
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

6-2019

Why is my code change abandoned? Why is my code change abandoned?

Qingye WANG

Xin XIA

David LO
Singapore Management University, davidlo@smu.edu.sg

Shanping LI

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
WANG, Qingye; XIA, Xin; LO, David; and LI, Shanping. Why is my code change abandoned?. (2019).
Information and Software Technology. 110, 108-120.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4358

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4358&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4358&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

ARTICLE IN PRESS
JID: INFSOF [m5GeSdc; March 2, 2019;14:12]

Information and Software Technology xxx (xxxx) xxx

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Why is my code change abandoned?

Qingye Wang
a , Xin Xia

b , ∗ , David Lo
c , Shanping Li a

a College of Computer Science and Technology, Zhejiang University, Hangzhou, China
b Faculty of Information Technology, Monash University, Melbourne, Australia
c School of Information Systems, Singapore Management University, Singapore

a r t i c l e i n f o

Keywords:
Code review
Empirical study
Abandoned change

a b s t r a c t

Context : Software developers contribute numerous changes every day to the code review systems. However, not
all submitted changes are merged into a codebase because they might not pass the code review process. Some
changes would be abandoned or be asked for resubmission after improvement, which results in more workload
for developers and reviewers, and more delays to deliverables.

Objective : To understand the underlying reasons why changes are abandoned, we conduct an empirical study on
the code review of four open source projects (Eclipse, LibreOffice, OpenStack, and Qt).

Method : First, we manually analyzed 1459 abandoned changes. Second, we leveraged the open card sorting
method to label these changes with reasons why they were abandoned, and we identified 12 categories of reasons.
Next, we further investigated the frequency distribution of the categories across projects. Finally, we studied the
relationship between the categories and time-to-abandonment.

Results : Our findings include the following: (1) Duplicate changes are the majority of the abandoned changes;
(2) the frequency distribution of abandoned changes across the 12 categories is similar for the four open source
projects; (3) 98.39% of the changes are abandoned within a year.

Conclusion : Our study concluded the root causes of abandoned changes, which will help developers submit high-
quality code changes.

1. Introduction

Code review, a manual inspection of changes by developers other
than authors, is recognized as an effective way to reduce software
defects and improve development quality [1,2,43] . Bavota and Russo
[7] found that unreviewed changes (i.e., changes that did not undergo a
review process) have over two times more chances of introducing bugs
than reviewed changes (i.e., changes that underwent a review process).
Moreover, they found that code committed after review has a substan-
tially higher readability than unreviewed code. In 1976, Fagan formal-
ized a highly structured process for code inspection, reducing errors in
software development [15] . Over the years, many researchers have done
much work on code inspection [3,13,26,35,42] . Unfortunately, while
effective in identifying defects, the time-consuming and cumbersome
nature of traditional code inspection has been shown to limit its adop-
tion [25,44,51] .

In contrast, Modern Code Review (MCR) provides a lightweight,
informal and tool-based code review practice, and it has been
adopted both in industrial and open source projects [4,5,32,37] , e.g.,

∗ Corresponding author.
E-mail addresses: wqyy@zju.edu.cn (Q. Wang), xin.xia@monash.edu (X. Xia), davidlo@smu.edu.sg (D. Lo), shan@zju.edu.cn (S. Li).

at companies such as Microsoft [11] , Facebook, Google, etc. In the
process of MCR, a developer submits a change to a code review

system (e.g., Gerrit), then the code review system assigns review-
ers to review this change. After review and discussion, the re-
viewers decide the outcome of the change, which would be ei-
ther merged, abandoned or resubmitted after modification. Typically,
there are a fair proportion of changes that are not merged into
a codebase after review. Rigby and German [38] found that 56%

of patches were rejected in an Apache project. Weißgerber et al.
[52] found that about 60% of patches were abandoned in OpenAFS and
FLAC projects.

Change rejection wastes time of the contributors and the reviewers,
and reduces development efficiency. Such wasted time could be used to
contribute more changes that are eventually integrated into the code-
base. Moreover, a high change rejection rate might indicate problems
with software development process [45] .

In this paper, we investigate why changes are abandoned. We focus
on analyzing changes in Gerrit, a popular code review management sys-
tem. The system is widely used in a large body of open source projects

https://doi.org/10.1016/j.infsof.2019.02.007
Received 10 July 2018; Received in revised form 23 February 2019; Accepted 25 February 2019
Available online xxx
0950-5849/© 2019 Elsevier B.V. All rights reserved.

Please cite this article as: Q. Wang, X. Xia and D. Lo et al., Why is my code change abandoned? Information and Software Technology, https:
//doi.org/10.1016/j.infsof.2019.02.007

Published in Information and Software Technology
Volume 110, June 2019, Pages 108-120.
https://doi.org/10.1016/j.infsof.2019.02.007
Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

https://doi.org/10.1016/j.infsof.2019.02.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
mailto:wqyy@zju.edu.cn
mailto:xin.xia@monash.edu
mailto:davidlo@smu.edu.sg
mailto:shan@zju.edu.cn
https://doi.org/10.1016/j.infsof.2019.02.007
https://doi.org/10.1016/j.infsof.2019.02.007

Q. Wang, X. Xia and D. Lo et al. Information and Software Technology xxx (xxxx) xxx

ARTICLE IN PRESS
JID: INFSOF [m5GeSdc; March 2, 2019;14:12]

such as Eclipse and OpenStack. Moreover, there are many studies inves-
tigating code changes in Gerrit [9,18,27,32,34,49] .

We conduct an empirical study to investigate why a change is aban-
doned. To do so, we analyzed code changes of the four projects, i.e.,
Eclipse, Libreoffice, OpenStack, and Qt. We manually analyzed 1459
abandoned changes in total from the studied projects by reading the
comments of these changes, and then we applied open card sorting to
classify all the reasons. Our study aims to answer the following research
questions:

RQ1. Why were changes abandoned? What are some categories of
rationales behind this phenomenon?

RQ2. What are the frequency distributions of abandoned changes
across the rationales and projects?

RQ3. How much time is spent to review changes before they were
abandoned?

There are some studies related to ours: Rigby and German [38] stud-
ied code review process used by open source projects. Weißgerber et al.
[52] extracted patches from emails and found their application in reposi-
tories. Tao et al. [47] analyzed 300 patches from Eclipse and Mozilla by
manually inspecting their patch review comments to understand why
they were rejected. Our work is related but different from theirs: (1)
The first two studies did not investigate specific reasons why changes
were abandoned. (2) Tao et al. manually investigated only 300 rejected
patches from two projects; also, they focused on patches in Bugzilla
which is a bug tracking system. On the other hand, we investigated 1459
abandoned changes from four projects and we analyzed changes in Ger-
rit which is a code review system.

The main contributions of our work are as follows:

1. We are the first to perform a large-scale empirical study in Gerrit
to manually categorize 1459 abandoned changes of the four open
source projects into various categories by using the open card sorting
method.

2. We analyze the frequency distributions of the categories across dif-
ferent projects.

3. We investigate the relationship between the categories and the aban-
donment time.

4. We recommend five aspects to help developers submit high-quality
changes in practice.

The rest of this paper is organized as follows. In Section 2 we intro-
duce our empirical study setup. Section 3 –5 describe the empirical study
results. Section 6 discusses the implications of our study and the threats
to validity. Section 7 briefly presents related work. Section 8 concludes
the paper and mentions future work.

2. Empirical study setup

2.1. Research questions

RQ1. Why were changes abandoned? What are some categories of
rationales behind this phenomenon?

Categorizing reasons why changes were abandoned can provide a
good reference for developers and help them push better changes.

RQ2. What are the frequency distributions of abandoned changes
across the rationales and projects?

Different projects are developed under different requirements and
intend to accomplish different tasks. Do they show similar frequency
distribution of categories of the abandoned changes? If the frequency
distributions show similar trends across projects, we could rank the cat-
egories identified in our answer to RQ1 from most to least common to
help developers not to forget the checks with respect to more common
categories, and help them to focus their attention on these common cat-
egories.

RQ3. How much time is spent to review changes before they were
abandoned?

We investigate the relationship between time-to-abandonment and
the categories. The result may indicate that more attention should be
paid to a specific category of abandoned changes.

2.2. Data collection

Retrieving representative open source projects. We investigated
four popular open source projects, i.e., Eclipse, LibreOffice, Open-
Stack, and Qt. The reasons we choose the four projects are as follows:
First, their code review systems contain a large number of changes
(i.e.,60,000–630,000 changes). That is, they are popular in open source
projects. Second, there are at least dozens of changes submitted into
these projects every day. In other words, the developers are active in
these projects. Third, the four projects represent different programming
languages. Eclipse project refers to Java. Qt project refers to C ++ . Open-
Stack project refers to Python. LibreOffice project refers to C ++ and
Java. To summarize, these four projects are popular and represent the
diversity of different programming languages. In code review system,
there are three main status labels: “Open ”, “Merged ”, and “Abandoned ”.
For the Qt project, there are other status labels: “Staged ”, “Integrating ”,
etc. In our study, we want to know why a change is abandoned, so we
only collect changes with the “Abandoned ” status.

The process we collected data. Take LibreOffice project as an
example: we first downloaded all the abandoned changes from the
website of https://gerrit.libreoffice.org/#/q/status:abandoned , then we
randomly selected the changes from our collected data. That is, initially,
we randomly selected 1000 changes from each of the project. And then
we manually read the discussion of these projects to identify the reasons
of these abandoned changes. We removed the changes which are hard to
identify the reasons when reading the comments. Finally, we collected
309, 590, 346, 214 changes for Eclipse, LibreOffice, OpenStack and Qt,
respectively. In total, we analyzed 1459 abandoned changes. Statistics
of our dataset is shown in Table 1 .

