
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

4-2018

Feature Engineering for Machine Learning and Data Analytics Feature Engineering for Machine Learning and Data Analytics

Xin XIA

David LO
Singapore Management University, davidlo@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Numerical Analysis and Scientific Computing Commons, and the Software Engineering

Commons

Citation Citation
XIA, Xin and LO, David. Feature Engineering for Machine Learning and Data Analytics. (2018). Feature
engineering for machine learning and data analytics. 335-358.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4362

This Book Chapter is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4362&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4362&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4362&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4362&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Chapter 1

Feature Generation and Engineering
for Software Analytics

Xin Xia

Faculty of Information Technology, Monash University, Australia

David Lo

School of Information Systems, Singapore Management University, Singapore

Abstract . 4
1.1 Introduction . 4
1.2 Features for Defect Prediction . 5

1.2.1 File-level Defect Prediction . 6
1.2.1.1 Code Features . 6
1.2.1.2 Process Features . 8

1.2.2 Just-in-time Defect Prediction . 10
1.2.3 Prediction Models and Results . 10

1.3 Features for Crash Release Prediction for Apps 11
1.3.1 Complexity Dimension . 13
1.3.2 Time Dimension . 14
1.3.3 Code Dimension . 14
1.3.4 Diffusion Dimension . 14
1.3.5 Commit Dimension . 15
1.3.6 Text Dimension . 15
1.3.7 Prediction Models and Results . 16

1.4 Features from Mining Monthly Reports to Predict Developer
Turnover . 16
1.4.1 Working Hours . 17
1.4.2 Task Report . 17
1.4.3 Project . 18
1.4.4 Prediction Models and Results . 19

1.5 Summary . 20

3

4 FE

Abstract

This chapter provides an introduction on feature generation and engineer-
ing for software analytics. Specifically, we show how domain-specific features
can be designed and used to automate three software engineering tasks: (1)
detecting defective software modules (defect prediction), (2) identifying crash-
ing mobile app release (crash release prediction), and (3) predicting who will
leave a software team (developer turnover prediction). For each of the three
tasks, different sets of features are extracted from a diverse set of software
artifacts, and used to build predictive models.

1.1 Introduction

As developers work on a project, they leave behind many digital artifacts.
These digital trails can provide insights into how software is developed and
provide a rich source of information to help improve development practices.
For instance, GitHub hosts more than 57M repositories, and is currently used
by more than 20M developers [1]. As another example, Stack Overflow has
more than 3.9M registered users, 8.8M questions, and 41M comments [58].
The productivity of software developers and testers can be improved using
information from these repositories.

There have been a number of studies in software engineering which focus on
building predictive models by mining a wide variety of software data collected
from systems, their repositories and relevant online resources [3, 6, 35, 59, 60].
For example, in defect prediction [35,60], developers aim to predict whether a
module/class/method/change contains bugs, and they build a predictive mod-
el by extracting features from historical modules/classes/methods/changes
with known labels (i.e., buggy or clean). In bug priority prediction [53], devel-
opers aim to predict the priority level of a bug when it is submitted, and they
build a predictive model by leveraging features from historical bug reports
with known priority levels. In practice, the performance of a predictive model
will be largely affected by the features used to build the model. For example,
Rahman and Devanbu investigated different types of features on the perfor-
mance of defect prediction, and they found that process features performed
better than the code features in defect prediction [45]. However, feature identi-
fication and generation from software artifacts and repositories is challenging
since (1) software engineering data are complex, and (2) it requires domain
knowledge to identify effective features.

Features can be extracted from various types of software artifacts, e.g.,
source code, bug reports, code reviews, commit logs, and email lists. Even in

Feature Generation and Engineering for Software Analytics 5

the same software artifacts, there are various ways to extract features. For
example, to extract features from source code, trace features (e.g., statement
coverage) can be extracted by running the source code and analyzing its exe-
cution trace, code features (e.g., code complexity) by leveraging static analysis
tools (e.g., SciTool1), textual features (e.g., readibility and term frequency) by
using text mining techniques, and process features (e.g., number of developers
who changed the code) by mining the change history of the code.

In this chapter, we aim to provide an introduction on feature generation
and engineering for software analytics, and show how domain-specific features
are extracted and used for three software engineering use cases, i.e., defect
prediction, crash release prediction, and developer turnover prediction. These
three case studies extract different kinds of features from software artifacts,
and build predictive models based on these features. Some features used in
these three case studies are related, while others are problem-specific.

The remainder of the chapter is structured as follows. Section 1.2 describes
features used in defect prediction. Section 1.3 presents features used in crash
release prediction for apps. Section 1.4 elaborates features generated from
monthly report for developer turnover prediction. Section 1.5 concludes the
chapter and discusses future directions.

1.2 Features for Defect Prediction

Defect prediction techniques are proposed to help prioritize software test-
ing and debugging; they can recommend likely defective code to developers.
Most defect prediction studies proposed prediction models built on various
types of features (e.g., process or code features), and predicted defects at
coarse granularity level (e.g., file), which refered to as file-level defect predic-
tion [17, 19, 28, 39, 45, 54, 60]. Besides file-level defect prediction, Mockus and
Weiss proposed a prediction model which focuses on identifying defect-prone
software changes instead of files or packages [37], which was also referred as
just-in-time (JIT) defect prediction by Kamei et al. [24].

The difference between file-level and just-in-time defect prediction lies on
the development phase when they are employed. File-level defect prediction is
usually conducted before a product release. It aims to be a quality control step
before a release [63]. Just-in-time defect prediction is conducted when each
change is submitted. It aims to be a continuous activity of quality control,
which leads to smaller amount of code to be reviewed, and developers can
review and test these risky changes while they are still fresh in their minds (i.e.,
at commit time) [21]. They can complement each other to improve the quality
of the upcoming release. Considering the difference in the usage scenarios of

1https://scitools.com/

6 FE

these two types of defect prediction techniques, their corresponding features
are different. In the remaining sections, the details of features for these two
types of defect prediction techniques are introduced.

