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MODLoc: Localizing Multiple Objects
In Dynamic Indoor Environment

Xiaonan Guo, Member, IEEE, Dian Zhang, Member, IEEE, Kaishun Wu, Member, IEEE, and
Lionel M. Ni, Fellow, IEEE

Abstract—Radio frequency (RF) based technologies play an important role in indoor localization, since Radio Signal Strength (RSS)
can be easily measured by various wireless devices without additional cost. Among these, radio map based technologies (also
referred as fingerprinting technologies) are attractive due to high accuracy and easy deployment. However, these technologies
have not been extensively applied on real environment for two fatal limitations. First, it is hard to localize multiple objects. When the
number of target objects is unknown, constructing a radio map of multiple objects is almost impossible. Second, environment
changes will generate different multipath signals and severely disturb the RSS measurement, making laborious retraining inevitable.
Motivated by these, in this paper, we propose a novel approach, called Line-of-sight radio map matching, which only reserves

the LOS signal among nodes. It leverages frequency diversity to eliminate the multipath behavior, making RSS more reliable

than before. We implement our system MODLoc based on TelosB sensor nodes and commercial 802.11 NICs with Channel State
Information (CSI) as well. Through extensive experiments, it shows that the accuracy does not decrease when localizing multiple
targets in a dynamic environment. Our work outperforms the traditional methods by about 60 percent. More importantly, no calibration
is required in such environment. Furthermore, our approach presents attractive flexibility, making it more appropriate for general
RF-based localization studies than just the radio map based localization.

Index Terms—Multiple objects, dynamic environment, localization
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INTRODUCTION

LOCALIZATION is highly in demand and essential in many
applications [1], [2], [3]. Among various technologies,
radio map based technologies seem very promising. This is
because the radio map technique can be easily implemen-
ted without additional hardware support and the localiza-
tion accuracy is high.

A large number of works have been written based on
the technologies [5], [6], [4], [7]. In general, only several
wireless nodes are required in localization [8], [9]. There-
fore, their hardware cost is low. However, these methods
have two great challenges for real application: The first is
that it is hard to localize multiple objects and multiple
objects scenario is usual in practical application. The
reasons are as follows. The process of radio map technique
has two stages: offline training and online localization. At
the first stages, we need to survey the site by dividing the
target area into cells and measuring the signal strength one
by one. However, when multiple objects exist and the

o K. Wu is with the College of Computer Science and Software Engineering,
Shenzhen University, and also with Guangzhou HKUST Fok Ying Tung
Research Institute. E-mail: kwinson@ust.hk.

o X. Guo is with the Department of Computer Science and Engineering,
HKUST, Hongkong, and also with the School of Information Systems,
Singapore Management University, Singapore. E-mail: xnguo@smu.edu.sg.

o D. Zhang is with the College of Computer Science and Software
Engineering, Shenzhen University, China.

e L.M. Ni is with the Department of Computer Science and Engineering,
HKUST.

number of target objects is unknown, it is impossible to
measure the signal strength at different permutations in
advance, since the positions of the objects are independent,
the RSS of an object at a specific position depend on the
other objects [10]. Second, environment changes (e.g., more
target objects appear or layout changes) will generate
different multipath signals and severely disturb the RSS
measurement, making laborious calibration inevitable. In a
real environment in particular indoors, signal propagation
suffers from severe multipath fading effect subject to signal
reflection, diffraction and absorption by humans or
structures [8]. As a result, a transmitted signal can reach
the receiver through different paths and these different
components are combined to reproduce a distorted version
of the original signal [11], [12]. Thus, radio map based
technologies usually require a labor-intensive calibration
procedure, which limit their usage in real applications.

Traditionally, there are usually two ways to handle this
problem. The first is to utilize densely deployed nodes as a
reference (e.g., LANDMARC [13]) to localize the targets.
However, this approach is costly. Also, if the multiple
objects are close to each other, it is very hard to find the
correct nearest reference nodes and thus the accuracy may
dramatically reduced. The second way is to localize the
target based on the radio map of single object [9], [8]. As
a result, the localization of multiple objects is far from
accurate. Moreover, once the environment changes, the
RSS signals are usually different. Therefore, many systems
have to rebuild the radio map between the RSS and
distance by repeating the training process [8], [14], [15].
Although some works try to reduce such overhead by
using various methods, such as adaptive training [16], they
cannot fully eliminate such overhead.
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Fig. 1. lllustrate basic idea by collecting RSS of LOS.

To solve the above problems, in this paper, we propose a
novel approach, called Line-of-Sight (LOS) map matching.
It is able to accurately localize multiple objects without
rebuilding the radio map in dynamic environments (the
environment often changes). Our basic idea is triggered by
the following observations. The target objects or other
environmental changes often generate or change some non-
line of sight (NLOS) paths (reflection, diffraction and
absorption of the original signal). If we could build a radio
map based on LOS signal, the multipath signal influence
by the target objects or environmental changes will be
eliminated.

