
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

3-2019

Characterizing and identifying reverted commits Characterizing and identifying reverted commits

Meng YAN

Xin XIA

David LO
Singapore Management University, davidlo@smu.edu.sg

Ahmed E. HASSAN

Shanping LI

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
YAN, Meng; XIA, Xin; LO, David; HASSAN, Ahmed E.; and LI, Shanping. Characterizing and identifying
reverted commits. (2019). Empirical Software Engineering. 24, (4), 2171-2208.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4357

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4357&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4357&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Empirical Software Engineering
https://doi.org/10.1007/s10664-019-09688-8

Characterizing and identifying reverted commits

Meng Yan1,2 ·Xin Xia3 ·David Lo4 ·Ahmed E. Hassan5 · Shanping Li1

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
In practice, a popular and coarse-grained approach for recovering from a problematic com-
mit is to revert it (i.e., undoing the change). However, reverted commits could induce some
issues for software development, such as impeding the development progress and increas-
ing the difficulty for maintenance. In order to mitigate these issues, we set out to explore
the following central question: can we characterize and identify which commits will be
reverted? In this paper, we characterize commits using 27 commit features and build an
identification model to identify commits that will be reverted. We first identify reverted
commits by analyzing commit messages and comparing the changed content, and extract 27
commit features that can be divided into three dimensions, namely change, developer and
message, respectively. Then, we build an identification model (e.g., random forest) based
on the extracted features. To evaluate the effectiveness of our proposed model, we perform
an empirical study on ten open source projects including a total of 125,241 commits. Our
experimental results show that our model outperforms two baselines in terms of AUC-ROC
and cost-effectiveness (i.e., percentage of detected reverted commits when inspecting 20%
of total changed LOC). In terms of the average performance across the ten studied projects,
our model achieves an AUC-ROC of 0.756 and a cost-effectiveness of 0.746, significantly
improving the baselines by substantial margins. In addition, we found that “developer” is
the most discriminative dimension among the three dimensions of features for the identi-
fication of reverted commits. However, using all the three dimensions of commit features
leads to better performance.

Keywords Reverted commits · Identification model · Feature engineering · Empirical study

1 Introduction

As a software system evolves, its source code is modified for different purposes, e.g., bug
fixing, feature implementation, and refactoring. Developers modify the source code by sub-
mitting commits to Version Control Systems (VCSs). However, when developers submit

Communicated by: Massimiliano Di Penta

� Xin Xia
xin.xia@monash.edu

Extended author information available on the last page of the article.

Published in Empirical Software Engineering, 2019 March, Advance online.
https://doi.org/10.1007/s10664-019-09688-8
Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-019-09688-8&domain=pdf
http://orcid.org/0000-0002-6302-3256
mailto: xin.xia@monash.edu

Empirical Software Engineering

a commit, it is unrealistic to expect them to always complete the whole task on the first
attempt without introducing any problems (Yoon and Myers 2012).

In practice, a popular and coarse-grained approach for recovering from a problematic
commit is to revert it (Shimagaki et al. 2016). Reverting a commit means undoing the change
that the commit introduced. Prior studies show that 75% of developers feel that a back-
tracking tool (i.e, revert back to an earlier state by removing inserted code or by restoring
removed code) is necessary (Yoon and Myers 2012). Additionally, different version control
systems, such as Git, Mercurial and Subversion, provide built-in revert commands. Devel-
opers often use version control systems to back out problematic commits by reverting to a
previously, known-to-be working system state (Codoban et al. 2015).

Recently, (Shimagaki et al. 2016) conducted an empirical study on 6 projects (including
4 open source projects and 2 industrial projects) to understand why commits are reverted.
The main findings of their work include: (1) the percentages of reverted commits range
from 1% to 5%; (2) those commits that are eventually reverted linger within the codebases
for 1-35 days (median); (3) there are various reasons to revert a commit, including internal
reasons (e.g., compilation error or incomplete fix) and external reasons (e.g., temporary
workaround or unnecessary feature).

Although revert is a pervasive command for recovering from a problematic commit,
reverted commits could induce some issues for software development and maintenance.
For example, reverted commits exist for a long time within the codebase (as long as
811 days with a median of 1-35 days) potentially impeding the development and mainte-
nance progress. The longer a commit takes to be reverted, the more difficult developers
try to switch to the context of the reverted commit (Souza et al. 2015; Shimagaki
et al. 2016). Additionally, by the time the commit was reverted, many other commits
might have depended on it. This would increase the difficulty of software maintenance
(Souza et al. 2015).

In order to mitigate this issue, we set out to explore the following central question: Can
we characterize and identify which commits will be reverted? To the best of our knowledge,
this is the first work to address this question. The benefits of our study are as follows:

• Characterizing reverted commits by various commit features can help to improve an
understanding of this phenomena, in turn helping us identify typical root causes of
reverted commits and suggesting ways to mitigate them.

• Our Just-In-Time (JIT) identification of reverted commits informs developers about
such commits when they are still fresh on their minds (Kamei et al. 2013). Early
detection of problematic commits can save developer’s effort and time for software
development and maintenance (Souza et al. 2015).

The typical usage scenario of our reverted commit identification tool is to warn devel-
opers about commits that are likely to be reverted. As a result, developers can check these
commits carefully at an early stage (e.g., soon after submitting them into the code repos-
itory). For example, suppose Bob is a developer in a large project team, Bob submitted a
possibly problematic commit on one day.

Without our tool, the commit is reverted after one month (even worse just a day before
the release of a new version). Many other source code files (i.e., are changed during the
month with many of these changes depending on the code in Bob’s just-reverted com-
mit) should also be revisited or even revised. This would lead to lose efforts, increased
maintenance costs, and many last minute surprises and fire-fighting in a project.

With our tool, the commit is flagged with a high likelihood score among the commits
submitted in a recent period (e.g., several days). Bob or other related developers carefully

Empirical Software Engineering

check the commit after receiving the warning by our tool. As a result, they discovered
the problem and fixed it by submitting another commit or reverting this commit early on.
Eventually, the development effort can be saved or the possible maintenance difficulty (that
is introduced by reverting these commits after a long time) can be mitigated.

Therefore, in this paper, we propose an automated model for JIT identification of com-
mits that will be reverted. To achieve this goal, we extract 27 commit features which are
grouped into three dimensions: change, developer and message. In the change dimension,
we extract commit features by measuring the code differences that are made in the commit
(e.g., number of modified subsystems and files) (Kamei et al. 2013). In the developer dimen-
sion, we extract the developer features by analyzing the historical activities of developers
(e.g., number of previously submitted commits of the developer who submits a commit). In
the message dimension, we extract the message features by analyzing the textual description
of the commit message (e.g., whether or not the change is a bug fix).

Next, we build our identification model by using a random forest classifier on these
extracted features. To evaluate the effectiveness of our identification model, we perform
experiments on ten open source projects from different application domains with a total
of 125,241 commits, namely, Hadoop, Gerrit, Hbase, Karaf, Jenkins, Spring-boot, Hive,
Eclipse Platform, Egit and Eclipse JDT. In our evaluation, we adopt two performance mea-
sures (i.e., AUC-ROC and cost-effectiveness) using a 10 times 10-fold cross-validation
setting. AUC-ROC is the area under the receiver operator characteristic (ROC) curve (Huang
and Ling 2005). In the ROC curve, the true positive rate (TPR) is plotted as a function of
the false positive rate (FPR) across all thresholds. Cost-effectiveness evaluates the perfor-
mance of a model given a certain cost threshold, e.g., a certain percentage of code to inspect
(e.g., 20% of total changed LOC). It is calculated by measuring the recall considering the
inspection under limited resources. In practice, when a team has limited resources to inspect
changed LOC in potentially reverted commits, it is crucial that manually inspecting the top
percentages of commits that are likely to be reverted can help developers discover as many
problematic commits as possible. In our study, by default, we define cost-effectiveness as
the number of reverted commits that can be discovered by inspecting the top 20% of totally
changed LOC based on the confidence levels that a model outputs (Kamei et al. 2013; Xia
et al. 2016a).

Our experimental results show that our proposed model achieves an average of AUC-
ROC of 0.756, and an average of cost-effectiveness of 0.746 across the ten studied
projects. In addition, we implement two baselines, Random Guess (RG) and Naive Bayes
Multinomial based on the textual description of the Commit Message (NBMCM). RG
identifies reverted commits randomly. NBMCM identifies reverted commits by building a
Naive Bayes Multinomial classifier on commit messages. As a result, our proposed model
improves over RG and NBMCM by 51.29% and 17.19% in terms of average AUC-ROC,
and by 216.94% and 108.95% in terms of average cost-effectiveness respectively. Addition-
ally, in order to understand what commit features impact reverted commit most, we perform
a feature importance analysis.

In summary, the main contributions of this paper are as follows:

1. We propose the problem of identifying commits that will be reverted, and we propose a
model to automatically identify such commits. Our proposed model leverage 27 com-
mit features. To the best of our knowledge, this paper is the first work to address this
problem.

2. We evaluate our proposed model on ten projects with a total of 125,241 commits. Our
experimental results show that out approach achieves an average AUC-ROC of 0.756,

Empirical Software Engineering

an average cost-effectiveness of 0.746 across the ten studied projects, and a significant
improvement over two baseline approaches.

3. We investigate the most discriminative dimension of features for identifying commits
that are likely to be reverted. Our experimental results show that “developer” is the most
discriminative dimension among the three dimensions of features.

PaperOrganization The remainder of this paper is structured as follows. Section 2 presents
the study data of our study. Section 3 presents our empirical study setup, including research
questions, studied features, used classifiers, validation setting and used performance mea-
sures. In Section 4, we detail and investigate our experimental results and their analysis.
In Section 5, we discuss three more findings that impact our model for identifying com-
mit that will get reverted. Section 6 describes the threats to validity. Section 7 presents the
related work of our study, including commits rework and identification models for software
commits. At last, in Section 8, we draw a conclusion of this paper.

2 Empirical Study Dataset

This section presents the details of the used dataset in this study. We first describe the
summary of studied open source projects. Then, we describe the methodology to identify
reverted commits.

