
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

2-2019 

Bilateral dependency neural networks for cross-language Bilateral dependency neural networks for cross-language 

algorithm classification algorithm classification 

Duy Quoc Nghi BUI 
Singapore Management University, dqnbui.2016@phdis.smu.edu.sg 

Yijun YU 

Lingxiao JIANG 
Singapore Management University, lxjiang@smu.edu.sg 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Software Engineering Commons, and the Theory and Algorithms Commons 

Citation Citation 
BUI, Duy Quoc Nghi; YU, Yijun; and JIANG, Lingxiao. Bilateral dependency neural networks for cross-
language algorithm classification. (2019). 26th IEEE International Conference on Software Analysis, 
Evolution and Reengineering: SANER 2019: Hangzhou, China, February 24-27: Proceedings. 422-433. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4367 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4367&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4367&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4367&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Bilateral Dependency Neural Networks for
Cross-Language Algorithm Classification
Nghi D. Q. Bui

School of Information Systems
Singapore Management University
dqnbui.2016@phdis.smu.edu.sg

Yijun Yu
Center for Research of Computing

The Open University, UK
yijun.yu@open.ac.uk

Lingxiao Jiang
School of Information Systems

Singapore Management University
lxjiang@smu.edu.sg

Abstract—Algorithm classification is to automatically identify
the classes of a program based on the algorithm(s) and/or data
structure(s) implemented in the program. It can be useful for
various tasks, such as code reuse, code theft detection, and mal-
ware detection. Code similarity metrics, on the basis of features
extracted from syntax and semantics, have been used to classify
programs. Such features, however, often need manual selection
effort and are specific to individual programming languages,
limiting the classifiers to programs in the same language.

To recognize the similarities and differences among algorithms
implemented in different languages, this paper describes a
framework of Bilateral Neural Networks (Bi-NN) that builds a
neural network on top of two underlying sub-networks, each of
which encodes syntax and semantics of code in one language. A
whole Bi-NN can be trained with bilateral programs that im-
plement the same algorithms and/or data structures in different
languages and then be applied to recognize algorithm classes
across languages.

We have instantiated the framework with several kinds of
token-, tree- and graph-based neural networks that encode and
learn various kinds of information in code. We have applied
the instances of the framework to a code corpus collected from
GitHub containing thousands of Java and C++ programs imple-
menting 50 different algorithms and data structures. Our evalua-
tion results show that the use of Bi-NN indeed produces promising
algorithm classification results both within one language and
across languages, and the encoding of dependencies from code
into the underlying neural networks helps improve algorithm
classification accuracy further. In particular, our custom-built
dependency trees with tree-based convolutional neural networks
achieve the highest classification accuracy among the different
instances of the framework that we have evaluated. Our study
points to a possible future research direction to tailor bilateral
and multilateral neural networks that encode more relevant
semantics for code learning, mining and analysis tasks.

Index Terms—cross-language mapping, program classification,
algorithm classification, code embedding, code dependency, neu-
ral network, bilateral neural network

I. INTRODUCTION

Algorithm classification is a long-standing problem related
to program reuse and synthesis [8], [11], [47]. It aims to assign
class labels or concepts to programs based on code structures
and semantics [28]. Automated classification of a piece of code
could ease a number of software engineering tasks, such as
program comprehension [28], concept location [44], algorithm
plagiarism detection [55], bug fix classification [27], [41] and
malware detection [10]. The algorithm labels for the code can

serve to some extent as the summary of the code [39], which
help to modularize, abstract, analyze, and reuse the code.

Even though it is different from the problem of program
equivalence checking [7], this problem remains challenging
because what is considered to be the “same algorithm” can
look different under different situations. An “appropriate” clas-
sification should not only take sufficiently detailed information
about the code into consideration, but also ignore irrelevant
details depending on the abstraction level of an algorithm class.
For example, a program A implementing bubblesort for
an integer array may not be the “same” as a second program B
implementing bubblesort for integers stored in a linked list,
and both of them may not be the “same” as a third program
C implementing mergesort, while the three programs may
all be considered the “same” as variant of sorting algorithms.

It can be even a greater challenge to bring the benefit of al-
gorithm classification across different programming languages,
so as to facilitate program reuse and synthesis across languages,
reducing the need of reimplementing the “same” algorithms in
different languages repeatedly.

Past studies on algorithm classification can neglect differ-
ences in different programming languages by simply processing
the programs as a bag or a sequence of tokens or simple call
graphs [7], [44], which do not utilize the rich code syntactic
structures and semantics, or by taking advantages of system-
level APIs used and/or higher-level descriptions available in
human languages [52], [54]. On the other hand, program clas-
sification and functional cloning studies utilizing code syntax
structures are mostly limited to individual languages [22], [23],
[31], [51], which have not been adapted to the classification
problem across languages.

Our research goal here is to find a suitable representation
for given pieces of code in different languages that can be
used to identify the algorithm classes of the code. Specifically,
we present a framework of bilateral neural networks (Bi-NN),
an idea adapted from the area of neural machine translation
[9], [16], [50] and Siamese neural networks [9], [32], aiming
to generalize a previous study on cross-language program
classification [6], to encode code syntactic and semantic
information for programs written in two different languages,
and train the bilateral neural networks to recognize code
implementing the same algorithms across languages. Two

1



technical aspects of the framework are important for the
effectiveness of cross-language algorithm classification:

(1) One is to build a bilateral structure of neural networks that
consists of two (thus the name bilateral) underlying neural
networks, each of which encodes code in one language,
and another classification model on top of the two to link
them together.

(2) The other is to explicitly embed code dependencies
(e.g., variable def-use relations) into the intermediate
representations (IR) of code for the neural networks to
learn code representations.

Such a framework enables us to explore different ways
to use different kinds of code intermediate representations
with different kinds of neural networks to search for optimal
algorithm classification solutions. Every instance of Bi-NN can
be trained with bilateral programs that implement the same
algorithms and/or data structures in two different languages.
The trained Bi-NN models can then be applied to recognize
code implementing the algorithms and/or data structures in
different languages.

In this paper, we instantiate the Bi-NN framework with token-
, sequence-, tree-, and graph-based machine learning techniques
to train different Bi-NN models on large code bases to classify
programs into different algorithms. Empirical evaluations on
two code bases, (1) 52000 C++ files from previous studies
written by computer science students implementing 104 differ-
ent algorithms and (2) 4932 unique Java and 4732 unique C++
single-file programs from GitHub implementing 50 different
algorithms, show that the Bi-NN model trained by tree-based
convolutional neural networks (TBCNN) using our custom-built
dependency trees (DTs) representing code syntax and semantics
achieves a reasonable accuracy of 86% in classifying cross-
language programs according to the ground-truth algorithm
class labels. The accuracy of this model (referred to as a
Bilateral Dependency Tree Based CNN model, or Bi-DTBCNN
in short) is the highest among several other Bi-NN models based
on bags-of-words, n-gram, tf-idf, long-short term memeory
(LSTM), gated graph neural network (GGNN), etc. Even for
the simpler problem of algorithm classification in a single
language, our evaluations show that DTBCNN models (without
using the bilateral structure) achieve the highest classification
accuracy of 93% among different models we have evaluated.

