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ABSTRACT

Vibration analysis is a key troubleshooting methodology for assess-
ing the health of factory machinery. We propose an unobtrusive
framework for at-a-distance visual estimation of such (possibly
high frequency) vibrations, using a low fps (frames-per-second)
camera that may, for example, be mounted on a worker’s smart-
glass. Our key innovation is to use an external stroboscopic light
source (that, for example, may be provided by an assistive robot),
to illuminate the machine with multiple mutually-prime strobing
frequencies, and use the resulting aliased signals to efficiently esti-
mate the different vibration frequencies via an enhanced version
of the Chinese Remainder Theorem. Experimental results show
that our technique estimates multiple such frequencies faster, and
compares favourably to an equipment-mounted accelerometer alter-
native, with frequency estimation errors below 0.5% for vibrations
occurring up to 500 Hz.
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1 INTRODUCTION

Machine condition monitoring [7] is a critical part of industry oper-
ations, with such monitoring being used to both continuously opti-
mize the machine’s operating parameters and to detect anomalous
behaviour that can culminate in breakdowns. Vibration, acoustic
and temperature data are commonly used as external indicators of
the internal state of such machines. Analysis of vibration data, typ-
ically collected from machine-mounted accelerometers, is widely
used as a first indicator of potential machine faults. More specifi-
cally, for machines with rotating components, spectral analysis of
vibration signals can provide important insights on their working
and mechanical conditions, such as the accuracy of shaft alignment
and balance, the condition of bearings or gears, or resonance effects
generated from the housings, piping or other structures. As assistive
robots increasingly become part of manufacturing environments, it
is useful to investigate their possible use, in tandem with personal
wearable sensors, for novel forms of machine diagnostics.
Existing Practice and Limitations: Machine vibration is com-
monly measured using accelerometers or velocity sensors. How-
ever, such sensors need to be mounted on the equipment being
monitored, and thus poses deployment and operating challenges
in hazardous environments e.g., when being operated under high
temperature or pressure conditions. Non-contact approaches for
vibration measurement are thus attractive alternatives. Two such
non-contact strategies include Laser Doppler Vibrometry (LDV) [1]
and Near-field Acoustic Holography (NAH) [4]. These techniques
either require a set of carefully synchronized lasers or utilize pres-
sure readings on a surface that is very close to (but not attached
to) the vibrating surface. LDV can offer very accurate vibration
frequency estimates, but requires expensive equipment and it is
very slow to inspect the vibration of a large surface. Camera-based
vibration estimation [2], which relies on the processing of a series
of image frames captured by a video sensor, offers a compelling at-a-
distance alternative to these techniques. Measuring high-frequency
vibrations accurately, however, requires the use of specialized, ex-
pensive, very high frame rate (e.g., 1000 fps) cameras [5], to avoid
the ’aliasing’ problem. In our recent work [8], [9], we have pro-
posed an alternative approach, called the ShakeMeter, for measuring
such high frequency vibration using a commodity low-speed (30fps)
camera. The key idea is to utilize a high frequency optical strobo-
scope [11] that effectively modulates the vibration signal, shifting
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the frequency components within the camera’s Nyquist frequency.
However, such prior work is based on a single strobing rate and
can measure only a single (or at most two) distinct frequency.

Contribution: In this work, we consider the problem of using a
low-fps camera to optically estimate the vibration of a rotating ma-
chine, when the vibration consists of multiple distinct frequencies.
Note that the number of such frequencies is not known a-priori,
and may not be harmonics of one another. We make the following
contributions:

o Propose a multi-frequency strobing strategy: To infer multiple
unknown vibration frequencies, we propose an approach
where the stroboscope is operated sequentially at multiple
mutually-prime frequencies. (Our proposed approach may
be implemented using human-robot collaboration, where the
robot acts as the strobing source, in tandem with a wearable
camera worn by a worker.) We develop the mathematical
framework that expresses the aliasing effect created by the
use of such mutually-prime strobe frequencies.