1.2.1 File-level Defect Prediction

In general, there are two types of features for file-level defect prediction:
code features, which measure properties of the code (e.g., code complexity, and
lines of code), and process features (e.g., developer experience, and number
of changes), which are extracted from the software development process. A
number of papers in the software engineering literature have investigated the
effectiveness of each feature type. Menzies et al. concluded that code metrics
are efffective for defect prediction [36]. Moser et al. compared the performance
of code and process features on Eclipse JDT project, and they found that
process features outperform code features [38]. Arisholm et al. performed an
empirical study on various types of features and techniques on several releases
of a Java middleware system named COS, and they found that process and
code features perform similarly in terms of AUC, but process features are cost-
effective [4]. Finally, Rahman and Devanbu performed a large-scale empirical
study to investigate why and how process features performed better than code
features [45].

1.2.1.1 Code Features

Jureczko and Madeyski proposed 20 code features to predict defective
files [23]. These features have been empirically demonstrated to be effective
in defect prediction [8, 23, 41]. They can be categorized according to the re-
searchers who first proposed as follows:
1. Features proposed by Chidamber and Kemerer [9]:

1. Weighted methods per class (WMC): the number of methods used
in a given class.

2. Depth of Inheritance Tree (DIT): the maximum distance from a
given class to the root of an inheritance tree.

3. Number of Children (NOC): the number of children of a given class
in an inheritance tree.

4. Coupling between object classes (CBO): the number of classes
that are coupled to a given class.

5. Response for a Class (RFC): the number of distinct methods invoked
by code in a given class.

6. Lack of cohesion in methods (LCOM): the number of method pairs
in a class that do not share access to any class attributes.

Feature Generation and Engineering for Software Analytics 7

2. A Feature proposed by Henderson-Sellers [20]:

1. Lack of cohesion in methods (LCOM3): another type of lcom met-
ric proposed by Henderson-Sellers [20], i.e.,

LOCM3 =
1
a

∑a
j=1m(Aj)−m

1−m
(1.1)

In the above equation, m is the number of methods in a class, a is the
number of attributes in a class, and m(A) is the number of methods
that access the attribute A.

3. Features proposed by Bansiy and Davis [5]:

1. Number of Public Methods (NPM): the number of public methods
in a given class.

2. Data Access Metric (DAM): the ratio of the number of pri-
vate/protected attributes to the total number of attributes in a given
class.

3. Measure of Aggregation (MOA): the number of attributes in a given
class which are of user-defined types.

4. Measure of Functional Abstraction (MFA): the number of meth-
ods inherited by a given class divided by the total number of methods
that can be accessed by the member methods of the given class.

5. Cohesion Among Methods of Class (CAM): the ratio of the sum
of the number of different parameter types of every method in a given
class to the product of the number of methods in the given class and
the number of different method parameter types in the whole class.

4. Features proposed by Tang et al. [52]:

1. Inheritance Coupling (IC): the number of parent classes that a given
class is coupled to.

2. Coupling Between Methods (CBM): the total number of new or
overwritten methods that all inherited methods in a given class are cou-
pled to.

3. Average Method Complexity (AMC): the average size of methods
in a given class.

5. Features proposed by Martin [29]:

1. Afferent couplings (Ca): number of classes that depends upon a given
class.

8 FE

2. Efferent couplings (Ce): number of classes that a given class depends
upon.

6. Features proposed by McCabe [32]:

1. McCabe’s cyclomatic complexity (CC): CC is equal to the num-
ber of different paths in a method (function) plus one. The cyclomatic
complexity of a method is defined as: CCM = E × ×N + P ; where E
is the number of edges of the graph, N is the number of nodes of the
graph, and P is the number of connected components. Based on CCM ,
two variants of CC can be computed for a class as follows:

(a) Maximum McCabe’s cyclomatic complexity (MAX CC):
maximum McCabe’s cyclomatic complexity (CC) score of methods
in a given class.

(b) Average McCabe’s cyclomatic complexity (AVG CC):
arithmetic mean of the McCabe’s cyclomatic complexity (CC) s-
cores of methods in a given class.

7. Others:

1. Lines of Code (LOC): a popular feature in defect prediction, which
calculates the number of lines of code of a class under investigation.

These 20 code features can be also categorized on other categories. Ta-
ble 1.1 categorizes these features based on how they are derived, including
complexity, coupling, cohesion, abstraction, and encapsulation.

1.2.1.2 Process Features

Various process features can be extracted for a source code file, and gen-
erally they can be grouped into 3 categories: developer’s behavior, change
entropy, and commit history [45].

1. Developer’s Behavior: Since source code files are created/revised by
different developers, features extracted from developers’ commit behavior can
potentially be used to predict likely buggy files. Many developer behavior
features have been proposed in prior studies [4, 7, 37, 43, 45]; they include the
following:

1. Number of commits made to a file (COM)

2. Number of developers who changed a file (NumDev)

3. Number of distinct developers who contributed to a file (DisDev)

4. Number of lines of code added or deleted or modified in a file in the
previous release (AddLoc, DelLoc, and ModiLoc)

Feature Generation and Engineering for Software Analytics 9

TABLE 1.1: List of of Code Features
Category Code Features

Complexity

Lines of Code (LOC)
Weighted Methods per Class (WMC)
Number of Public Methods (NPM)

Average Method Complexity (AMC)
Max McCabe’s Cyclomatic Complexity (Max cc)
Avg McCabe’s Cyclomatic Complexity (Avg cc)

Measure of Aggregation (MOA)

Coupling

Coupling between object classes (CBO)
Response of a Class (RFC)
Afferent Couplings (CA)
Efferent Couplings (CE)

Inheritance Coupling (IC)
Coupling Between Methods (CBM)

Cohesion
Lack of cohesion in methods (LCOM)
Lack of cohesion in methods (LCOM3)

Cohesion Among Methods of Class (CAM)

Abstraction
Depth of Inheritance Tree (DIT)

Number Of Children (NOC)
Measure of Functional Abstraction (MFA)

Encapsulation Data Access Metric (DAM)

5. Geometric mean of experiences of all developers working on a file (Exp)

2. Change Entropy: Scattered changes could be more complex to manage,
and prior study showed that scattered changes are good indicators of defect-
s [19]. Rahman and Devenbu proposed a simple line based change entropy
feature named SCTR, which measures the scattering of changes to a file [45].
SCTR is the standard position deviation of changes from the geographical
centre theme.