The main conceptual and empirical contributions of the paper
are as follows:

• We generalize a bilateral neural network (Bi-NN) frame-
work for the cross-language algorithm classification task;

• We adapt various learning techniques, including n-grams,
bags-of-words, tf-idf, tree-based convolution neural net-
works (TBCNN), long short-term memory (LSTM), and
gated graph neural networks (GGNN) to instantiate the
bilateral code representation framework to represent both
syntax and semantics for algorithm classification;

• We custom-build a dependency tree-based convolutional
neural network (DTBCNN) as an extension to TBCNN
to encode semantics for more accurate classification;

• We collect a benchmark of 9664 unique programs in
Java and C++ implementing 50 algorithms, and eval-
uate the performance of various Bi-NN models. The
results demonstrate the effectiveness of Bi-NN models
for cross-language algorithm classification. In particular,
Bi-DTBCNN achieves the highest classification accuracy
in our evaluation.

The rest of the paper is organized as follows. Section II
overviews the Bi-NN framework for the task of algorithm
classification across languages. Section III describes various
instantiations of the Bi-NN framework such as dependency
trees, gated graphs, LSTM, and n-gram. Section IV evaluates
these instantiations, providing empirical results to identify best
performing instances, and discusses possible threats to validity.
Section V discusses related work on algorithm classification and
machine learning techniques, and finally Section VI concludes.

II. FRAMEWORK OF BILATERAL NEURAL NETWORKS

A. Work Flow

For the purpose of cross-language algorithm classification,
we want to align code representations for different programming
languages so that a model learned from algorithms in one
programming language can be used to recognize code imple-
menting the algorithms in another language. To achieve this
purpose, a work flow based on the Bilateral Neural Networks
(Bi-NN) model can be used; it consists of two stages (see
Figure 1): (1) training of an instance of Bi-NN with a set of
input program pairs in two languages, and (2) classification by
applying the trained Bi-NN models to pairs of test programs.

The training stage takes in pairs of programs in two
programming languages as input. Each program in a pair has an
algorithm class label, indicating whether the pair implements
the same algorithm or not. Parsers are used to convert the
input programs to certain intermediate representations (IR) that
expose code syntax and semantics, which can be based on
tokens, sequences, trees, or graphs. Then, the IR of all the
input pairs, either implementing the same algorithm or not, is
used to train a Bi-NN model that minimizes the classification
errors for the inputs.

The classification stage takes in a pair of test programs in
two programming languages without knowning their algorithm
class labels, converts the inputs into the same kind of IR
as those used in the training stage, and uses the trained Bi-
NN model to predict the likelihood for the two test programs
belonging to the same algorithm class. We call this classification
a binary classification as its output only tells whether or not
two programs belong to the same algorithm class.

One can also utilize such binary classifications to determine
the algorithm class for one given test program. For each known
algorithm class, one can pick an arbitrary program from the
class to form a pair of input programs with the given test
program, and feed them into the trained Bi-NN model to predict
the likelihood for the pair to be in the same algorithm class.
Repeating this step for every known algorithm class produces a
set of likelihoods; each indicates the likelihood of the given test

2



Fig. 1. Overview of the cross-language algorithm classification work flow Fig. 2. Setting of single-language algorithm classification

program belonging to the corresponding algorithm class. From
these predictions, the algorithm class label with the highest
likelihood is assigned to the given test program. If none of the
likelihood is high enough (e.g., above 0.5), one may choose
to leave the test program as unknown.

The capability of the classification is naturally limited
by the known algorithm classes used for training. In our
evaluation later (Section IV), we show the effectiveness of such
classifications for the numbers of algorithm classes ranging
from 10 to 104.

B. The Design of Bi-NN

The key component of the proposed work flow is the Bi-NN.
It is constructed as two underlying subnetworks and another
classification model (which can be a neural network or other
kinds of classifiers) on top of the two.

Each of the two underlying subnetworks can be any neural
network, such as a LSTM, GGNN, or others, as we show
later in this paper. During the training, each subnetwork takes
in code representations of one-specific language to recognize
the code in that language. For our cross-language algorithm
classification task, the two subnetworks are designed to take in
code representations of different languages. If both subnetworks
took in code representations of the same language, the Bi-NN
could be suitable for single-language classification too (see the
next subsection).

The classification model on top connects the two underlying
subnetworks. It can be another neural network. As illustrated
in Figure 1, It consists of (1) two pooling layers, each of
which aggregates the code learning output from one of the
two subnetworks, (2) a “joint feature representation layer” that
concatenates the pooling outputs of the two subnetworks, (3)
two or more fully connected hidden layers above the joint
feature representation layer, and (4) a Softmax layer on the
top to determine how likely the input code pair belongs to
the same algorithm class. The layers of (3) and (4) essentially
form a classifier that can be trained for the inputs from the
layers below. They do not have to be neural networks, and they

may be substituted by any classifier, such as Support Vector
Machines (SVM [21]) and Random Forests [19].

Note that, when we instantiate the Bi-NN framework with
different machine learning models, it becomes essentially
the same as Siamese networks in the literature [9]. Siamese
networks are a class of neural network architectures that
contain two (or more) subnetworks, which are merged via
an energy cost function over a joint layer on top of the
subnetworks. Its high-level architecture is similar to the Bi-
NN framework illustrated in Figure 1. Many choices for the
subnetworks and the loss function over the joint layer can
be adopted for different tasks. Section III provides ways to
instantiate the Bi-NN framework with different concrete code
representations and machine learning models for the task of
cross-language algorithm classification. For cross-language
training specifically when node types are used, we implement
an additional alignment step to ensure the shared node types
multiple language are mapped to the same node.

C. Single-Language Classification

Besides the task of cross-language algorithm classification,
we can also use the Bi-NN framework to classify programs in
a single language. That is, the input programs are all in one
language only. Although we may use both sides of the Bi-NN
framework as mentioned in the previous subsection to train the
classification model, it is more straightforward to use “half” of
the Bi-NN framework. As illustrated in Figure 2, by disabling
the “joint feature representation layer” and the right side of
the Bi-NN framework, we can obtain a classification model
that can be trained with programs in one language to classify
algorithm classes in the same language too.

III. INSTANTIATIONS OF BI-NN

The Bi-NN may be instantiated with different kinds of
structures to represent various syntax and semantic information
of given pieces of code and different kinds of neural networks
to learn the code representations. This section presents several
variants that we consider to be promising for learning and
classifying algorithms.

3



Fig. 3. Structure of a TBCNN, adapted from [31]

A. AST and Tree-Based Convolutional Neural Networks

Abstract syntax trees (AST) are a very commonly used code
representation that faithfully encodes the syntax of a program,
and given a well-formed AST, the responding program can
be regenerated. Thus, it is a natural way to use AST as the
intermediate representation and a tree-based neural network to
learn the representation in the Bi-NN framework.

Mou et al. [31] have proposed to use tree-based convolutional
neural networks (TBCNN) to learn AST and classify C++
programs. Figure 3 illustrates the structure of a TBCNN. Each
AST node is represented as a vector by using an encoding
layer that basically embeds AST node types into a continuous
vector space where contextually similar node types are mapped
to nearby high-dimension points in the vector space. For
example, the node types ‘while’ and ‘for’ are similar because
they are both loops and thus their vectors will be close to
each other. Given an AST where every node is turned into a
vector representation, Mou et al. [31] uses a CNN and a set of
fixed-depth subtree filters sliding over the AST to “convolute”
structural information of the entire tree. A dynamic pooling
layer [46] is applied to deal with varying numbers of children of
AST nodes to generate one high-dimension vector to represent
the whole tree. Finally, they use a hidden layer and an output
layer, similar to the common neural network on top in our
Bi-NN framework, to classify the programs.