o Efficient frequency estimation algorithm: We develop and
demonstrate an algorithm for multi-frequency vibration esti-
mation, based on a novel application of the Chinese Remain-
der Theorem (CRT). Our approach is much faster than the
alternative approach of incrementally increasing the strob-
ing frequency. It works on the residual set of p frequencies
obtained by each of the distinct strobing frequencies, es-
timating the lowest unknown frequency component first,
before iteratively re-applying it on the remaining p — 1 set
of unknown frequencies.

o Experimental validation: We experimentally demonstrate
that our purely at-a-distance low-fps approach can indeed es-
timate multiple frequencies, with an estimation error (0.12%)
that is equivalent to that obtained (0.08%) by a physically-
mounted accelerometer.

More broadly, this work introduces the possibility of jointly using
IoT devices (e.g., programmable LED bulbs or light probes from
a robot) and personal wearable devices (e.g., smartglass-mounted
cameras) to provide fine-grained monitoring of factory operations.

2 STROBOSCOPIC PRINCIPLE

We first mathematically express the impact of strobing and low-
fps video capture on the vibration signal. Assuming an unknown
periodic vibrating signal w(t) is sampled by a strobe-i.e., an infinite
optical pulse train (Dirac comb) p(t) = Y= _o 6(¢ — nTs) of known
period Ts. Then the resulting sampled signal w(t) can be expressed
as;

wi (1) = w(t) X p(t) <n
Wio) = —[W() © P(o) @)

where Ws(w) and P(w) are the fourier spectrum of ws(t) and p(t).
Then P(w) can be written as;

P(o) = 2T—’S’ Z 8(w — kws)

k=—c0

®)

where k € Z* and wj is the frequency of the optical sampling. Then
Ws(w) will be;
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o)

Z W(w — kws)

k=—c0

We(0) = —

= @

This sampled signal is then captured by a low fps camera, having
frame rate of w¢qm- The camera effectively acts as a low pass filter
(LPF) of cut-off frequency of w¢gm. The system needs to maintain
the following principles.

2.1 Condition of Strobing

From Equation 4, it is well understood that aliased frequencies will
be observed, unless the camera sampling rate is grater than or equal
to twice of (w — k X ws) (Nyquist sampling criteria [3]). Therefore,
the condition of aliasing-free strobing can be written as;

2X |w—k X ws| £ wcam

®)

Moreover, aliased frequency can also be observed because of fre-
quency folding phenomena, which can be written as;

(6)
We thus see that the aliased frequency will fall within the camera’s
sampling frequency, only if the above condition is satisfied. More

specifically, if k can be estimated, then the unknown vibration
frequency o can be obtained properly.

2X ||o =k X ws| = ©cam| £ Wcam

3 SYSTEM DESIGN AND IMPROVEMENT ON
IMAGE PROCESSING

We now briefly describe our set up to study the joint impact of
strobing and low-fps image capture. In our current work, we have
recreated a laboratory version of our envisioned infrastructure: this
laboratory version consists of a frequency-tunable audio speaker
(representing the machine being analyzed) and a programmable
LED array. As shown in Fig. 1, our system contains an array (20X 20)
of LED panel (for optical sampling), along with a 30-fps optical cam-
era. To get sub-multiple effects from the optical sampler, the LEDs
should be ’ON’ for a very short duration [11]. So, in our experiment
we have chosen 1% duty cycle for the optical sampler. Initially, a 60
Hz pulse train with 1% duty cycle is produced in optical sampler and
used to illuminate the rotating machine. The resultant images are
captured by the camera. For easy tracking of the resulting rotational
movement, a specific visual marker is attached to the machine (de-
tails of the procedure can be found in [8] and the entire system’s
performance analysis on different environmental conditions can
be founed in [6]), and the frequency spectrum is computed from
the time series representing the marker’s displacement pattern.
Based on the signal-to-noise ratio (SNR) of the resultant frequency
spectrum, the frequency of the pulse train (in optical sampler) is
increased.
Marker Enhancement: In [8], [9], the tracking was performed on
white image. However, white image can be split into red, green and
blue channel as shown in Fig. 2.(a). When we separately tracked
each of the RGB channels, we observed (see Fig. 2(b)) that the
SNR obtained was highest for the green image. Accordingly, for
improved accuracy, we only track the green channel of the marker.
In our previous work [8], we applied an incremental approach
of wg, to estimate the value of k as well as w. We utilize this same
Incremental strategy as our baseline for the problem of multiple
frequency vibration detection. However, we shall see that the esti-
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Figure 1: System Framework.
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Figure 2: SNR Improvement on Green Image Tracking.