3. Commit History: Features extracted from the commit history of a source
code file can also potentially help to predict defective files [25]. Features in
this category include:

1. Number of defects in previous version (NDPV), which measures the
number of defects reported in a given file in the previous release of a
project.

2. Number of commits which modified a file in the previous release (N-
COM)

3. Number of commits which aimed to fix bugs in a file in the previous
release (NCOMBUG)

10 FE

1.2.2 Just-in-time Defect Prediction

In general, the features used by file-level defect prediction can also be
adapted for just-in-time defect prediction. Also, there are some specific fea-
tures for just-in-time defect prediction. Kamei et al. proposed 14 features for
just-in-time defect prediction, which are divided into five dimensions: diffu-
sion, size, purpose, history, and experience [24]. Table 1.2 presents the details
of these 14 features. Features in the diffusion, size, history, and experience
dimensions are similar to those originally defined for file-level defect predic-
tion, while the feature FIX in the purpose dimension is unique to just-in-time
defect prediction.

The features in diffusion dimension characterize the distribution of a
change. Previous studies showed that a highly distributed change is more
likely to be defective [19, 37, 40]. The features in size dimension characterize
the size of a change, and a larger change is more likely to be defective since
more code has to be changed or implemented [38]. The purpose dimension
only consists of FIX, and it is believed that a defect-fixing change is more
likely to introduce a new defect [14,16,44]. The features in history dimension
demonstrate how developers interacted with different files in the past. As stat-
ed by Yang et al. [66], a change was more likely to be defective if the touched
files have been modified by more developers [30], by more recent changes [14],
or by more unique last changes [19]. The experience dimension measures a de-
veloper’s experience based on the number of changes made by the developer
in the past. In general, a change made by a more experienced developer is less
likely to introduce defects [37].

1.2.3 Prediction Models and Results

Various prediction models can be built on these features to perform file-
level or just-in-time defect prediction. Table 1.3 summaries the 31 supervised
models, which are grouped into six categories, namely Function, Lazy, Rule,
Bayes, Tree and Ensemble. These supervised models are commonly used in
defect prediction studies [13, 18, 27, 34, 36]. And all of them were investigated
in Yang et al.’s work [66], and most of them (except Random Forest) were
revisited in Ghotra et al.’s work [13].

Function category contains regression models, neural networks and sup-
port vector machine, including EALR [24] (i.e., Effort-Aware Linear Regres-
sion), Simple Logistic (SL), Radial Basis Functions Network (RBFNet), and
Sequential Minimal Optimization (SMO). The Lazy family represents lazy
learning methods, and the K-Nearest Neighbour (IBk) method is used in this
category. The Rule family represents models based on rules, including propo-
sitional rules (JRip) and ripple down rules (Ridor). Bayes family represents
probability-based models, and the most popular one, namely Naive Bayes
(NB) is included in this category. The Tree family represents decision tree
based methods, including J48, Logistic Model Tree (LMT) and Random For-

Feature Generation and Engineering for Software Analytics 11

TABLE 1.2: Summary of Features for JIT Defect Prediction.
Category Feature Definition

Diffusion

NS Number of subsystems touched by the
current change

ND Number of directories touched by the cur-
rent change

NF Number of files touched by the current
change

Entropy Distribution across the touched files

Size
LA Lines of code added by the current change
LD Lines of code deleted by the current

change
LT Lines of code in a file before the current

change

Purpose FIX Whether or not the current change is a
defect fix

History
NDEV Number of developers that changed the

files
AGE Average time interval between the last

and current change
NUC Number of unique last changes to the files

Experience
EXP Developers experience (number of files

modified)
REXP Developers experience in recent years
SEXP Developer experience on a subsystem

est (RF). In the last family, four ensemble learning methods are investigated:
Bagging, Adaboost, Rotation Forest and Rotation Subspace. Different from
other models, ensemble learning models are built with multiple base classifiers.

Yang et al. compared the performance of different prediction models on
just-in-time defect prediction, and they found that EALR showed the best
performance than the other prediction models – it can detect 33% defective
changes when inpsecting 20% LOC [66]. A similar results were found by Yan
et al.’s study [63], and they found EALR achieved the best performance in
file-level defect prediction – it can detect 34% defective files when inspecting
20% LOC.

12 FE

TABLE 1.3: Summary of prediction models
Category Model Abbreviation

Function

Linear Regression EALR
Simple Logistic SL
Radial basis functions
network

RBFNet

Sequential Minimal
Optimization

SMO

Lazy K-Nearest Neighbour IBk

Rule
Propositional rule JRip
Ripple down rules Ridor

Bayes Naive Bayes NB

Tree J48 J48

Ensemble

Logistic Model Tree LMT
Random Forest RF
Bagging BG+LMT, BG+NB, BG+SL,

BG+SMO, and BG+J48
Adaboost AB+LMT, AB+NB, AB+SL,

AB+SMO, and AB+J48
Rotation Forest RF+LMT, RF+NB, RF+SL, R-

F+SMO, and RF+J48
Random subspace RS+LMT, RS+NB, RS+SL,

RS+SMO, and RS+J48

1.3 Features for Crash Release Prediction for Apps

The quality of mobile applications has a vital impact on their users ex-
perience, ratings and ultimately overall success. Compared with traditional
applications, mobile apps tend to have more releases. In many cases, mobile
developers may release versions of the app that are of poor quality, e.g., crash
releases which cause app to crash [61]. A crashing release is likely to cause
users to uninstall an app, potentially giving it a negative rating, which in turn
impacts the app’s revenue. Thus, identifying crashing releases early on (e.g.,
before the release date), can help warn mobile app developers about a poten-
tial crashing version before it is released and reduce the number of crashing
releases.