The TBCNN was used to classify algorithms written in
one language only and it only encodes code syntax without
explicit semantics, but it inspires us to improve it for cross-
language classification that encodes more code semantics. We
can instantiate the two subnetworks in the Bi-NN framework
with two TBCNN for different languages, say, one for Java,
and the other for C++, and then we can train a bilateral tree-
based convolutional neural network model (Bi-TBCNN) for
cross-language algorithm classification.

B. Dependency Trees and TBCNN

Although abstract syntax trees can faithfully encode the
syntax of a program, it may not be obvious or explicit about
various kinds of semantic information in the program, such
as def-use relations, call relations, class inheritances, etc.
Therefore, we consider encoding such semantic dependency
information directly into abstract syntax trees so that the
dependency tree based code representation can help tree-based
neural networks to learn code semantics more accurately to
recognize code of different algorithms.

Our basic idea is to insert additional nodes that represent
some semantic information relations into AST to form de-
pendency trees: given a program or a code snippet, it is first
parsed into AST represented in the Pickle format using our

tool; then, dependency relations, especially def-use relations,
are extracted from the code using srcML and srcSlice [5], [12],
and the nodes related to a Def are appended to the nodes
representing the uses of the Def, and vice versa.

For example, Figure 4 (ignoring the boxes with dashed lines
first) represents the AST of the following piece of code:
int a = 1; int b = 2; int x = a * b;
y = x + 1; z = x + 2;

In this example, the defs “int a = 1” and “int b = 2”
affect the definition of the variable x in “int x = a * b”,
and x is used to compute both y and z. Therefore, the expanded
dependency tree is a tree shown in Figure 4 (including the boxes
with dashed lines), where (1) the subtrees in the original AST
representing “int x = a * b” are duplicated and inserted
as children of the nodes representing the definitions of a and
b respectively; (2) the subtrees representing the definitions
of y and z are duplicated and inserted as children of the
node representing the definition of x; and symmetrically, (3)
the subtrees representing the definitions of a and b are also
duplicated and inserted as children of the nodes representing the
uses of a and b respectively; and (4) the subtrees representing
the definition of x are duplicated and inserted as children of
the nodes representing the uses of x.

Notice that many subtrees are duplicated multiple times in
our dependency trees. In the literature, program dependency
graphs are typically used to avoid duplication, by referring to
the dependencies as edges between dependers and dependees.
However, our intuition is that representing the relations as trees
and allowing such node duplication can have an advantage
of separating the contexts of each use-def from each other
to faciliatate context-sensitive learning while making it more
efficient to train tree-based neural networks than graph-based
ones. Therefore, we instantiate Bi-NN with dependency tree-
extended tree-based convolutional neural networks to train
cross-language algorithm classification models, which we
simply call Bi-DTBCNN.

Apart from tree structure differences between DTBCNN and
TBCNN, we also employ a different vector embedding strategy
for the tree nodes to bootstrap the training of the tree-based
neural networks with more code semantics.

Tree-node embedding for boostrapping the training: As
illustrated in Figure 3, the training of TBCNN needs a vector
representation for each tree node. Mou et al. [31] use the
“coding criterion” from Peng et al. [40] to learn the vector
for each AST node type. We adapt the skip-gram neural
network model used for word2vec [29] to the context of
AST nodes. The skip-gram model, given an input word in
a sentence during training, looks at the words spatially nearby
and picks one at random, and produces the probability for
each word in the whole vocabulary to be a “nearby word” of
the input word; i.e., it can be used to “predict the contextual
words for an input word”. When such a model is trained to
produce the probabilities of nearby words, its hidden layers
can produce numerical vectors representing the words, i.e., the
word embeddings.

4



Fig. 4. A Sample AST Expanded into a Dependency Tree.

We apply this idea for the so-called AST2vec task. That is,
we view AST node types as the vocabulary words and consider
nodes to be “nearby” in the AST if they have parent-child or
sibling relations, and train a skip-gram neural network model
using all the AST generated from our code base to produce the
probability for each node type in the whole vocabulary to be
a child of any given node type. The size of the vocabulary of
node types for a programming language is rather small. Based
on the unified grammar in SrcML, we estimate that the size
is below 450, even when all AST node types from C/C++,
C#, Objective-C, and Java are combined. After training the
AST2vec for all node types, we obtain a numerical vector, i.e.,
an embedding, for each node type, and use the vectors to start
the training of DTBCNN and Bi-DTBCNN models.

C. Gated Graph Neural Networks (GGNN)

GGNN and Gated Graph Sequence Neural Networks have
been proposed as a general way to learn graphs [26]. Allamanis
et al. [4] custom-build program graphs to encode both syntax
and semantics of C# source code and extend GGNN to learn the
graphs for several software maintenance tasks such as predicting
misused variable names. Although our algorithm classification
tasks are different from those published in previous GGNN-
based tasks, we adopt the same schema for encoding the code
as graphs, as shown in [4] that the graphs may encode more
code semantics and graph-based neural networks may produce
better code representations .

Each sample (i.e., program compilation unit) is represented
by a graph as follows. The AST are encoded as a set of
edges representing Child relations, whilst the ordering of
children are kept by the NextSibling relations. Since our
classification task does not care about the exact names of the
identifiers compared to the variable misuse prediction task
in [4], we can further reduce the number of nodes in the graph.

On the semantic side, the ‘def-use’ relations we obtained
from program slicing are encoded directly into edge types
LastWrite and LastUse. Following the schema used
in [4], the ‘returns’ statements are recorded as a special
relation ReturnsTo. Similarly, the LastUse relations are
inferred from the otherwise discarded variable names, and the
ComputeFrom relations are derived from the variables used
in right-hand side and left-hand side of assignment expression
AST. In this encoding, these semantic relations are rather
agnostic to the concrete language syntax. It is therefore our hope
that the graph representation can capture more commonalities
between the structures. Compared to TBCNN encodings, such
semantic edges are explicitly identified by static analysis tools,
instead of learnt by the NN from the extracted features.

In this work, we have faithfully used the suggested approach
in the original GGNN work [26] to aggregate the node-level
embeddings learnt from graph propagation to the graph-level.
Even though the schema from early work is adopted [4], there
are still many configuration in the encoding to adjust, e.g.,
whether or not to encode the backward edges for semantic
relations, and for our algorithm classfication tasks the best
configuration needs to be found empirically. 1

D. Token and Sequence based Neural Networks
There are also many other techniques based on tokens

or token sequences or others to learn code representations
[3], many of which have originated from natural language
processing (NLP). Most of the techniques have the common
underlying idea that whatever code representations can be
turned into feature vectors which can then be classified through
various machine learning models. This common underlying
idea also aligns well with the Bi-NN framework, and we can
instantiate the framework with those techniques too.

1The implementation of GGNN: https://github.com/bdqnghi/ggnn_graph_
classification

5



Particularly, we instantiate the Bi-NN framework with the
following commonly used models for our evaluation later.

BoW: The bag-of-words (BoW [25]), a.k.a. vector space
model, counts the occurrences of each token as a feature
to generate feature vectors for input. We adapt the model
to generate vectors for source code.

N-gram: The BoW model does not consider the ordering
among words, while n-gram models partially consider the
ordering by using the count of n consecutive tokens in the
input as a feature to generate feature vectors. Hellendoorn
and Devanbu [17] found that a n-gram model (where n
can be 3 or 5) can be a strong baseline for modeling large
amount of source code. Notice that BoW can be seen as
a special case of n-gram (i.e., unigram) models.