mation process takes significantly longer, especially when multiple
frequencies are present.

4 MULTIPLE FREQUENCY VIBRATION
DETECTION

We now extend our analysis to the case where the vibrating sig-
nal w(t) having multiple frequency components [w1(t), wa(t), ...,
wn (t)]. As before, it is sampled by a probe p(t) having sampling
frequency ws. Then the resultant signal w(t) will be;

N
ws(t) = > [wi(t) x p(t)] Y]
i=1
In frequency domain, the above equation can be written as;
1 oo N
Wel@) = = D1 Wilor =~ kos)] ®)

S k=1 i=1

57

IoPARTS’18,June 10, 2018, Munich, Germany, 2018

Therefore, for multiple frequency vibration detection, the condition
of strobing can be written as (section 2.1);

N
Z |wi =k X @s| = ©opserved
i=1
N ©)

Z llwi —k X ws| = @cam| = Wobserved

i=1
where wypserved 1S the observed frequency by the camera. In order
to get some meaningful insight about the aliased frequency com-
ponents, w¢qm should be always greater than or equal to twice of

Wobserveds 1€ @observed < |@cam/2|.

4.1 Necessary and Sufficient Condition

Assume that w(t) is optically sampled by ws = [ws,, @s,, ..., s, ].

Then frequency determination is only possible if and only if max[ws,] >

max[wj], where i € [1,2,...,p] and j € [1,2,..., N]. In other words,
the optical sampler should have some prior knowledge about max{w; |-
i.e., it needs an upper bound on the highest feasible vibration fre-
quency. Otherwise, detected frequencies have modulo ambiguities

[12].

Multiple Frequency Detection

Detected

08F | T L el e Frequency Peaks|

0.6 -
04 B

“LAMABM YA A,

150

Normalized Signal Power (in dB)

100 200 250 300

Frequency (in Hz)

350 400

Figure 3: Multiple Frequency Detection.

For each sampling instances ws;; i € [1,2, ..., p], aset of wopserved
is obtained; if SNR[wypserveq] is above some acceptable limit.
Therefore, for each r; 1 < r < p, the residue set S, (w1, w2, ..., ON)
can be estimated from 9, assuming k € Z* and wcgm = 30. The
final residue set S will be S = [S1, Sy, ...,S,]. Then the multiple
frequency estimation function [10] can be written as;

N 1 <& N
ﬁm—%;mﬁr) (10)
where K is the kernel (non-negative function) and h > 0 is the
smoothing parameter and n is the no of element is S. Fig. 3 rep-
resents the multiple frequency detection plot of the above stated
approach.

Limitation: In our baseline Incremental approach, ws; is in-
creased by "1’ Hz in each iteration until ws;,, > max[wj]. This
proces can have very high latency [13]. To reduce this estimation
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latency, we need to both (i) develop a non-incremental approach
to choosing the set ws, and (ii) estimate w;, such that max[ws;] <
max[wj]. So, the main challenge for us is to efficiently remove the
"modulo ambiguities".