Looking at Fig. 1, suppose we have three anchor nodes
acting as the receiver and a person hold a mobile device is
the target object acting as the transmitter. R, R;, R3 denote
the RSS value received from the three anchor nodes, a
person appearing in this environment will cause an
additional signal reflection path for A, changing the RSS.
If we are able to construct a radio map that only reserves
the RSS of LOS path, the appearing person will not affect
the LOS signal. As shown in Fig. 1, R, R}, R} denote the
RSS at LOS path from three anchor nodes. Since the LOS
signal is not blocked by the person, the value of R}, R}, R}
will not change after introducing the person. Therefore,
such a map is more stable in a dynamic environment, and it
is denoted as LOS radio map. To the best of our knowledge,
we are the first to accurately localize multiple objects by
using radio map based technologies. In order to realize the
LOS radio map construction and valid map matching for
localization, a key issue is to identify the LOS signal from
different paths. Our approach is to leverage the frequency
diversity to help RSS provide phase information indirectly.
We find that RSS values are significantly different when
the nodes are in different spectrum channels (the other
setting is the same). Such RSS differences on different
channels carry valuable phase information. By analyzing
these RSS, we can identify the amplitudes and phases
of signals from each path. We may then derive the RSS of
the LOS path by solving the optimization problem. As a
result, we can eliminate the multipath behavior, making
RSS more reliable than before. These reliable RSS signals
can be leveraged to construct the LOS radio map instead.
Such map only reserves the LOS signal among nodes.
By careful pre-deployment (e.g., the reference nodes are
deployed on the ceiling of the floor and the targets are on
the ground), the environment changes and the number of
objects do not affect the LOS signal between the targets

and the reference nodes. This LOS radio map is easily
constructed and requires no training if reference nodes are
carefully pre-deployed.

We have also implemented our approach on commercial
802.11 NICs with CSI information, which describes how a
signal propagates from the transmitter to the receiver and
represents the combined effect of, for example, scattering,
fading, and power decay with distance.

Compared with other traditional radio map based
localization methods, our approach has the following
advantages:

e We are able to accurately localize multiple objects in
dynamic environment without calibration on the
map. Our approach is based on collecting RSS of
LOS path. Thus we may achieve a more reliable RSS
value, and fundamentally solve the traditional
problem and achieve good localization result.

e Our approach is adaptive to environmental changes.
The LOS radio map we build reserves only the LOS
signal among nodes, so if the environment changes,
we do not need to rebuild it.

e Our solution is able to eliminate the multipath effect
of RSS signal without additional hardware support.
Through solving the related optimization problem,
we may identify the signal along the LOS path.

e Our work is not only suitable for the radio map
based localization. Many current RSS based ap-
proaches may need a revisit. We identify the LOS
signal among nodes, making RSS more reliable. This
presents promising generality which enable it be
applied in a much broader scope of application.

e Our work utilizes CSI to improve the localization
accuracy. We could obtain such information from
802.11 NICs with OFDM technology and relatively
high accuracy result is achieved compared with use
only RSS information.

We implement a real time tracking system based on
TelosB platform with only three anchor nodes and three
802.11 NICs. Experimental results show that localization
accuracy of multiple objects in dynamic environments
outperform the traditional approaches by 60 percent.

The rest of this paper is organized as follow. In the next
section, we introduce the theoretical background. Section 3
describes our methodology in details. Section 4 presents
our localization system implementation and evaluates the
performance. Related work is presented in Section 5.
Finally, we conclude this work and point out some possible
future work directions.

2 THEORETICAL BACKGROUND

In this section, we first introduce the radio propagations in
free space and multipath environment. Then we will
discuss the limitation of radio map based localization on
multiple objects.

2.1 Radio Propagation in Free Space and Multipath
Environment

Radio propagation is the behavior of radio waves when

they are transmitted from transmitters to receivers. Radio
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Fig. 2. Multipath effect.

propagation along the LOS path can be expressed as
follows according to Friis model [17] in free space:

., PG,GN\
Sl il ol sl 1
7 ()’ (1)

P =
Here P,, P, represents received radio strength and
transmitted signal strength in Watts respectively. G, is
antenna gain of transmitter and G, is antenna gain of
receiver. A is the signal wavelength. d is the path length of
the LOS path (the physical distance between the transmit-
ter and receiver). p = {|p|,0} is the signal wave vector,
|'p| is its path power (amplitude) and 6 is the path phase
at the receiver. Suppose the sender has the phase zero,
the path phase of the signal at the receiver is:

o=am (2 |2]) o

However, in real environments, many NLOS paths exist.
Such paths are caused by the radio reflection and refraction
by surroundings. In each reflection or refraction, only
partial energy will be transmitted [17]. These parts can be
measured by a reflection (refraction) coefficient, which is
denoted as 7, v € (0,1). As a result, for a given NLOS path,
the path power is:

- P.G,G N2
— T 3
7 7(M®2 (3)

It is noted here that d is no longer equal to the physical
distance between the transmitter and receiver. Eq. (3) is the
same as Eq. (1) when the path is LOS path (y = 1).

The multipath effect refers to a signal that arrives at the
receiver by more than one path. For example, in Fig. 2,
there are three paths from the transmitter to the receiver.
l; is the LOS path, l; and I3 are the reflection paths by
the surroundings. As a result, the signal strength at the
receiver is the signal combination of all the paths. It can
be denoted as:

RSSI (dBm)
8

-80
---without environment change
- . . |—after environment change
0 5 10 15 20 25 30
Position

Fig. 3. Impact of environmental change.

2.2 Radio Map Based Technology and lts
Limitations When Localizing Multiple Objects

The radio map technique (also referred as fingerprint
technique) is to construct a mapping between the RSS (e.g.,
from Aps or sensors) and location information of the target
in advance. The target object then can be localized by
matching its received RSS information with it in the radio
map. The mapping construction part is known as the off-
line training phase and the matching part is know as the
online localization phase.

However, the localization accuracy suffers from localiz-
ing multiple objects and environment changes. Since in
the off-line training phase, it has to put the target in
advance to stay at all the possible locations and collect
the corresponding RSS information. Once the environment
changes (e.g., a new target object appears or layout
changes), the RSS may change significantly. As shown in
Fig. 3, based on 2 TelosB sensor platform (one is transmitter
at fixed position, the other one is the target acting as the
receiver, the transmission power is fixed at 0 dBm), we test
the RSS of the receiver at different locations in our lab. The
result shows that the RSS is sensitive to the environment
changes (A person walking around act as the new object). It
is easy to understand such behavior due to the multipath
effect introduced by the new object.