Tf-idf: The term frequency–inverse document frequency
weighting scheme gives different weights to tokens of
different occurrence frequencies: tokens appearing more
frequently in one input are given higher weights while
tokens appearing more frequently cross different inputs
are given lower weights. As indicated in [48], such feature
vectors may be better in identifying features that are more
discriminative across programs, e.g., the token “bfs” for
programs involving breadth-first searches.

LSTM-based: The above language models generate feature
vectors by simply counting consecutive tokens, which
may miss relations among separated tokens. Some neural
network (NN) based models, such as long short-term
memory (LSTM) [20], can take as input word embeddings,
instead of token counts, to learn sequences better. In the
literature, Siamese-LSTM [32] has been shown to achieve
good performance for matching sentences in different
natural languages. Therefore, we instantiate the Bi-NN
framework with LSTMs to construct a Siamese-LSTM
for comparison too. In our case, we use word2vec [30] to
train the embedding vectors for tokens in C++ and Java
corpus respectively. Then, the word2vec vectors for C++
tokens and Java tokens are fed as input into each of the
two sub-LSTMs to train the whole Siamese-LSTM.

We have implemented various preprocessing steps to nor-
malize tokens in source code as we know that not all tokens in
programs are useful for determining code semantics. Sample
preprocessing steps are removal of punctuation characters,
identifier splitting based on CamelCase and underscores,
converting all tokens into lower cases, and replacing single-
letter variable names with a unified “id”, etc.

For the classification model on top, we use fully-connected
neuron layers with a Softmax output for the Siamese-LSTM.
The Softmax classifier, which can be seen as the Multinominal
Logistic Regression, is a classifier for multi-class classification.
The Softmax layers can also be used as the classifier for the
BoW, n-gram, tf-idf models where the feature vectors are
based on token counting. Although we can also use any other
classifier, such as SVM and Random Forests, instead of the
Softmax layers, we use Softmax consistently through this paper

for easier comparison and leave evaluation on the effectiveness
of different classifiers to future work.

IV. EMPIRICAL EVALUATION

A. Datasets

We use two datasets for evaluation. The first dataset inherits
from the TBCNN work by Mou et al. [31], let’s call this dataset
as Dataset A. This dataset includes samples of 104 program-
ming problems used in university programming lectures, and
each class comprises of 500 different C++ programs. The total
of 52,000 samples in this dataset is used to evaluate whether
our implementation of TBCNN can correctly reproduce the
same level of performance compared to [31].

For cross-language algorithm classification, however, the first
dataset is insufficient because it only has C++ samples. There-
fore, the second dataset is crawled from the GitHub, which
contains 50 distinct algorithms. We use GitHub Developer APIs
to retrieve the algorithm instances for each given algorithm
class in each programming language. We use the name of
the algorithms as the keywords to search for the files whose
names or contents contain such keywords.2 For the evaluation
purpose, we collect the same algorithms in both C++ and Java.
To prevent from getting toy examples, we only retrieve the
files of a size larger than 500 bytes.

The raw samples from GitHub, however, contain clones
which may affect the training performance. To reduce the
impact of duplicated data on classification results, we use
NiCad [13] to detect clones among the data, and remove all
of the Type 1, Type 2 and Type 3 clones with a dissimilarity
lower than 10%. After the clone removal, we obtained 4,932
algorithm files in Java and 4,732 for C++. On average, each
class contains from 90 to 100 programs.

For the training and testing purpose, we divide either the
C++ or Java dataset into the training set and testing set with a
split ratio of 80/20 for the programs per class, and use 80% of
the data for training and 20% of the data for testing. To form
the pairwise data for the cross-language settings, we take each
program in one language and pair it up with another program
in the other language. Given all the combinations of the C++
and Java programs in the training set, we have about 312K
pairs of bilateral programs implementing the same algorithm
in different languages, and more than 15 millions of pairs of
programs that implement different algorithms. Because of the
imbalance, we only randomly select 312K pairs that implement
different algorithms to balance the training and testing data for
binary classification.

B. Implementation and Research Questions

We have implemented multiple instantiations of the Bi-NN
framework (cf. Section III) for evaluation and comparison:
1) BoW model, 2) 3-gram model, 3) 5-gram model, 4) Tf-
idf model, 5) Siamese-LSTM model, 6) Bi-TBCNN model,
7) Bi-DTBCNN model, and 8) Bi-GGNN model.

2A detailed list of the algorithms can be found here:
https://github.com/bdqnghi/bi-tbcnn/blob/master/algorithms.txt

6



We adapt srcML to get Java and C++ programs into AST,
and we annotate the AST using def-use relations extracted by
srcSlice [5]. From these AST and the def-use relations we
build dependency trees and derive GGNN-compatible graphs.
We use Tensorflow3 to build our Bi-NN. For the hidden
layers, we add dropout with the probability of 0.7 to prevent
the models from over-fitting. We use leaky ReLU as the
activation function of the hidden layers. The GGNN encoding is
implemented on the basis of the schema provided by Miltiadis
et al. [4] and adapted by a preprocessing step to convert node
tokens into node types, then the GGNN implementation is
used to train/test the converted code graphs. Our techniques
are implemented in a mix of Python and Bash scripts 4.

1) Research Questions: For our study on algorithm classifi-
cation, we measure the effectiveness of each model by using
the usual accuracy metric for the classification results. I.e.,
for a given set of test inputs, the accuracy of a model is
the percentage of the tests for which the model produces a
correct classification according to the ground-truth labels of
the tests. Two kinds of classifications are considered in this
paper: binary classification for determining whether or not
two programs in two different languages implement the same
algorithm (cf. Section II-A), and multi-class classification for
determining which algorithm class a given program implements
(cf. Section II-C).

We aim to compare the models in various settings against
each other by answering the following research questions:
RQ1 Which instantiation of the Bi-NN framework achieves

the best classification accuracy?
RQ2 Does this best instantiation for cross-language classifica-

tion achieve better classification accuracy than others in
single-language settings too?

RQ3 How sensitive is this best instantiation when the number
of classes varies?

RQ4 Does adding dependencies in the code representations
achieve better classification accuracy?

We run our evaluations on a server machine with an Intel
Xeon CPU E5-2640 v4 and an Nvidia P100 GPU with 12GB
of memory and 4.7 TeraFLOPS double-precision performance.
The server is shared among multiple users and its workload
may affect the time measurements of the evaluations.

C. Summary of Classification Results
We provide summarized answers to the research questions

here and present more details in later subsections.
RQ1 To classify programs across languages, we found that

all the statistical language models, such as tf-idf, bag-of-
words, n-gram, and LSTM can be employed, but with
different effectiveness. Amongst various instances of Bi-
NN models, our Bi-DTBCNN model achieves a better
cross-language classification accuracy of 86% than others
ranging from 46% to 77%, but at the price of being the
slowest in training (see Table I).

3https://github.com/tensorflow/tensorflow
4The code and evaluation results are available at https://github.com/bdqnghi/

bi-tbcnn

TABLE I
RESULTS FOR CROSS-LANGUAGE BINARY CLASSIFICATION BY DIFFERENT

CODE LEARNING TECHNIQUES.

Model Accuracy Training Time(hm)

Bag of words 0.46 5m
3-grams 0.51 5m
5-grams 0.52 5m
Tf-idf 0.49 7m
Siamese-LSTM 0.73 1h50m
Bi-TBCNN 0.77 3h10m
Bi-GGNN 0.76 5h50m
Bi-DTBCNN 0.86 8h25m

RQ2 All the models can be adjusted to recognize algorithm
classes in a single language (SL) too (cf. Section II-C).
Our DTBCNN models achieves an accuracy of 91% and
93% for Java and C++ respectively, the highest among
other models and much better than the cross-language
(CL) settings (see Table II).