5 DETECTION IMPROVEMENT USING
CHINESE REMAINDER THEOREM BASED
APPROACH

To overcome the modulo ambiguities, a novel application of the
Chinese Remainder Theorem (CRT) [15], [14] is applied on S, pre-
suming k € Z* and weqm = 30. However, for the successful conver-
gence, the sampling set ws = [ws,, Ws,, ..., (usp] should be co-prime
in nature, which is the main condition of CRT. Now the problem
reduces to determining [w1, w2, ..., o] from the residue set S. The
likely presences of multiple frequencies, however, makes the more
complex because the residue set does not specify the order of the
residues w,p served, , With respect to j but only r sets of numbers.
Consequently, we adopt an iterative approach, whereby the mul-
tiple frequency can be estimated iteratively on the residue set of
p frequencies obtained by each ws;; i € p, estimating the smallest
unknown frequency first, before re-applying the approach on the
remaining p — 1 set of unknown frequencies.

Frequency Detection using CRT

1.2
Frequency detection proposed method

g Frequency detection using accelerometer

1F ]
g AR
=~ -« o - ~
y 0.8f =~ - :Detected 1
[]
= <€ |= = = . Frequency
o # Peaks
P06t ’
°
[J]
N
" o.4f 1
:
2 0.2t :

100 200 300 400 500

Frequency (in Hz)
Figure 4: Multiple Frequency Detection using CRT.

Detection Algorithm: The detail steps for the multiple frequency
vibration detection are given below;

Step 1: Take an arbitrary vector set (k1, k, ..., kp) €Ss.

Step 2: For each 1 < r < p, define a set;

I ={kr + n X ws,;kr < kr +nXxws,}

where n is an integer. All numbers in I, have same residue modulo
ws, , which is called as coset of k..

Step 3: There exist integers r1,r2,..,rq With1 < r; <y < ... <
ra < p, such that the residues k., ky,, ..., kr, are from a common
frequency (i.e, 7 =TI, NI, N...NT,, # 0). S0t = {N}.

Now check whether N is a valid frequency by checking if its residue
vector (k_l, s k;,)mod(a)sl, s a)sp) belongs to the set S. If not, find
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another setof 1 < r; <ry <...<rg <p,suchthatr =T, NI, N

... N Ty, # 0. Repeat the step, until N is a valid frequency denoted

by Ny €T.

Step 4:Forr = 1,2, ..., p, remove kp , = Nymodws, from S.

Step 5: Go to step 1 by replacing p with p—1and replace S(N1, Nz, ..., Np)
with S(N1, N2, ..., Np—1). Repeat the step until all N are determined.

6 PERFORMANCE RESULTS

We first experimentally study the accuracy of our proposed algo-
rithm, compared to an accelerometer-based [5] alternative. Multi-
frequencies (100, 140, 180 & 220 Hz) are generated in an audio
speaker (Fig. 5) with a mobile phone. The raw accelerometer data
is processed by a 10-point moving average filter. Fig. 4 shows the
comparative estimation between our proposed CRT-based visual
method and the accelerometer-based approach. Accelerometer-
based sensing results in a mean frequency estimation error of 0.08%,
compared to 0.12% for our proposed approach (the entire results
are shown in Table 1).

Table 1: Error Comparison (upto 500 Hz)

No. of Frequencies Accelerometer Proposed Method
3 0.07% 0.09%
4 0.08% 0.12%

The results demonstrate that our at-a-distance visual monitoring
technique can provide an effective and unobtrusive alternative.

Next, we compare the convergence time of our proposed tech-
nique to the baseline (incremental) approach. The results are pro-
vided in Table 2. We observe that the incremental technique takes
significantly longer to detect independent vibrational frequencies,
with the duration increasing super-linearly with the number of fre-
quencies. In particular, when the vibrating system has 7 component
frequencies, the incremental approach fails to converge within an
experimental bound of 1500 secs. In contrast, our proposed method,
based on mutually-prime strobe frequencies estimates frequencies
within our stipulated time, finishing, in all cases, within 350 secs.
While the approximately 6 minute duration can appear to be high,
we shall later discuss that the estimation procedure need not be con-
tinuous, but can in fact stitch together observations from multiple
non-contiguous time windows.