Analyzing code change comments. Code change comments are one
of the main parts of code review where reviewers can add their feed-
back and suggestions for changes. These comments play a significant
role in code review practice. Comments point out bugs, provide sugges-
tion or identify violations of team common practice, coding convention
and standard. It can help contributors submit a higher quality change to
the codebase and improve authors’ development skills. Through these
comments, developers exchange their ideas with others and put forward
better solutions for solving problems. With code review comments, Ebert
et al. [14] did a study to identify the factors that confuse code review-
ers and understand how confusion impacts the efficiency and effective-
ness of code review(er)s. In our study, we extract the reasons that cause
changes to be abandoned by analyzing change comments in code review.

Validation survey. To confirm our study, we sent emails to the de-
veloper who submitted the code change. In these emails, we asked two
simple questions: (1) Why was the following change abandoned? (We at-
tached a URL of an abandoned change created by the developer.) (2) Are

there any other reasons why changes are abandoned in general? Totally, we
sent out 203 emails and we received 80 replies from developers who
contributed to the four projects.

Table 1

Dataset.

Project # Changes

Eclipse 309
LibreOffice 590
Opentack 346
Qt 214
In total 1459

2

https://gerrit.libreoffice.org/\043/q/status:abandoned

Q. Wang, X. Xia and D. Lo et al. Information and Software Technology xxx (xxxx) xxx

ARTICLE IN PRESS
JID: INFSOF [m5GeSdc; March 2, 2019;14:12]

Table 2

Classification scheme.

Category Description Abbreviation

Duplicate Changes that were similar to other changes. Dupl
Lack of Feedback Changes that were abandoned because the contributors did not respond to the reviewers’ comments or no reviewer wanted to

review the changes.
Lacf

Contributor Operation Changes that were abandoned due to contributor’s wrong operation in the process of pushing commit. Cono
New Work The contributors continued the work with a new change. Newo
Incomplete/Wrong Fix Changes that were wrong or imperfect. Inco
Superfluous Changes that were not worthwhile to make. Supf
Test Changes that were created for testing purposes and will never be merged. Test
Branch Transfer Changes that were transferred from one branch to another branch. Brtr
Complicated Change Changes that needed to be split into smaller and independent ones. Comc
Merge Conflict Changes that caused merge conflicts. Merc
Give Up Contributors gave up on improving changes because they had no time or they cannot fix the issues highlighted in comments. Givp
Other Other reasons that resulted in changes to be abandoned. Othe

Table 3

Subcategories of Duplicate .

Category Subcategory Description

Duplicate Already Done The issue in the change was already done in other change.
Suboptimal Solution There were better solutions in other changes.
Integrated The change was a part of another change or had been integrated into another change.

Table 4

Subcategories of Contributor Operation .

Category Subcategory Description

Operation Wrong Branch Contributors pushed changes to a wrong branch.
Accidental Push Contributors accidentally pushed changes which were not ready to be reviewed.
Update Change Contributors accidentally created a new change when they intended to update an existing one.
Other Wrong Operation Changes related to wrong operation but did not belong to any of the above subcategories.

2.3. Methodology

To analyze the 1459 abandoned changes, we extracted the title and
comments of each change and followed a card sort process [46] .

Step 1: Card sorting. For each change, we create one card. The card
includes change information extracted from change title and change
comments. The first author and one graduate student jointly performed
this card sort process. The specific steps are as follows:

Iteration 1. We first randomly select the Qt project and manually
check its changes. Then we put these changes into different sets accord-
ing to their root causes. Next, for each set, we discuss and label it by
referring to the categories that were defined in Tao et al.’s study [47] .
The primary classification scheme contains nine categories as shown in
Table 2 (except Merge Conflict, Give Up and Other categories). Our cate-
gories are based on Tao et al.’s study [47] , and among the nine categories
above, there are three categories (i.e., Duplicate, Incomplete/Wrong Fix,

Complicated Change) same to the categories of Tao et al.’s study.
Iteration 2. We manually inspect changes in the other three projects

(Libreoffice, OpenStack, and Eclipse), and we encounter some new rea-
sons. Thus we create three new categories (i.e., Merge Conflict, Give Up

and Other) as described in Table 2 .
Iteration 3. We find that Duplicate category accounts for a large pro-

portion of changes. So we further decompose it into three subcategories
shown in Table 3 .

Iteration 4. We find that the reasons in the Contributor Operation cat-
egory are various. So we decompose it into four subcategories shown in
Table 4 .

Step 2: Labeling. The first author and one graduate student inde-

pendently labeled the 1459 changes of the four open source projects. We
measure the agreement between the two labelers with Fleiss Kappa [17] .
Fleiss Kappa is used for measuring the reliability of agreement between a
number of raters when categorical ratings are assigned to many items or
classifying items. Table 5 shows the interpretation of Kappa values. The

Table 5

Interpretation of Kappa values.

Kappa value Interpretation

< 0 Poor agreement
[0.01, 0.20] Slight agreement
[0.21, 0.40] Fair agreement
[0.41, 0.60] Moderate agreement
[0.61, 0.80] Substantial agreement
[0.81, 1.00] Almost perfect agreement

overall Kappa value between the two labelers on all changes is 0.68. It
indicates substantial agreement between the labelers. After completing
the manually labeling process, the two labelers discussed their disagree-
ments, and at last, they reached a common decision.

3. Category

3.1. Category overview

This section answers RQ1. The reasons why changes are abandoned
are various. In our reply emails, developers pointed out various reasons
for abandoned changes. Some examples are listed below:

∗ “In general changes are abandoned by various reasons - sometimes they

just are not good, sometimes a better patch is proposed, and sometimes

patches are just examples of some behavior which are shared with

other developers. ”
∗ “Reasons: 1. It is hard to fix. 2. Core reviewers do not agree with the

method in your posted patch. 3. If the patch is not updated by com-

mitter or reviewed by others, in OpenStack, this will be abandoned by

PTL. ”
∗ “Reasons for abandoning code reviews in our project feature: dupli-

cate patches, testing and invalidating the chosen approach, changes

3

Q. Wang, X. Xia and D. Lo et al. Information and Software Technology xxx (xxxx) xxx

ARTICLE IN PRESS
JID: INFSOF [m5GeSdc; March 2, 2019;14:12]

Table 6

Reason categories.

Category Count Percentage

Duplicate 595 40.78%
Already Done 300 21.73%
Suboptimal Solution 181 12.40%
Integrated 97 6.65%

Lack of Feedback 213 14.60%
Contributor Operation 146 10.01%

Wrong Branch 47 3.22%
Accidental Push 37 2.54%
Update Change 20 1.37%
Other Wrong Operation 42 2.88%

New work 123 8.43%
Incomplete/Wrong Fix 110 7.54%
Superfluous 65 4.46%
Test 64 4.39%
Branch Transfer 43 2.95%
Merge Conflict 40 2.74%
Give Up 29 1.99%
Complicated Change 28 1.90%
Other 3 0.21%

in developer and company agendas, splitting patches into several units

when too large, and probably others. ”
∗ “Sometimes we decide something was a bad idea, or someone creates

a different review with a better approach. Sometimes someone con-

tributes a review that is not ready to be merged and then does not have

time to finish it or does not respond to our comments, so we abandon

it. ”

We totally analyzed 1459 changes in the code review systems from

four open source projects. The overall distribution of reasons based on
12 categories is shown in Table 6 . We found that the top three cate-
gories of the highest percentage are “Duplicate ” (40.78%), “Lack of Feed-

back ”(14.60%) and “Contributor Operation ”(10.01%).

The 1459 changes from the studied projects could be classified into 12

categories. Duplicate is the dominant reason.

3.2. Category detail

In this section, we present representative change samples for each
category.

3.2.1. Duplicate

It refers to changes that were abandoned because they were simi-
lar to other changes. Because duplicate changes accounted for a large
proportion of changes, so we divided it into three subcategories. The
subcategories are as follows:

“Already done ”: It refers to changes for which other similar changes
had been made and reviewed already. Much effort was wasted in open
source projects since there were some duplicate changes to do more
or less the same things in different ways. Many changes implemented
something that had already been done by other developers. In our reply
emails, some comments mentioned this problem:

∗ “This is duplicated with others. In OpenStack, we may not notice others’

patch, so if we do the same job with others, we should abandon. ”
∗ “The patch fix a coding defect caused by my previous commit. But

someone had done that before I did. So I abandoned it after I had

discovered that. ”
∗ “Duplicate patch, someone else committed the same thing before me. ”
∗ “The mentioned change was abandoned, because the problem it was

fixing was already fixed by another change I did not see. So my change

was not needed anymore. ”

In our data set, 21.73% of the changes were abandoned due to Al-

ready Done . Some representative samples are as follows:

• LibreOffice Change 32399: This was made at the same time by an-
other contributor.

• OpenStack Change 303542: The issue had been fixed. We should
abandon this one.

• Eclipse Change 86155: In the meantime this has been fixed by some-
one else.

• LibreOffice Change 21336: Already been done, didn’t notice!

“Suboptimal solution ”: It refers to changes that were replaced by
another change which proposed a better solution. If multiple approaches
for the same feature or bug fix were provided, the best one would be
merged, and all others would be abandoned. Here is a comment men-
tioning this problem in our reply emails:

∗ “Solved a problem in one way while someone else has another solution

in mind. Maybe I agree that the other solution is better. ”

In our data set, 12.40% of the changes were abandoned due to Sub-

optimal Solution . Some representative samples are as follows:

• Eclipse Change 89938: Replaced with another one, which is indeed
a better patch.

• Qt Change 187516: In favor of https://codereview.qt-project.org/
187527 .

• Qt Change 172067: Better fix: https://codereview.qt-project.org/
187259 .

• OpenStack Change 439769: Dims beat you to it. Abandoned. Dims
was faster.