RQ3 The number of algorithm classes has varying effects on
different learning models. In both SL and CL settings,
DTBCNN models maintain relatively good accuracy above
93% when the number of classes increases, whilst GGNN
performance is much more sensitive and its accuracy
decreases from 94% to 66% when the number of classes
increases from 10 to 50 (see Table III).

RQ4 DTBCNN with dependencies achieves significantly better
accuracy than TBCNN for the binary cross-language
classification task, improving it from 77% to 86% for
the Github dataset (see Table IV). For the single lan-
guage classification task, DTBCNN achieves comparable
accuracy to TBCNN (see Table II), which may imply that
making implicit dependencies explicit in a single-language
may not be necessary.

D. Details of Classification Results

RQ1: Results on Different Code Learning Techniques:
Table I shows the results of various models for the binary cross-
language algorithm classification task. The training time in
Table I is measured as wall clock time by taking the average of
3 separate runs per configuration. The termination condition for
each training depends on whether the loss function of a model
reaches a certain threshold or the number of iterations/epochs
in training exceeds a certain limit. The time needed to classify
a test program is typically very short within a second.

The results show that NN-based models perform significantly
better than the other token-counting based models (BoW,
n-gram, and tf-idf). Our Bi-DTBCNN achieves the highest
accuracy of 86%, but it takes the longest training time. GGNN
training is faster than DTBCNN because both gated graphs and
dependency trees are extensions of ASTs and our custom-built
dependency trees in fact have more nodes than gated graphs
although gated graphs may have more edges. Optimizing tree
or graph representations of code and the training algorithms
can be useful future research for better code learning.

RQ2: Results on Single-Language Classification: For each
of TBCNN, DTBCNN and GGNN, we train a single-language
model using the Java corpus and another single-language

7



TABLE II
SINGLE-LANGUAGE ALGORITHM CLASSIFICATION RESULTS

Model

Dataset
Github A

C++ Java C++
TBCNN, Mou et al. [31] 0.93 0.89 0.93

GGNN, Allamanis et al. [4] 0.66 0.56 0.49
DTBCNN 0.93 0.91 0.93

model using the C++ corpus, and compare their classification
accuracies. Table II shows the results. DTBCNN models slightly
improve the classification accuracies of TBCNN models [31],
which are also higher than GGNN models.

RQ3: Results on Sensitivity Analysis wrt Numbers of Classes:
We hypothesize that the number of algorithm classes would
affect the performance of all the code learning techniques.
In particular, it would be interesting to find out whether the
numbers of classes affect GGNN more than tree-based models.

Thus we perform the sensitivity analysis by reducing the
number of classes to see how it affects the performance of
the models in both single- and cross-language settings. As
shown by the results in both SL and CL settings in Table III,
DTBCNN models maintain relatively good performance when
the number of classes increases, whilst GGNN performance is
more sensitive to the number of classes. For SL settings, both
GGNN and TBCNN perform well with 10 classes, reaching
around 90% accuracy or better for both Github Dataset and
Dataset A. However, when the number of classes increases, the
GGNN cannot keep up the good performance but reduces the
accuracy drastically, e.g 66% for Github C++ Dataset with 50
classes and 45% for Dataset A with 50 classes. On the contrary,
DTBCNN can still maintain superior performance around 90%+
accuracy. The same situation occurs for cross-language (CL)
settings: both Bi-GGNN and Bi-DTBCNN perform well when
there are 10 classes in sub-components, but when the number
of classes increases, the performance of Bi-GGNN drops and
is more volatile than that of Bi-DTBCNN.

For SL settings, both GGNN and TBCNN perform well
with 10 classes, reaching above 90% accuracy for both Github
Dataset and Dataset A. When the number of classes increases to
50 for Github Dataset and 50 or 104 for Dataset A, the accuracy
of GGNN reduces drastically, e.g., 66% for Github C++ Dataset
with 50 classes and 45% for Dataset A with 104 classes. On the
contrary, DTBCNN can maintain its performance above 93%.
The same situation occurs for cross-language (CL) settings:
both Bi-GGNN and Bi-DTBCNN perform well for 10 algorithm
classes; when the number of classes increases, the performance
of Bi-GGNN drops and is more volatile for different runs than
that of Bi-DTBCNN.

RQ4: Results on Using Dependencies in the Models: A
major intuition for adding dependencies into tree or graph
based code representations is to expose more code semantics
to help machine learning techniques to learn better. GGNN [4]
is built on such an intuition to add many different kinds of edges
into ASTs to form gated graphs, and it is shown to be useful
for predicting variable names. For DTBCNN, we also want to
find out whether adding dependencies into ASTs contaminates

TABLE III
SENSITIVITY ANALYSIS

Model Dataset Num Classes
Setting

SL CL
C++ Java

GGNN

Github
50 0.66 0.56 0.76
30 0.93 0.88 0.73
10 0.94 0.94 0.88

A

104 0.45 – –
50 0.48 – –
25 0.68 – –
10 0.89 – –

DTBCNN

Github
50 0.93 0.91 0.86
30 0.95 0.93 0.88
10 0.96 0.95 0.88

A

104 0.94 – –
50 0.95 – –
25 0.95 – –
10 0.98 – –

TABLE IV
RESULTS OF CROSS-LANGUAGE ALGORITHM CLASSIFICATION WITH

DIFFERENT DEPENDENCY TREES.

Plain AST AST+Def AST+Def+Use
Accuracy 0.77 0.83 0.86

the code representations to make it harder to learn and how
much effect adding dependencies has on the classification
accuracy. As shown in Table IV, a neural network learning
model trained on plain AST (i.e., TBCNN) produces worse
cross-language classification accuracy than the same model
trained on ASTs embedded with def or def-use relations (77%
vs. 83% vs. 86%). On the other hand, for the single-language
setting, TBCNN produces closely comparable accuracies to
DTBCNN (see Table II). This phenomena may indicate that in a
cross-language setting, the code syntax can differ a lot between
different languages and require additional dependencies to help
learn better representations for cross-language classification;
while in a single-language setting, most code semantics are
expressed in code syntax already, and the usefulness of extra
dependencies may be reduced. It would be interesting future
study to investigate further what dependencies may be useful
for what kinds of tasks.

E. Threats to Validity and Discussions

We discuss several threats to the validity of our study, and
discuss possible alternatives that can be done in future studies.

1) Threats to Validity: Data collections. Using Github
Search API, we collected the code implementation of algo-
rithms based on some specific keywords to identify the name
of algorithms, such as “bfs", “bubblesort", “linkedlist", etc.
This approach may find some source code that are not actually
related to the algorithm (i.e., false positives). To reduce the
impact of such cases, we have to restrict the size of crawled
code file to e.g. 500 bytes in order to exclude code files
associated with auxiliary library code or details irrelevant
to the algorithms. However, it is also possible that we have
excluded many useful implementation of algorithms (i.e., false
negatives). However, the quality of the Github search is an
uncontrolled variable for the experiments, even though the
authors have randomly inspected 200 returned results to find

8



the false positive acceptable. Moreover, these samples from
Github do not nessessarily compile, hence we choose srcML
parser to generate AST and slicing information, instead of the
production compilers from JDK (for Java) and clang (for C++).