2.1 Dataset

Table 1 lists basic statistics about the studied projects. In total, we study 10 Java open source
projects namely Hadoop, Gerrit, Hbase, Karaf, Jenkins, Spring-boot, Hive, Eclipse Plat-
form, Egit and Eclipse JDT. The projects cover different application domains. Hadoop1 is
a framework that allows for the distributed processing of large data sets across clusters of
computers using simple programming models. Gerrit2 is a free, web-based team code col-
laboration tool. Hbase3 is the Hadoop database, a distributed, scalable, and big data store.
Karaf4 is a lightweight, powerful, and enterprise ready container powered by OSGi. Jenk-
ins5 is a self-contained, open source automation server which can be used to automate all
sorts of tasks that are related to building, testing, and deploying software. Spring-boot6 is a
framework that eases the bootstrapping and development of new Spring applications. Hive7

is a data warehouse software which facilitates the reading, writing, and managing of large
datasets that reside in distributed storage using SQL. Eclipse Platform8 defines the set of
frameworks and common services that collectively make up infrastructure required to sup-
port the use of Eclipse as a component model. Egit9 is an Eclipse Team provider for the Git

1http://hadoop.apache.org/
2https://www.gerritcodereview.com/
3http://hbase.apache.org/
4http://karaf.apache.org/
5https://jenkins.io/index.html
6http://projects.spring.io/spring-boot/
7https://hive.apache.org/
8https://projects.eclipse.org/projects/eclipse.platform
9http://www.eclipse.org/egit/

http://hadoop.apache.org/
https://www.gerritcodereview.com/
http://hbase.apache.org/
http://karaf.apache.org/
https://jenkins.io/index.html
http://projects.spring.io/spring-boot/
https://hive.apache.org/
https://projects.eclipse.org/projects/eclipse.platform
http://www.eclipse.org/egit/

Empirical Software Engineering

Table 1 Summary of studied
projects Project #Commits #Reverted Reverted #Reverted

ratio && defective

Hadoop 14,564 554 3.80% 172

Gerrit 19,474 285 1.46% 133

Hbase 12,366 576 4.66% 229

Karaf 5,246 130 2.48% 28

Jenkins 18,253 220 1.21% 91

Spring-boot 9,940 211 2.12% 100

Hive 9,067 381 4.20% 60

Eclipse platform 8,051 121 1.50% 42

Egit 5,310 107 2.02% 43

Eclipse JDT 22,970 586 2.55% 325

Total 125,241 3,171 2.53% 1,223

version control system. Eclipse JDT10 provides the tool plug-ins that implement a Java IDE
supporting the development of any Java application, including Eclipse plug-ins.

2.2 Reverted Commit Identification

A reverted commit referred to as a commit that is being reverted by a future commit (refers
to as reverting commit). We identify reverted commits in two methods:

The first method is identifying reverted commits by checking commit messages. This
identification method is conducted by following prior study (Shimagaki et al. 2016). This
identification method consists of two steps:

Step 1: Identification of reverting commits . By following (Shimagaki et al. 2016), we
identify reverting commits by scanning git commit log. Since Git uses a fixed string pattern
to mark reverting commits, we use the following regular expression to identify reverting
commits:

ˆRevert \”.*This reverts commit ([0-9a-f]{40}).*
Step 2: Identification of reverted commits . Each reverting commit contains a SHA-1 ID
in the Git log. This SHA-1 ID refers to the commit that is being reverted. In this way, we
can label the commits that are reverted.

However, this identification method can only identify reverted commits that follow a
standard procedure of reverting and do not modify the commit message. Additionally, this
identification method can only identify reverted commits that the entire commit is reverted.
The reverting commits that do not follow a standard procedure or only revert a subset of the
changed files are ignored. For example, it is possible to start reverting a commit by following
a standard procedure and then modify part of file changes and the generated message before
submitting.

Therefore, we propose a second identification method for identifying reverted commits
by comparing the detailed changed content of each changed file. We define a reverted com-
mit as: there is at least one changed source file whose inserted code and removed code is

10https://projects.eclipse.org/projects/eclipse.jdt

https://projects.eclipse.org/projects/eclipse.jdt

Empirical Software Engineering

identical with a future commit’s removed code and inserted code respectively. The detailed
steps of this identification method are as follows:

Step 1: Get changed content of each commit . For each commit, we get the changed
content using the git diff command and store them as a list of 3-element vectors in the format
<file, inserted, removed>. We refer to such a 3-element vector as a file change vector V, in
which “file” indicates the changed file path, “inserted” refers to the text in the inserted lines
in this changed file, “removed” refers to the text in the removed lines in this changed file.

Step 2: Identify reverted commits . For a commit A, we compare each of its file change
vectors with those of all commits submitted after A. If we can find any commit B which
satisfies the following two conditions: (1) Both A and B have a file change vector (referred
to as Va and Vb, respectively) containing the same file F . (2) The inserted lines of Va is
identical with the removed lines of Vb, and the removed lines of Va is identical with the
inserted lines of Vb. Then we label commit A as a reverted commit, B is a reverting commit
that reverts A.

We combine the identified reverted commits by the above-mentioned two methods as
our final reverted commits. The second identification method can identify the reverted com-
mits which did not follow a standard reverting procedure. For example, we notice that
the commit “9992cae54120d2742922745c1f513c6bfbde67a9” in Hadoop project might be
a reverting commit, since its commit message is “Reverting the previous trunk merge
since it added other unintended changes in addition”. However, we cannot identify the
corresponding reverted commits by just checking commit message using the first identi-
fication method, since its commit message does not contain the corresponding reverted
commit id. Using our proposed identification second method, we identified that this com-
mit reverted other commits, e.g., “d00b3c49f6fb3f6a617add6203c6b55f6c345940” and
“83e4b2b46962ba2f799ea5c92aa328a5f01e21b7”.

In this paper, we collect the commits of the selected projects from the creation date of the
projects to September 30, 2017. (Shimagaki et al. 2016) found that reverted commits linger
within the version control system for a median of 1-35 days. Therefore, we use the commits
until June 30, 2017 to ensure that most of the studied commits are correctly labeled. In
total, there are 125,241 commits in ten projects, and 3,171 of them are reverted. The ratio
of reverted commits is 2.53%. In practice, it is difficult to identify reverted commits due to
the class imbalance phenomenon.

Additionally, one may be concerned that the identification of reverted commits is similar
to the identification of defect-introducing commits (i.e., just-in-time defect identifica-
tion (Kamei et al. 2013)). A prior study has shown that commits can be reverted due to
various reasons beyond the introduction of bugs (Shimagaki et al. 2016). To further clar-
ify the difference, we compute the proportion of reverted commits in our dataset that also
introduce defects. The defect-introducing commits are identified by using the commit-guru
tool (Rosen et al. 2015).11 The commit-guru tool performs the following main steps: first, it
semantically analyzes each commit message made by the developer in order to classify the
commit type (e.g., corrective, feature addition) (Hindle et al. 2008). Second, it identifies the
defect-introducing commits by linking them to those that are fixing commits. The linking
step is performed by using a variant of the SZZ algorithm (Śliwerski et al. 2005; da Costa
et al. 2017).

11http://commit.guru/

http://commit.guru/

Empirical Software Engineering

As a result, the column “#Reverted && Defective” in Table 1 presents the number of
commits that are both being reverted and defect-introducing. It shows that only a small
proportion of reverted commits are also defect-introducing commits. Thus, we believe that
the identification of reverted commits is a different problem than the identification of defect-
introducing commits, although a defect introducing commit is one potential reason for the
reversal of a commit.

3 Empirical Study Setup

In this section, we present our experimental setup, including studied features, used classifier,
validation setting, used evaluation measures and research questions.

3.1 Studied Features

We extract a total of 27 commit features, which are divided into three unique dimensions:
change, developer and message. All these features are derived from the source code reposi-
tory control system (e.g., Git). Table 2 presents a summary of extracted features. We choose
these features because: these features are used in many prior studies of commit analysis,
such as defective change identification (Mockus and Weiss 2000; Kim et al. 2008; Kamei
et al. 2013; Yang et al. 2016) or build co-change identification (McIntosh et al. 2014; Xia
et al. 2015a). We present below details of the features in each dimension.

Change The change dimension contains commit features by measuring the code changes
that are made in the commit. This dimension is one of the most important dimension for
identifying defective changes (Kamei et al. 2013). Here, we conjecture that the change
dimension can also be leveraged to determine the likelihood of identifying commits being
reverted. Change dimension consists of 13 features.

NS represents the number of modified subsystems and ND represents the number of
modified directories. The root directory name is identified as the subsystem name and the
directory name is identified to calculate the modified directories. For example, in Hbase,
if a commit modifies a file with the path “hbase-client/src/.../hbase/Chore.java”, then the
subsystem is “hbase-client”, and the directory name is “hbase-client/src/.../hbase”.

Entropy aims to measure the distribution of the commits across the different files
(Hassan 2009). We compute entropy of a commit as: H(P) = − ∑n

k=1(pk ∗ log2pk),
where probability pk ≥ 0 and it indicates the proportion that f ilek is modified in a
commit (i.e., modified lines in f ilek respects to total modified lines of a commit), thus,
(
∑n

k=1 pk) = 1. For example, a commit modifies three files, A, B, and C with modified
lines 30, 20, and 10, respectively, The Entropy is measured as 1.46 by using the formula:
= −(30

60 log2
30
60 + 20

60 log2
20
60 + 10

60 log2
10
60). The formula for Entropy above has been nor-

malized by the maximum Entropy log2n to account for differences in the number of files
across changes, similarly to (Hassan 2009). The higher the normalized Entropy, the larger
the spread of a change.

In addition to extract commit features on the modified subsystems and directories, we
also extract features at more fine-grained level, e.g., file-level and line-level. At file-level,
we extract four features, (i.e., NAF, NMF, NDF and NUC). The features NAF, NMF, NDF
represent the number of added, modified and deleted files respectively. These features aim
to measure different activities on modified files and are used in prior studies (McIntosh et al.
2014; Xia et al. 2015a). NUC indicates number of unique commits to the modified files

Empirical Software Engineering

Table 2 Studied features

Dimension Name Definition Rationale

Change NS Number of modified sub-
systems

Commits touching more subsystems may be more
likely to be reverted.