Consider a scenario of multiple objects, it is too costly to
build such a map. For example, suppose for one object we
have to build a radio map of n locations. For two objects we
have to build a radio map of n x n locations. If we do not
know how many objects in advance, it is almost impossible
for us to build such a map. Traditional radio map based
technology only localizes objects based on the radio map of
single object. The localization accuracy is dramatically
reduced when multiple target objects exist. Moreover, if
the environment layout changes, we have to rebuild to the
radio map. It is a very laborious work which limits its
application in the real use.

3 METHODOLOGY

In this section, we first explain our basic idea by showing
the framework of MODLoc. Then, we explain how to
construct our LOS radio map. We describe our algorithm of
leveraging frequency diversity to identify the LOS signal
from multipath. Finally the localization method of our LOS
map matching is proposed.
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3.1 Framework of MODLoc

The Framework of our TelosB based system is demonstrat-
ed in Fig. 4. The whole localization process is divided into
two phases: LOS radio map construction and localization.
In the map construction phase, we are able to construct
LOS radio map either by the theoretical approach or by
training as detailed in the last section. Once the map is
constructed, no calibration is required. When the localiza-
tion phase begins, we collect RSS information from each
target node at different channels. After all the channels
have been visited, we differentiate RSS of LOS path by
leveraging frequency diversity. Then we apply the KNN
algorithm to estimate each target node’s position. This
procedure is repeated until the users terminates it.

For the use of CSI, the workflow is similar. As shown
in Fig. 5. The key difference lies in collecting the CSI
information when constructing the radio map, and the
phase information could be obtained directly.

3.2 LOS Radio Map Construction

It is known that RSS is a signal combination of all the
paths in a real environment. If we are able to learn the
phase information of signal along each path, we may easily
get the LOS signal. However, RSS itself has no phase

Data collection [+—
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ti ?
LOS radio ontinue
map
construction

Fig. 5. System workflow of CSI.
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Fig. 6. RSS over time.

information and we find that the RSS is different at
different operating frequencies. Such a difference is
potentially able to give us information to infer the phase
information of signal. As a result, we may filter out the
LOS signal from multipath signals between transmitter
and receiver pair, based on just the RSS information.

This idea is triggered by an interesting observation from
experiments of two TelosB sensors. One of the sensors acts
as the transmitter and the other one is the receiver. The
transmission power is fixed at 0 dBm and The default
channel is 13. We find that if the environment does not
change, the RSS is stable as shown in Fig. 6. However,
in such an environment, if we only change the channels,
the RSS tend to vary, as shown in Fig. 7. Such a difference
is due to the different radio wave length on different
channels. For a fixed path with the same radio propagation
distance, the path phase will be different when radio
arrives at the receiver. Therefore such RSS difference
potentially gives us phase information. We could eliminate
the multipath effect and get the LOS signal accordingly.
Note that when the difference of radio wave length is
extremely small when we change the channel (only several
millimeters between different channels for TelosB nodes),
the existing radio propagation paths are unlikely to change.

Our radio map and localization method are all based on
the LOS signal. Since the LOS radio map only keeps the
LOS signal between the transmitter and receiver, we may
easily construct it through using the free space model
without training. In the following localization, frequency
diversity method is used to eliminate the multipath signal

RSS (dBm)
&
*

5 10 15
Channel

Fig. 7. RSS with different channel.
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between the anchor nodes and target. The details are listed
in the following subsections.

In our system, the whole tracking area is divided into cells.
Suppose we have anchor nodes acting as the receivers and
the target nodes as the transmitters. The first fundamental
step is to construct a LOS radio map. We offer two methods
to construct such a map. The first one is to construct it from
theory, while the second one is from the training results.

In the first method, we can easily construct the map by
using the Friis free space model. In each cell, we are able to
estimate the received power by using Eq. (1). In this equa-
tion, the transmission power P, is configured by users, the
transmitter and receiver antenna gain G,, G, can be obtained
from the hardware specification manual [18]. Also since the
anchor nodes are fixed deployed, the length of LOS path d
between each anchor node and transmitter can be estimated.
The main advantage for building such a map is that we do
not require the laborious offline training to construct the
radio map and the LOS signal can be accurately modeled.

In the second method, we build the LOS radio map
from training. The procedure is similar to traditional radio
map construction, except that we should measure RSS
in different channels, then we identify the LOS signal by
using the frequency diversity, which is introduced in the
next subsection. To compare the estimate distance with the
true distance, we use training methods to compute distance
between a anchor node and the target node and we show
the accuracy of LOS path in Fig. §,

After the LOS radio map is constructed, it can leverage
the localization. As long as the environment changes do not
block the LOS signal between transmitter and receiver, the
map does not need to be rebuilt. We may realize it by
carefully deploying the anchor nodes in advance. For
example, we may deploy the anchor nodes on the ceiling of
the floor and the target nodes are supposed on the ground.
Therefore, most environment changes will not affect the
LOS signal. Only if the transmission power of the anchor
nodes change (P, changes) or the nodes themselves change
(G4, G, change), or the anchor nodes are redeployed, the map
needs to be rebuilt.

3.3 Eliminate Multipath Effect by Using
Frequency Diversity

Suppose there are n radio propagation paths between
transmitter and receiver. According to Eq. (4), we use

orthogonal decomposition on each path, i.e., every path is
transformed to a combination of sine and cosine, the
received power could be represented a combination of each
path. The total received power at the receiver is:

2
— _ = _Pf,GtGr)\Q - <d1>
1Pl = (;G aray?
s VPthGMZCOS(@) ’
Z\ " ama?