Merging Layers. We used a subnetwork merging strategy
and a softmax layer to classify programs, in either SL or CL
settings. The merge can also be done using energy functions
such as Manhattan euclidean distances in Siamese-LSTM [32]
or using multi-layered perceptrons to fuse the vectors. We
leave it for future work to explore the effectiveness of different
alternatives for merging the subnetworks.

Node granularity: In our implementation of GGNN,
TBCNN, and DTBCNN, we model source code using the
AST node types mostly (ignoring identifier names), which
are less fine-grained than other models that consider concrete
tokens. Despite being ‘coarser’, such node-type level encodings
outperforms token-based LSTM. A possible explanation is that
node types can already keep structural and semantic features
of source code relevant to an algorithm, without losing critical
information. On the other hand, concrete token information can
be useful for certain learning tasks, such as predicting wrong
variable names [4]. A future improvement is to combine both
the node type level and token level information and see how
it will improve the performance of code learning models.

2) Justification for baseline results: As described by Hel-
lendoorn and Devanbu [17], the n-gram model, if configured
carefully, can achieve a comparable result to a neural network-
based model. However, our results in Table I show that all of the
token feature-based models, include the n-gram, underperform
neural network-based models.

We would like to find the reason for the worse performance
in feature-based models. As described in [17], the code model
is built per project, that is, an n-gram sequence can be reused
across files in a project, while in our work, each file in
the corpus is an isolated program and all the files have no
explicit connection to each other. This makes the token features
extracted by n-gram, bag of words and tf-idf sparse, except
for some common language keywords (if, else, include, etc)
or common variable declarations (i, j, str, etc). In short, the
feature-based models do not capture well the relations among
the tokens well in our dataset.

In contrast, NN-based models (LSTM, CNN) take the
input as the pretrained embedding of words. These pretrained
embeddings capture the relations among tokens into a low
dimensional continuous vector space. Thus, the NN-based
models can produce better vector representations for the token
features, which leads to better classification results.

3) Comparison between neural-network based models:
Among the NN-based models, our custom-built DTBCNN
achieves higher accuracy than the others. Here we want to
provide some justifications for such results. The NN-based
models considered in this paper can be categorized into two
types: sequence-based (LSTM and CNN) and structure-based
(GGNN, TBCNN and DTBCNN). The sequence-based models
consider the source code at the token level, while the structure-
based model considers the source code at the structure level

(e.g., AST node types and dependencies). The advantage of
treating source code as token sequences is that it is simpler to
adapt well-known NLP techniques. One disadvantage of such
techniques is that they cannot make use of inherent features
that hide inside the implicit structure of source code, such as
data and control dependency, class inheritance, call relations,
etc. Another disadvantage is that the number of tokens can be
arbitrary as developers can introduce new tokens when writing
code [48], making it harder to capture the relations among
essentially the same tokens that appear differently.

On the other hand, AST or graph representation of source
code are closer to the structural nature of algorithms. Since
our goal is to classify algorithms across different languages,
the inherent features of code structures can be more important
than those specific tokens to distinguish the program.

For example, if we consider control dependency, the bubble-
sort makes multiple passes through a list of items. The code
structure usually contains 2 nested for loop because we want
to compare each item with every other item at least once, we
also need an if inside the second for loop to check if the
previous item is bigger than the current item for swapping.
In addition, if we consider data dependency, the bubblesort
involves comparison and swapping of items in a list and does
not need to introduce many variable declarations since it is an
in-place algorithm. All of these, unlike token sequences, can
be features of bubblesort to distinguish itself from others, no
matter in which language the code is written. In addition, we
consider only the node types of AST instead of actual tokens,
making the embedding vocabulary smaller to generate more
compact vector representations.

In addition, as mentioned in Section III-C, encoding a pro-
gram as the graph intuitively adds richer semantic information
of the program to the AST, thus is expected to yield a better
result. However, our results shown in Table I and Table IV are
against this intuition. A possible reason is that graphs encode
both control and data dependencies as edges between the nodes
in the AST, thus complicating the structure of the AST, while
our approach adds richer semantic information but remains to
be tree-based. Graph-based similarity comparison boils down
to graph isomorphism, which is a much harder problem than
tree-based comparison.

In the future, we will conduct more experiments to observe
the internal representations of the neural networks (NNs) with
more datasets, in order to really understand what the NNs have
learned to represent the programs.

The approach proposed is general to any pair of programming
languages, although we only used Java and C++ to evaluate
in this work. When the programming languages are cross
paradigms, such as object-oriented versus functional, it would
be interesting to see whether the framework needs any further
customizations, we leave this task for the future. More
algorithms e.g., those listed in Rosatta Code can be added
to the dataset in future, however, the 50 algorithms are already
sufficient for us to assess multiple baselines and challenge the
scalability of their training.

9



V. RELATED WORK

There have been a number of studies on program compre-
hension to understand code artifacts.

Learning Code as Natural Languages Tokens: Mining a
large corpus of open-source Java projects on the repositories,
Hindle et al. [18] showed that programming languages are
largely in common to natural languages in terms of probabilistic
predictability (i.e., low entropy) of next tokens, hence statistical
methods apply well to model repetitiveness in source code, and
that language models can be used for the code suggestion task
in IDEs. Furthermore, it has been established that programmers
tend to focus on code local to their context, hence the locality
can be exploited by ‘caches’ while keeping both the long and
short-term memory of the sequences processed. For example,
Hellendoorn et al. [17] employed both n-grams (with and
without cache) and LSTM NN to train statistical models and
demonstrated that such straight application of NN to sequences
do not necessarily enhance the accuracy greatly compared to
the cached n-gram models. In a survey, Allamanis et al. [3]
further categorized the related research directions in this area.

Learning Programs with Structures: It is known that code
is structured (e.g., nested in syntax) and programmers do not
read the code from the beginning to the end. Static program
analysis tools relies on AST and program dependence graphs to
capture such information. However, exist tools for translating
code among specific languages (e.g., Java2CSharp [1]) are
mostly rule-based, rather than statistics-based [24]. Boccardo
et al. [7] proposed to use neural networks for learning program
equivalence based on callgraphs, the accuracy was not too good
because it does not take into account code syntax structures.
Alexandru et al. [2] proposed to analyse only the revised source
files from a Git repository, instead of parsing or analysing those
unchanged revisions, reducing redundancies in analysing the
evolution of source code of different programming languages.
On learning from code syntax structures, TBCNN were first
proposed by Mou et al. [31], which designed a set of fixed-depth
subtree filters sliding over an entire AST to extract structural
information of the tree. They also proposed “continuous binary
trees” and applied dynamic pooling [46] to deal with varying
numbers of children of AST nodes.

Combining syntactical and semantic information: For
semantic information such as program dependence graphs,
Allamanis et al. [4] used GGNN to unify the information with
AST. Using open-source C# projects they have demonstrated
significant improvement on predicting the correct or misused
names. The evaluation shows our Bi-DTBCNN approach
performs better than GGNN for our algorithm classification
tasks. A possible reason is we embed all contextual information
on the AST whilst GGNN relies on how certain semantic
relations that can be derived from AST are explicitly encoded.

Bi-lateral representations for cross-language learning:
Cross-language learning representation structures are typically
bilateral. Studies on sentence comparisons and translations
in NLP involve variants of bilateral structures as shown by
Wang et al. [50]. Among them, Bromley et al. [9] pioneered
“Siamese” structures to join two subnetworks for written

signature comparison. He et al. [16] also use such structures
to compute sentence features at multiple levels of granularity.
Yin and Neubig [53] and Oda et al. [39] used Seq2Seq NN
to perform code generation from one programming language
to another. One may see pseudo code as a programming
language for algorithms, such bilateral NN may be considered
useful for their tasks as well. However, in this work, we aim
at algorithm classifications, which would not require one-to-
one transplanting the code. However, these studies have not
considered more accurate representation of code.