“Integrated ”: It refers to the changes that were a part of another
change or had been integrated into another change. In our reply emails,
some comments mentioned this problem:

∗ “The change was already submitted as a part of a different commit. ”
∗ “Squashed means that the patch content has been merged with another

patch, and this patch has been abandoned. ”

In our data set, 6.65% of the changes were abandoned due to Inte-

grated . Some representative samples are as follows:

• Eclipse Change 87860: Integrated to 872985.
• LibreOffice Change 24091: https://gerrit.libreoffice.org/#/c/24119/

included this change.
• LibreOffice Change 12166: It’s now part of another patch.
• LibreOffice Change 31220: I merged two dependent commits into

one. That’s why it is no longer needed.
• Qt Change 182192: Integrated in another patch.
• OpenStack Change 436433: Squashed into another one.

As for duplicate changes, we did a further investigation, and the find-
ings are as follows:

1. Many duplicate changes are only processed by the continuous inte-
gration (CI) tools(e.g., Hudson, Jenkins and Qt Sanit Bot), which are
used for automatic validation in the Gerrit review system. Apart from

the CI tool, there was not any other reviewer in this kind of changes.
55 of the 162 duplicate changes (34%) in our Eclipse dataset are
only processed by the CI tool.

2. Many duplicate changes are abandoned by the change owners. For
example, there are 162 duplicate changes in our Eclipse dataset.
Among these changes, 88 changes are abandoned by the change
owners, and 19 changes are abandoned because reviewers rejected
the changes then the changes were abandoned by their owners. And
the rest changes were abandoned by reviewers.

3. Many duplicate changes are duplicate of the changes submitted by
the same owner. For example, in our Eclipse dataset, 20.37% of
the changes are duplicate of another change submitted by the same
author, and 8.64% of the changes are duplicate of the reviewers’
changes. It indicates that some changes are abandoned because the

4

https://codereview.qt-project.org/187527
https://codereview.qt-project.org/187259
https://gerrit.libreoffice.org/\043/c/24119/

Q. Wang, X. Xia and D. Lo et al. Information and Software Technology xxx (xxxx) xxx

ARTICLE IN PRESS
JID: INFSOF [m5GeSdc; March 2, 2019;14:12]

author submitted two similar changes. They are duplicated of each
other, and one change is abandoned while the other is merged.
An intriguing finding is: reviewers may abandoned a contributor’s
change, and then, the reviewer submits a new change with simi-
lar function. In our dataset, we found in most of the cases the new

one submitted by the reviewer was merged while the original one
submitted by the contributor was abandoned. The minority of new

changes were abandoned in favor of the original changes submitted
by the contributor. For example, for #87120 change in Eclipse, a re-
viewer of this change submitted a better one (i.e., #87132 change)
after this change, so the original change was abandoned in favor of
the new one.

4. The time interval between two duplicate changes can be a few sec-
onds to several years. For example, a contributor submitted # 89938
change in Eclipse, and after 34 seconds, a reviewer of this change
submitted a new change (i.e., #89939 change) which is better. Fi-
nally, # 89938 change was abandoned and # 89939 change was
merged. As another example, # 52524 change in Eclipse was submit-
ted by a contributor in July, 2015. This was an incomplete change
while the contributor could not improve it. In January, 2017, a re-
viewer of this change picked it up, then incorporated and completed
it into another change(i.e., #88222) submitted in January, 2017.
Finally, the # 52524 change was abandoned.

3.2.2. Lack of feedback

This could happen when reviewers added comments but contributors
did not respond, or when contributor uploaded a change but nobody re-
viewed it. Lack of Feedback was a common reason why a change was
abandoned. In our reply emails, some comments mentioned this prob-
lem:

∗ “Dead patches, which patches still has some problems but did not be

maintained by the author for a long time, and abandoned by the core

reviews. ”
∗ “Another common reason for abandoning a review is lack of feedback,

when reviewers add comments but the original uploader does not re-

spond. ”
∗ “People with committer status, typically submit a patch and forget it, so

the system catches it and they typically abandon it. ”

In our data set, 14.60% of the changes were abandoned due to Lack

of Feedback . Some representative samples are as follows:

• LibreOffice Change 15259: Abandoning this due to lack of response
from submitter to review comments.

• OpenStack Change 400085: Abandoned due to inactivity.
• LibreOffice Change 15274: No activity on this since months, let’s

abandon.
• LibreOffice Change 13058: Abandoning since there are no replies

from submitter.
• OpenStack Change 436775: I am abandoning because nobody wants

to review cute text files.

We found that if a change was lack of feedback neither from the
contributors or reviewers for a period time, the change would be aban-
doned by Project Team Lead (PTL). In view of this, we deduce if there
is a tool to automatically detect these changes, maybe it would improve
the efficiency of PTLs.

In addition, some changes were picked up after being abandoned.
For example, #367629 change in OpenStack, was abandoned on Mar
8th, 2017 due to inactivity over five months from the contributor, and
then the contributor picked it up and resurrected it on Mar 31th, 2017.
After resurrection, the change was reviewed again, and finally, it was
merged.

However, there are some changes abandoned not only due to Lack

of Feedback , but also some other reasons (e.g., some problems needed to
fix). For the Lack of Feedback changes in our dataset, we think the main

reason leading them to be abandoned is lack of feedback. For example,
the # 318930 in LibreOffice, it was abandoned due to “A polite ping.

Are you still working on this patch? There is a merge conflict, would you

like to help solve that? Abandoned. Work seems abandoned. Remark patch

can anytime be reopened. ” It was abandoned because of not only lack of
feedback, but also “merge conflict ”, but the main reason in this case is
that the contributor could not fix the merge conflict in time, that is, lack
of feedback.

3.2.3. Contributor operation

It refers to changes that were abandoned due to erroneous operations
of contributors. For example, for #91766 change in Eclipse, the contrib-
utor forgot adding Change-Id to the commit message, so the change was
abandoned. Then the contributor added Change-Id to the commit mes-
sage and submitted it as a new change (#91767 change). There were
various types of erroneous operations. We divided this category into
four subcategories. The subcategories are as follows:

“Wrong branch ”: It refers to the changes that contributors pushed
to a wrong branch. In our reply emails, some comments mentioned this
problem:

∗ “Pushed to wrong branch. ”
∗ “I accidentally submitted that patch on the wrong branch, which caused

it to have a dependency on a different patch, which it was not sup-

posed to have. I re-submitted the same patch to a different branch and

without that dependency. ”

In our data set, 3.22% of the changes were abandoned due to pushing
to a wrong branch. Some representative samples are as follows:

• Eclipse Change 89775: Based on wrong branch. Re-pushing.
• LibreOffice Change 7922: Wrong branch, I’m sorry for the noise.
• OpenStack Change 444312: Wrong branch, I wanted to do it into

stable/newton since it’s a trivial fix.

“Accidental push ”: It refers to the changes accidentally pushed by
contributors. In our reply emails, some comments mentioned this prob-
lem:

∗ “I had accidentally pushed the same change patch multiple times. ”
∗ “Patches uploaded just because of contributor’s mistake. ”
∗ “My patch was a local modification that I stopped working on and that

should never have reached git. It was a mistake pushing it. ”

In our data set, 2.54% of the changes were abandoned due to acci-
dental push of contributors. Some representative samples are as follows:

• Eclipse Change 88996: This was an accidental push to gerrit.
• OpenStack Change 429882: Please ignore this change. This was

pushed by mistake. I have uploaded a new patch with change id
439305.

• Qt Change 187927: Pushed by mistake.

“Update change ”: It refers to the changes that contributors acciden-
tally created a new change when they meant to update an existing one.
Some contributors did not know that some tools or commands would
allow them to update the original commit. In our reply emails, some
comments mentioned this problem:

∗ “I had not configured my Git commit-hooks to always append a Change-

Id. Using this development, I had a chain of changes and had made a

fix to an earlier change in the chain. ”
∗ “In this particular case, the code submitted was functional but then

re-worked to use a different method. However, when the update was

submitted a new patch was created instead of being applied to this

particular patch, and so this one was abandoned in favor of the newly

created one. ”
∗ “It was abandoned because I accidentlly uploaded new CR instead of

pushing changes to existed one. ”

5

Q. Wang, X. Xia and D. Lo et al. Information and Software Technology xxx (xxxx) xxx

ARTICLE IN PRESS
JID: INFSOF [m5GeSdc; March 2, 2019;14:12]

In our data set, 1.37% of the changes were abandoned due to Update

Change . Some representative samples are as follows:

• LibreOffice Change 33016: Please do not submit an additional patch,
when you correct the previous one, use “git commit –amend ” to add
a new patch set to the same patch.

• LibreOffice Change 31415: Accidentally created a new gerrit when
I meant to update an existing one.

• LibreOffice Change 28419: It seems you have submitted 2 patches
for the same file. If updating a patch, please remember to use “git
commit –amend ” to update the patch instead of making a new patch.

• LibreOffice Change 23242: Meant to update patch revision, not cre-
ate separate one.

• LibreOffice Change 23197: To amend a patch that you have already
submitted to Gerrit, you just need to git commit –amend locally. That
way, the Change-Id line in your commit message will be the same,
and thus Gerrit will recognize that it belongs to an existing change
set.

From the comments in the reply emails and the change samples in
our data set, we note that Gerrit code review system allows contrib-
utors to stack patches on the same functionality development. But if
contributors forget to add the correct Change-Id into commit message
and it would not properly stack rather than create a new change. When
a developer amend the commit, the same Change-Id is used and code
review system identifies the change as an update of the existing change.
Change-Id is what uniquely identifies the change in code review. If con-
tributors wanted to update one change, but they do not amend the ex-
isting change, they would create a new change, the new change should
be abandoned, and contributors should resubmit to amend the old one.

“Other wrong operations ”: It refers to the changes related to
wrong operation but did not belong to any of the above three subcate-
gories. In our reply emails, some comments mentioned this problem:

∗ “A commit id is supposed to be included in the commit, but it was not.