ND Number of modified direc-
tories

Commits touching more directories may be more
likely to be reverted.

NMF Number of modified files Larger NFM, NFA or NFD values indicate that
a commit touched more files. Commit touching
more files may be more likely to be reverted.

NAF Number of added files

NDF Number of deleted files

NUC Number of unique changes
to the modified files

A larger NUC indicates a larger spread of modi-
fied files. Such a commit may be more likely to
be reverted, since a developer will have to recall
and track many previous commits.

LA Lines of added code Larger LA or LD indicates that commit touched
more lines of code (LOC). Commits touching
more LOC may be more likely to be reverted.

LD Lines of deleted code

Entropy Distribution of modified
code across each file

Commits with high entropy may be more likely
to be reverted, since a developer will have to
recall and track more scattered commits across
each file.

NLC Number of low signifi-
cance code changes

The significance level expresses how strongly a
code change (a commit consists of many fine-
grained code changes) may impact other source
code entities and whether a commit may be func-
tionality modifying or functionality preserving
(Fluri et al. 2007). Commits with different sig-
nificant code changes may impact the likelihood
of a commit being reverted.

NMC Number of medium signif-
icance code changes

NHC Number of high signifi-
cance code changes

NCC Number of crucial signifi-
cance code changes

Developer NDEV Number of developers that
changed the modified files

A larger NDEV indicates that the changed files
have been previously touched by a large num-
ber of developers. A commit with a larger NDEV
may be more likely to be reverted, since differ-
ent developers have different design thoughts and
coding styles.

EXP Developer experience A commit with a lower EXP may be more likely
to be reverted. A developer that has often modi-
fied the files in recent months may be less likely
to submit a commit that will be reverted. A devel-
oper that is more familiar with the subsystems
modified by a commit may be less likely to
submit a commit that will be reverted.

REXP Recent developer experience

SEXP Developer experience on a
subsystem

Empirical Software Engineering

Table 2 (continued)

Dimension Name Definition Rationale

MINO Min proportion of own-
ership of modified files

A larger proportion of ownership of a devel-
oper for a file indicates the developer has more
responsibility on the file. In a commit, if the
submitting developer has a higher proportion of
ownership to the modified files, the commit is
less likely to be reverted. Because the developer
who submit the commit is more familiar and
responsible for the modified file.

AVEO Average proportion of
ownership of modified
files

MAXO Max proportion of own-
ership of modified files

Message msg length Message length: number
of words in the message

The change message contains the purpose of this
commit. Past studies have found that the commit
purpose has an impact on it being reverted, such
as fixing bugs, introducing bugs, and refactor-
ing (Shimagaki et al. 2016). We conjecture that
the commit purpose has an impact on it being
reverted. In addition, we convert the textual fac-
tors of commit messages into a numerical value
using a classifier, namely Naive Bayes Multi-
nomial score (i.e., nbm msg score) (McCallum
et al. 1998; Xia et al. 2016b). A higher score
indicates that the commit is more likely to be
reverted. We calculate such score of training set
and testing set separately. In terms of training
set, we first split training set into two subsets.
Then we train a classifier with a training sub-
set, and use it to obtain the textual scores for
commits on the other training subset. In terms of
testing set, we train a classifier built on all of the
commits in the training set, and use it to obtain
such scores for commits on testing set.

has bug Whether message of
this change contains
the word “bug”

has feature Whether message of
this change contains
the word “feature”

has improve Whether message of
this change contains
the word “improve”

has document Whether message of
this change contains
the word “document”

has refactor Whether message of this
change contains the word
“refactor”

msg nbm score Naive Bayes Multino-
mial likelihood score of
a commit likelihood to
be reverted

Empirical Software Engineering

before. For example, if a developer Bob submitted a commit that modified files A, B, and
C, file A was previously modified in commit α, and files B and C were modified in commit
β, then NUC would be 2 (i.e., α and β).

At the line-level, we extract two features, namely the lines of added code (i.e., LA) and
lines of deleted code (i.e., LD). These features describe the size of a commit, i.e., the num-
ber of renewed LOCs in the commit. We can directly measure them from source control
repository. We measure NS, ND, Entropy, LA and LD as described by (Kamei et al. 2013).

Additionally, we extract 4 significance features, namely the number of low, medium,
high, and crucial significance level code changes (i.e., NLC, NMC, NHC and NCC). These
features aim to capture the fine-grained activities for each commit (one commit may contain
many source code changes). We adopt the significance level for each code change proposed
by prior studies (Fluri and Gall 2006; Fluri et al. 2007) which classify each code change
type with a significance level (i.e., low, medium, high and crucial). The significance level
expresses how strong a code change may impact other source code entities (i.e., how likely
other source code entities have to be changed). For example, code changes in a method body
are considered to have a low or medium significance level, whereas code changes on the
interface of a class have a high or crucial significance level (Fluri and Gall 2006). We mea-
sure the NLC, NMC, NHC and NCC features by using the ChangeDistiller framework (Fluri
et al. 2007).

Developer The developer dimension aims to capture the historical activities related to
developers, such as developer’s experience and ownership of modified files. Prior work
observed that developer’s experience and ownership to files have an impact on software
quality (Kamei et al. 2013; Bird et al. 2011). Here, we conjecture that the developer dimen-
sion can also be leveraged to determine the likelihood of commits being reverted. This
dimension consists of 7 features.

NDEV measures the number of developers that previously touched the modified files.
For example, if a developer Bob submitted a commit that modified files A, B, and C. A was
previously modified by Jim. B and C were previously modified by Mike. Then the NDEV
would be 2 (Jim + Mike). A higher NDEV means that the changed files have been previously
touched by more developers.

EXP measures the experience of a developer in a project. This feature is calculated by
counting the number of previous submitted commits of a developer in a project. Higher
EXP means the developer have higher experience. Recent experience (REXP) measures
the experience of a developer by considering the age of historical commits. This feature is
measured as the total experience of the developer in terms of commits, weighted by their
age. It gives a higher weight to commits that are more recent. In detail, we use the following
weighting scheme to measure REXP: 1

n+1 , where n is measured in years. For example, if a
developer of a commit submitted three commits in the current year, four commits one year
ago, and three commits two years ago, then REXP is 6 (i.e., = 3

1 + 4
2 + 3

3). Subsystem
experience (SEXP) measures the number of commits the developer submitted previously to
the subsystems that are modified by the current commit. We measure NDEV, EXP, REXP
and SEXP as described by Kamei et al. (2013).

Additionally, we extract 3 features related to ownership of the developer on the modified
files of a commit, namely the minimum, average and maximum proportion of ownership on
modified files in a commit (i.e., MINO, AVEO and MAXO). Ownership is used to describe
whether one developer has responsibility for a software component (Bird et al. 2011). The
proportion of ownership of a developer for a file is the ratio of number of commits that the
developer has made relative to the total number of commits for the file. We measure the

Empirical Software Engineering

proportion of ownership as described by (Bird et al. 2011). For example, if Bob has made 20
commits to “a.java”, and there are a total of 100 commits to “a.java”, then the proportion of
ownership of Bob to “a.java” is 20%. Since a commit may modify many files, we calculate
minimum, average and maximum proportion of ownership to capture the ownership features
of a commit.

Message Message is the commit log that is written by submitting developer when submit-
ting a commit. The message dimension consists of 7 features. These features are calculated
based on the commit messages.

The features has bug, has feature, has improve, has document and has refactor aim to
describe the purpose of a commit. Prior work observed that the commit message can indi-
cate the purpose of a commit (Fu et al. 2015; Yan et al. 2016) and grouped them into
six categories: fixing bug, adding feature, improvement, documentation, refactoring and
other (Herzig et al. 2013). We identify these categories by simply checking whether the mes-
sage contains the related words as shown in Table 2 (Mockus and Votta 2000; Hassan 2008).
And we use the msg length to represent the length of the commit message by counting the
number of words.

Additionally, we convert the textual factors of the commit messages into a numerical
value (i.e., msg nbm score) using a classifier (i.e., Naive Bayes Multinomial). Since prior
work found that the commit message has an impact on reverted commits (Shimagaki et al.
2016), we assume that analyzing the commit message can help on the identification of
reverted commits. The msg nbm score is calculated using the following steps:

• Pre-processing commit messages: We pre-process the textual description of each
commit message by tokenizing, stop-word removal, and stemming. We first tokenize
each commit message into words, phrases, symbols, or other meaningful name element
tokens. Then, we remove the stop-words such as “the”, “I”, “of” which provide lit-
tle information for understanding the text. And we perform a stemming step to reduce
inflected tokens to their stem, base or root form. We use the resulting textual tokens and
count the number of times each token appears in a commit message.

• Converting textual factors of commits in the training set into numerical values: We
split training set into two subsets by leveraging stratified random sampling, so that the
distribution and number of reverted commits in both training subsets is the same (Val-
divia Garcia and Shihab 2014; Xia et al. 2016b). Then, we extract the textual factors
from the training subsets, and create a word frequency table based on the extracted fac-
tors. We train a classifier with the first training subset, and use it to obtain the textual
scores (i.e., confidence scores that a commit is to be reverted) for commits on the sec-
ond training subset. We also train a classifier with the second training subset, and use it
to obtain the textual scores on the first training subset. As a result, the likelihood values
of all the training data are calculated.

• Converting textual factors of commits in the test set into numerical values: In the
identification phase, given a new commit, we leverage the text mining classifiers built
on all of the commits in the training set to convert the textual factors into a textual score.
Note that we do not use the labels of the testing set.

In this paper, we leverage the Naive Bayes Multinomial (NBM) to build the text mining
classifier. NBM is one of the variants of Naive Bayes algorithm which builds a classifier
based on multinomially distributed data (McCallum et al. 1998). We adopt NBM as the
default classifier for a commit message since it is a simple text classification technique

Empirical Software Engineering

that have been used in many prior software text analysis studies (Xia et al. 2014; Xia et al.
2016b; Huang et al. 2017).