Applicable Software Engineering Tasks: Once the statisti-
cal models can be established from the code corpus, they
can be used for many useful software engineering tasks.
Peters et al [42] find that text filtering and ranking can
significantly improve security bug prediction in the presence
of class imbalance and data scarcity. Specific to code artefacts,
sequential representations as tokens [35], phrases [37], [38],
or API’s [33], [34], [43], [56], [57] are amongst the first
applications of machine learning to SE tasks.

In this work, we choose the algorithm classification tasks
to demonstrate that cross-language learning models can be
used to capture the “essence” of programs that is not always
expressed in the same language. Specifically, cross-language
language models can benefit some of the translation tasks,
e.g., Gu et al. [14], [15] applied NN at the API level for
language recognition and translation; Nguyen et al. [36] show
how statistical machine translation could be used to port
applications from Java to C#. Vasilescu et al [49] also use
machine translation as a way to recover helpful variable
names in “minimized" Javascript. Ray et al. [45] use statistical
language models to localize defective code, and also to improve
the performance of static bug detectors.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we generalize a Bilateral Neural Network
(Bi-NN) framework for cross-language algorithm classifica-
tion problems. We instantiate this framework with different
intermediate representations of ‘Big Code’ learning, including
our own dependency tree-based convolutional neural networks
(DTBCNN), and evaluate them on the tasks of classifying
thousands of programs files as 50 algorithms, across different
programming languages such as Java and C++.

We introduce DTBCNN to encode def-use relations (aka
program dependencies) as part of abstract syntax trees, which
can achieve the highest classification accuracy compared to
other commonly used models (e.g., bags-of-words, n-gram,
tf-idf, long short-term memory, gated graph neural networks).

We plan to do a more concise evaluation by introducing
the validation set, along with the k-fold validation setting, to
fully evaluate the effectiveness of the proposed models. In
addition, we also plan future work to evaluate Bi-NN on more
programming languages and more algorithm classes, and to
extend Bi-NN to encode more relevant code semantics for tasks
beyond algorithm classification.

10



REFERENCES

[1] “Java2csharp.” [Online]. Available: https://github.com/codejuicer/
java2csharp

[2] C. V. Alexandru, S. Panichella, and H. C. Gall, “Reducing redundancies
in multi-revision code analysis,” in IEEE 24th International Conference
on Software Analysis, Evolution and Reengineering (SANER), 2017, pp.
148–159.

[3] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A survey of
machine learning for big code and naturalness,” ACM Computing Surveys
(CSUR), vol. 51, no. 4, p. 81, 2018.

[4] M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning to
represent programs with graphs,” in International Conference on Learning
Representations (ICLR), 2018.

[5] H. W. Alomari, M. L. Collard, J. I. Maletic, N. Alhindawi, and
O. Meqdadi, “srcSlice: Very efficient and scalable forward static slicing,”
Journal of Software: Evolution and Process, vol. 26, no. 11, pp. 931–961,
2014.

[6] Anonymous Authors, “Anonymous paper,” in Anonymous Publication
Venue.

[7] D. Boccardo, T. Monteiro Nascimento, C. Prado, L. Fernando Rust da
Costa Carmo, and R. Machado, “Program equivalence using neural
networks,” in 5th International ICST Conference on Bio-Inspired Models
of Network, Information, and Computing Systems, At Boston, United
States, 10 2010.

[8] J. Börstler, “Feature-oriented classification for software reuse,” in
Proceedings of the 7th International Conference on Software Engineering
and Knowledge Engineering (SEKE), 1995, pp. 204–211.

[9] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature
verification using a "siamese" time delay neural network,” in Proceedings
of the 6th International Conference on Neural Information Processing
Systems (NIPS), 1993, pp. 737–744.

[10] S. Cesare and Y. Xiang, “A fast flowgraph based classification system
for packed and polymorphic malware on the endhost,” in 24th IEEE
International Conference on Advanced Information Networking and
Applications, AINA 2010, Perth, Australia, 20-13 April 2010, 2010, pp.
721–728.

[11] K. L. Clark and J. Darlington, “Algorithm classification through
synthesis,” The Computer Journal, vol. 23, no. 1, pp. 61–65, 1980.
[Online]. Available: http://dx.doi.org/10.1093/comjnl/23.1.61

[12] M. L. Collard, M. J. Decker, and J. I. Maletic, “Lightweight trans-
formation and fact extraction with the srcML toolkit,” in 11th IEEE
International Working Conference on Source Code Analysis and Manip-
ulation (SCAM), 2011, pp. 173–184.

[13] J. R. Cordy and C. K. Roy, “Tuning research tools for scalability and
performance: The nicad experience,” Sci. Comput. Program., vol. 79, pp.
158–171, 2014.

[14] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep API learning,” in
Proceedings of the 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE), November 13-18 2016, pp.
631–642.

[15] ——, “DeepAM: Migrate APIs with multi-modal sequence to sequence
learning,” in 26th International Joint Conference on Artificial Intelligence
(IJCAI), August 19-25 2017, pp. 3675–3681.

[16] H. He, K. Gimpel, and J. J. Lin, “Multi-perspective sentence similarity
modeling with convolutional neural networks,” in Proceedings of the
Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2015.

[17] V. J. Hellendoorn and P. Devanbu, “Are deep neural networks the best
choice for modeling source code?” in Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, ser. ESEC/FSE, 2017,
pp. 763–773.

[18] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the
naturalness of software,” in 34th International Conference on Software
Engineering (ICSE). IEEE, 2012, pp. 837–847.

[19] T. K. Ho, “Random decision forests,” in Proceedings of 3rd International
Conference on Document Analysis and Recognition, vol. 1, Aug 1995,
pp. 278–282 vol.1.

[20] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[21] C.-W. Hsu and C.-J. Lin, “A comparison of methods for multiclass support
vector machines,” IEEE Transactions on Neural Networks, vol. 13, no. 2,
pp. 415–425, Mar 2002.

[22] T. Ishihara, K. Hotta, Y. Higo, H. Igaki, and S. Kusumoto, “Inter-project
functional clone detection toward building libraries - an empirical study

on 13,000 projects,” in 2012 19th Working Conference on Reverse
Engineering, Oct 2012, pp. 387–391.

[23] L. Jiang and Z. Su, “Automatic mining of functionally equivalent
code fragments via random testing,” in Proceedings of the Eighteenth
International Symposium on Software Testing and Analysis (ISSTA), 2009,
pp. 81–92.

[24] S. Karaivanov, V. Raychev, and M. Vechev, “Phrase-based statistical
translation of programming languages,” in Proceedings of the 2014 ACM
International Symposium on New Ideas, New Paradigms, and Reflections
on Programming & Software, ser. Onward! 2014. New York, NY, USA:
ACM, 2014, pp. 173–184.

[25] Y. Ko, “A study of term weighting schemes using class information for
text classification,” in Proceedings of the 35th International ACM SIGIR
Conference on Research and Development in Information Retrieval, ser.
SIGIR ’12. New York, NY, USA: ACM, 2012, pp. 1029–1030.

[26] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph
sequence neural networks,” in International Conference on Learning
Representations (ICLR), Nov. 2016, arXiv: 1511.05493.