=fn- -

ol

arYnndl:"‘adn)' (5)

In Eq. (5) P, Gt, G, and 7 are all constant values.
Transmit power P, is configured by users. The output
power level is from 3 to 31 with the corresponding output
power from —25 dBm to 0 dBm. The antenna gain of
transmitter and receiver is 3.1 dBi.

Suppose we measure up to m channels, the wavelengths
of the radio at these channels are A, j € [1, m]. For different
radio wave lengths we have different received power,
therefore we could have the following equation:

&1 = f)\i(dl .. ~7dn7’71 --~7’7n) - |E:|7

€2 = f/\z(dl oy dnym -~-7’Yn) - |p/\2 |7

: ©)
Em = f/\m(dl .. ~7d'm’yl e 7’77”) - |1Tm|

Here ¢,, is the individual fitting error. Our goal is to find
proper di,...,dn, Y1,...,7%, which can minimize such
errors. As such, the problem is transferred into the
following non-linear optimization problem:

Minimize (i(qf) : (7)

=1

We have proved that when the number of used channels is
larger than 2n, we can solve the optimization problem and
obtain the numerical result by using Newton and Simplex
approach [19]. Due to limited space, we skip this part. Our
goal is to accurately find d; and estimate the LOS path
power, the accuracy of the other parameters is trivial.

In addition, we use a similar idea to implement our
system based on WiFi devices, that is to use frequency
diversity to eliminate the multiple phenomenon. We could
obtain the physical layer information by using the
commodity NICs. With this rich information we extract
the phase. The CSI of a single subcarrier is mathematically
represented as

h = |h\ej5i”{’/’l} (8)

where |h| is the amplitude and /h is the phase of each
subcarrier and j represents the imaginary unit.

Since the multipath effect will introduce inter symbol
interference, a cyclic prefix (CP) is added to each symbol
to combat the time delay in OFDM systems. However, the
CP technique is useless for the multiple reflections within
a symbol time.



For narrow-band systems, these reflections will not
be resolvable by the receiver when the bandwidth is less
than the coherence bandwidth of the channel. Fortunately,
the bandwidth of 802.11n waveforms is 20 MHz (with
channel bonding, the bandwidth could be 40 MHz), which
provides the capability of the receiver to resolve the
different reflections in the channel. We propose a multi-
path mitigation mechanism that can distinguish the LOS
signal or the most closed NLOS from other reflections in
the expectation of reducing the distance estimation error.
The commonly used profile of the multipath channel in the
time domain is described as:

Lp—1

h(T) = Z agb(T — 1K), 9)
=0

where L, is the number of multipath channel components.
ay, and 7y, are the amplitude and propagation delay of the
k-th path. In practice, OFDM technologies are efficiently
implemented using a combination of fast Fourier Transform
(FFT) and inverse fast Fourier Transform (IFFT) blocks. The
30 groups of CSI represent the channel response in the
frequency domain, which is about one group per two
subcarriers. With IFFT processing of the CSI, we can obtain
the channel response in the time domain, i.e., h(t). Then we
reconstruct the CSI using FFT.

Since the channel bandwidth of an 802.11n system is
larger than the coherence bandwidth in a typical indoor
environment, the fading across all subcarriers are frequency-
selective. To combat such fading of wireless signals, multiple
uncorrelated fading subchannels (multiple frequency sub-
carriers) are combined at the receiver.

3.4 Path Number Selection

In order to solve Eq. (7), we have to set the number of paths in
advance. However, in a the real indoor environment, it is
almost impossible to know how many paths existing between
a transmitter and receiver pair for several reasons. First, the
signal radiation is evenly distributed in the directions. Second,
the environment is so complex that the layout may add more
surfaces. So in this subsection, we discuss the impact of
multipath and conclude with a reasonable result of path
selection without sacrificing too much accuracy.

As introduced in the last section, given a radio propa-
gation path between a fixed transmitter and receiver (G, G,
are fixed) with fixed transmission power (B, is fixed) and
wavelength (); is fixed), there are two parameters deciding
the signal power of each path: (refraction) coefficient v; and
the distance between transmitter and receiver d;. Then we
will discuss how to determine these two parameters.

The first one actually depends on the surface of the
reflection (refraction) materials. For common materials,
this value is around 0.5 [20]. Therefore, if the radio
is reflected (or refracted) multiple times, its contribution
to the total received power is minimal. For example,
a reflection more than three times results in only
(0.5)* = 0.125 times the original energy. Since there is no
reflection or refraction, the LOS path value is 1. Therefore,
in practice, though some accuracy is sacrificed, we may
skip those signal propagation paths having many reflec-
tions (refractions), e.g., larger than three. The second

parameter is d;, including the LOS path and the other
Non-LOS paths. The received power is is inversely propor-
tional to (d;)* according to Eq. (1). Therefore, if the length of
the Non-LOS paths is large, its influence on the total received
power is also minimal. For example, if the path is longer than
two times the LOS path, the remaining energy is smaller than
%2 = 0.25 of the original energy. Therefore we also skip the
signal reflection paths whose path length is very large, say
twice the length of the LOS path length.

Furthermore, since all the multipath signals have at
least one reflection (refraction) and their length are all
longer than the LOS path, most of their influence on the total
received power is limited. For example, if one path is twice
as long as the LOS path and with one reflection, it remaining
energy will be 0.5 X 2 = 0.125 of the original energy.

After discussion of these two parameters, recall that in
order to solve the non-linear optimization problem stated
as Eq. (9), we should find proper di and i according to
Eq. (8). Therefore we easily get the result of those Non-
LOS path length returned by algorithm easily.