Various features can be extracted to predict crashing releases. Our previous
study proposed 20 features which were grouped into six unique dimensions:
complexity, time, code, diffusion, commit, and text [61]. All of these features
are derived from the source control repository data of a mobile application.
Table 1.4 presents a summary of the features.

Feature Generation and Engineering for Software Analytics 13

TABLE 1.4: Features used to identify crashing releases
Dimension Name Definition

Complexity Cyclomatic The number of branching paths within
code in all the source code files in a re-
lease.

Time PreDays The number of days since the previous re-
lease.

Code

LA Number of lines added in a release.
LD Number of lines deleted in a release
SIZE Total number of lines of code in the cur-

rent release
SAME Number of source code files that are mod-

ified by both the current and the previous
release.

CUR file Number of source code files in the current
release

PREV file Number of modified source code files in
the previous release

Diffusion

Top NS Number of unique subsystems changed
between two releases

Bottom NS Number of unique subsystems changed
between two releases

NF Number of unique files that have changed
between two releases

File entropy Distribution of modified files across the
release

Churn entropy Distribution of modified code across the
application

Commit
NC Number of commits
NFC Number of commits which fix bugs

Text

Fuzzy score Fuzzy set scores of commit logs
NB score Naive Bayes scores of commit logs
NBM score Naive Bayes Multinomial scores of com-

mit logs
DMN score Discriminative naive Bayes Multinomial

scores of commit logs
COMP score Complement naive Bayes scores of com-

mit logs

1.3.1 Complexity Dimension

If source code in a release is too complex (e.g., high number of data or
control flows in an applications), the code will be harder to write and mainte-
nance, which may increase the chance of a crashing release. Also, prior stud-

14 FE

ies showed complexity (e.g., cyclomatic complexity) was a good predictor of
defect-prone modules [32,40,51]. As shown in Table 1.4, McCabe’s cyclomatic
complexity is used in the complexity dimension, which is measured directly
from the source code in the current release using a standard static analysis
tool.

1.3.2 Time Dimension

If the time period between the two releases is short, the current release
may have a high chance to be a non-crash release since it may fix the crash
bugs which appears in the previous release. Based on this, the number of days
since the previous release (PreDays) is used as a feature to predict crashing
release. It is computed by counting the number of days between the previous
and current release.

1.3.3 Code Dimension

If many lines of code have been added/deleted/modified between the cur-
rent and previous release, the current release is more likely to be a crash
release. This is the case since many new features may have been added which
increases the likelihood of a feature malfunction that causes a crash [38]. Also,
if the current release modifies many of the same source code files as the pre-
vious release, which may indicate that many repairs have been done, and in
turn indicate that the current release is a good release. As shown in Table 1.4,
six features make up this dimension; they can be extracted from the source
control repository by comparing the difference between two releases.

1.3.4 Diffusion Dimension

Intuitively, if too many different source code files are changed during a
release, this release might be more difficult to understand, and requires more
work to inspect all the locations that are changed. In defect prediction lit-
erature, prior studies found that the number of subsystems touched is an
indicator of defects [37], and scattered changes was a good indicator of de-
fects [19]. Also, the more functionalities there are in a release, the more prone
it is to fail. Thus, subsystems are used as proxies to features. Releases that
contain many modifications at the subsystem level are more likely to be crash
releases. In Table 1.4, five features that make up the diffusion dimension.

Top directory name and bottom directory name as the subsystem name
are used to measure Top NS and Bottom NS, respectively. For example, if
a commit changes a file in the path “src/app/token/main.java”, then its top
directory name is “src/”, and the bottom directory name is “src/app/token/”.
For the ith release, the set of top and bottom directory names are denoted as
Topi and Bottomi, respectively. Then, for two consecutive releases (ith and

Feature Generation and Engineering for Software Analytics 15

(i + 1)th releases), Top NS= |Topi ∩ Topi+1|, and Bottom NS =|Bottomi ∩
Bottomi+1|.

Entropy aims to measure the distribution of a release across different files
or the lines of code in the files. Releases with high entropy are more likely to
be crash releases, since a developer needs to inspect large number of scattered
changes across files. Two kinds of entropies were proposed, i.e., file and churn
entropy [19]. Entropy is computed as: H(P) = −

∑n
k=1(pk× log2 pk), where n

is the number of files changed in the release, and pk ≥ 0 is the probability for a
file k, and pk satisfies (

∑n
k=1 pk) = 1. To compute file entropy, pk is computed

as the the proportion that of commits between the current release and the
previous release that include changes to file k. To compute churn entropy, pk
is computed as the the proportion that of number of lines of code between the
current release and the previous release that include changes to file k.

1.3.5 Commit Dimension

If there are many commits between the current and previous release, the
current release may have a high probability to be a crashing release. This
is the case since more commits means more changes (e.g., bug fixes, new
functionalities) to an app, which may introduce more problems (e.g., bugs)
in the release. In Table 1.4, two features are proposed in this dimension:
number of commits (NC), and number of bug fixing commits (NFC). NC is
computed by counting the number of commits in the current release, and NFC
is computed by counting the number of commits whose logs contain one of
the following keywords: strings “fix”, “’error”, “fault”, “crash”, “issue”, or
“bug” [25,46,49].

1.3.6 Text Dimension

During the release of an app, many commits may be submitted to fix
defects or implement new features. The textual features are first extracted
from the commit messages by tokenization, stop-word removal, and stemming.
The resulting textual tokens and count the number of times each token appears
in the commit logs of a release are used to represent the textual features.
Since there are a large number of unique words in commit logs, and to avoid
that the text features to crowd out the other features, the words that appear
in commit logs are converted into a small number of features. In total, five
different features are proposed in the text dimension, which correspond to the
textual scores outputted by five different classifiers.

