNN-R is trained in two phases using the same
training data. The first training phase trains the weights of the neu-
rons in f1-f5 of FEM and r1-r3 of RM using R ≡ MLP . If R , MLP ,
the new R is trained in a second training phase using the extracted
features xext as the inputs.

Algorithm 1 Algorithm for training COL-DNN-R with R = MLP .

Require: Training data Xtrain × Ytrain

1: Initialize Wf = {{W f 1,i }i ∈[1:M ],W
f 2,W f 3,W f 4}

2: Initialize Wr (R) = {W r1,W r2}
3: repeat
4: for ({xi }i ∈[1:M ], y) in Xtrain × Ytrain do
5: Tune Wf and Wr (R) to fit ({xi }i ∈[1:M ], y) by gradient

descent
6: end for
7: until Convergence of Wf , Wr (R)

8: return Tuned Wf ,Wr (R)

The first training phase where COL-DNN-R is trained using
supervised learning is outlined using Algorithm 1. COL-DNN-R
for R = MLP is trained to fit Ytrain . Being a directed acyclic
graph and having differentiable activation functions, the gradient
of the weights are derived by the back-propagation method. Then,
the weights can be optimized by a gradient descent method such as
stochastic gradient descent, Adagrad or Adam [4, 9].

A second training phase follows when R , MLP . The tuning of
the parameters of R using the same training data Xtrain × Ytrain

is outlined using Algorithm 2. In this training phase, the weights
Wf of the neurons in the FEM are fixed. The raw input Xtrain is
presented to the FEM to give xext . To fit Ytrain , the parameters
Wr (R) of regression model R are tuned using xext .

4.4 Prediction
COL-DNN-R is trained for predicting ypred following the process
outlined using Algorithm 3. The prediction output ypred is seman-
tically identical to Ytrain seen in Algorithm 1 and Algorithm 2.
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Algorithm 2 Algorithm for training R when R , MLP .

Require: Training data Xtrain × Ytrain

Require: Tuned Wf

1: Initialize regression model R
2: repeat
3: for ({xi }i ∈[1:M ], y) in Xtrain × Ytrain do
4: Calculate xext using xi and Wf in Eq. 3
5: Tune Wr (R) to fit (xext , y)
6: end for
7: until Convergence of Wr (R)

8: return Tuned Wr (R)

Algorithm 3 Algorithm for predicting ypred using trained COL-
DNN-R.

Require: Test data {xi,test }i ∈[1:M ]

Require: Tuned weights Wf of neurons in FEM
Require: Trained regression model R

1: Derive xext using xi,test and Wf in Eq. 3
2: Present xext to R for predicting ypred
3: return Prediction output ypred

Keeping Wf and Wr (R) stationary, the trained COL-DNN-R
predicts ypred using {xi,test }i ∈[1:M ] as the input. From Algorithm 3,
the prediction process involves forward-passing xi,test through
FEM to give xext . RM accepts xext as the inputs for predicting
ypred .

5 DESIGN OF EXPERIMENTS
The design choices of the experiments are presented here.

5.1 Wi-Fi Dataset
The raw Wi-Fi datasets comprises the position records xr,t of people
at venue r at time t . This information is collected at 5 − 6 minutes
interval. The positions are approximated based on the strength of the
Wi-Fi signal omitted from the mobile devices of the people. Each
position record has data fields like time, user ID and location ID.
Time is a string with the format YYYY-MM-DD HH:MM:SS, user
ID is an alpha-numeric string of 64 characters and location ID is a
numeric array of 10 characters.

Figure 2: Derivation of additional features such as opening hour
T
open
r,d , closing hour T closer,d and peak counts Xpeak

r,d .

In addition to the Wi-Fi dataset, the prediction models uses
additional features such as the opening hour T openr,d , the closing

hour T closer,d and the peak counts Xpeak
r,d . From Figure 2, these fea-

tures are derived using a fitting Gaussian N (µr,d (t ;θr,d,ai ,σr,d ))
to the density data Xr,d,t where µr,d,t (t ;θr,d ,ai ) is defined as

µr,d,t (t ;θr,d ,ai ) = X
peak
r,d ∗ ReLu(−ReLu(−a1(t − T

open
r,d )) + 1) ∗

ReLu(−ReLu(a2(t −T closer,d )) + 1) and ReLu(t) = max(0, t).