We further show the impact of the different number of
paths to the total received power at the receiver through
simulation on TelosB sensor nodes. For a fixed transmitter
and receiver, we set the transmission power to 0 dBm. The
distance between the transmitter and receiver (also the
length of the LOS path) is 4 m. We perform six test rounds
to observe the signal combination effect when different
numbers of paths combine. These are: just one LOS path,
LOS path with on multipath (8 m), LOS path with two
multipaths (4 m and 8 m), LOS path with three multipaths
(4 m, 8 m, 12 m), LOS path with four multipaths (4 m, 8 m,
12 m, 16 m), LOS path with five multipaths (4 m, 8 m, 12 m,
16 m, 20 m), LOS path with four multipaths (4 m, 8 m, 12 m,
16 m, 20 m, 24 m). We assume each multipath signal is
reflected (refracted) only once. At each round of tests, all
16 channels on TelosB are tested. From Fig. 9, we can see
that, when path length is longer than twice the LOS path
length, its influence on the combined signal at the receiver
is very small, no matter which channel is selected. An
interesting observation is that when the number of path
exceed a certain value (in this example is 3), the RSS in each
channel becomes stable. In other words, the RSS does not
change a lot with more paths introduced. Thus, we could
utilize a limited number of paths to represent the influence
of the multipath with minimal loss of accuracy.

Therefore, the number of paths we use is limited
through to the above reasons. We skip those paths whose
path length is long or having many reflection (refraction)
times, say two times of the LOS path length. Therefore in
practice, we suppose the path number is no larger than 5,
though some accuracy is sacrificed.

3.5 802.11 NICs with CSI

As commercial 802.11 NICs could provide additional
information CSI, which could not be obtain from the sensor
node, we also implement our basic idea with WiFi devices.
Eq. (8) shows that the CSI of a single subcarrier can be
mathematically represented in terms of amplitude and
phase. therefore we could treat the CSI in the same way.
The amplitude in this equation represents the transmission
power of a single subcarrier, which can be applied directly
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Fig. 9. Simulation result for different number of paths.

into the equation array with the phase information in
Eq. (5). Then, we could solve a similar optimization
problem and obtain the signal strength of The LOS path.

4 PERFORMANCE EVALUATION

In this section, we show the system architecture and evaluate
the proposed methods under different environments. We
estimate the localization accuracy of a single object in both a
static and a dynamic environment. Then we show the impact
of the number of targets. At last, we compare two different
LOS construction approaches and show the latency analysis.

4.1 Impact of Environmental Changes on

Different Maps
In this part, we investigate how environmental changes
affect different radio maps.

At first, we collect RSS data from all the 50 training
points. After that, we change the environment by introduc-
ing more people and alter some of the interior layout. We
then collect the RSS data again. The RSS difference after the
environmental change is demonstrated in Fig. 10. Each cell
represents a training point and the cell with dark area
means its RSS difference is big, otherwise it is small. This
figure well illustrates that traditional radio maps can
be significantly affected by the environmental change.
Furthermore, the impact is irregular and it is hard to find a
pattern, making multiple objects tracking a challenging task
for traditional map matching. Fig. 11 illustrates differences in
the RSS at the LOS path under such an environmental change.
We can see that, the RSS difference is very small (paler)
compared with the traditional one. From these two figures we
find that our LOS radio map is more stable under environ-
mental changes than the traditional map.

4.2 Comparison of Different Map Construction
Methods

In this section, we compare the localization accuracy based on

different map construction methods. 24 target locations have

been tested in our experiment area and the results are shown

in Fig. 12. We find that using training to construct the LOS

radio map, results in slightly better localization accuracy than
using theory to construct the map. This is because different
nodes may have different variance on the hardware para-
meters. Therefore, if users prefer higher accuracy, they may
choose training to construct the LOS radio map. Otherwise,
using theory to construct the map will save more cost. We use
training to construct the map in in the following experiments.

4.3 Impact of Path Number Selection

In this section, we show the impact of number of a path on
the localization accuracy. We test different numbers of
paths from 2 to 5, based on 24 different target positions on
the ground. Fig. 13 shows the experiment result, where n
denotes the number of path. We find that when n = 2, its
average localization accuracy is only about 2 m. When we
take more path into consideration, say n = 3,4, 5, we obtain
better localization accuracy. However, we also observe that
when n > 3, the improvement in accuracy is marginal with
alocalization accuracy of about 1.5 m. Therefore in our later
experiments, we set this value as 3.

4.4 Impact of Number of Channel

TelosB nodes can adjust to 16 different channels. In
our system, we leverage frequency diversity by transmit-
ting data through all the possible channels. In this part,
we would like to examine the impact of different number
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Fig. 10. Change of RSS.
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of channel in use. we compares the normalized ranging
accuracy with different channel numbers with m = 8,11, 16
respectively. In Fig. 14. The experiment shows that for
m = 8, the averaged range error is about 32 percent. When
we use the maximum number of channels 16, the accuracy
is at best 25 percent on average. From this, we could draw
the conclusion that when latency and measurement over-
heads are not a concern, we should use more channels.

In this section, we evaluate the localization accuracy of a
single object in a dynamic environment, where we arrange
some people walking around. Based on 24 different target
locations, we compare the accuracy of our algorithm with
Horus [9], which has the best localization accuracy in the
traditional work. The localization results are shown in
Fig. 15. We may see that, in a dynamic environment, the
localization accuracy of Horus is around 3 m while our LOS
map matching has the accuracy of 1.5 m. The localization
accuracy is improved by 50 percent.

4.5 Accuracy of Multiple Objects in Dynamic
Environment

In this experiment, we evaluate the system performance of
multiple objects in a dynamic environment, where we
arrange for some people to walk around. We have two
target objects, named O; and O,. These two objects are
TelosB nodes held by two people. In the experiment, both
people try to keep the target node at a fixed height and
direction to minimize the effect of other factors. For each
target object, 40 locations on the ground are tested. From
Fig. 16 we can observe that, by using Horus, the localiza-
tion accuracy is about 4.4 m, which is much worse than the
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Fig. 12. Localization accuracy by using two different map construction
approaches.
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Fig. 13. Accuracy of different number of path.

localization accuracy of a single object. Our LOS map
matching method, however, has a localization accuracy of
about 1.8 m and outperforms traditional radio map based
technologies by 60 percent.