To come up with the scores for the different textual features, the whole
collected data are divided into a training set and a testing set. Then, the train-
ing data set is split into two training subsets by leveraging stratified random
sampling, so that the distribution and number of non-crashing and crashing
releases in both training subsets is the same [55]. A classifier is trained with
the first training subset, and it is used to obtain the textual scores on the

16 FE

second training subset. Besides, a second classifier is trained with the second
training subset, and it is used to obtain the textual scores on the first training
subset. In the prediction phase, for a new release, text mining classifiers that
are built on all of the training releases to compute the values of the textual
features. Different text mining classifiers can be used to build the textual fea-
tures, our prior study use 5 types of textual classifiers to calculate the scores
of the textual features, including fuzzy set classifier [67], naive Bayes classi-
fier [33], naive Bayes multinomial classifier [33], discriminative naive Bayes
multinomial classifier [50], and complement naive Bayes classifier [47].

1.3.7 Prediction Models and Results

Similar to defect prediction studies, various prediction models can be used
to predict crash releases. In Xia et al.’s study [61], they built prediction models
by using four different classification algorithms, namely Naive Bayes, decision
tree, kNN, and Random Forest. They found Naive Bayes achieved the best
performance, which corresponds to a F1 and AUC of 0.30 and 0.64, respec-
tively. Considering that only a small number of releases are crash releases,
predicting them accurately is a difficult problem.

1.4 Features from Mining Monthly Reports to Predict
Developer Turnover

Developers are a key asset of an Information Technology (IT) company.
Unfortunately, in an IT company, the influx and retreat of software developers,
which are referred to as turnover, are often very frequent. Prior studies found
the turnover rate in IT companies vary from 20% to 48% [22, 42, 57]. To
help companies better manage developer turnover, it would be interesting to
predict who are likely to leave.

Many companies require their employees to write monthly report, report-
ing their estimated number of working hours2, and what they have done in the
month. Table 1.5 present two example monthly reports. Although the struc-
ture of a monthly report is often simple, various features can be extracted
from such reports.

Our prior work extracted 67 features from monthly reports that developers
write in the first six months of them joining a company [6], which were divided
into three categories: working hours task report, and project. The details of
the features in these categories are presented in the following sections.

2This is especially true for outsourcing companies that charge clients based on the num-
ber of hours their developers spent on a project.

Feature Generation and Engineering for Software Analytics 17

TABLE 1.5: Examples of Monthly Reports
Example 1 Example 2

Month 2013-03 2015-08

Employee ID 1 11

Employee Name D1 D2

Project Name P1 P2
Tasks 1. fix bugs on UI

2. implement 5 new func-
tionalities (ID XXX)

Write unit tests on the
model XXX

Working Hours 168 128

1.4.1 Working Hours

In this category, eleven features corresponding to the working hours of de-
velopers in each of the first six months are collected. Working hours are related
to a developer’s workload. Software developers might be asked to take heavy
workload or have tight deadlines. Heavy workload might cause a developer to
leave a company. On the other hand, if a developer’s working hours are less
than normal, he/she might not be interesting in the job, which is an indicator
of his/her eventual departure. Thus, the working hours of a developer in the
first six month are used as the first six features in this category.

Summary statistics based on a developer’s first six months’ working hours
are also collected. Another five features are proposed in this category, i.e.,
sum, mean, median, standard deviation and maximum of a developer’s working
hours for the six months.

1.4.2 Task Report

In this category, features which are based on the text information of task
report written by the developers are collected. Since the written style of task
report could be different for different developers, which is related to a devel-
oper’s character and working attitude. For example, a developer, who writes
the monthly report in much detail, is usually very conscientious. Otherwise, a
simple task report might imply that the developer does not focus on his/her
work or is dissatisfied with the work. One kind of these features is based on
the length of length of text of task report for each monthly report, and calcu-
late five kinds of statistics of task report, including the sum, mean, median,
standard deviation and maximum of length of text of task report for each
developer. Sometimes, some “lazy” developers copy the text of previous task
reports or write similar task reports. Thus, after tokenizing and steming the
text of task report, the sum, mean, median, standard deviation and maximum
of number of tokens in the monthly report for each developer are calculated.
In total, 11 features are proposed in this category:

18 FE

1. task len sum: the sum of length of text of task reports.

2. task len mean: the mean of length of text of task reports.

3. task len median: the median of length of text of task reports.

4. task len std : the standard deviation of length of text of task reports.

5. task len max : the maximum of length of text of task reports.

6. task zero: the number of monthly report whose length of task is 0.

7. token sum: the sum of the token number of task reports.

8. token mean: the mean of the token number of task reports.

9. token median: the median of the token number of task reports.

10. token std : the standard deviation of the token number of task reports.

11. token max : the maximum of the token number of task reports.

Readability features, which refers to the ease with which a reader can un-
derstand the task report, are collected. The readability of a text is measured
by the number of syllables per word and the length of sentences. Readability
measures can be used to tell how many years of education a reader should have
before reading the text without difficulties [11,12]. Amazon.com uses readabil-
ity measures to inform customers about the difficulty of books. Readability
features of task report are used as a complementary of statistics features of
task report since readability could also be an indicator of a developer’s work-
ing attitude. Following the prior study on the state-of-the-art on readabilty,
nine readability features are used, i.e., Flesh [12], SMOG (simple measure of
gobbledygook) [31], Kincaid [26], Coleman-Liau [10], Automated Readability
Index [48], Dale-Chall [11], difficult words [11], Linsear Write [2], Fog [15].
These readability features can be extracted by using a python package named
textstat3.