5.2 Aggregation of Data Records
The observed crowd densities yprevr,t are derived from the Wi-Fi
dataset. To do that, the raw position records have to be interpolated
to the hourly marks first because those position records are not
necessarily available at the desired time marks. The raw position
records are interpolated by assuming the position of a person seen at
the time closest to the desired time mark remains unchanged.

Figure 3: Illustration of a small part of a particular level of
building covered by the Wi-Fi dataset.

After that, the interpolated position records are aggregated to give
the observed crowd count cr,t,p at position p in venue r at time t .
Figure 3 illustrates a number of positions in various venues on a
particular level of a building. The observed crowd densities yprevr,t

are derived using
∑Pr
p {cr ,t,p }

ar where ar is the area and Pr is the
number of positions in venue r .

5.3 Crowd Density
The predicted crowd densities ypredr,t is a vector of scalar values
representing the crowd densities at fixed time intervals. The pre-
dicted crowd densities ypredr,t is validated against the observed crowd
densities yr,t like those seen in Figure 4 where the crowd densities
in selected large and small venues are illustrated. It shows the crowd
density at one hour interval. Larger fluctuation of crowd density is
seen for the larger venues.

Prediction accuracy of the trained prediction models with respect
to xi is shown as the root mean square error (RMSE) derived us-

ing
√∑n

i=1 (x̂i−xi )2
n where n is the number of predicted values. For

predicting crowd density at 1hr to 5hr look-ahead choices, we have
n = 5.

5.4 Parameter Settings
Parameter settings used for the prediction models are presented here.
COL-DNN-R: There are 72 neurons for f21, 24 neurons for f22 and
f23, 1 neuron for f24, 121 neurons for f3, f4, f5 (r1) and r2. The
gradient descent method used is the Adam [9] algorithm with the
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Figure 4: Illustration of crowd densities in large and small
venues from 0800hr to 2100hr on 18th December 2015. The av-
erage venue size is 502.17m2

following parameter values: α = 0.001, β1 = 0.9, β2 = 0.999 and
ϵ = 1e − 08. The size of each batch is 100. COL-DNN-R is trained
for 500 epoches.
Random Forests (RF): This RF combines the classifiers by averag-
ing their probabilistic prediction. The hyper-parameters of RF are
tuned using the grid search. The ranges of parameters are
[10, 100, 1, 000, 10, 000] for the number of estimator. The max fea-
tures are [1, 21, 41] for when only the F1 feature is used and
[1, 21, 41, 61, 81, 101, 121] for when the F1-F4 features are used.
Support Vector Regressor (SVR): This SVR has a Radial Basis
Function (RBF) kernel. The parametersC,γ and ϵ are tuned using the
grid search. The ranges of the parameters are [10−4, 10−3, 10−2, 10−1, 1]
for γ , [1, 10, 100, 1, 000, 10, 000] forC and [10−4, 10−3, 10−2, 10−1, 1]
for ϵ .
Multi-layer Perceptron (MLP): This MLP uses an implementation
of back-propagation algorithm based on the Adam algorithm [9].
The Adam algorithm has the following parameter values: α = 0.001,
β1 = 0.9, β2 = 0.999 and ϵ = 1e − 08. The size of each batch is 100.
The MLP is trained for 500 epochs.
Seasonal ARIMA (SARIMA): This SARIMA fits anARIMA(p,d,q)
model by an exact maximum likelihood via the Kalman filter. It is
tuned using the Hyndman-Khandakar algorithm. The parameter set
giving the maximum Akaike’s information criterion is used in the
experiments.