Second, to better understand the impact of multiple
objects, we introduce another person known as O3 while
keeping the other environmental factors stable. We show
the impact of the third object O3 on the localization of the
other two target objects O; and O,. The experiment result
by using the traditional radio map is shown in Fig. 17.
The top figure demonstrates an absolute localization error
of Oy with and without Os presents, and the bottom figure
demonstrates the impact of object O3 on O,. However, the
extra object O3 has little impact on RSS of LOS path and the
experiment result is shown in Fig. 18. By using LOS map
matching, both O; and O, have an average localization
error of around 1.8 meters.

The experiment results have indicated that, without
calibration, the LOS map matching has high accuracy for
multiple objects in a dynamic environment.

4.6 Performance of CSl Information

In this part, we implement our basic idea with 802.11 NICs,
which is manufactured by TP-LINK technologies CO.Ltd.
we use a laptop with 2.4 Ghz dual-core CPU as the
transmitter and three WiFi devices are deployed on the
ceiling as receivers. In Fig. 19, we show the CDF of
the amplitude change of CSI between two successive
packets in 5 mobile traces and the amplitude variance of
CSI is within 15 percent. The temporal variance of RSSI
in corresponding traces is much larger within 30 percent
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Fig. 14. Impact of number of channel.
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as presented in Fig. 20. Therefore, the relative stability for
CSI is an essential advantage for a higher accuracy gain
compared with the use of only RSSI information.

In addition, we compare the CSI based localization
result with an RSSI based localization result. In Fig. 21, the
experiment showss that, with this additional information
from the physical layer, we could obtain more accurate
location information.

4.7 Latency

The latency of a TelosB based system mainly depends on how
much time it takes for each node to finish visiting all the
channels. In our system, we transmit beacon messages through
all the 16 channels and at each channel, 5 packets are
transmitted. TelosB node takes approximately 7 ms to transmit
a single packet and 0.3 4 ms for channel switching. In order to
avoid beacon collision when multiple objects exist, the target
nodes transmit packets every 30 ms. Therefore, for each node,
the minimum time spend on visiting all the channels is
(374 0.34) x 16 =~ 0.59 s. Since we transmit 5 packets in each
channel, the total latency will be (37 x 5+ 0.34) x 16 ~ 2.9s
The total latency can be expressed as:

Ty= (T, +T,) x N, (10)

where 7T; denotes the time interval between packet
transmission, T represents the channel switch time and
N denotes the number of channels.

Furthermore, 802.11 NICs with OFDM technology could
provide information of all the subcarriers simultaneously,
thus, there is no such latency issue.
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Fig. 16. CDF of localization accuracy of multiple objects.
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5 RELATED WORK

There are some video-based technologies that track mul-
tiple objects, such as [21], [22], [23]. Their computation
complexity is relatively high and it is hard to track objects in
a dark area. In [10], a RF-based method has been proposed
for multiple objects localization. However, this approach is
sensitive to environment change.

Significant work has been done in the area of indoor
localization by using RSS information. These works can be
roughly divided into two categories: radio map based
technology and non-radio map based technology.

In radio map based technology, some works use adaptive
learning approaches such as found in [24]. This work utilizes
the RSS information of some reference points to help
reconstruct the radio map. Thus, reducing the calibration
cost. However, calibration on the map is still required if the
environment changes. A large number of probabilistic
approaches [9], [4] have also been proposed. Their main
idea is to construct a probabilistic model to represent the
behavior of the linked RSS values. Many parameters still need
to be trained in real environments, which also suffer from
environmental changes. One work [14] built multiple radio
maps in advance under various environmental conditions and
selected the most appropriate radio map to localize an object
by using sensors to identify the current environment.
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Fig. 18. Accuracy with LOS map.



However, if environments or the number of targets changes
often, it is hard to construct all possible maps. Another work
[7] assumes positions of access points (anchor nodes) are
unknown. Their proposed algorithm does not rely on
knowledge of the placement of the access points. [25]
considered the NLOS issue by leveraging the prior probabil-
ities and distribution of the NLOS errors. However, these
performances also suffer from environment change. In our
previous work [26], though we could achieve relatively high
accuracy in localizing multiple objects in a dynamic environ-
ment, we only leverage the RSS information, which will
introduce latency for switching channel. In this work, we
consider leveraging CSI information to improve the localiza-
tion accuracy and reduce the latency as well.

In non-radio map based technologies, RIPS [27], [28]
utilized the interference behavior between two nodes with
slightly frequency difference to localize target. This is
improved in [29], [30] used Doppler effect work to track
mobile target and improve the system accuracy. Although
these work have excellent positional accuracy and sensing
range in outdoor environments, they are unsuitable for
indoor environment due to severe multipath effect indoors.
LANDMARC [13] used RFID technology to localization
object inside building by finding similar RSS value between
reference nodes and the target nodes. However, the accuracy
of this approach relies on dense deployment of the reference
nodes. Its extended work [31] is able to localize target by using
less reference nodes. However, its density is still high. In [3],
[32], it leverages vector network analyzer to obtain the channel
impulse response (CIR) and improve the accuracy by
adopting the neural networking training algorithm.