3.2 PerformanceMeasures

We mainly consider two widely used performance measures, i.e., AUC-ROC and cost-
effectiveness:

AUC-ROC AUC-ROC represents the area under the Receiver Operating Characteristic
(ROC) curve. In the ROC curve, the true positive rate (TPR) is plotted as a function of the
false positive rate (FPR) across all thresholds. The value of AUC-ROC ranges from 0 to 1,
and higher AUC-ROC values indicate a better performance. AUC-ROC is also widely used
in many software engineering studies (Lessmann et al. 2008; Xia et al. 2015a; Nam and
Kim 2015). An AUC-ROC of 0.7 is considered as a promising performance score (Less-
mann et al. 2008; Nam and Kim 2015). We choose AUC-ROC as our performance measure
because it is threshold independent and has a statistical interpretation (Bradley 1997;
Lessmann et al. 2008).

Cost-Effectiveness Cost-effectiveness measures the performance considering the limited
inspection resources. It is calculated by measuring the recall considering the inspection
under limited resources. It has been widely used for evaluating identification models that
leverage software engineering data, such as software commits (Jiang et al. 2013; Kamei et al.
2013; Xia et al. 2016a; Yang et al. 2016). The main idea of cost-effectiveness is to simulates
the practical usage of the proposed model. In practice, due to the limited resources, devel-
opers can only inspect a limited number of software commits. In our context, we consider
the required effort to inspect those commits identified as reverted.

In detail, by following prior studies (Jiang et al. 2013; Kamei et al. 2013; Yang et al.
2016), the cost-effectiveness in our study denotes the recall of reverted commits when using
20% of the entire required effort to inspect all commits to inspect the top ranked commits
produced by our model. And the total number of lines modified by a commit (LA + LD)
as a measure of the required effort to inspect a commit.

3.3 Classifier

After data collection and feature extraction, we build our identification model by using a
classifier. In default, we adopt Random Forest (RF) as our classifier and we use its imple-
mentation in Weka (Hall et al. 2009). Random Forest is an ensemble approach that is
specifically designed for decision tree classifier (Breiman 2001). The basic idea behind ran-
dom forest is to combine multiple decision trees for classification. Each decision tree is built
by using a random subset of the extracted features. The advantages of random forest are:
1) it is generally highly accurate and the importance of features can be captured automati-
cally; 2) Since random forest unifies many trees that are learned differently, it can mitigate
overfitting problems and is not sensitive to outliers.

3.4 Validation Settings

To evaluate the effectiveness of our identification model, we adopt a widely used validation
setting, namely 10-fold cross-validation. In detail, we perform a 10 times stratified 10-
fold cross-validation. In each stratified 10-fold cross validation, we randomly divide the

Empirical Software Engineering

dataset into ten folds by using stratified random sampling. The objective of stratified random
sampling technique is to keep the class distribution of each fold the same as the original
dataset. Then, nine folds are used to train the classifier, while the remaining one fold is used
to evaluate the performance of the built model. This process is repeated 10 times, so that
each fold is used exactly once as the testing set. We perform 10-fold cross validation 10
times to reduce the bias. As a result, there are 100 performance values for each project and
we report the average of the 100 values for each performance measure.

3.5 Research Questions

In this study, we are interested in answering the following four research questions:
RQ1: Can we effectively identify the commits that will be reverted?
RQ2: How effective is our model when built on a subset of commit features?
RQ3:Which commit features aremost discriminative for identifying reverted commits?
RQ4: How effective is our approach when considering more evaluation measures?

In RQ1, we evaluate the effectiveness of our approach and compare it with baseline
models in terms of AUC-ROC and cost-effectiveness. In RQ2, we investigate how effective
our identification model is when built on a subset of commit features (i.e., each dimension
of features). In RQ3, we examine the most discriminative commit features for identify-
ing reverted commits. In RQ4, we evaluate our approach and baselines considering more
evaluation measures.

4 Results

In this section, we provide the results of the aforementioned three research questions.
To answer RQ1, we conduct an experiment on ten projects to evaluate the effectiveness
of the proposed identification model and compare it with two baseline approaches. To
answer RQ2, we conduct three experiments by considering three dimensions (i.e., change,
developer and message) of our features respectively. To answer RQ3, we perform feature
importance analysis, which consists of three steps: correlation analysis, redundancy analysis
and importance feature identification.

4.1 RQ1: Can we Effectively Identify the Commits that will be Reverted?

Motivation Previous studies note that reverting commits can impede the development
progress and increase the difficulty of maintenance (Souza et al. 2015; Shimagaki et al.
2016). In this RQ, we would like to investigate whether our proposed model can effectively
identify reverted commits (i.e., that will likely be reverted in the future). The benefits of
identifying such commits lie in two aspects: first, the likely reverted commits can be high-
lighted early on (i.e., at check in time). Once a reverted commit is identified, we can provide
a timely warning to the development team. Early identification of problematic commits can
save developer’s effort and time. Second, identifying the likely reverted commits can help to
understand the commit context by tracing the commit features. Understanding the context
of reverted commits can help to avoid likely reverted commits in the future.

Approach To answer this RQ, we conduct an empirical study on ten open source projects
with a total of 125,241 commits. We built our model using a Random Forest classifier and

Empirical Software Engineering

adopt 10 times stratified 10-fold cross validation to estimate the accuracy of our model. In
this way, there will be 100 effectiveness values for each project. We report the average value
and perform a statistical test on the 100 effectiveness values.

Additionally, we implement two baselines to compare with our model:

Baseline 1: Random Guess (RG) This baseline is usually used when there is no previous
method for our research question (Xia et al. 2016b). In this baseline, it randomly determines
a list of commit as reverted. Since we use a stratified 10-fold cross-validation, we implement
the RG baseline according to the data distribution in training set. For example, the ratio
of reverted commits in Hadoop is 3.80% in the training set of one fold, the RG baseline
will randomly determines approximately 3.80% of commits in testing set as reverted. Note
that the AUC-ROC of RG is always 0.5 (Xia et al. 2016b). The cost-effectiveness of RG
depends on the order of commits in testing set. We randomly sort the commits in testing
set, but always keep the commits which are determined as reverted by RG at the front of the
order. To reduce the bias of randomly sorting, we repeat the RG 10 times to get the average
performance.

Baseline 2: Naive Bayes Multinomial based on Commit Message (NBMCM) Since the
commit messages may also indicate that a commit is likely to be reverted, this baseline is a
text classification baseline based on the commit messages using a Naive Bayes Multinomial
(NBM). The baseline is built by using following steps. First, we preprocess all commit mes-
sages by using the aforementioned preprocessing steps, including tokenization, stop-word
removal and stemming. Second, we use the resulting textual tokens and count the number
of times each token appears in each commit message. Third, we construct a classifier based
on the textual representation by using the NBM classifier. Note that both baseline 1 and 2
are conducted with the same training and testing set as ours.

Besides, we conduct a statistical test to investigate whether the difference between the
proposed model and the baseline is statistically significant. In particular, we adopt the
Wilcoxon signed-rank test (Wilcoxon 1992) with a Bonferroni correction (Abdi 2007) at
95% significance level. The Wilcoxon signed-rank test is a non-parametric hypothesis test
that is used when comparing two related samples, matched samples, or repeated measure-
ments on a single sample to assess whether their population mean ranks differ. A Bonferroni
correction is used to counteract the problem of multiple comparisons. In addition, we also
compute the Cliff’s delta to measure the effect size. Cliff’s delta is a non-parametric effect
size measure that can evaluate the amount of difference between two approaches (Long
et al. 2003). It defines a delta of less than 0.147, between 0.147 and 0.33, between 0.33
and 0.474 and above 0.474 as “Negligible”, “Small”, “Medium”, “Large” effect size,
respectively (Romano et al. 2006).

Results Table 3 presents the AUC-ROC and cost-effectiveness comparison between our
identification model (Ours) and the baselines (i.e., RG and NBMCM). We use “Improved.”
to represents the improvement ratio over the baseline, “Improved” is computed as
Ours−baseline

baseline
∗ 100%.

Table 4 presents the adjusted p-values and Cliff’s Delta comparing the AUC-ROC and
cost-effectiveness scores for our approach with baselines. The row “W/T/L” reports the
number of projects for which the corresponding model obtains a significantly better, equal,
and worse performance than our model.

Empirical Software Engineering

Table 3 The AUC and cost-effectiveness for our model (Ours) compared with the baselines. The best
performance values are highlighted in bold

Project AUC-ROC Cost-effectiveness

RG NBMCM Ours RG NBMCM Ours

Hadoop 0.500 0.683 0.732 0.301 0.456 0.839

Gerrit 0.500 0.577 0.775 0.242 0.387 0.733

Hbase 0.500 0.671 0.781 0.242 0.265 0.863

Karaf 0.500 0.630 0.734 0.168 0.410 0.746

Jenkins 0.500 0.671 0.765 0.245 0.366 0.743

Spring-boot 0.500 0.741 0.782 0.238 0.372 0.722

Hive 0.500 0.634 0.768 0.243 0.333 0.796

Platform 0.500 0.579 0.717 0.282 0.259 0.625

Egit 0.500 0.666 0.797 0.169 0.488 0.693

JDT 0.500 0.604 0.715 0.223 0.235 0.700

Average 0.500 0.646 0.756 0.235 0.357 0.746

Improved 51.29% 17.19% 216.94% 108.95%

From the two tables, in terms of the average performance across the ten studied projects,
our model achieves an AUC-ROC of 0.756 and a cost-effectiveness of 0.746, improves over
the baseline RG by 51.29% and 216.94% in terms of AUC-ROC and cost-effectiveness
respectively, improves over NBMCM by 17.19% and 108.95% in terms of AUC-ROC and
cost-effectiveness respectively. In addition, all the improvements are statistically significant
over the baselines across the ten projects in terms of both AUC-ROC and cost-effectiveness,
and the effect sizes are large in all the cases.