1.4.3 Project

In this category, these features represent the information of a project which
a developer is working on for each month. The working environment and other
members in the project might have very important effect on a developer’s
working experience. For example, the good collaboration with other members
in the project can improve a developer’s work efficiency and experience. For
each month, the following measures of the project which the developer is
working for are calculated: the number of project members, the sum, mean
and standard deviation of working hours of project members, and the number

3https://pypi.python.org/pypi/textstat

Feature Generation and Engineering for Software Analytics 19

of changed developers. The number of project members is an indicator of
project size. Small project size usually means more workload to each individual
in the project. The working hours of project members could reflect the overall
workload in the project. And the number of changed developers might indicate
the stability of the project. The developers often prefer stay at a stable project.
In total, 30 features are proposed in this dimension:

1. p{N} person: the number of persons in the project that the developer is
working for in N th month, where N is from 1 to 6.

2. p{N} hour mean: the mean of working hours of project members in N th

month.

3. p{N} hour sum: the sum of working hours of project members in N th

month.

4. p{N} hour std : the standard deviation of working hours of project mem-
bers in N th month.

5. p{N} person change: the number of changed person compared with the
previous month in N th month.

Summary statistics based on projects that a developer join in their
first six months are also collected. In total, six features are proposed, i.e.,
project num, multi project, avg person change, less zero, equal zero, and larg-
er zero. Project num refers to The number of project in the first six months for
each developer, and multi project refers to that whether a developer take part
in more than one project in a month, these two features are proposed since
the experience of working for multiple projects is different from that of work-
ing for only one project and multiple projects might mean higher workload.
The number of developer changed in the project which a developer works for
(avg person change, less zero, equal zero, larger zero) are also counted, since
the stability of the project might have impact on the working experience of a
developer.

1.4.4 Prediction Models and Results

Based on the features described in the previous subsections, Bao et al. used
five different classification algorithm to build prediction models [6], namely
Naive Bayes, Support Vector Machine (SVM), decision tree, kNN, and Ran-
dom Forest. They performed experiments on monthly reports collected from
two companies in China, and random forest achieved the best performance,
which corresponded to F1-scores for retained and not-retained developers of
0.86 and 0.65, respectively.

20 FE

1.5 Summary

In this chapter, we present three case studies, to demonstrate how features
can be generated from different software artifacts for different software engi-
neering problems. The generated features can be used as input to a machine
learning engine (e.g., a classification algorithm) to automate some software
tasks or better manage projects. We hope our chapter can inspire more re-
searchers and developers to dig into software artifacts to generate more power-
ful features, to further improve the performance of existing software analytics
solutions or build new automated solutions that address pain points of soft-
ware developers.

Nowadays, the performance of many predictive models developed to im-
prove software engineering tasks is highly dependent manually on the con-
structed features. However, significant expert knowledge is required to identi-
fy domain-specific features. It would be interesting to investigate methods to
automatically generate features from raw data. Deep learning is a promising
direction that can be used to automatically learn advanced features from the
multitude of raw data available in software repositories, APIs, blog posts, etc.
Some of recent studies have showed the potential of deep learning to solve
many software analystic problems (e.g., defect prediction [56,65], similar bug
detection [64], and linkable knowledge detection [62]) with promising result-
s. Thus, it would be interesting to use deep learning techniques to relieve
the heavy workload involved in manually crafting domain-specific features for
various software engineering tasks and applications.

Bibliography

[1] Celebrating nine years of github with an anniversary sale. https: //

goo. gl/ 4tXxUu , Retrieved on May 30, 2017.

[2] Linsear write. http://www.csun.edu/~vcecn006/read1.html#

Linsear.

[3] John Anvik, Lyndon Hiew, and Gail C Murphy. Who should fix this
bug? In Proceedings of the 28th international conference on Software
engineering, pages 361–370. ACM, 2006.

[4] Erik Arisholm, Lionel C Briand, and Eivind B Johannessen. A systematic
and comprehensive investigation of methods to build and evaluate fault
prediction models. Journal of Systems and Software, 83(1):2–17, 2010.

[5] Jagdish Bansiya and Carl G. Davis. A hierarchical model for object-
oriented design quality assessment. IEEE Trans. Software Eng., 28(1):4–
17, 2002.

[6] Lingfeng Bao, Zhenchang Xing, Xin Xia, David Lo, and Shanping Li.
Who will leave the company?: a large-scale industry study of developer
turnover by mining monthly work report. In Proceedings of the 14th
International Conference on Mining Software Repositories, pages 170–
181. IEEE Press, 2017.

[7] Christian Bird, Nachiappan Nagappan, Brendan Murphy, Harald Gall,
and Premkumar Devanbu. Don’t touch my code!: examining the effects of
ownership on software quality. In Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations of software
engineering, pages 4–14. ACM, 2011.

[8] Cagatay Catal, Banu Diri, and Bulent Ozumut. An artificial immune
system approach for fault prediction in object-oriented software. In De-
pendability of Computer Systems, 2007. DepCoS-RELCOMEX’07. 2nd
International Conference on, pages 238–245. IEEE, 2007.

[9] Shyam R. Chidamber and Chris F. Kemerer. A metrics suite for object
oriented design. IEEE Trans. Software Eng., 20(6):476–493, 1994.

[10] Meri Coleman and Ta Lin Liau. A computer readability formula designed
for machine scoring. Journal of Applied Psychology, 60(2):283, 1975.

21

22 Bibliography

[11] Edgar Dale and Jeanne S Chall. A formula for predicting readability:
Instructions. Educational research bulletin, pages 37–54, 1948.

[12] Rudolf Franz Flesch. How to write plain English: A book for lawyers and
consumers. Harpercollins, 1979.

[13] Baljinder Ghotra, Shane McIntosh, and Ahmed E Hassan. Revisiting the
impact of classification techniques on the performance of defect prediction
models. In ICSE, pages 789–800. IEEE Press, 2015.

[14] Todd L Graves, Alan F Karr, James S Marron, and Harvey Siy. Predicting
fault incidence using software change history. IEEE Transactions on
software engineering, 26(7):653–661, 2000.

[15] Robert Gunning. {The Technique of Clear Writing}. 1952.