6 CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel localization system
called MODLoc and we implement it on TelosB sensor
nodes and 802.11 NICs respectively. This system is able to
accurately localize multiple targets in a dynamic environ-
ment without any calibration procedure making it totally
different from traditional approaches. Moreover, it pre-
sents promising generality which enables it to be applied
in a much broader scope of application. With this
new approach, many of the existing RF-based localization
approaches may need a revisit.

Our radio map construction and localization methods
are both based on the LOS path information among
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nodes. The LOS signal is identified from the original
signal by utilizing frequency diversity of wireless nodes
to eliminate multipath behavior. During the multipath
elimination procedure, each wireless node only needs
to visit different channels to transmit. Then, the elimina-
tion problem is transferred into an optimization problem.
Our system shows that the number of targets and
environmental changes do not affect the LOS map and
no calibration is required. Through extensive experi-
ments, compared with traditional radio map based
technologies, the accuracy of localizing multiple objects
in a dynamic environment (e.g., the target number
changes or layout changes) can be dramatically improved
by 60 percent and more gain with CSI provided by 802.11
NICs. Our method can be widely used and benefit all the
RF-based localization methods.

Future work can be conducted in the following directions.
First, based on this new technology, some fundamental radio
map based localization problems become open. For example,
based on the new LOS radio map, other appropriate map
matching methods should be further investigated. Second,
we only conduct our experiments in an area of 15 x 10 meters.
A larger experiment area is expected in our future work.
Third, in our experiment, the number of target nodes is at
most three. The localization results of more target objects will
be given in our ensuing work. Finally, the parameter of path
number selection in frequency diversity is from our empirical
results and its theoretical foundation calls for further
investigation.

-

e oo
N ® ©
T

Probability
© o o9
w H~ 00O

0.2+ 4

01L —CSl-based
'0 . . ) . N RSSI-based
0 0.25 0.5 0.75 1 1.25 1:5 1.75 2

Distance error (m)

Fig. 21. CSI VS. RSSI.



ACKNOWLEDGMENT

This research was supported in part by Program for New
Century Excellent Talents in University (NCET-13-0908),
Guangdong Natural Science Funds for Distinguished Young
Scholar (No. S20120011468), New Star of Pearl River on
Science and Technology of Guangzhou (No. 2012J2200081),
Guangdong NSF Grant (Nos. S2012010010427, S2012040006682),
China NSFC Grant (61202454, 61202377), Hong Kong RGC
Grant HKUST617212, the Singapore National Research
Foundation under its International Research Centre @
Singapore Funding Initiative and administered by the IDM
Programme Office, Media Development Authority (MDA),
and the Shenzhen Science and Technology Foundation
(Grant No. JCYJ20120613173453717). Kaishun Wu and Dian
Zhang are the corresponding authors.

REFERENCES

[1] G. Wang and H. Chen, “An Importance Sampling Method for
TDOA-Based Source Localization,” IEEE Trans. Wireless Commun.,
vol. 10, no. 5, pp. 1560-1568, May 2011.

[2] B. Liu, H. Chen, Z. Zhong, and H. Poor, "“Asymmetrical Round
Trip Based Synchronization-Free Localization in Large-Scale
Underwater Sensor Networks,”” IEEE Trans. Wireless Commun.,
vol. 9, no. 11, pp. 3532-3542, Nov. 2010.

[3] C. Nerguizian, C. Despins, and S. Affes, ““Geolocation in Mines
with an Impulse Response Fingerprinting Technique and
Neural Networks,”” in Proc. 60th IEEE Veh. Technol. Conf., 2004,
pp- 3589-3594.

[4] A. Haeberlen, E. Flannery, A.M. Ladd, A. Rudys, D.S. Wallach,
and L.E. Kavraki, “Practical Robust Localization over Large-
Scale 802.11 Wireless Networks,”” in Proc. ACM MobiCom, 2004,
pp- 70-80.

[5] D.Zhang,]. Ma, Q. Chen, and L.M. Ni, ““An RF-Based System for
Tracking Transceiver-Free Objects,” in Proc. IEEE PerCom, 2007,
pp- 135-144.

[6] D.Zhang and L. Ni, “Dynamic Clustering for Tracking Multiple
Transceiver-Free Objects,”” in Proc. IEEE PerCom, 2009, pp. 1-8.

[7] K. Chintalapudi, A. Padmanabha Iyer, and V.N. Padmanabhan,
“Indoor Localization without the Pain,”” in Proc. ACM MobiCom,
2010, pp. 173-184.

[8] P.Bahland V.Padmanabhan, “Radar: An In-Building RF-Based
User Location and Tracking System,” in Proc. IEEE INFOCOM,
2000, pp. 775-784.

[9] M. Youssef and A. Agrawala, “The Horus WLAN Location
Determination System,” in Proc. ACM MobiSys, 2005, pp. 205-218.

[10] I. Sabek and M. Youssef, “Spot: An Accurate and Efficient Multi-
Entity Device-Free WLAN Localization System,”in Proc IEEE
Globecom, 2012, pp. 2018-2023.

[11] K. Wu, H. Tan, Y. Liu, J. Zhang, Q. Zhang, and L. Ni, ““Side
Channel: Bits over Interference,” in Proc. ACM MobiCom, 2010,
pp- 13-24.

[12] K.Wu, H. Tan, H. Ngan, Y. Liu, and L.M. Ni, “Chip Error Pattern
Analysis in IEEE 802.15.4,” IEEE Trans. Mobile Comput., vol. 11,
no. 4, pp. 543-552, Apr. 2012.

[13] L.Ni, Y.Liu, Y.C.Lau, and A. Patil, “LANDMARC: Indoor Location
Sensing Using Active RFID,” in Proc. PerCom, 2003, pp. 407-415.

[14] Y.-C. Chen, ]J.-R. Chiang, H. Chu, P. Huang, and A.W. Tsui,
"“Sensor-Assisted Wi-Fi Indoor Location System for Adapting to
Environmental Dynamics,” in Proc. MSWiM, 2005, pp. 118-125.