[27] K. Liu, D. Kim, T. F. Bissyandé, S. Yoo, and Y. L. Traon, “Mining
fix patterns for findbugs violations,” CoRR, vol. abs/1712.03201, 2017.
[Online]. Available: http://arxiv.org/abs/1712.03201

[28] J. I. Maletic and A. Marcus, “Supporting program comprehension
using semantic and structural information,” in Proceedings of the
23rd International Conference on Software Engineering, ser. ICSE ’01.
Washington, DC, USA: IEEE Computer Society, 2001, pp. 103–112.
[Online]. Available: http://dl.acm.org/citation.cfm?id=381473.381484

[29] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” CoRR, vol. abs/1301.3781, 2013.

[30] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Dis-
tributed representations of words and phrases and their compositionality,”
in Advances in neural information processing systems (NIPS), 2013, pp.
3111–3119.

[31] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin, “Convolutional neural
networks over tree structures for programming language processing,” in
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,
February 12-17 2016, pp. 1287–1293.

[32] J. Mueller and A. Thyagarajan, “Siamese recurrent architectures for
learning sentence similarity,” in Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, 2016, pp. 2786–2792. [Online].
Available: http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/
12195

[33] A. T. Nguyen, H. A. Nguyen, T. T. Nguyen, and T. N. Nguyen, “Statistical
learning approach for mining API usage mappings for code migration,” in
ACM/IEEE International Conference on Automated Software Engineering
(ASE), 2014, pp. 457–468.

[34] ——, “Statistical learning of API mappings for language migration,” in
36th International Conference on Software Engineering - Companion
(ICSE), May 31 - June 07 2014, pp. 618–619.

[35] A. T. Nguyen, T. T. Nguyen, and T. N. Nguyen, “Lexical statistical
machine translation for language migration,” in Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE),
August 18-26 2013, pp. 651–654.

[36] ——, “Migrating code with statistical machine translation,” in Com-
panion Proceedings of the 36th International Conference on Software
Engineering, ser. ICSE Companion 2014. New York, NY, USA: ACM,
2014, pp. 544–547.

[37] ——, “Divide-and-conquer approach for multi-phase statistical migration
for source code (T),” in 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE), November 9-13 2015, pp. 585–
596.

[38] A. T. Nguyen, Z. Tu, and T. N. Nguyen, “Do contexts help in
phrase-based, statistical source code migration?” in IEEE International
Conference on Software Maintenance and Evolution (ICSME), October
2-7 2016, pp. 155–165.

[39] Y. Oda, H. Fudaba, G. Neubig, H. Hata, S. Sakti, T. Toda, and
S. Nakamura, “Learning to generate pseudo-code from source code using
statistical machine translation (T),” in 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2015, pp. 574–
584.

[40] H. Peng, L. Mou, G. Li, Y. Liu, L. Zhang, and Z. Jin, “Building
program vector representations for deep learning,” in Proceedings of the
8th International Conference on Knowledge Science, Engineering and
Management (KSEM), October 28-30 2015, pp. 547–553.

11



[41] F. Peters, T. Tun, Y. Yu, and B. Nuseibeh, “Text filtering and ranking
for security bug report prediction,” IEEE Transactions on Software
Engineering, vol. 1, no. 1, pp. 1–1, 2018.

[42] ——, “Text filtering and ranking for security bug report prediction,”
IEEE Transactions on Software Engineering, p. (Early Access), 2018.
[Online]. Available: http://oro.open.ac.uk/53059/

[43] H. D. Phan, A. T. Nguyen, T. D. Nguyen, and T. N. Nguyen, “Statistical
migration of API usages,” in 39th International Conference on Software
Engineering - Companion Volume (ICSE), May 20-28 2017, pp. 47–50.

[44] V. Rajlich and N. Wilde, “The role of concepts in program
comprehension,” in Proceedings of the 10th International Workshop
on Program Comprehension, ser. IWPC ’02. Washington, DC,
USA: IEEE Computer Society, 2002, pp. 271–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=580131.857012

[45] B. Ray, V. Hellendoorn, S. Godhane, Z. Tu, A. Bacchelli, and P. Devanbu,
“On the "naturalness" of buggy code,” in Proceedings of the 38th
International Conference on Software Engineering, ser. ICSE ’16. New
York, NY, USA: ACM, 2016, pp. 428–439.

[46] R. Socher, E. H. Huang, J. Pennington, A. Y. Ng, and C. D. Manning,
“Dynamic pooling and unfolding recursive autoencoders for paraphrase
detection,” in Proceedings of the 24th International Conference on Neural
Information Processing Systems (NIPS), December 12-14 2011, pp. 801–
809.

[47] A. Taherkhani, A. Korhonen, and L. Malmi, “Recognizing algorithms
using language constructs, software metrics and roles of variables: An
experiment with sorting algorithms,” Comput. J., vol. 54, no. 7, pp.
1049–1066, 2011.

[48] Z. Tu, Z. Su, and P. T. Devanbu, “On the localness of software,” in
Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, (FSE-22), Hong Kong, China,
November 16 - 22, 2014, 2014, pp. 269–280.

[49] B. Vasilescu, C. Casalnuovo, and P. Devanbu, “Recovering clear, natural
identifiers from obfuscated js names,” in Proceedings of the 2017 11th

Joint Meeting on Foundations of Software Engineering, ser. ESEC/FSE
2017. New York, NY, USA: ACM, 2017, pp. 683–693.

[50] Z. Wang, W. Hamza, and R. Florian, “Bilateral multi-perspective matching
for natural language sentences,” in 26th International Joint Conference
on Artificial Intelligence (IJCAI), August 19-25 2017, pp. 4144–4150.

[51] H. Wei and M. Li, “Supervised deep features for software functional
clone detection by exploiting lexical and syntactical information in source
code,” in Proceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence (IJCAI), 2017, pp. 3034–3040.

[52] S. Y. Yerima, S. Sezer, G. McWilliams, and I. Muttik, “A new android
malware detection approach using bayesian classification,” in 2013 IEEE
27th International Conference on Advanced Information Networking and
Applications (AINA), March 2013, pp. 121–128.

[53] P. Yin and G. Neubig, “A syntactic neural model for general-purpose
code generation,” in Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (ACL), 2017, pp. 440–450.

[54] C. Yuan, S. Wei, Y. Wang, Y. You, and S. ZiLiang, “Android applications
categorization using bayesian classification,” in 2016 International
Conference on Cyber-Enabled Distributed Computing and Knowledge
Discovery (CyberC), Oct 2016, pp. 173–176.

[55] F. Zhang, Y.-C. Jhi, D. Wu, P. Liu, and S. Zhu, “A first step towards
algorithm plagiarism detection,” in Proceedings of the 2012 International
Symposium on Software Testing and Analysis, ser. ISSTA 2012. New
York, NY, USA: ACM, 2012, pp. 111–121.

[56] H. Zhong, S. Thummalapenta, and T. Xie, “Exposing behavioral
differences in cross-language API mapping relations,” in Proceedings of
16th International Conference on Fundamental Approaches to Software
Engineering (FASE), Held as Part of the European Joint Conferences
on Theory and Practice of Software (ETAPS), March 16-24 2013, pp.
130–145.

[57] H. Zhong, S. Thummalapenta, T. Xie, L. Zhang, and Q. Wang, “Mining
API mapping for language migration,” in Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume
1 (ICSE), May 1-8 2010, pp. 195–204.

12


	Bilateral dependency neural networks for cross-language algorithm classification
	Citation

	tmp.1560419919.pdf.dBuVT