This was abandoned. ”
∗ “I abandoned this patch by myself. I am new to code in LibreOffice and I

just got to know the workflow of patch-updates. So this abandonment

was a mistake. ”

In our data set, 2.88% of the changes were abandoned due to Other

Wrong Operations . Some representative samples are as follows:

• Eclipse Change 90632: Wrong bug number.
• Eclipse Change 85133: Forgot to add Gerrit change id in commit

message.
• Eclipse Change 91697: Issues with local git checkout. Wrong files

pushed.
• Qt Change 180997: Wrong message & description. Also unnecessary

patch upload. Will do proper commit.
• Qt Change 180290: Incorrect commit message.

3.2.4. New work

It refers to the changes that contributors continued the work on a
new change. Maybe they built a new version and created a new commit
or they proposed a different approach in a new change. In our reply
emails, some comments mentioned this problem:

∗ “We build a new version and I created a new commit. ”
∗ “I abandon the request and make (in the future) a new one. ”
∗ “We were planning a new version of the EEF project. ”

In our data set, 8.43% of the changes were abandoned due to New

Work . Some representative samples are as follows:

• Eclipse Change 62061: Work has continued in change #64007, aban-
doning this one.

• Eclipse Change 87496: Will proceed in another way. Abandon this
fix.

• LibreOffice Change 25032: Remove all this and propose a new way.
• LibreOffice Change 15363: Let’s abandon this, I’m working on a

proper fix.

3.2.5. Incomplete/wrong fix

It refers to changes that were wrong or imperfect. Such changes did
not work as desired or had several issues discovered during review, or
still had some problems. In our reply emails, some comments mentioned
this problem:

∗ “The change I proposed was abandoned because it would have created

more trouble than without it. ”
∗ “Change does not work as desired or has too many issues. ”
∗ “In my case code reviews/patches are abandoned mainly when I realize

that fix for bug or feature implementation is done in completely incor-

rect way and I need to start from the beginning with implementation. ”
∗ “Proposed change introduces severe problems which cannot be fixed or

can only be fixed with large effort no one wants to spend. ”
∗ “Sometimes because the whole approach is wrong. ”

In our data set, 7.54% of the changes were abandoned due to Incom-

plete/Wrong fix . Some representative samples are as follows:

• Eclipse Change 91271: Depends on previous abandoned change.
• OpenStack Change 318707: This is a wrong solution.
• Qt Change 178628: It doesn’t work.
• LibreOffice Change 17596: Abandoned due to lower performance

than the previous code.
• LibreOffice Change 16339: Brings more problems than it solves.

3.2.6. Superfluous

It refers to changes that were not worthwhile to make. In general,
such changes made unwanted features or aimed to fix an issue while the
issue was not worth to fix. For example, the bug that a change aimed to
fix was marked invalid or closed. In our reply emails, some comments
mentioned this problem:

∗ “Invalid patches, the patches want to fix an issue, but the issue or cannot

be confirmed or is not worth to fix. ”
∗ “Failed to persuade some reviewer that a change is worthwhile. ”

In our data set, 4.46% of the abandoned changes belonged to the
category of Superfluous . Some representative samples are:

• LibreOffice Change 30045: No need to waste time making unwanted
features.

• LibreOffice Change 15551: I don’t think is worthwhile, since it didn’t
seem to find any real problems.

• OpenStack Change 414863: The change itself doesn’t bring any value
to OpenStack projects. You just spend test resources and there is no
profit in the change. Let’s keep everything as is.

3.2.7. Test

It refers to the changes that were created for testing purposes. In our
reply emails, some comments mentioned this problem:

∗ “The particular change was never intended to be merged, as you may

see in the patch title(DO NOT MERGE). ”
∗ “This particular Gerrit patch was abandoned because it was only a test

build, it was never meant to be merged. ”

In our data set, 4.39% of the changes were abandoned due to Test .
Some representative samples are as follows:

• Eclipse Change 90268: This was just a test and didn’t provide any
insights. Abandoning this change.

• LibreOffice Change 23500: Was just testing the feature branch.
• OpenStack Change 430487: Was just a test.

6

Q. Wang, X. Xia and D. Lo et al. Information and Software Technology xxx (xxxx) xxx

ARTICLE IN PRESS
JID: INFSOF [m5GeSdc; March 2, 2019;14:12]

3.2.8. Branch transfer

Code review systems allow transferring changes from one branch
to another branch(e.g., cherry-picked). It would create a new change
on the selected destination branch. Here is a comment mentioning this
problem in our reply email:

∗ “It was abandoned because it was merged (by me) previously to a differ-

ent, better-suited branch. The submitter had presumably cherry-picked

it to be able to do their work without having to worry about crashes. ”

In our data set, 2.95% of the changes were abandoned due to Branch

Transfer . Some representative samples are as follows:

• Eclipse Change 86142: Cherry picked on moka-master.
• LibreOffice Change 25778: Cherry-picked to private/Rosemary/

change-tracking.

3.2.9. Merge conflict

It refers to the changes that caused merge conflicts. Some errors were
generated when contributors merged the code. In our reply emails, some
comments mentioned this problem:

∗ “Because of a merge conflict, the change needs to be rewritten com-

pletely. ”
∗ “The reasons why this review was abandoned: Merge issues since we

were merging some other code and some errors were generated. ”

In our data set, 2.74% of the changes were abandoned due to Merge

Conflict . Some representative samples are as follows:

• Eclipse Change 90565: Too many merge conflicts. I will submit a
separate patch.

• LibreOffice Change 19745: Need to resolve the merge conflict, and
resubmit the patch. If someone wants to deal with the merge conflict
that’s fine, else it can be abandoned.

• OpenStack Change 442869: Merge conflict.

3.2.10. Give up

It refers to the changes that contributors gave up on improving
changes because they had no time or they could not fix the issues high-
lighted in comments. Sometimes, some changes introduced severe prob-
lems which could hardly be fixed or could only be fixed with a large
effort so that no one wanted to do. In our reply emails, some comments
mentioned this problem:

∗ “Author has no more time to finish change and nobody else shows in-

terest to finish the change. ”
∗ “Developer does not have the time to do it. ”
∗ “New people do a good job of making their patch work, but get review

comments e.g. due to the user experience not being correct, and stop

working. ”
∗ “Contributor underestimated the effort to get a change right to meet the

quality requirements and gives up after negative reviews, or lacks time

to complete it. ”
∗ “There is more work to be done than anticipated and the author loses

interest. ”

In our data set, 1.99% of the changes were abandoned because of
Give Up . Some representative samples are as follows:

• Eclipse Change 84689: No time to keep iterating on this. Sorry.
• LibreOffice Change 4993: I will abandon this change as I do not have

the time to work on it currently.
• LibreOffice Change 15046: I have no idea how to fix this. So let us

abandon this one.
• LibreOffice Change 18056: Abandon this for now until I have time

to pick it up again.

3.2.11. Complicated change

It refers to the changes that needed to be split into smaller and in-
dependent ones, which were easier to review. In our reply emails, some
comments mentioned this problem:

∗ “If the patch is very large and difficult to review and could benefit

from being submitted in multiple patches to make reviewing the code

easier. ”
∗ “After submitting this change 85635 I got a requested from committer to

split it to several smaller reviews(to make it easier for review), I took

code change (of the original patch) and committed it as 3 separate

code reviews which were then accepted so I then abandoned original

all-in-one review. ”
∗ “To make the patch easy to review and build successfully, the patch

was split as two small patches and was submitted and hence this large

change was abandoned. ”

In our data set, 1.90% of the changes were abandoned due to Com-

plicated Change . Some representative samples are as follows:

• Eclipse Change 89987: This change will be split in two individual
changes.

• LibreOffice Change 23839: This has been broken up into smaller
pieces and committed.

• Qt Change 179650: Splitted into several changes.

In many open source projects, smaller changes tended to be reviewed
faster as they were easier for reviewers to inspect. Hence, breaking
changes into small and concise changes was a better choice. It would be
more likely to get reviewed faster. In addition, it also helped to reach a
clean history. When contributors were tracing a bug in the code which
was introduced two years ago, if the history was built from small and
concise commits, it was easier to find the change which introduced the
problem and understand the motivation why it was implemented in that
way. This was consistent with Rigby et al. study [39] which suggested
that dividing changes into smaller, independent and complete pieces
may reduce the burden placed on any individual change.

3.2.12. Other

It refers to the changes that were abandoned except the above 11
categories. For example, some changes were just examples to be shared
with other developers. It was just a way to easily share an idea with other
team members and start a discussion. Once it had finished its task, the
change itself might not be any valuable to keep around. In our reply
emails, some comments mentioned this problem:

∗ “I have many patches that are abandoned because I use Gerrit as a way

to share prototypes quickly and express ideas in a clearer way than a

giant text email. Often after they are abandoned. ”
∗ “We also use code review to discuss ideas and code prototype alterna-

tives. Those are often not meant to become part of the code base from

the beginning (i.e., probably what Gerrit’s ’draft’ feature is meant

for.) ”
∗ “Sometimes I am using the code review tool just for sharing the infor-

mation and saving draft work. ”

In our data set, 0.21% of the changes belonged to this category. Here
is a sample:

• LibreOffice Change 32730: Not intending to submit this, but seems
like a good place to keep work I’ve spent too much time on.

4. Distribution

In order to answer RQ2, we analyzed the frequency distribution of
abandoned changes across the rationales and projects. All the four open
source projects were analyzed, and the frequency distribution of every
project is depicted in Fig. 1 (The acronyms in subfigures (X-axes) are

7

Q. Wang, X. Xia and D. Lo et al. Information and Software Technology xxx (xxxx) xxx

ARTICLE IN PRESS
JID: INFSOF [m5GeSdc; March 2, 2019;14:12]

Fig. 1. Distribution of reason categories for each project.

from Table 2). We observed similar frequency distribution of reason cat-
egories across four studied open source projects. For instance, Duplicate

changes account for the majority in most studied projects.
To check differences in frequency distributions is statistically signif-

icant, we further apply the Wilcoxon signed-rank test [53] at 95% sig-
nificance level on 12 paired categories. In the 6 Wilcoxon signed-rank
tests of the four open source projects, all the p-values were greater than
0.05 (min: 0.20, max: 0.91, median: 0.63). That is, the differences in the
frequency distribution of the reason categories across projects were not
significant.