[15] A. Smailagic and D. Kogan, ““Location Sensing and Privacy in a
Context-Aware Computing Environment,” IEEE Wireless Commun.,
vol. 9, no. 5, pp. 10-17, Oct. 2002.

[16] J. Yin, Q. Yang, and L. Ni, ““Adaptive Temporal Radio Maps for
Indoor Location Estimation,”” in Proc. IEEE PerCom, 2005, pp. 85-94.

[17] C.A. Balanis, Antenna Theory: Analysis and Design, 2nd ed., New
York, NY, USA: Wiley, 1997.

[18] T. instrument, ““Application note an040.” [Online]. Available:
http:/ /www.ti.com/lit/an/swra093d /swra093d.pdf

[19] J.J.E. Dennis and R.B. Schnabel, ““Numerical Methods for
Unconstrained Optimization and Nonlinear Equations,” in Clas-
sics in Applied Mathematics. Philadelphia, PA, USA: SIAM, 1996.

[20] S.N.Jaspersonand S.E. Schnatterly, “An Improved Method for High
Reflectivity Ellipsometry Based on a New Polarization Modulation
Technique,” Rev. Sci. Instrum., vol. 40, pp. 761-767, June 1969.

[21] J. Berclaz, F. Fleuret, E. Turetken, and P. Fua, “Multiple Object
Tracking Using K-Shortest Paths Optimization,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 33, no. 9, pp. 1806-1819, Sept. 2011.

[22] H. He and S. Chen, “IMORL: Incremental Multiple-Object Recog-
nition and Localization,”” IEEE Trans. Neural Netw., vol. 19, no. 10,
pp- 1727-1738, Oct. 2008.

[23] M.Han, A.Sethi, W. Hua, and Y. Gong, "’A Detection-Based Multiple
Object Tracking Method,” in Proc. ICIP, 2004, pp. 3065-3068.

[24] ]. Yin, Q. Yang, and L. Ni, “’Learning Adaptive Temporal Radio
Maps for Signal-Strength-Based Location Estimation,” IEEE
Trans. Mobile Comput., vol. 7, no. 7, pp. 869-883, July 2008.

[25] H. Chen, G. Wang, Z. Wang, H. So, and H. Poor, ““Non-Line-of-
Sight Node Localization Based on Semi-Definite Programming in
Wireless Sensor Networks,”” IEEE Trans. Wireless Commun., vol. 11,
no. 1, pp. 108-116, Jan. 2012.

[26] X. Guo, D. Zhang, and L.M. Ni, “Localizing Multiple Objects in
Dynamic Indoor Environment,”in Proc. IEEE ICDCS, 2012,
pp- 576-585.

[27] B. Kusy, A. Ledeczi, M. Maroti, and L. Meertens, “Node Density
Independent Localization,” in Proc. ACM/IEEE IPSN, 2006, pp. 441-448.

[28] D.Han, M. Lee, L. Chang, and H. Yang, “Open Radio Map Based
Indoor Navigation System,” in Proc. PERCOM Workshops, 2010,
pp. 844-846.

[29] H. Chang, ]. Tian, T.-T. Lai, H.-H. Chu, and P. Huang, “Spinning
Beacons for Precise Indoor Localization,” in Proc. ACM SenSys,
2008, pp. 127-140.

[30] B. Kusy, A. Ledeczi, and X. Koutsoukos, ““Tracking Mobile Nodes
Using RF Doppler Shifts,” in Proc. ACM SenSys, 2007, pp. 29-42.

[31] Y. Zhao, Y. Liu, and L. Ni, “VIRE: Active RFID-Based Localization
Using Virtual Reference Elimination,” in Proc. ICPP, 2007, p. 56.

[32] S.Dayekh, S. Affes, N. Kandil, and C. Nerguizian, “’Cooperative
Localization in Mines Using Fingerprinting and Neural Net-
works,” in Proc. IEEE WCNC, 2010, pp. 1-6

Xiaonan Guo received the PhD degree in
computer science and engineering from the
Hong Kong University of Science and Technol-
ogy, Hong Kong, in 2013. He is currently a
research fellow in the School of Information
Systems, Singapore Management University,
Singapore. His research interests include per-
vasive computing, mobile computing, wireless
sensor networks and social networks. He is a
member of the IEEE.

Dian Zhang received the PhD degree in com-
puter science and engineering from the Hong
Kong University of Science and Technology,
Hong Kong, in 2010. After that, she worked as a
research assistant professor in Fok Ying Tung
Graduate School, the Hong Kong University of
Science and Technology, Hong Kong. She is
currently an Assistant Professor in Shenzhen
University, China. Her research interests include
wireless sensor networks, pervasive computing
and networking and distributed systems. She is
a member of the IEEE.

Kaishun Wu received the PhD degree in
computer science and engineering from Hong
Kong University of Science and Technology
(HKUST), in 2011. He is currently a research
assistant professor in Fok Ying Tung Graduate
School with the HKUST. His research interests
include wireless communication, mobile com-
puting, wireless sensor networks and data
center networks. He is a member of the IEEE.




Lionel M. Ni is Chair Professor in the Department
of Computer Science and Engineering at The
Hong Kong University of Science and Technology
(HKUST). He also serves as the Special Assistant
to the President of HKUST, Dean of HKUST Fok
Ying Tung Graduate School and Visiting Chair
Professor of Shanghai Key Lab of Scalable
Computing and Systems at Shanghai Jiao Tong
University. A Fellow of the IEEE. Dr. Ni has
chaired over 30 professional conferences.



	MODLoc: Localizing multiple objects in dynamic indoor environment
	Citation

	untitled


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