5.5 Feature Representation
The feature representations seen in Table 1 are used here. F1 denotes
the previous people count. It has a dimension of 72 elements because
F1 is hourly people count three days, i.e., 72 hr, before the time
of prediction. It is standardized using x

′

i =
xi−x̄i
σ . F2 denotes the

opening hour while F3 denotes the closing hour. F2 and F3 are
binary vectors of length 24. Each element of F2 and F3 represents
an one-hour time slot. The opening and closing hour are indicated
using ′1′ in F2 and F3 respectively. The other times are represented
using ′0′. F4 is an integer number denoting the peak count of people
at the venue on that day.

6 PERFORMANCE EVALUATION
Experiments were conducted to evaluate and compare the perfor-
mance of COL-DNN. The experiment results presented here are the

Table 1: Feature representations considered in this work. Ex-
tracted features refers to features extracted by COL-DNN using
F1-F4 as raw input features

Model F 1 F 2 F 3 F 4 Type
SARIMA • Raw
F1-MLP • Raw

F1-F4-MLP • • • • Raw
COL-DNN-MLP • • • • Extracted

F1-RF • Raw
F1-F4-RF • • • • Raw

COL-DNN-RF • • • • Extracted
F1-SVR • Raw

F1-F4-SVR • • • • Raw
COL-DNN-SVR • • • • Extracted

RMSEs of the prediction models. Regression models (MLP, SVR
and RF) from [12] are used while SARIMA from [17] is used.

Eight months of Wi-Fi datasets (Apr’15 - Nov’15) are used to
train the prediction models. The trained prediction models are tested
using Wi-Fi dataset of December 2015. The Wi-Fi datasets are
cleaned by removing the anomalous records. For illustration purpose,
only crowd densities in eight venues of an indoor environment are
predicted.

Table 2: Mean RMSE of 10 prediction models for 1-5 hours look-
ahead prediction. Ext. denotes the extracted features.

Feature Model 1-hr 2-hr 3-hr 4-hr 5-hr mean
Ext. MLP 5.88 5.96 5.90 5.78 5.65 5.83
Ext. RF 6.19 6.33 6.29 6.18 6.07 6.21
Ext. SVR 6.03 6.10 6.05 5.95 5.83 6.00

F1-F4 MLP 6.66 6.64 6.63 6.45 6.34 6.54
F1-F4 RF 6.27 6.41 6.46 6.44 6.39 6.39
F1-F4 SVR 6.11 6.39 6.48 6.52 6.51 6.40

F1 MLP 9.13 8.98 8.83 8.69 8.56 8.84
F1 RF 7.10 7.74 8.01 8.10 8.10 7.81
F1 SVR 7.19 7.87 8.23 8.39 8.44 8.02
F1 SARIMA 6.76 9.60 11.65 13.65 14.92 11.31

The mean RMSEs of the 10 prediction models seen in Table 2
are derived using the RMSEs of the predicted crowd densities from
0800 hr to 2100 hr of day 1 to day 29 of December 2015. The
prediction accuracies for the F1-based prediction models deteriorates
as the number of look-ahead hours increases. The performance
of the F1-F4-based prediction models is more stable than the F1-
based prediction models because the weights are tuned using more
features. The prediction accuracies improve further for the Ext-based
prediction models because COL-DNN reduces the search space for
the best features.

Focusing on the effect of feature representations, the plots in
Figure 5 and the left plot of Figure 6 directly compare the RMSEs
of the same model structure using different feature representations.
The plots show the same model structure can have different RMSEs
when paired with different feature representations. It is also observed
that the RMSEs for the prediction models at the earlier hours are
higher because the arrival rate of the visitors are higher at these
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Figure 5: The RMSEs of same model structure with different
feature representations.

hours. The RMSEs of COL-DNN-MLP and COL-DNN-SVR are
improved more because the extracted features have similar structure
to MLP and SVR.

Figure 6: Left: Effects of feature representation on MLP-based
model structures; Right: Effects of extracted feature on differ-
ent model structures.