However, although the results of Wilcoxon signed-rank tests show

the differences were not significant, we could see there is an unusual
category (i.e., Lack of Feedback) whose values are very low in Qt and
Eclipse project but high in OpenStack project. As for this phenomenon,
qualitative analysis is required. By our detailed investigation, the fol-
lowing reasons could explain this question:

1) In Qt project, there is a status of change called “Deferred ”, so
almost all changes of “Lack of Feedback ” and “Give Up ” belong to this
one, such as the following changes:

• Qt Change 222726: Deferred. Most of the skipped tests have been
fixed, and some new are failing. I don’t have time to look into it
right now, though.

• Qt Change 154637: Automatic cleanup after prolonged inactivity.
• Qt Change 232840: Deferred. I don’t have time to look at this any-

time soon.
• Qt Change 233844: I am working on other stuff right now, but I’d

like to come back to this the next time I add a ListView test.
• Qt Change 232999: Deferred. I don’t have the energy to fight this, if

someone wants to, please go ahead.

Such changes were deferred because contributors did not respond to
the comments by reviewers for a long time or contributors could not fix
the problem or they have no time to fix it. There is an automatic cleanup
system that abandons changes (as determined by seeing no activity at all
within three months). Besides, the percentage of Lack of Feedback is not
zero in our Qt dataset. It is because there is one change (Qt # 161878)
in Qt project (in our dataset) that no reviewers wanted to review this
one spite that it was assigned with three reviewers (except for the owner

and an automatic verification reviewer). This case also belongs to Lack

of Feedback .
2) The percentage of Lack of Feedback category is so low in our

Eclipse dataset while it is high in our OpenStack dataset. One possi-
ble explanation is that OpenStack is a larger project where the number
of changes is over 600,000 than Eclipse where the number of changes
is over 100,000. So we may speculate that the percentage of core de-
velopers in OpenStack are relatively less than that in Eclipse. Another
plausible explanation is that these changes in OpenStack will be aban-
doned by Project Team Lead (PTL) if contributors do not respond to the
comments for a long time.

The frequency distributions of reason categories shared similar trends
across studied projects.

5. Duration

In order to answer RQ3, we investigated the relationship between
categories and time-to-abandonment. We measured the time interval by
the number of days from Created time when a change was submitted
and Abandoned time when a change was abandoned. Table 7 shows

Table 7

Change abandoning durations in terms of days.

Reason categories Min Max Mean Median

Duplicate 0.0005 848.2421 34.5591 2.6662
Lack of Feedback 0.0028 744.8853 191.8712 161.7100
Contributor Operation 0.0003 111.7033 3.6336 0.0347
New Work 0.0049 408.3261 40.3557 4.2419
Incomplete/Wrong Fix 0.0032 590.1685 29.5627 2.3161
Superfluous 0.0043 939.9169 46.0039 1.8521
Test 0.0018 301.8160 13.6013 0.4729
Branch Transfer 0.0361 178.8673 43.7281 17.8710
Merge Conflict 0.0203 68.6853 11.9476 0.3403
Give Up 1.7536 423.1277 108.1894 97.6660
Complicated Change 0.0104 166.1683 24.0878 4.0059
Other 0.1419 27.6982 9.9646 2.0536

8

Q. Wang, X. Xia and D. Lo et al. Information and Software Technology xxx (xxxx) xxx

ARTICLE IN PRESS
JID: INFSOF [m5GeSdc; March 2, 2019;14:12]

Table 8

Numbers of change abandoned within various durations.

Reason category Duration Count Proportion

Duplicate within a month 465 78.15%
within a year 584 98.15%
more than a year 11 1.85%

Lack of Feedback within a month 3 1.41%
within a year 192 90.14%
more than a year 21 9.86%

Contributor Operation within a month 141 96.58%
within a year 146 100.00%
more than a year 0 0.00%

New work within a month 91 73.98%
within a year 121 98.37%
more than a year 2 1.63%

Incomplete/Wrong Fix within a month 88 80.00%
within a year 108 98.18%
more than a year 2 1.82%

Superfluous within a month 56 86.15%
within a year 61 93.85%
more than a year 4 6.15%

Test within a month 55 85.94%
within a year 64 100.00%
more than a year 0 0.00%

Branch Transfer within a month 23 53.49%
within a year 43 100.00%
more than a year 0 0.00%

Merge Conflict within a month 35 87.50%
within a year 40 100.00%
more than a year 0 0.00%

Give Up within a month 7 24.14%
within a year 28 96.55%
more than a year 1 3.45%

Complicated Change within a month 23 82.14%
within a year 28 100.00%
more than a year 0 0.00%

Other within a month 3 100.00%
within a year 3 100.00%
more than a year 0 0.00%

the minimum, maximum, mean and the median of days that changes
took up to be abandoned.

We noticed that the minimum period for all changes in our stud-
ied projects was just a few minutes between Created time and
Abandoned time. The maximum was close to three years. The top five
categories of maximum were Superfluous, Duplicate, Lack of Feedback, In-

complete/Wrong Fix and Give Up , whose maximum surpassed 420 days.
In terms of mean time, Lack of Feedback, Give Up, Superfluous, Branch

Transfer and New Work took the longest time to be abandoned (more
than 40 days).

Table 8 gives further breakdowns of durations into a month, year,
and more than a year for each category. In addition, we manually inves-
tigated these changes that were abandoned after many years, and found
most of these changes were Lack of Feedback changes. It is meaningless to
calculate its duration. So we removed the category of Lack of Feedback ,
and then calculated the following information: 42.86% of the changes
were abandoned within a day, 62.28% of the changes were abandoned
within a week, 79.21% of the changes were abandoned within a month,
98.39% of the changes were abandoned within a year, and only 1.61%

of the changes were abandoned over one year.

6. Discussion

6.1. Recommendation for submitting high-quality changes in practice

From the results of our empirical study, we recommend developers
to submit code changes according to the following aspects:

1. Before submitting a change, developers should make sure the

issue is worthwhile to fix or the feature is useful. Automated
techniques should be proposed to predict whether a code change is
worthwhile to fix before it goes to the code reviewer. Such a tool can

help code reviewers to review low-quality or meaningless changes,
to save their effort. Fan et al. [16] proposed 34 features to predict
whether a code change will be merged. Our work is consistent with
Fan et al.’s study.

2. Before submitting a change, developers could investigate

whether this issue has been solved already to avoid pushing

duplicate changes. Duplicate is the dominant reason why changes
are abandoned. Table 6 shows that Duplicate changes are the ma-
jority of the studied changes, accounting for 40.78% in the studied
projects. It takes a large percentage, so we divided it into three sub-
categories (i.e., Already Done, Suboptimal Solution, Integrated). The
characteristics of the three sub-categories are different: changes of
Already Done are easier to detect before submitting them than other
two sub-categories, because the change title and commit message of
a change could summarize the function of the change, so developers
only need to compare their change title and commit message with
committed changes. However, for changes of Suboptimal Solution , it
is difficult for developers to verify whether their changes are better
than other changes, since developers need to have a good under-
standing of other changes. For changes of Integrated , it is impossible
to detect because it is abandoned just due to being integrated which
happens after being submitted.
In general, much effort is wasted in open source projects due to
duplicate changes. There are many studies on duplication in the
past. Hordijk et al. [20] thought that duplication of source code is
an essential factor suspected to affect the quality of systems, so they
conducted a literature survey to investigate how duplication affects
quality. To summarize, this finding indicates that code review sys-
tems(e.g., Gerrit) need to avoid duplicated implementation, and be-
fore this, contributors had better investigate whether the issue has
been solved already before submitting a change.
To solve the problem, in the future, we will do a tool for code review

systems with which developers could investigate whether the issue
they want to solve are already done by measuring text (e.g., descrip-
tion of the changes) or/and code (e.g., diff files) similarity between
the new change and the changes in the historical repository.

3. Before pushing a change, developers should make sure the

change addresses only one issue, which is easy to review. Com-

plicated Change accounts for 1.90% of the studied changes. Compli-

cated Change , accurately speaking, are changes that include unneces-
sary changes or solve not only one problem. Hence, smaller changes
are easier to review. Our conclusion is consistent with the work of
Weißgerber et al. [52] . They found that patch size impacts the like-
lihood of the patch to be accepted: for small patches with at most
four lines changed, the possibility to get accepted are higher, while
for very large patches they are less likely to be accepted. Bosu et al.
[11] drew a similar conclusion. They found reviewers take more time
and effort to inspect changes with more files. This might bring more
problems to understand the change, causing lower usefulness. Other
studies also reported that change size is a good indicator of change
acceptance [24,49,52] . Baysal et al. [10] found that large changes
tend to have more revisions than small changes in the code review

processes of WebKit and Blink projects. The size of change gives an
estimate of how long a review of this change may take, generally, in
many projects, smaller changes tend to be reviewed faster because
they are easier for review.
To decompose a composite change, Barnett et al. [6] developed
a static analysis technique for decomposing changesets. However,
with this technique developers are still burdened with the task of
understanding and applying partitioned changesets to the original
version [19] . Guo and Song [19] developed a change decomposi-
tion technique, called CHGCUTTER. It could decompose a composite
change and identifying a subset of related atomic changes.