4.2 RQ2: How Effective is Our Model When Built on a Subset of Commit Features?

Motivation We extracts three dimensions of commit features namely change, developer,
and message. These features characterize commits along different aspects. Some aspects
may be more important for identifying whether commits will be reverted. In default, our
model uses three dimensions of features, we are also interested in which dimension of fea-
tures is more important. To answer this RQ, we are interested in two questions: first, whether
our model benefits from all dimensions of features; second, which dimension is the most
discriminative for identifying reverted commits.

Approach We build three models (one model for each dimension) and denote each model
by the dimension name (i.e., change, developer, and message). In each dimension model,
we keep the classifier (i.e., Random Forest) and validation setting (i.e., 10 times stratified
10-fold cross validation) as the same with our all-dimensions model. In the comparison, in
order to confirm a fair comparison, we keep the commits in the training and testing sets as
the same with our all-dimensions model.

Empirical Software Engineering

Table 4 Adjusted P-values and Cliff’s Delta comparing AUC-ROC and cost-effectiveness scores for our
approach with baselines

Project AUC-ROC Cost-effectiveness

RG NBMCM RG NBMCM

Hadoop 1.00 (L) *** 0.64 (L) *** 1.00 (L) *** 0.97 (L) ***

Gerrit 1.00 (L) *** 1.00 (L) *** 1.00 (L) *** 0.90 (L) ***

Hbase 1.00 (L) *** 0.96 (L) *** 1.00 (L) *** 1.00(L) ***

Karaf 1.00 (L) *** 0.72 (L) *** 1.00 (L) *** 0.94 (L) ***

Jenkins 1.00 (L) *** 0.85 (L) *** 0.99 (L) *** 0.94 (L) ***

Spring-boot 1.00 (L) *** 0.50 (L) *** 1.00 (L) *** 0.97 (L) ***

Hive 1.00 (L) *** 0.97 (L) *** 1.00 (L) *** 1.00 (L) ***

Platform 1.00 (L) *** 0.80 (L) *** 0.97 (L) *** 0.90 (L) ***

Egit 1.00 (L) *** 0.70 (L) *** 1.00 (L) *** 0.58 (L) ***

JDT 1.00 (L) *** 0.96 (L) *** 1.00 (L) *** 1.00 (L) ***

W/T/L 0/0/10 0/0/10 0/0/10 0/0/10

***p<0.001, **p<0.01, *p<0.05, –p>0.05

L, M, and S represent Large, Medium and Small effect size according to Cliff’s delta

Additionally, in order to investigate whether the difference between our all-dimensions
model and the single dimension models that is statistically significant, we also adopt the
Wilcoxon signed-rank test with a Bonferroni correction at a 95% significance level and
compute the Cliff’s delta to measure the effect size.

Result Tables 5 present the AUC-ROC and cost-effectiveness comparison for our model
(in column “All features”) with three models that are built on each dimension of features (in
column “Change”, “Developer”, and “Message”, respectively). The best performing model
across the three dimensions is underlined for each studied project. We highlight the best
performance among the four columns in bold.

The results show that the “Developer” dimension model outperforms the “Change”
and “Message” dimension model in most of the studied projects. In terms of the average
AUC-ROC, “Change” and “Developer” models achieve a comparable performance and out-
perform “Message” model. In terms of average cost-effectiveness, the most discriminative
dimension is “Developer”. Our all-dimensions model achieves the best in terms of both
AUC-ROC and cost-effectiveness in all studied projects.

Table 6 present the adjusted p-values and Cliff’s Delta comparing the AUC-ROC and
cost-effectiveness scores for our all-dimensions model with the three single dimension mod-
els. The row “W/T/L” reports the number of projects for which the corresponding single
dimension model obtains a significantly better, equal, and worse performance than our
all-dimensions model.

From the table, in terms of AUC-ROC and cost-effectiveness, we observe that the
improvements of our all-dimensions model over the three single dimension models are sta-
tistically significant (p-value<0.05) with a non-negligible effect size in most cases. There
is one case without a non-negligible effect size in the Egit project for the “Change” dimen-

Empirical Software Engineering

Table 5 AUC-ROC and Cost-effectiveness for the three models that are built on three dimensions of features

Project AUC-ROC Cost-effectiveness

Change Developer Message All Change Developer Message All

Hadoop 0.696 0.647 0.604 0.732 0.741 0.790 0.660 0.839

Gerrit 0.668 0.692 0.579 0.775 0.542 0.609 0.367 0.733

Hbase 0.691 0.731 0.593 0.781 0.748 0.812 0.619 0.863

Karaf 0.688 0.690 0.592 0.734 0.586 0.688 0.584 0.746

Jenkins 0.654 0.694 0.524 0.765 0.490 0.615 0.395 0.743

Spring-boot 0.698 0.701 0.585 0.782 0.535 0.645 0.524 0.722

Hive 0.684 0.704 0.546 0.768 0.717 0.772 0.542 0.796

Platform 0.653 0.640 0.504 0.717 0.590 0.509 0.614 0.625

Egit 0.774 0.709 0.707 0.797 0.644 0.620 0.538 0.693

JDT 0.675 0.656 0.523 0.715 0.633 0.617 0.669 0.700

Average 0.688 0.686 0.576 0.756 0.623 0.668 0.551 0.746

The best performance between the three models built on a dimension of features is underlined. The perfor-
mance highlighted in bold means that the performance is the best in comparison with our model (i.e., using
all features)

sion in terms of AUC-ROC. There is one case without a statistically significant difference
in the Platform project for the “Change” and “Message” dimensions.

Table 6 Adjusted P-values and Cliff’s Delta comparing AUC-ROC and cost-effectiveness scores of the
models built using a particular dimension of features against the model with all the features (Ours)

Project AUC-ROC Cost-effectiveness

Change Developer Message Change Developer Message

Hadoop 0.51(L)*** 0.89(L)*** 0.98(L)*** 0.50(L)*** 0.29(S)*** 0.79(L)***

Gerrit 0.88(L)*** 0.75(L)*** 1.00(L)*** 0.81(L)*** 0.59(L)*** 1.00(L)***

Hbase 0.92(L)*** 0.68(L)*** 1.00(L)*** 0.75(L)*** 0.39(M)*** 0.98(L)***

Karaf 0.30(S)*** 0.31(S)*** 0.79(L)*** 0.60(L)*** 0.25(S)*** 0.63(L)***

Jenkins 0.82(L)*** 0.59(L)*** 1.00(L)*** 0.91(L)*** 0.64(L)*** 0.97(L)***

Spring-boot 0.73(L)*** 0.72(L)*** 0.99(L)*** 0.81(L)*** 0.41(M)*** 0.80(L)***

Hive 0.86(L)*** 0.71(L)*** 1.00(L)*** 0.53(L)*** 0.18(S)** 0.96(L)***

Platform 0.46(M)*** 0.52(L)*** 0.96(L)*** 0.16(S)- 0.45(M)*** 0.06(N)-

Egit 0.14(N)* 0.55(L)*** 0.56(L)*** 0.18(S)** 0.28(S)*** 0.53(L)***

JDT 0.61(L)*** 0.79(L)*** 1.00(L)*** 0.49(L)*** 0.57(L)*** 0.20(S)**

***p<0.001, **p<0.01, *p<0.05, – p>0.05

L, M, S and N represent Large, Medium, Small and Negligible effect size according to Cliff’s delta

Empirical Software Engineering

4.3 Which Commit Features are Most Discriminative for Identifying Reverted
Commits?

Motivation There are 27 commit features in our identification model. In addition to find
the most discriminative dimension of features for identifying reverted commits, we are also
interested in understanding which commit features are most discriminative in identifying the
reverted commits. For developers, knowing which features are most discriminative would
help them avoid such commits.

Approach & Results Our feature importance analysis consists of three steps as proposed by
prior studies (Tian et al. 2015; Tantithamthavorn et al. 2015; Kabinna et al. 2016; Li et al.
2017).

Step 1: Correlation Analysis This step aims to reduce collinearity among the features. For
each project, this step will compute the correlations among the features by using a vari-
able clustering analysis approach implemented in the R package Hmisc.12 As a result, the
approach will produce a hierarchical overview of the correlations among all the features.
The correlated features are grouped into sub-hierarchies. To remove correlated features,
we use the same method as in prior work (Tian et al. 2015; Tantithamthavorn et al. 2015;
Kabinna et al. 2016; Li et al. 2017). If the correlations of features in the sub-hierarchy are
above 0.8, we try to keep the one that is easier to understand and calculate from each pair
of highly-correlated features (Li et al. 2017). Additionally, we try to drop the same feature
set for all the studied projects (Li et al. 2017).

After step 1, we remove 7, 10, 5, 4, 7, 11, 6, 5, 6, and 5 features in the Hadoop, Gerrit,
Hbase, Karaf, Jenkins, Spring-boot, Hive, Platform, Egit and JDT projects, respectively.
As a result, there are 20, 17, 22, 23, 20, 16, 21, 22, 21 and 22 features remaining in the
Hadoop, Gerrit, Hbase, Karaf, Jenkins, Spring-boot, Hive, Platform, Egit and JDT projects,
respectively.

Step 2: Redundancy Analysis After reducing the collinearity among the features, this step
aims to remove any redundant features that do not have a unique signal relative to the other
features. In this step, we use the redun function in the rms13 R package. After step 2, none
of the remaining features are redundant in all the studied projects.

Step 3: Important Feature Identification This step aims to determine the importance of
each feature. We use the bigrf 14 R package to calculate the importance of each feature. This
package leverages a random forest model with 10-times stratified 10-fold cross-validation
to determine the most important features. The feature importance evaluation is based on an
internal error estimate of a random forest classifier, which is called an “Out Of the Bag”
(OOB) estimate (Wolpert and Macready 1999). The key idea behind this approach is to
check whether the OOB estimate will be reduced significantly or not when features are
randomly permuted one by one.