[16] Philip J Guo, Thomas Zimmermann, Nachiappan Nagappan, and Bren-
dan Murphy. Characterizing and predicting which bugs get fixed: an
empirical study of microsoft windows. In Software Engineering, 2010
ACM/IEEE 32nd International Conference on, volume 1, pages 495–504.
IEEE, 2010.

[17] Tibor Gyimothy, Rudolf Ferenc, and Istvan Siket. Empirical validation
of object-oriented metrics on open source software for fault prediction.
IEEE Transactions on Software engineering, 31(10):897–910, 2005.

[18] Tracy Hall, Sarah Beecham, David Bowes, David Gray, and Steve Coun-
sell. A systematic literature review on fault prediction performance in
software engineering. TSE, 38(6):1276–1304, 2012.

[19] Ahmed E Hassan. Predicting faults using the complexity of code changes.
In Proceedings of the 31st International Conference on Software Engi-
neering, pages 78–88. IEEE Computer Society, 2009.

[20] B. Henderson-Sellers. Object-Oriented Metrics, Measures of Complexity.
Prentice Hall, 1996.

[21] Qiao Huang, Xin Xia, and David Lo. Supervised vs unsupervised models:
A holistic look at effort-aware just-in-time defect prediction. In Proceed-
ings of the 33nd International Conference on Software Maintenance and
Evolution. IEEE, 2017, to appear.

[22] James J Jiang and Gary Klein. Supervisor support and career anchor
impact on the career satisfaction of the entry-level information systems
professional. Journal of management information systems, 16(3):219–
240, 1999.

[23] Marian Jureczko and Lech Madeyski. Towards identifying software
project clusters with regard to defect prediction. In Proceedings of the 6th
International Conference on Predictive Models in Software Engineering,
page 9. ACM, 2010.

Bibliography 23

[24] Yasutaka Kamei, Emad Shihab, Bram Adams, Ahmed E Hassan, Audris
Mockus, Anand Sinha, and Naoyasu Ubayashi. A large-scale empirical
study of just-in-time quality assurance. IEEE Transactions on Software
Engineering, 39(6):757–773, 2013.

[25] Sunghun Kim, Thomas Zimmermann, E James Whitehead Jr, and An-
dreas Zeller. Predicting faults from cached history. In Proceedings of the
29th international conference on Software Engineering, pages 489–498.
IEEE Computer Society, 2007.

[26] J Peter Kincaid, Robert P Fishburne Jr, Richard L Rogers, and Brad S
Chissom. Derivation of new readability formulas (automated readabil-
ity index, fog count and flesch reading ease formula) for navy enlisted
personnel. Technical report, DTIC Document, 1975.

[27] Stefan Lessmann, Bart Baesens, Christophe Mues, and Swantje Pietsch.
Benchmarking classification models for software defect prediction: A pro-
posed framework and novel findings. IEEE Transactions on Software
Engineering, 34(4):485–496, 2008.

[28] Paul Luo Li, James Herbsleb, Mary Shaw, and Brian Robinson. Experi-
ences and results from initiating field defect prediction and product test
prioritization efforts at abb inc. In Proceedings of the 28th international
conference on Software engineering, pages 413–422. ACM, 2006.

[29] R. Martin. Oo design quality metrics - an analysis of dependencies. IEEE
Trans. Software Eng., 20(6):476–493, 1994.

[30] Shinsuke Matsumoto, Yasutaka Kamei, Akito Monden, Ken-ichi Mat-
sumoto, and Masahide Nakamura. An analysis of developer metrics for
fault prediction. In Proceedings of the 6th International Conference on
Predictive Models in Software Engineering, page 18. ACM, 2010.

[31] G Harry Mc Laughlin. Smog grading-a new readability formula. Journal
of reading, 12(8):639–646, 1969.

[32] T.J. McCabe. A complexity measure. IEEE Trans. Software Eng.,
2(4):308–320, 1976.

[33] Andrew McCallum, Kamal Nigam, et al. A comparison of event models
for naive bayes text classification. In AAAI-98 workshop.

[34] Thilo Mende and Rainer Koschke. Revisiting the evaluation of defect
prediction models. In Proceedings of the 5th International Conference on
Predictor Models in Software Engineering, page 7. ACM, 2009.

[35] Tim Menzies, Andrew Butcher, David Cok, Andrian Marcus, Lucas Lay-
man, Forrest Shull, Burak Turhan, and Thomas Zimmermann. Local
versus global lessons for defect prediction and effort estimation. IEEE
Transactions on software engineering, 39(6):822–834, 2013.

24 Bibliography

[36] Tim Menzies, Jeremy Greenwald, and Art Frank. Data mining static
code attributes to learn defect predictors. IEEE transactions on software
engineering, 33(1):2–13, 2007.

[37] Audris Mockus and David M Weiss. Predicting risk of software changes.
Bell Labs Technical Journal, 5(2):169–180, 2000.

[38] Raimund Moser, Witold Pedrycz, and Giancarlo Succi. A comparative
analysis of the efficiency of change metrics and static code attributes for
defect prediction. In Proceedings of the 30th international conference on
Software engineering, pages 181–190. ACM, 2008.

[39] John C. Munson and Taghi M. Khoshgoftaar. The detection of fault-
prone programs. IEEE Transactions on Software Engineering, 18(5):423–
433, 1992.

[40] Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. Mining metrics
to predict component failures. In Proceedings of the 28th international
conference on Software engineering, pages 452–461. ACM, 2006.

[41] Hector M Olague, Letha H Etzkorn, Sampson Gholston, and Stephen
Quattlebaum. Empirical validation of three software metrics suites to
predict fault-proneness of object-oriented classes developed using highly
iterative or agile software development processes. IEEE Transactions on
software Engineering, 33(6), 2007.

[42] Nancy Pekala. Holding on to top talent. Journal of Property management,
66(5):22–22, 2001.

[43] Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. Ecological
inference in empirical software engineering. In Proceedings of the 2011
26th IEEE/ACM International Conference on Automated Software En-
gineering, pages 362–371. IEEE Computer Society, 2011.