4. When developers push a change, they should be more

careful, e.g., push to a correct branch, remember to add

Change-Id to commit message, and keep the commit message

9

Q. Wang, X. Xia and D. Lo et al. Information and Software Technology xxx (xxxx) xxx

ARTICLE IN PRESS
JID: INFSOF [m5GeSdc; March 2, 2019;14:12]

description consistent with change function. Contributor Opera-

tion is one of the major categories. Table 6 shows that Contributor

Operation changes take up 10.01% of the reported changes in the
studied projects. Some changes are abandoned due to contributors’
wrong operation, such as pushing to a wrong branch, accidental push
and so on. This finding indicates that before pushing a change, con-
tributors should carefully scrutinize the change. For example, do not
forget to add the Change-Id to the commit message, make sure choos-
ing the correct branch, deleting redundancy files, and using git com-
mand to update an existing change rather than create a new one.
Otherwise, those wrong operations would lead the changes to be
abandoned.
In addition, Gerrit requires that every change must have a unique
Change-Id. In general, there are two situations leading to missing
Change-Id in commit message: (1) Developers forget to add Change-
Id in commit message; (2) Developers add Change-Id in commit mes-
sage, but the Change-Id is not in the last paragraph of the commit
message. For the first case, if the commit message of a change does
not contain a Change-Id, developers have to update its commit mes-
sage and insert a Change-Id. For the second case, the Change-Id must
be contained in the last paragraph of commit message. Otherwise,
the Change-Id could be mistaken as other part of the commit message
(e.g., change title) by the code review system. If this happens, devel-
opers have to update the commit message and move the Change-Id
into the last paragraph.
By default, Gerrit will prevent pushing for review if no Change-Id
is provided. However, repositories can be configured to allow com-
mits without Change-Ids in the commit message by setting “Require
Change-Id in commit message ” to “FALSE ”. Our finding shows that
changes without Change-Id tend to be abandoned. Thus, to avoid
this situation, a standard ‘commit-msg’ hook is provided by Gerrit
and can be installed in the local Git repository to automatically gen-
erate and insert a Change-Id line when committing a change. Hence,
developers are suggested to install it. In such a case, if a Change-Id
line is not present in the commit message, Gerrit will automatically
generate its own Change-Id and display it on the web. This line can
be manually copied and inserted into an updated commit message if
additional revisions to a change are required.
Moreover, developers could use tools which can automatically gen-
erate commit messages to help them write high-quality commit mes-
sages [12,22,30,31] . For example, Cortés-Coy et al. [12] proposed
an approach, coined as ChangeScribe , to automatically generate ed-
itable commit message for a given change-set. Jiang and McMillan
[23] proposed a method that can generate short commit messages
that convey the key ideas of commits. Liu et al. [31] proposed a
simple approach called NNGen which leverages the nearest neigh-
bor (NN) algorithm to generate commit messages.

5. After pushing a change, developers should reply to reviewers’

comments in time. Lack of Feedback changes take the longest me-
dian time and average time to be abandoned. In the review process,
some reviewers’ comments may describe how to improve the change.
Contributor of the change should modify the change according to the
review comments. However, such comments may be lack of feed-
back, and in this case, the change is likely to be abandoned. This
can happen when reviewers add some comments but contributors
do not respond. In addition, lack of feedback also happens when a
change is submitted but no reviewers give response. For Lack of feed-

back changes, reviewers spend long time to decide the fate of the
change, until there is long time that no feedback to the change, and
the change will be abandoned. In the LibreOffice project, it generally
takes four weeks to abandon a change which has no feedback. We
notice that Lack of Feedback changes take about 190 days and 160
days to be abandoned in terms of average time and median time
respectively (see Table 7).
A code review system should have a module for automatically re-
minding contributors and reviewers when there is no activity. For

example, the code review system could regularly(e.g., one month)
send contributors and reviewers email to remind them to continue
the work in the code review system. In addition, reviewers and con-
tributors should regularly see the status of changes they are working
on.

6.2. Similar study

Tao et al. [47] did similar work. They analyzed 300 patches from

Eclipse and Mozilla by manually inspecting their patch review com-
ments to understand why they were rejected. They summarized 12 cat-
egories of reasons as shown in Table 9 . However, there are so many
differences between our work:

1) The research object is different. The patches they studied are bug
reports while our research object is changes in code review systems.
Bug reports are mainly aimed to fix bugs, but changes in code re-
view not only fix bugs, but also enhance new features or modify
documentation and so on.

2) Data source is different. They collected data from Bugzilla platform

while we collected data from Gerrit platform. Bugzilla is a bug re-
port tool, while Gerrit is a code review tool. In addition, there is no
automatic verification mechanism in Bugzilla, but in Gerrit code re-
view system, there is automatic verification mechanism. Verification
is taken on the process of code compiling, unit tests etc. Verification
is usually done by an automated build server rather than a person,
such as a Jenkins/Hudson build server.

3) As for duplicate changes, we did more in-depth investigation and
summarized four findings(listed in Section 3.2.1) while Tao et al.
did not.

4) Tao et al. summarized twelve categories as shown in Table 9 , while
we summarized twelve categories as shown in Table 2 and seven
subcategories in total as shown in Tables 3 and 4 .

5) There are both twelve categories in Tao et al.’s paper and our paper.
There are three categories are the same, that is, Duplicate, Incom-

plete/Wrong Fix and Complicated Change . They are the same because
they both focus on code changes or patches, which aim to improve
the quality of software. The rest nine categories are different. The
explicit description is as follows:

(1) The different nine categories in Tao et al.’s work:

∗ Compilation errors: there is no automatic verification mechanism

in Bugzilla while there is such mechanism in Gerrit. It could lead
to compilation errors without automatically verification mecha-
nism.

∗ Suboptimal solution: this is included in Duplicate in our paper.
∗ Including unnecessary changes: this is included in Complicate

Change in our paper.
∗ Bad naming: this is included in Incomplete/Wrong Fix in our paper.
∗ Missing documentation: this is included in Contributor Operation in

our paper.
∗ Introducing new bugs: this is included in Incomplete/Wrong Fix in

our paper.
∗ Inconsistent of misleading documentation: this is included in Con-

tributor Operation in our paper.
∗ Violating coding style guidelines: this is included in Incom-

plete/Wrong Fix in our paper.
∗ Test failures: this is included in Incomplete/Wrong Fix in our paper.

(2) The new findings of category in our work: Lack of Feedback, New

work, Superfluous, Test, Branch Transfer, Give Up and Other .

6.3. Threats to validity

Internal validity. The classification process in RQ1 involves manual
examination. The classification process was conducted by the first au-
thor and one graduate who are not involved in the code review process

10

Q. Wang, X. Xia and D. Lo et al. Information and Software Technology xxx (xxxx) xxx

ARTICLE IN PRESS
JID: INFSOF [m5GeSdc; March 2, 2019;14:12]

Table 9

Patch-rejection reasons.

Patch-rejection reason Example of patch review comments Project-BugID

Compilation errors I will not review a patch that causes errors in my workspace. As said before: make sure you have API tools enabled and a R3.5
baseline set.

Eclipse-78522

Test failures The provided patch causes about 20 tests to fail. Either the change really breaks something, or it has side-effects that need the
tests to be changed, that means that it changes the expected behavior of the generator.

Eclipse-331875

Introducing new bugs The patch fixes the CCE but introduces a new bug: the returned key string is wrong in the normal case i.e., it includes the ‘ ”’ at
the end.

Eclipse-247012

Inconsistent or
misleading
documentation

The note is unclear. “As per... ” sounds like we follow the spec. But since we don’t, this should be stated explicitly (“Note: This
deviates from JLS314.3... ”). Furthermore, it’s confusing that you use differing terms “anonymous type ” and “anonymous inner
classes ” for the same thing.

Eclipse-339337

Suboptimal solution I honestly don’t want all this complexity for this user pref ... Much easier will be to add a link from the Email Preferences tab
pointing to email-related user prefs once bug 589138 is implemented

Mozilla-589128

Duplication What I now don’t like is that we have two methods which almost do the same thing but have different names:
#packageChanged() and #getPackageStatus(packName) .

Eclipse-393161

Including unnecessary
changes

Removed this unnecessary check from #getNextElseOffset: if(then == null)return -1; Eclipse-377141

Incomplete fix I couldn’ t test this patch, as it seems to be missing the change to browser.inc that adds secondaryToolbarButtons. Mozilla-877335
Violating coding style
guidelines

Per our Bugzilla guideline, we never leave —if (— alone on its own line. Mozilla-637981

Bad naming JavaCompareUtilities.getActiveEditor(IEditorPart) has wrong name as it simply works with the given part (doesn’t matter if active
or not).

Eclipse-260531

Missing documentation In the OverviewRuler class Javadoc I would mention that it uses non-saturated colors unless setUseSaturatedColorPreference(...)
gets called.

Eclipse-341808

Patch size too large Here is a patch smaller than 250 line. Eclipse-344125

of the studied systems. The results of manual classification by a domain
expert might be different.

In addition, we analyzed the reasons why changes are abandoned
from review comments and survey. There might be other suitable mate-
rials to analyze the reasons why changes are abandoned. In the future,
we plan to analyze more materials to summarize the reasons.

Moreover, the survey brings some noise, e.g., some developers from

the response emails did not answer our question. In order to reduce this
threat, we have manually removed such emails, and they were excluded
from the analysis why changes are abandoned.

External validity. We pick up four mainstream open source projects
in Gerrit, but they cannot be on behalf of all code review systems and
projects. Because the four studied systems are open source projects, thus
our results may not generalize commercial code review systems. In the
future, we are going to analyze more code review systems and projects
to reduce the threat.

7. Related work

In this section, we briefly introduce some related research studies.
First, we introduce some previous empirical studies on code review.
Next, we describe studies on the influencing factors of accepted changes.

Empirical study on code review. There are some empirical stud-
ies on code review. Thongtanunam et al. [50] conducted an empirical
investigation to identify how an open source software developer’s repu-
tation affects the outcome of his/her code review requests. Their result
suggested that core developers receive quicker first feedback on their re-
view request, complete the review process in shorter time, and are more
likely to have their code accepted into the project codebase. McIntosh
et al. [33] conducted an empirical study on the relationship between
post-release defects (a popular proxy for long-term software quality)
and code review coverage, participation, and expertise. They found that
code review coverage, participation, and expertise share a significant
link with software quality. Their work confirmed that poorly-reviewed
code has a negative impact on software quality in large systems which
use modern code review tools. To improve code review effectiveness
and quality in projects, Bosu et al. [11] conducted an empirical study
to identify factors that lead to useful code reviews. Ruangwan et al.
[41] empirically studied 230,090 patches and found that a large num-
ber of patches (i.e., 16%–66%) have at least one invited reviewer who
did not respond to the review invitation.