Table 2: Performance Comparison (upto 500 Hz)

No. of Frequencies Baseline (sec.) Proposed (sec.)
2 100-450 75-180
4 100-1500 75-220
7 >1500 75-350

6.1 Multi-Point Vibration Detection:

We also study the use of our visual technique for cases where differ-
ent parts of the machine vibrate at different frequencies. For such
situations, an accelerometer-based approach may not be ideal, as it
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would require placing a separate accelerometer at each location—
i.e., we will need prior knowledge about the movement behavior
of the machine. In contrast, an optical camera-based approach can
independently monitor the vibration frequency of different visual
markers-i.e., different locations on the same machine. As an exam-
ple, Fig. 5 shows an experimental setup, where two different parts
vibrate at different (and possibly multiple frequencies). Our CRT-
based visual approach is able to track both vibrations separately,
achieving a mean detection error rate of 0.44% for Point 1 and 0.18%
for Point 2. Our results suggest that our low-fps camera-based ap-
proach can be more powerful than traditional sensing systems in
this regards.

Single Frequency Detection at Point 1
Ground Truth=150 Hz

1 ~—— Detected Frequency
z

149.34 H:

[Ofremmenint
Frequency S

pectrum
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56 100 150 200
.

00 250 500
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S50 00
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N
@ - iy

Multiple Frequency Detection at Point 2
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. Detected Frequency
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N P .
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Frequency (in Hz)
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Figure 5: Multiple Point Frequency Detection.

7 DISCUSSION

We believe that our work illustrates the promise of such optical
sampling-based frequency estimation. However, there are several
additional issues to consider and challenges to solve before we can
realize a complete practical system.

Moving to Wearable Sensing: At present, our system utilized a
fixed, low-fps camera. Our vision is to replace this with a smartglass-
mounted camera, that unobtrusively captures such image samples
as a factory worker goes about his regular work. In this case, the
smartglass’s field of view will change continually, and we will need
additional fusion of wearable inertial sensor data to first estimate
the field-of-view of the wearable camera, prior to our frequency
analysis. Moreover, the overall system design will then also need to
consider the energy overheads of such continuous image capture.
As a consequence, it is likely that the optical sampling process
(for a particular machine) will not be continuous, but obtained
in a bursty fashion (a set of temporally separated segments). We
will have to adapt our estimation algorithms to account for such
non-contiguous observations.

Use of Smart LEDs or Assistive Robots: Our current system uti-
lizes a single LED panel, with strobing performed sequentially. Our
eventual vision is to embed such high-frequency strobing as part of
smart lighting equipment-i.e., using the spatially distributed set of
LED bulbs on the factory floor. In this case, each bulb might have
an independent strobing mechanism, and the resulting illumination
at any one location will be due to the superposition of multiple con-
current spatially distributed strobes. Alternatively, the light source
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may come from a collocated robot, such that it updates its direc-
tional light beam continually based on real-time information on the
worker’s visual pose—i.e., the direction of the field-of-view of the
worker’s smartglass. These approaches will require us to modify
and enhance our estimation process.

8 CONCLUSION

We proposed an unobtrusive, optical sensing approach that uses
cleverly selected strobing frequencies to detect an equipment’s
vibration frequencies. We show that our system is capable of de-
tecting multiple frequencies efficiently, with estimation errors be-
low 0.1% and convergence times that are 3-8 times lower than a
baseline incremental method. Our system can also be applied to
situations where different machine parts exhibit distinct vibration
behavior. In ongoing work, we shall explore the development of
an integrated framework, where such strobing is combined with
wearable-mounted cameras to provide continuous sensing of fac-
tory equipments in an opportunistic fashion.
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