[44] Ranjith Purushothaman and Dewayne E Perry. Toward understanding
the rhetoric of small source code changes. IEEE Transactions on Software
Engineering, 31(6):511–526, 2005.

[45] Foyzur Rahman and Premkumar Devanbu. How, and why, process met-
rics are better. In Proceedings of the 2013 International Conference on
Software Engineering, pages 432–441. IEEE Press, 2013.

[46] Foyzur Rahman, Daryl Posnett, Abram Hindle, Earl Barr, and Premku-
mar Devanbu. Bugcache for inspections: hit or miss? In Proceedings of
the 19th ACM SIGSOFT symposium and the 13th European conference
on Foundations of software engineering, pages 322–331. ACM, 2011.

[47] Jason D Rennie, Lawrence Shih, Jaime Teevan, David R Karger, et al.
Tackling the poor assumptions of naive bayes text classifiers. In ICML,
2003.

Bibliography 25

[48] RJ Senter and Edgar A Smith. Automated readability index. Technical
report, DTIC Document, 1967.

[49] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. When do
changes induce fixes? In ACM sigsoft software engineering notes, vol-
ume 30, pages 1–5. ACM, 2005.

[50] Jiang Su, Harry Zhang, Charles X Ling, and Stan Matwin. Discriminative
parameter learning for bayesian networks. In ICML, 2008.

[51] Ramanath Subramanyam and Mayuram S. Krishnan. Empirical analysis
of ck metrics for object-oriented design complexity: Implications for soft-
ware defects. IEEE Transactions on software engineering, 29(4):297–310,
2003.

[52] Mei-Huei Tang, Ming-Hung Kao, and Mei-Hwa Chen. An empirical study
on object-oriented metrics. In METRICS, pages 242–249, 1999.

[53] Yuan Tian, David Lo, Chengnian Sun, and Xin XIA. Automated predic-
tion of bug report priority using multi-factor analysis. Empirical Software
Engineering, 20(5):1354, 2015.

[54] Burak Turhan, Tim Menzies, Ayşe B Bener, and Justin Di Stefano. On
the relative value of cross-company and within-company data for defect
prediction. Empirical Software Engineering, 14(5):540–578, 2009.

[55] Harold Valdivia Garcia and Emad Shihab. Characterizing and predicting
blocking bugs in open source projects. In Proceedings of the 11th working
conference on mining software repositories, pages 72–81. ACM, 2014.

[56] Song Wang, Taiyue Liu, and Lin Tan. Automatically learning semantic
features for defect prediction. In Proceedings of the 38th International
Conference on Software Engineering, pages 297–308. ACM, 2016.

[57] Aja Whitaker. What causes it workers to leave. Management Review,
88(9):8, 1999.

[58] Xin Xia, David Lo, Denzil Correa, Ashish Sureka, and Emad Shihab. It
takes two to tango: Deleted stack overflow question prediction with text
and meta features. In Computer Software and Applications Conference
(COMPSAC), 2016 IEEE 40th Annual, volume 1, pages 73–82. IEEE,
2016.

[59] Xin Xia, David Lo, Ying Ding, Jafar M Al-Kofahi, Tien N Nguyen, and
Xinyu Wang. Improving automated bug triaging with specialized topic
model. IEEE Transactions on Software Engineering, 43(3):272–297, 2017.

[60] Xin Xia, David Lo, Sinno Jialin Pan, Nachiappan Nagappan, and Xinyu
Wang. Hydra: Massively compositional model for cross-project defect
prediction. IEEE Transactions on software Engineering, 42(10):977–998,
2016.

26 Bibliography

[61] Xin Xia, Emad Shihab, Yasutaka Kamei, David Lo, and Xinyu Wang.
Predicting crashing releases of mobile applications. In Proceedings of
the 10th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, page 29. ACM, 2016.

[62] Bowen Xu, Deheng Ye, Zhenchang Xing, Xin Xia, Guibin Chen, and
Shanping Li. Predicting semantically linkable knowledge in developer
online forums via convolutional neural network. In Proceedings of the
31st IEEE/ACM International Conference on Automated Software Engi-
neering, pages 51–62. ACM, 2016.

[63] Meng Yan, Yicheng Fang, David Lo, Xin Xia, and Xiaohong Zhang. File-
level defect prediction: Unsupervised vs. supervised models. In Proceed-
ings of the 11th ACM/IEEE International Symposium on Empirical Soft-
ware Engineering and Measurement. IEEE, 2017, to appear.

[64] Xinli Yang, David Lo, Xin Xia, Lingfeng Bao, and Jianling Sun. Com-
bining word embedding with information retrieval to recommend similar
bug reports. In Software Reliability Engineering (ISSRE), 2016 IEEE
27th International Symposium on, pages 127–137. IEEE, 2016.

[65] Xinli Yang, David Lo, Xin Xia, Yun Zhang, and Jianling Sun. Deep
learning for just-in-time defect prediction. In Software Quality, Reliability
and Security (QRS), 2015 IEEE International Conference on, pages 17–
26. IEEE, 2015.

[66] Yibiao Yang, Yuming Zhou, Jinping Liu, Yangyang Zhao, Hongmin Lu,
Lei Xu, Baowen Xu, and Hareton Leung. Effort-aware just-in-time defect
prediction: simple unsupervised models could be better than supervised
models. In Proceedings of the 2016 24th ACM SIGSOFT Internation-
al Symposium on Foundations of Software Engineering, pages 157–168.
ACM, 2016.

[67] HJ Zimmermann. Fuzzy Set Theory and Its Applications Second, Revised
Edition. 1992.

Index

crash release prediction, 12

defect prediction, 5

mining software repositories, 4
crash release prediction, 12
defect prediction, 5
monthly status report, 16

monthly status report, 16

software analytics, 4
software artifacts, 4

27

	Feature Engineering for Machine Learning and Data Analytics
	Citation

	tmp.1560419767.pdf.8u4HJ