Baysal et al. [10] conducted an empirical study to investigate tech-
nical and non-technical factors influencing modern code review. Their
findings suggested that non-technical factors can significantly impact
code review outcomes. To evaluate the impact that characteristics of
modern code review practices have on software quality, Thongtanunam

et al. [48] conducted an empirical study to investigate defective and
clean source code files. They found that both future-defective files and
risky files tend to be reviewed less rigorously than their clean coun-
terparts. Also, they found that the concerns addressed during the code
reviews of both defective and clean files tend to enhance evolvability.
Kononenko et al. [28] conducted a study to explore the code review

practices of a large open source project in order to understand the de-
velopers’ perception of code review quality. They surveyed 88 core con-
tributors to the Mozilla project. Their qualitative analysis of the survey
responses provided insights into the factors that affect the time and de-
cision of a review, and the challenges developers face, when conducting
code review tasks. They found that code review quality is mainly associ-
ated with thoroughness of the feedback, the reviewers’ familiarity with
the code and the perceived quality of code itself.

Bacchelli and Bird [4] conducted an empirical study to explore the
motivations, challenges, and outcomes of modern code review. They
found that, although finding defects is still the main motivation for re-
view, the output of reviews brings fewer defects than expected. The
review activities are also used to provide additional benefits such as
increasing team awareness, knowledge transfer and so on. Kononenko
et al. [29] did an empirical study to explore code review quality by
investigating various factors. Their findings suggested that developer
participation in discussions on bug fixes and developer-related charac-
teristics (e.g., review experience and review loads) were promising pre-
dictors of code review quality. Different from these studies, we focus on
the issue why changes are abandoned in code review system.

Research on the influencing factors of accepted changes. Rigby

et al. [39] analyzed 2603 patches of Apache HTTP server project and
they found that small, complete and independent patches are more likely
to be accepted. Weißgerber et al. [52] performed a case study on email
archives of two open source projects. They found that small patches (at
most four lines changed) have a higher possibility to get accepted while
the very large patches get significantly lower. They also found that while
patch size is an outstanding factor on the chances of patch being ac-
cepted, it does not significantly affect the duration until the patch is
accepted. Jiang et al. [24] studied the relation of patch characteristics

11

Q. Wang, X. Xia and D. Lo et al. Information and Software Technology xxx (xxxx) xxx

ARTICLE IN PRESS
JID: INFSOF [m5GeSdc; March 2, 2019;14:12]

with the possibility of patch acceptance and the time taken for patches
to be merged into the codebase. They took Linux kernel as an example.
They found that patches developed by more experienced contributors
are easier to be accepted and faster reviewed and integrated. Baysal
et al. [9] conducted an empirical study of the code review process for
WebKit which is a large open source project. Their findings indicated
that non-technical factors could significantly impact the outcomes of
code review. It is worth mentioning that they found most influential fac-
tors on patch acceptance as well as on review time are the organization
that a patch contributor is affiliated with and their level of participation.
In short, the more active role a contributor decides to play, the faster
and more likely his contribution will be integrated into the codebase.

Jeong et al. [21] observed the review process of two open source
projects, the Mozilla Core and the Firefox. Then they proposed two
improvements, one is to predict whether a given patch is acceptable
and another is to suggest reviewers for a patch. Another work finished
by Baysal et al. [8] found that the patches submitted by casual contribu-
tors are disproportionately more likely to be abandoned compared with
core contributors. They suggested that patches from casual contributors
should receive extra care in order to both ensure quality and encourage
future community contributions. Rigby and Storey [40] summarized six
technical reasons and six non-technical reasons that changes are aban-
doned. Similarly, Rigby et al. [36] did another work to examine the rea-
sons why commits on GitHub pull requests are rejected. Different from

the studies listed above, we conduct a large-scale study to investigate
the reasons why changes are abandoned in Gerrit.

8. Conclusion and future work

The paper studied the reasons why changes were abandoned in code
review system. We manually inspected 1459 changes of four open source
projects and utilized open card sorting to categorize reasons. We further
investigated the frequency distribution of different categories across
different projects. Moreover, we investigated the relationship between
categories and duration of abandoned changes. In addition, we recom-
mended five aspects for contributors to submit high-quality changes in
practice.

In the future, we plan to use text mining and machine learning tech-
niques to automatically classify reasons that changes are abandoned, in
order to reduce the manual effort in categorizing reasons. We also would
like to investigate more code review systems and changes. Moreover, we
plan to investigate the approaches that could help developers to avoid
duplicate changes.

References

[1] A.F. Ackerman , L.S. Buchwald , F.H. Lewski , Software inspections: an effective veri-
fication process, Softw. IEEE 6 (3) (1989) 31–36 .

[2] A.F. Ackerman , R.G. Ebenau , R.G. Ebenau , Software Inspections and the Industrial
Production of Software, Elsevier North-Holland, Inc., 1984 .

[3] Ö. Albayrak , D. Davenport , Impact of maintainability defects on code inspections, in:
Proceedings of the 2010 ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement, ACM, 2010, p. 50 .

[4] A. Bacchelli , C. Bird , Expectations, outcomes, and challenges of modern code review,
in: International Conference on Software Engineering, 2013, pp. 712–721 .

[5] V. Balachandran , Reducing human effort and improving quality in peer code reviews
using automatic static analysis and reviewer recommendation, in: Software Engi-
neering (ICSE), 2013 35th International Conference on, IEEE, 2013, pp. 931–940 .

[6] M. Barnett , C. Bird , J. Brunet , S.K. Lahiri , Helping developers help themselves:
automatic decomposition of code review changesets, in: Proceedings of the 37th
International Conference on Software Engineering-Volume 1, IEEE Press, 2015,
pp. 134–144 .

[7] G. Bavota , B. Russo , Four eyes are better than two: on the impact of code reviews
on software quality, in: Software Maintenance and Evolution (ICSME), 2015 IEEE
International Conference on, IEEE, 2015, pp. 81–90 .

[8] O. Baysal , O. Kononenko , R. Holmes , M.W. Godfrey , The secret life of patches: a
firefox case study, in: Reverse Engineering (WCRE), 2012 19th Working Conference
on, IEEE, 2012, pp. 447–455 .

[9] O. Baysal , O. Kononenko , R. Holmes , M.W. Godfrey , The influence of non-techni-
cal factors on code review, in: Reverse Engineering (WCRE), 2013 20th Working
Conference on, IEEE, 2013, pp. 122–131 .

[10] O. Baysal , O. Kononenko , R. Holmes , M.W. Godfrey , Investigating technical and
non-technical factors influencing modern code review, Empir. Softw. Eng. 21 (3)
(2016) 932–959 .

[11] A. Bosu , M. Greiler , C. Bird , Characteristics of useful code reviews: an empirical
study at microsoft, in: Mining Software Repositories (MSR), 2015 IEEE/ACM 12th
Working Conference on, IEEE, 2015, pp. 146–156 .

[12] L.F. Cortés-Coy , M. Linares-Vásquez , J. Aponte , D. Poshyvanyk , On automatically
generating commit messages via summarization of source code changes, in: 2014
IEEE 14th International Working Conference on Source Code Analysis and Manipu-
lation, IEEE, 2014, pp. 275–284 .

[13] A. Dunsmore , M. Roper , M. Wood , Practical code inspection techniques for objec-
t-oriented systems: an experimental comparison, IEEE Softw. 20 (4) (2003) 21–29 .

[14] F. Ebert , F. Castor , N. Novielli , A. Serebrenik , Confusion detection in code reviews,
in: Software Maintenance and Evolution (ICSME), 2017 IEEE International Confer-
ence on, IEEE, 2017, pp. 549–553 .

[15] M.E. Fagan , Advances in software inspections to reduce errors in program develop-
ment, IBM Syst. J. 15 (3) (1976) 182–211 .

[16] Y. Fan , X. Xia , D. Lo , S. Li , Early prediction of merged code changes to prioritize
reviewing tasks, Empir. Softw. Eng. (2018) 1–48 .

[17] J.L. Fleiss , Measuring nominal scale agreement among many raters., Psychol. Bull.
76 (5) (1971) 378 .

[18] J.M. Gonzalez-Barahona , D. Izquierdo-Cortazar , G. Robles , A. del Castillo , Analyzing
gerrit code review parameters with bicho, Electronic Communications of the EASST,
2014 .

[19] B. Guo , M. Song , Interactively decomposing composite changes to support code re-
view and regression testing, in: Computer Software and Applications Conference
(COMPSAC), 2017 IEEE 41st Annual, vol. 1, IEEE, 2017, pp. 118–127 .

[20] W. Hordijk , L. Ponisio , R.J. Wieringa , Harmfulness of code duplication-a structured
review of the evidence, in: 13th International Conference on Evaluation and Assess-
ment in Software Engineering, EASE 2009, British Computer Society, 2009 .

[21] G. Jeong , S. Kim , T. Zimmermann , K. Yi , Improving code review by predicting re-
viewers and acceptance of patches, in: Research on Software Analysis for Error-free
Computing Center Tech-Memo (ROSAEC MEMO 2009-006), 2009, pp. 1–18 .

[22] S. Jiang , A. Armaly , C. McMillan , Automatically generating commit messages from
diffs using neural machine translation, in: Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering, IEEE Press, 2017,
pp. 135–146 .

[23] S. Jiang , C. McMillan , Towards automatic generation of short summaries of commits,
in: Proceedings of the 25th International Conference on Program Comprehension,
IEEE Press, 2017, pp. 320–323 .

[24] Y. Jiang , B. Adams , D.M. German , Will my patch make it? And how fast? Case study
on the linux kernel, in: Mining Software Repositories (MSR), 2013 10th IEEE Work-
ing Conference on, IEEE, 2013, pp. 101–110 .