We use the “importance” function in the R package “randomForest” to evaluate the
importance of the features. In each run of the 10-fold cross-validation, we have 10 impor-
tance values for each feature. To determine which of the features are the most important,

12http://cran.r-project.org/web/packages/Hmisc/index.html
13https://cran.r-project.org/web/packages/rms/rms.pdf
14http://cran.r-project.org/web/packages/bigrf/bigrf.pdf

http://cran.r-project.org/web/packages/Hmisc/index.html
https://cran.r-project.org/web/packages/rms/rms.pdf
http://cran.r-project.org/web/packages/bigrf/bigrf.pdf

Empirical Software Engineering

we apply the Scott-Knott Effect Size Difference (ESD) test for the importance values taken
from all 10 iterations of the 10-fold cross-validation (Li et al. 2016; Tantithamthavorn et al.
2017; Xia et al. 2017). Note that the Scott-Knott ESD test is different from Scott-Knott test
(Scott and Knott 1974). The Scott-Knott test assumes that the data is normally distributed.
This might cause that the created groups are trivially different from one another. The Scott-
Knott ESD test corrects the non-normal distribution of an input dataset and merges adjacent
groups that have a negligible effect size.

After step 3, Tables 7 present the group of top 10 most discriminative features as ranked
according to Scott-Knott ESD test results in the studied ten projects, respectively.

Based on the results shown in Table 7, we observe that “LA”, “LD”, “EXP”, “NDEV”,
“NUC” are the discriminative features for identifying reverted commits. In particular, we
have the following findings:

1. “LA” and “LD” are ranked in the top 5 discriminative groups for all the studied projects.
This suggests that the number of lines of added and the number of lines of deleted by
a commit have a strong association with being reverted. We observe that commits with
a large number of “LA” or “LD” are less likely being reverted. This may be observed
since reverting commits with a larger “LA” or “LD” may impact more classes, functions
or commits which correlated with the reverted code. This would increase the difficulty
for software maintenance. This finding also indicates that developer is cautious when
reverting a commit.

2. “EXP” is ranked in the top 5 discriminative groups for 9 projects. This indicates that
the number of commits submitted previously by the developer of a commit has a strong
association with being reverted. We observe that commits submitted by more expe-
rienced developers are less likely being reverted. This may be observed since less
experienced developers may have a higher likelihood to submit a problematic commit
which are eventually reverted.

3. “NDEV” is ranked in the top 5 discriminative groups for 6 projects. This suggests that
the number of developers that previously changed the modified files by the commit has
a strong association with being reverted. This may be observed since files are changed
by more developers tend to be more complex and defect-prone. It may take more effort
to fix a problematic commit related to these files compared with reverting it.

4. “NUC” is ranked in the top 5 discriminative groups for 6 projects. This suggests that
the number of unique commits to the modified files previously has an association with
being reverted. Similar to “NDEV”, this may be observed since files are changed by
more commits tend to be more complex and defect-prone. It may take more effort to
fix a problematic commit related to these files compared with reverting it.

Additionally, we also conducted the feature importance analysis by combining all the
dataset of ten projects without removing any features. The last column of Table 7 presents
the top 10 most discriminative features on the entire combined dataset. This column shows
that “LA”, “EXP” and “LD” rank the top 3 groups similar with the above-mentioned find-
ings. However, there are some differences as compared with the results of project-by-project
analysis. The reason is that we removed some features due to collinearity. For example,
REXP ranks at the first group on the combined dataset, but REXP is removed in 6 projects
(Hadoop, Gerrit, Jenkins, Spring-boot, Platform, and JDT) due to the high collinearity with
EXP. Note that we conducted the feature importance by each project because different
projects may have different data distribution and collinearity. This project-specific analysis
method is also used by many prior studies (Li et al. 2016; Fan et al. 2018b; Yan et al. 2018;

Empirical Software Engineering

Table 7 Importance of features as ranked according to the Scott-Knott ESD test

Hadoop Gerrit Hbase Karaf

Group Feature Group Feature Group Feature Group Feature

1 LA 1 LA 1 REXP 1 NUC

2 LD 2 Msg length 2 EXP 2 LD

NUC 3 EXP LA 3 EXP

3 NDEV Msg nbm score 3 NUC 4 LA

4 EXP 4 LD 4 NDEV ND

5 REXP 5 REXP SEXP 5 NMF

6 MINO 6 Has document 5 LD NDEV

ND 7 NDEV AVEO 6 Msg nbm score

7 AVEO 8 ND 6 NMF SEXP

8 Msg length NMF 7 ND 7 REXP

Jenkins Spring-boot Hive Platform

1 REXP 1 LD 1 NDEV 1 LD

2 EXP 2 NDEV 2 LA 2 LA

LA 3 LA LD 3 AVEO

3 NDEV 4 EXP 3 NUC NLC

NUC NUC ND 4 Entropy

4 AVEO 5 ND 4 REXP Has bug

Msg length 6 Msg nbm score EXP 5 NMF

5 LD 7 Msg length SEXP 6 NMC

6 Msg nbm score NMF 5 AVEO 7 EXP

7 ND 8 AVEO 6 MINO 8 Msg length

Egit JDT All Projects

1 ND 1 LD 1 LA

Msg length 2 LA REXP

2 NMF 3 AVEO 2 EXP

3 SEXP 4 NMF 3 LD

EXP EXP 4 NLC

LD 5 Entropy 5 Msg nbm score

4 LA 6 NLC 6 NMC

5 Msg nbm score Msg length SEXP

6 NMC 7 NDEV 7 NDEV

Entropy 8 NMC NMF

Fan et al. 2018a; Li et al. 2018). Although the result of feature importance may be different
in different projects, we aim to identify important features shared by most of our studied
projects.

Empirical Software Engineering

4.4 RQ4: How Effective is our Approach when Consideringmore Evaluation
Measures?

Motivation In previous research questions, we evaluate our approach using AUC-ROC and
cost-effectiveness. These two measures evaluate the performance of prioritization. Actually,
we aim to prioritize commits by classifying the relevant ones. Thus, we now investigate the
effectiveness of our approach when considering additional classification measures, includ-
ing AUC-PR, True Positive Rate (TPR) and True Negative Rate (TNR). AUC-PR represents
the area under the precision-recall (PR). Since our dataset is highly skewed, when dealing
with highly skewed datasets, Precision-Recall(PR) curves give a more informative picture
of an algorithm’s performance (Davis and Goadrich 2006). TPR and TNR measure the pro-
portion of actual positives and negatives that are correctly identified. In our use case, TPR
measures to what extent we can save the development effort by identifying reverted com-
mits, TNR measures to what extent we can avoid false alarm by identifying not-reverted
commits.

Approach For each commit, there would be 4 possible classification outcomes: a commit
is classified as reverted when it is truly reverted (true positive, TP); it can be classified
as reverted when it is truly not-reverted (false positive, FP); it can be classified as not-
reverted when it is truly reverted (false negative, FN); it can be classified as not-reverted
when it is truly not-reverted (true negative, TN). Based on TP, FP, FN and TN, we cal-
culate TPR, TNR and AUC-PR to evaluate the effectiveness of proposed approach as
follows:

True Positive Rate (TPR) TPR (also called the recall for the positive class) measures the
proportion of actual positives that are correctly identified. In our context, TPR measures the
percentage of reverted commits that are correctly identified as reverted. TPR is calculated
as: T P/(T P + FN).

True Negative Rate (TNR) TNR measures the proportion of actual negatives that are cor-
rectly identified. In our context, TNR measures the percentage of not-reverted commits that
are correctly identified as not reverted. TNR is calculated as: T N/(T N + FP).

AUC-PR AUC-PR represents the area under the precision-recall (PR) curve. In the PR curve,
it plots Recall on the x-axis and Precision on the y-axis. Recall is the same as TPR, precision
measures that fraction of instances classified as positive that are truly positive. The AUC-PR
of RG is equal to precision of RG, i.e., ratio of truly identified reverted commits among all
the commits that are identified as reverted, since the average precision is always the same
when varying the values of recall in the PR curve. We use PRROC15 R package to calculate
and plot AUC-PR.

Imbalance Handling Approach To handle the high imbalance of our dataset, we use a
threshold tuning approach in our classifier. A threshold indicates a decision boundary to dif-
ferentiate reverted commits from not-reverted commits. A classifier will classify a commit
to be a reverted commit if its likelihood score to be reverted is higher than the threshold.
Usually, the default threshold is 0.5, however, the high imbalanced data causes a classifier

15https://cran.r-project.org/web/packages/PRROC/PRROC.pdf

https://cran.r-project.org/web/packages/PRROC/PRROC.pdf

Empirical Software Engineering

to favor the majority class. Thus, we use a threshold tuning approach to automatically deter-
mine an imbalanced decision boundary using the training set (Xia et al. 2015b). With the
imbalanced decision boundary, a commit will be classified to be a reverted commit when
its likelihood score to be reverted is larger than the decision boundary. Note that we did not
use threshold tuning approach in RQ1 and RQ2, because the AUC and cost-effectiveness
would not be impacted by threshold.

We tune the threshold as follows: first, we randomly sample 20% instances of the training
set (following a stratified sampling procedure) as the validation set, and use the remaining
80% instances of the training set as our new training set to build a classifier. Second, we use
the built classier to evaluate the F1-score score on the validation set by varying the threshold
from 0.01 to 1.00, stepped by 0.01. Third, we determine the threshold that achieves the best
F1-score on the validation set. We choose the F1-score score as our optimization target since
we aim to classify the minority class with both high precision and recall. Finally, we use the
new training set and the determined threshold to evaluate performance on our testing set.

Baseline 3: ZeroR In addition to the two baselines considered in RQ1, we added a third
baseline ZeroR. The ZeroR classifier simply classifies all the commits as the majority class
(i.e., not-reverted). Due to the high imbalance of reverted/not-reverted classes in the studied
projects, we would like to investigate whether the proposed model can outperform ZeroR.
The AUC-PR of ZeroR is 0, since the precision and recall of ZeroR for the reverted class
is 0. Note that in this subsection, we use the same experimental data, setting and baselines
with RQ1.