Focusing on the effect of model structures, the plots in Figure 7
and the right plot of Figure 6 directly compare the RMSEs of dif-
ferent model structures paired with the same feature representation.
It can be observed from these plots that the model structures have
rather distinct response to the same feature representation. Such
observation implies the feature representations have larger influence
than the model structures on the prediction accuracies. In addition,
the F1-based SARIMA and COL-DNN-RF are observed performing
poorly. Only from 1800 hr onward, COL-DNN-RF is performing as
well as COL-DNN-MLP. Similar levels of performance are observed
for the F1-F4-based prediction models. This is because the structure
of RF is fundamentally different from that of MLP and SVR.

Figure 7: The RMSEs of different model structures with same
feature representation.

Figure 8 compares the aggregated RMSEs of COL-DNN-MLP
with F1-F4-MLP, F1-F4-RF and F1-F4-SVR. The left plot shows
COL-DNN-MLP is consistently much accurate than the other predic-
tion models for predicting the hourly crowd densities. The right plot
shows COL-DNN-MLP has the lowest RMSEs consistently for most
days of December. This is because the size of crowd is small enough
for the prediction models to perform well in similar ways. More
specifically, the separation of the RMSEs among these approaches
are the most distinct at 2-3, 7-8 and 18-20 of December. According
to event calendar of the venue, these dates turn out to be the days
with large events.

Figure 8: The RMSEs of COL-DNN-MLP and state-of-the-
art benchmarks (F1-F4-MLP, F1-F4-RF and F1-F4-SVR) for
hourly and daily prediction of crowd densities.

The improvement ratios seen in Table 3 further confirm our COL-
DNN-MLP is better at predicting crowd densities at large events.
This is a desirable traits because such a solution is more needed at
the larger events where the crowd is larger and more acute problems
can occur. The observations imply a correct pairing of feature rep-
resentation (COL-DNN) and model structure (MLP) gives the best
prediction accuracy of crowd density.

Table 3: Improving ratio (%) of COL-DNN-MLP over selected
benchmark methods

Benchmark Large Events Small Events
F1-F4-MLP 7.65 14.83
F1-F4-RF 19.17 2.32

F1-F4-SVR 15.60 10.13

7 SUMMARY AND CONCLUSION
This work addresses a prediction problem on irregular seasonal
time series. It is contextualized to the setting of predicting crowd
densities of indoor environment over several look-ahead hours at the
same time. Side-stepping challenges encountered by the computer
vision-based approaches, this work uses Wi-Fi dataset comprising
position records of visitors. The proposed methodology is a modular
architecture comprising the Feature Extraction Module (FEM) and
the Regression Module (RM) known as COL-DNN-R. The FEM has
two column-structured and three fully connected layers. It extracts
features from the raw input features to be used as inputs to the RM.
At the RM, a trained regression model predicts the crowd densities
at several look-ahead hours.

Experiments were conducted to evaluate and compare perfor-
mance of COL-DNN-R. Features comprising the previous crowd



Predicting Indoor Crowd Density using
Column-Structured Deep Neural Network PredictGIS 2017, November 2017, Redondo Beach, California, USA

densities (PV), the opening hour (OH), the closing hour (CH) and
the peak count (PC) of an event are used. PV, OH and CH are used
by COL-DNN for feature extractions. The extracted features and PC
are used by a regression model such as MLP, SVM, RF or SARIMA
for predicting the crowd densities. The experiment results show
COL-DNN-MLP gives the best prediction accuracy. It is also found
that COL-DNN-MLP is better than the compared benchmarks at
predicting crowd densities of large events. Such observations imply
good feature representation and model structure are necessary for
good prediction accuracy.

This work can be extended at several fronts. At the FEM, further
analysis can be performed on the extracted features. It is hoped
the analysis can explain how the extracted features improve the
prediction accuracy of the regression models. At the RM, regres-
sion models can be built using a wider variety of machine learning
techniques such as auto-encoders, recurrent neural networks and
restricted Boltzmann machines. Last but not least, COL-DNN-R
can surely be scaled up to predict crowd densities at multiple levels,
more look-ahead choices and indoor environment with configurable
spaces.
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