[25] P.M. Johnson , Reengineering inspection, Commun. ACM 41 (2) (1998) 49–52 .
[26] E. Kantorowitz , T. Kuflik , A. Raginsky , Estimating the required code inspection team

size, in: Software-Science, Technology & Engineering, 2007. SwSTE 2007. IEEE In-
ternational Conference on, IEEE, 2007, pp. 104–115 .

[27] N. Kitagawa , H. Hata , A. Ihara , K. Kogiso , K. Matsumoto , Code review participation:
game theoretical modeling of reviewers in gerrit datasets, in: Proceedings of the 9th
International Workshop on Cooperative and Human Aspects of Software Engineer-
ing, ACM, 2016, pp. 64–67 .

[28] O. Kononenko , O. Baysal , M.W. Godfrey , Code review quality: how developers see
it, in: Software Engineering (ICSE), 2016 IEEE/ACM 38th International Conference
on, IEEE, 2016, pp. 1028–1038 .

[29] O. Kononenko , O. Baysal , L. Guerrouj , Y. Cao , M.W. Godfrey , Investigating code re-
view quality: do people and participation matter? in: Software Maintenance and Evo-
lution (ICSME), 2015 IEEE International Conference on, IEEE, 2015, pp. 111–120 .

[30] M. Linares-Vásquez , L.F. Cortés-Coy , J. Aponte , D. Poshyvanyk , Changescribe: a tool
for automatically generating commit messages, in: 2015 IEEE/ACM 37th IEEE In-
ternational Conference on Software Engineering, 2, IEEE, 2015, pp. 709–712 .

[31] Z. Liu , X. Xia , A.E. Hassan , D. Lo , Z. Xing , X. Wang , Neural-machine-transla-
tion-based commit message generation: how far are we? in: Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering, ACM,
2018, pp. 373–384 .

[32] S. McIntosh , Y. Kamei , B. Adams , A.E. Hassan , The impact of code review coverage
and code review participation on software quality: a case study of the qt, vtk, and
itk projects, in: Proceedings of the 11th Working Conference on Mining Software
Repositories, ACM, 2014, pp. 192–201 .

[33] S. McIntosh , Y. Kamei , B. Adams , A.E. Hassan , An empirical study of the impact of
modern code review practices on software quality, Empir. Softw. Eng. 21 (5) (2016)
2146–2189 .

[34] M. Mukadam , C. Bird , P.C. Rigby , Gerrit software code review data from android,
in: Mining Software Repositories (MSR), 2013 10th IEEE Working Conference on,
IEEE, 2013, pp. 45–48 .

[35] N. Ramasubbu , R. Subramanyam , S. Mithas , M.S. Krishnan , On the value of code
inspections for software project management: an empirical analysis, in: AMCIS 2006
Proceedings, 2006, p. 459 .

[36] P.C. Rigby , A. Bacchelli , G. Gousios , M. Mukadam , A mixed methods approach to
mining code review data: examples and a study of multi-commit reviews and pull
requests, The Art and Science of Analyzing Software Data. Morgan Kaufmann, 2015 .

[37] P.C. Rigby , C. Bird , Convergent contemporary software peer review practices, in:
Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering,
ACM, 2013, pp. 202–212 .

[38] P.C. Rigby , D.M. German , A Preliminary Examination of Code Review Processes in
Open Source Projects, Technical Report, Technical Report DCS-305-IR, University
of Victoria, 2006 .

12

http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0001
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0001
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0001
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0001
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0002
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0002
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0002
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0002
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0003
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0003
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0003
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0004
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0004
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0004
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0005
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0005
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0006
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0006
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0006
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0006
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0006
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0007
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0007
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0007
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0008
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0008
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0008
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0008
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0008
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0009
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0009
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0009
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0009
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0009
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0010
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0010
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0010
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0010
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0010
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0011
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0011
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0011
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0011
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0012
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0012
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0012
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0012
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0012
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0013
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0013
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0013
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0013
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0014
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0014
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0014
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0014
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0014
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0015
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0015
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0016
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0016
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0016
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0016
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0016
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0017
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0017
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0018
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0018
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0018
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0018
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0018
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0019
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0019
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0019
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0020
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0020
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0020
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0020
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0021
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0021
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0021
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0021
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0021
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0022
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0022
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0022
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0022
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0023
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0023
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0023
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0024
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0024
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0024
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0024
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0025
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0025
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0026
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0026
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0026
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0026
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0027
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0027
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0027
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0027
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0027
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0027
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0028
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0028
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0028
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0028
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0029
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0029
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0029
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0029
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0029
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0029
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0030
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0030
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0030
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0030
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0030
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0031
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0031
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0031
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0031
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0031
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0031
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0031
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0032
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0032
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0032
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0032
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0032
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0033
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0033
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0033
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0033
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0033
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0034
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0034
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0034
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0034
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0035
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0035
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0035
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0035
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0035
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0036
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0036
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0036
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0036
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0036
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0037
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0037
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0037
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0038
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0038
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0038

Q. Wang, X. Xia and D. Lo et al. Information and Software Technology xxx (xxxx) xxx

ARTICLE IN PRESS
JID: INFSOF [m5GeSdc; March 2, 2019;14:12]

[39] P.C. Rigby , D.M. German , M.A. Storey , Open source software peer review practices:
a case study of the apache server, in: International Conference on Software Engi-
neering, 2008, pp. 541–550 .

[40] P.C. Rigby , M.A. Storey , Understanding broadcast based peer review on open source
software projects, in: Proceedings of the 33rd International Conference on Software
Engineering, ACM, 2011, pp. 541–550 .

[41] S. Ruangwan , P. Thongtanunam , A. Ihara , K. Matsumoto , The impact of human fac-
tors on the participation decision of reviewers in modern code review, Empir Softw.
Eng. (2018) 1–44 .

[42] C.B. Seaman , V.R. Basili , An empirical study of communication in code inspections,
in: Proceedings of the 19th international conference on Software engineering, ACM,
1997, pp. 96–106 .

[43] J. Shimagaki , Y. Kamei , S. Mcintosh , A.E. Hassan , N. Ubayashi , A study of the
quality-impacting practices of modern code review at sony mobile, in: Ieee/acm
International Conference on Software Engineering Companion, 2017, pp. 212–
221 .

[44] F. Shull , C. Seaman , Inspecting the history of inspections: an example of evi-
dence-based technology diffusion, IEEE Softw. 25 (1) (2008) 88–90 .

[45] R.R. Souza , C.F. Chavez , R.A. Bittencourt , Patch rejection in firefox: negative re-
views, backouts, and issue reopening, J. Softw. Eng. Res.Dev. 3 (1) (2015) 1–22 .

[46] D. Spencer , Card Sorting: Designing Usable Categories, Rosenfeld Media, 2009 .

[47] Y. Tao , D. Han , S. Kim , Writing acceptable patches: an empirical study of open source
project patches, in: Software Maintenance and Evolution (ICSME), 2014 IEEE Inter-
national Conference on, IEEE, 2014, pp. 271–280 .

[48] P. Thongtanunam , S. McIntosh , A.E. Hassan , H. Iida , Investigating code review
practices in defective files: an empirical study of the qt system, in: Proceedings of
the 12th Working Conference on Mining Software Repositories, IEEE Press, 2015,
pp. 168–179 .

[49] P. Thongtanunam , S. McIntosh , A.E. Hassan , H. Iida , Review participation in modern
code review, Empir. Softw. Eng. 22 (2) (2017) 768–817 .

[50] P. Thongtanunam , C. Tantithamthavorn , R.G. Kula , N. Yoshida , H. Iida , K.-i. Mat-
sumoto , Who should review my code? A file location-based code-reviewer recom-
mendation approach for modern code review, in: Software Analysis, Evolution and
Reengineering (SANER), 2015 IEEE 22nd International Conference on, IEEE, 2015,
pp. 141–150 .

[51] L.G. Votta , Does every inspection need a meeting? in: Acm Sigsoft Symposium on
Foundations of Software Engineering, 1993, pp. 107–114 .

[52] P. Weißgerber , D. Neu , S. Diehl , Small patches get in!, in: Proceedings of the 2008
International Working Conference on Mining Software Repositories, ACM, 2008,
pp. 67–76 .

[53] F. Wilcoxon , Individual comparisons by ranking methods, Biom.Bull. 1 (6) (1945)
80–83 .

13

http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0039
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0039
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0039
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0039
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0040
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0040
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0040
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0041
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0041
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0041
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0041
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0041
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0042
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0042
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0042
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0043
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0043
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0043
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0043
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0043
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0043
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0044
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0044
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0044
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0045
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0045
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0045
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0045
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0046
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0046
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0047
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0047
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0047
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0047
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0048
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0048
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0048
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0048
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0048
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0049
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0049
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0049
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0049
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0049
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0050
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0050
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0050
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0050
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0050
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0050
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0050
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0051
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0051
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0052
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0052
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0052
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0052
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0053
http://refhub.elsevier.com/S0950-5849(19)30042-4/sbref0053

	Why is my code change abandoned?
	Citation

	Why is my code change abandoned?
	1 Introduction
	2 Empirical study setup
	2.1 Research questions
	2.2 Data collection
	2.3 Methodology

	3 Category
	3.1 Category overview
	3.2 Category detail
	3.2.1 Duplicate
	3.2.2 Lack of feedback
	3.2.3 Contributor operation
	3.2.4 New work
	3.2.5 Incomplete/wrong fix
	3.2.6 Superfluous
	3.2.7 Test
	3.2.8 Branch transfer
	3.2.9 Merge conflict
	3.2.10 Give up
	3.2.11 Complicated change
	3.2.12 Other

	4 Distribution
	5 Duration
	6 Discussion
	6.1 Recommendation for submitting high-quality changes in practice
	6.2 Similar study
	6.3 Threats to validity

	7 Related work
	8 Conclusion and future work
	References