Results The results are shown in Tables 8 and 9. Same to RQ1, we perform statistical tests
using the Wilcoxon signed-rank test with a Bonferroni correction at a 95% significance
level. In addition, we compute the effect size using Cliff’s delta. In summary, we have the
following findings:

Table 8 TPR and TNR of our approach and baselines

Project TPR TNR

RG NBMCM ZeroR Ours RG NBMCM ZeroR Ours

Hadoop 0.040 0.140 0.000 0.226 0.962 0.968 1.000 0.987

Gerrit 0.012 0.040 0.000 0.185 0.986 0.987 1.000 0.969

Hbase 0.047 0.104 0.000 0.286 0.954 0.962 1.000 0.976

Karaf 0.026 0.127 0.000 0.194 0.976 0.981 1.000 0.986

Jenkins 0.011 0.037 0.000 0.178 0.988 0.990 1.000 0.989

Spring-boot 0.021 0.112 0.000 0.184 0.979 0.982 1.000 0.974

Hive 0.042 0.133 0.000 0.285 0.958 0.967 1.000 0.959

Platform 0.013 0.032 0.000 0.157 0.985 0.988 1.000 0.985

Egit 0.009 0.102 0.000 0.354 0.981 0.989 1.000 0.992

JDT 0.023 0.078 0.000 0.174 0.975 0.979 1.000 0.971

Average 0.024 0.090 0.000 0.222 0.974 0.979 1.000 0.979

Improved 811.18% 145.78% – 0.45% 0.00% −2.124%

The best performance is highlighted in bold. The underlined case indicates that our approach outperforms
baseline with statistical significance and large effect size

Empirical Software Engineering

Table 9 AUC-PR of our
approach and baselines Project AUC-PR

RG NBMCM ZeroR Ours

Hadoop 0.040 0.174 0.000 0.263

Gerrit 0.012 0.032 0.000 0.061

Hbase 0.047 0.195 0.000 0.299

Karaf 0.027 0.145 0.000 0.226

Jenkins 0.011 0.042 0.000 0.132

Spring-boot 0.021 0.065 0.000 0.129

Hive 0.042 0.115 0.000 0.208

Platform 0.013 0.037 0.000 0.121

Egit 0.010 0.062 0.000 0.367

JDT 0.023 0.065 0.000 0.121

Average 0.025 0.093 0.000 0.193

Improved 679.04% 106.70% –

The best performance is
highlighted in bold. The
underlined case indicates that our
approach outperforms baseline
with statistical significance and
large effect size

In terms of TPR, our approach improves RG and NBMCM by 811.18% and 145.87% on
average in a statistical significant manner moreover the effect sizes are large in all cases.
The TPR of ZeroR is 0, since TP of ZeroR is 0. In terms of TNR, there is no statistically
significant difference between our approach, RG and NBMCM. ZeroR achieves the best
TNR, since it simply classifies all commits as not reverted. RG can achieve a high TNR
since we implement RG according to the data distribution as described in RQ1. Based on
TPR, we observe that our approach can save the development effort by correctly identifying
22.2% of the reverted commits. Concretely, if our approach can warn developers about a
reverted commit in advance, they can check and modify them carefully. In this way, 22.2%
of the reverted commits may not be reverted or reverted in an early stage (hence reducing
the amount of wasted effort and reducing the need for last minute emergency efforts (e.g.,
new commits or changes to features) to cope with these late-stage reverted commits). As a
result, the development effort on these commits may not be wasted and the maintenance and
project challenges that are introduced by the reversal of such commits after a long time can
be eliminated. Based on TNR, we observe that our approach can correctly identify 97.9%
of the not-reverted commits – ensuring a small ratio of false alarms among not-reverted
commits, i.e., only 2.1% of the not-reverted commits are false alarms.

In terms of AUC-PR, our approach improves RG and NBMCM by 679.04% and 106.70%
on average with statistical significance and all the effect sizes are large. The AUC-PR
of ZeroR is 0, since precision and recall are 0. To better understand the AUC-PR of our
approach and baselines, we plot an example of a PR curve in our dataset. Since we use 10
times 10 fold cross validation, it is difficult to plot PR curve of each fold. Thus, we plot the
PR curve of one fold (1454 commits in total and 56 reverted commits) randomly selected
from Hadoop project as Fig. 1 shows; the AUC-PR of this fold is 0.283. Since the AUC-PR
of ZeroR is 0, we just plot three methods: Ours, NBMCM and RG. The figure shows that the
area under the curve of our proposed approach is much larger than the baselines. The AUC-
PR value is not high due to the high imbalance of our dataset. The precision drops quickly
along with increase in recall, highlighting that we need check more commits to find a truly
reverted commit. Prior study also stated that the skew of datasets has an impact on the AUC-
PR value (Lampert and Gançarski 2014). It is difficult to achieve a highly AUC-PR value

Empirical Software Engineering

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

PR curve

Recall

P
r
e
c
is
io
n

Ours NBMCM RG

Fig. 1 An example PR curve for Hadoop

in a high imbalanced dataset. For example, (Lampert and Gançarski 2014) reported that the
AUC-PR is 0.1088 and 0.1307 of two methods when the ratio of positive instances is 0.01.
(Boyd et al. 2012) reported that the AUC-PR is 0.36 when the ratio of positive instances
is 0.04.

5 Discussion

As shown in previous sections, we characterize the commits that are being reverted and
build a identification model. However, there are some other observations worthy of further
investigation. In this section, we will report other observations including seven aspects:
(1) how effective is our model when varying the levels of inspection effort? (Section 5.1)
(2) Whether different underlying classifiers will affect the performance of our approach?
(Section 5.2) (3) How effective is our model for cross-project setting? (Section 5.3) (4)
How effective is outlier detection method? (Section 5.4) (5) How effective is our model for

Empirical Software Engineering

project written in other programming languages? (Section 5.5) (6) What are the implications
for practitioners and researchers?(Section 5.6)

5.1 Investigating the Effectiveness of our Model when Different Percentages
of Changed LOC are Inspected

Although we would like to capture all of the reverted commits, there is always a conflicting
interest between the amount of effort one allocates and the amount of reverted commits they
can detect. Therefore, it is important to investigate the cost-effectiveness of our models by
considering different amount of effort.

By default, we set the percentage of changed LOC to inspect as 20% to compute the cost-
effectiveness score. In this subsection, we investigate the cost-effectiveness of our model
when different percentages of LOC are inspected. We plot the cost-effectiveness graphs that
show the percentages of detected reverted commits by inspecting different percentages of
LOC. As a result, there are 100 cost-effectiveness values in each plot. Note that for each
percentage, we use the average effectiveness value of 100 values produced by 10 times 10-
fold cross validation. In addition, we also plot the cost-effectiveness graphs of two the used
baselines in RQ1, i.e., RG and NBMCM.

Figure 2 visualizes the cost-effectiveness graphs of the ten studied projects using our
model (Ours), RG and NBMCM. We observe that our model is better than the baselines for
a large range (i.e., > 70%) of percentages of changed LOC to inspect in most of the studied

Fig. 2 Cost-effectiveness graphs for the ten studied projects. The X-axis represents the percentages of
changed LOC, the Y-axis represents the percentages of reverted commits

Empirical Software Engineering

projects, including Hadoop, Gerrit, Hbase, Karaf, Jenkins, Spring-boot, Hive, Platform and
Jdt. In project Egit, our model is better than the baselines for the range (i.e., > 66%) of
percentages of changed LOC to inspect. In summary, our model is better than the baselines
for the large early range of percentages of changed LOC to inspect. In particular, our model
has a relatively flat range in the curve with a stable cost-effectiveness for the a few last range
of percentages of changed LOC to inspect. The reason for the flat range is due to the class
imbalance phenomenon in our dataset (i.e., less than 3% commits are reverted in average).
If a model identifies most of the reverted commits at the top of the ranking list and leaves
a few reverted commits at the bottom of the list, the cost-effectiveness will be stable for a
large range of percentage of LOC until inspecting all the changed LOC.

In summary, our model is better than the baselines at the early large range of percentages
of changed LOC to inspect, but it performs worse than the baselines after a certain range.
However, in practice, developers would not inspect such a high number of changed LOC due
to limited project budget and tight project schedule. Therefore, our model is still cost effective.

5.2 Investigating the Impact of Different Classifiers

In our identification model, we use Random Forest as the default classifier. However, we can
leverage other classifiers. In order to investigate the impact of other underlying classifiers,
we investigate three more classifiers, Naive Bayes Multinomial (NBM), Logistic Regresion
(LR) and Bayes Net (BN). NBM have been briefly introduced in RQ1. We describe the LR
and BN classifiers briefly in this subsection.

Logistic Regression (LR) Logistic regression is used to describe data and to explain the rela-
tionship between one dependent binary variable and one or more nominal, ordinal, interval
or ratio-level independent variables (Han et al. 2011).

Bayes Network (BN) BN is a probabilistic graphical model that represents a set of variables
and their conditional dependencies via a directed acyclic graph (DAG). It is probabilistic
because it is built from probability distributions and uses the laws of probability for clas-
sification and anomaly detection, for reasoning and diagnostics, decision making under
uncertainty and time series prediction (Han et al. 2011).

We implement the aforementioned underlying classifiers on top of the Weka tool (Hall
et al. 2009). Table 10 presents the performances of different models built on our extracted
commit features using different classifiers. We highlight the best classifier in bold for each
project. The experiment is conducted under the same validation setting with the RQ1. The
results show that RF outperforms other three classifiers in average in terms of AUC-ROC. In
terms of cost-effectiveness, RF achieves comparable performance with LR and outperforms
other two classifiers. Thus, in practice, we suggest the use of RF classifier as the underlying
classifier to build our identification model.

5.3 Investigating the Effectiveness of Cross-Project Identification

In the experimental setting of RQs 1 and 2, we train our identification model by learn-
ing from the historical labeled dataset within the project. However, for new projects or
projects with limited development history, there is often not enough labeled data for build-
ing a model. An alternative solution is to learn from other projects that have enough labeled
data, i.e., cross-project identification. In this subsection, we investigate how effective is our
model for cross-project identification.

Empirical Software Engineering

Table 10 AUC-ROC and Cost-effectiveness of different classifiers

Project AUC-ROC Cost-effectiveness

NBM LR BN RF NBM LR BN RF

Hadoop 0.676 0.730 0.716 0.732 0.886 0.713 0.767 0.839

Gerrit 0.511 0.800 0.761 0.775 0.299 0.746 0.641 0.733

Hbase 0.675 0.755 0.739 0.781 0.859 0.763 0.774 0.863

Karaf 0.644 0.761 0.700 0.734 0.517 0.858 0.622 0.746

Jenkins 0.616 0.726 0.715 0.765 0.462 0.784 0.658 0.743

Spring-boot 0.481 0.801 0.770 0.782 0.343 0.782 0.733 0.722

Hive 0.695 0.756 0.724 0.768 0.835 0.743 0.740 0.796

Platform 0.596 0.692 0.699 0.717 0.434 0.728 0.740 0.625

Egit 0.704 0.790 0.751 0.797 0.737 0.752 0.653 0.693

JDT 0.623 0.724 0.709 0.715 0.204 0.718 0.566 0.700

Average 0.622 0.753 0.728 0.756 0.558 0.759 0.689 0.746

For each target project, we built the identification model by learning from other alter-
native projects (refer to as source project). In this way, there are 9 source projects for each
target project. In the evaluation, we use one source project as training data, and the target
project as testing data. In this way, there are 9 effectiveness values for each target project.

Tables 11 and 12 present the results for cross-project setting. The results show that the
performance of cross-project setting is poorer compared to within-project setting in terms of
the average performance among different source projects. However, the performance can be
reasonable when carefully selecting a source project. We highlight the best source project
in bold for each target project. The results show that the performance is sensitive to the
selection of source project. For example, when choosing one project from <Hadoop, Hbase
or Hive> as a target project, by choosing the other two projects as source project, the model
would be better than choosing other projects as source project. These three projects come
from the same community (i.e., Apache). Additionally, although Platform, Egit, JDT come

Table 11 AUC-ROC of cross-project identification

Hadoop Gerrit Hbase Karaf Jenkins Spring-boot Hive Platform Egit Jdt

Hadoop 0.74 0.72 0.66 0.69 0.71 0.68 0.67 0.75 0.69

Gerrit 0.60 0.64 0.67 0.65 0.72 0.60 0.66 0.75 0.65

Hbase 0.66 0.67 0.57 0.67 0.68 0.70 0.66 0.43 0.67

Karaf 0.46 0.72 0.60 0.65 0.64 0.63 0.65 0.78 0.63

Jenkins 0.61 0.74 0.67 0.69 0.71 0.66 0.65 0.67 0.67

Spring-boot 0.48 0.70 0.55 0.66 0.59 0.56 0.60 0.69 0.54

Hive 0.69 0.71 0.73 0.70 0.69 0.66 0.65 0.72 0.67

Platform 0.63 0.75 0.68 0.69 0.66 0.75 0.68 0.51 0.64

Egit 0.58 0.64 0.57 0.59 0.50 0.72 0.56 0.53 0.48

JDT 0.65 0.77 0.69 0.67 0.68 0.74 0.69 0.64 0.61

Average 0.59 0.72 0.65 0.66 0.64 0.70 0.64 0.64 0.66 0.63

Empirical Software Engineering

Table 12 Cost-effectiveness of cross-project identification

Hadoop Gerrit Hbase Karaf Jenkins Spring-boot Hive Platform Egit Jdt

Hadoop 0.70 0.71 0.84 0.75 0.69 0.68 0.71 0.78 0.71

Gerrit 0.63 0.68 0.69 0.68 0.62 0.66 0.56 0.71 0.55

Hbase 0.65 0.69 0.85 0.75 0.70 0.73 0.71 0.76 0.69

Karaf 0.60 0.68 0.70 0.76 0.66 0.72 0.63 0.77 0.60

Jenkins 0.60 0.64 0.63 0.67 0.62 0.67 0.55 0.74 0.59

Spring-boot 0.59 0.61 0.63 0.75 0.66 0.66 0.73 0.78 0.68

Hive 0.64 0.71 0.70 0.81 0.74 0.71 0.69 0.76 0.70

Platform 0.65 0.71 0.72 0.85 0.74 0.72 0.72 0.69 0.59

Egit 0.58 0.62 0.70 0.80 0.66 0.71 0.68 0.57 0.54

JDT 0.64 0.72 0.72 0.85 0.76 0.71 0.71 0.64 0.77

Average 0.62 0.68 0.69 0.79 0.72 0.68 0.69 0.64 0.75 0.63

from the same community (i.e., Eclipse), the best source projects are not Eclipse projects.
Thus, the community is not a definite reason for selection of source project. One good
criterion for selecting a suitable source projects may be the data distribution of reverted vs.
non-reverted commits. The ratio of reverted commits in Hadoop, Hive and Hbase is similar
and higher than other projects. Projects with similar data distribution and more positive
instances (i.e., reverted commits) tend to be better for training our model. In summary,
our identification model can achieve a reasonable performance when carefully selecting a
source project.

5.4 Investigating the Effectiveness of Outlier DetectionMethod

Due to the high imbalance of the studied dataset, the problem of identifying reverted com-
mits may also be solved by using outlier detection methods. The assumption is that the
reverted commits are more likely to be outliers. Thus, in this discussion, we investigate
whether or not we can identify reverted commits using outlier detection methods.

We use two outlier detection methods: One-class SVM and local outlier factor (LOF).

One-Class SVM One-class SVM algorithm learns a decision function for outlier detection:
classifying new instance as similar or different to the training set. The basic idea of One-
class SVM is that the SVM is trained on only one class (i.e., “normal” class). It infers the
properties of normal instances and from these properties can predict which instances in
testing set are unlike the normal. Thus, in our context, we only use the non-reverted commits
as training set. We use the e107116 R package as the implementation of one-class SVM
method. We use the same experimental setting used to answer RQ1, i.e., 10 x 10 stratified
cross validation, but we removed the reverted commits from training set. The output of
One-class SVM contains both a class result (i.e., reverted or not-reverted) and a likelihood
value.

Local Outlier Factor (LOF) LOF (Local Outlier Factor) is an unsupervised algorithm for
identifying local outliers in a multidimensional dataset (Breunig et al. 2000). The outlier

16https://cran.r-project.org/web/packages/e1071/e1071.pdf

https://cran.r-project.org/web/packages/e1071/e1071.pdf

Empirical Software Engineering

Table 13 Performance of LOF

Project One-class SVM LOF

AUC-ROC Cost-effectiveness AUC-ROC Cost-effectiveness

Hadoop 0.455 0.464 0.499 0.193

Gerrit 0.591 0.469 0.573 0.070

Hbase 0.421 0.496 0.503 0.190

Karaf 0.419 0.498 0.526 0.178

Jenkins 0.504 0.503 0.604 0.141

Springboot 0.559 0.531 0.627 0.081

Hive 0.455 0.452 0.515 0.175

Platform 0.512 0.575 0.564 0.158

Egit 0.353 0.203 0.460 0.159

JDT 0.465 0.469 0.546 0.175

Average 0.473 0.466 0.542 0.152

factor is local means only a restricted neighborhood of each instance is taken into account.
The basic idea is that the local density of an instance is compared with that of its neighbors.
If the former is significantly lower than the latter, the instance is in a sparser region than its
neighbors, which suggests that it is an outlier. We use the DMwR 17 R package as the imple-
mentation of LOF method. The LOF value of an instance is based on the single parameter
of the number of nearest neighbors, we set the default parameter as 10. The output of LOF
is the degree of an instance to be an outlier.

Table 13 presents the results of One-class SVM and LOF. We can observe that the per-
formance is poor compared with our approach. For example, in terms of AUC-ROC, the
average performance of one-class SVM and LOF is close to random guess (i.e., 0.5). In
terms of cost-effectiveness, our average performance (i.e., cost-effectiveness of 0.746) also
improves the outlier detection methods by a substantial margin. Thus, outlier detection
methods are not effective enough for reverted commit identification.

5.5 Investigating the Effectiveness on Projects Written in other Programming
Languages

In the above-mentioned experiments, we studied 10 Java projects. However, the reverted
commits identification may also be needed in projects written in other programming lan-
guages, such as C++ and Python. Thus, in this section, we would like to investigate how
effective our model is for projects written in other programming languages.

We selected four popular projects written in C++ and Python that received many stars on
Github. Table 14 provides a summary of the studied projects. CNTK18 is the Microsoft Cog-
nitive Toolkit (CNTK), an open source deep-learning toolkit. Pytorch19 is an open source
machine learning library for Python, based on Torch. Scikit-learn20 is a simple and efficient

17https://cran.r-project.org/web/packages/DMwR/DMwR.pdf
18https://www.microsoft.com/en-us/cognitive-toolkit/
19https://pytorch.org/
20http://scikit-learn.org/

https://cran.r-project.org/web/packages/DMwR/DMwR.pdf
https://www.microsoft.com/en-us/cognitive-toolkit/
https://pytorch.org/
http://scikit-learn.org/

Empirical Software Engineering

Table 14 Summary of studied projects written in other programming languages

Project # All commits # Reverted Reverted ratio Programming language

CNTK 15,061 243 1.61% C++
Pytorch 7,430 140 1.88% Python, C++
Scikit-learn 22,249 230 1.03% Python, C, C++
Django 24,984 234 0.94% Python

Total 69,724 847 1.21%

tool set for machine learning and data analysis in Python. Django21 is an web framework
written in Python, which follows the model-view-template (MVT) architectural pattern. The
average ratio of reverted commits is 1.21%, which is smaller than that for our studied Java
projects.

In this subsection, we use the same data preparation, feature extraction, and experimental
setting and evaluation method as RQ1. One difference is the feature extraction step. We
did not consider four features, i.e., NLC, NMC, NHC and NCC in this subsection. Because
these four features depend on ChangeDistiller tool, that only supports Java projects.

Table 15 shows the results of our model and the two baselines investigated to answer
RQ1. In summary, the results show that our model achieves a reasonable performance which
outperforms the two baselines in all the cases.

5.6 Implications

Usage Scenarios, Benefits and Costs of our Approach As described in the Introduction,
the typical usage scenario of our approach is to provide early warnings to developers about
commits that will be eventually reverted. Our approach provides its early warnings through
the classification of such commits.

Considering AUC-ROC and cost-effectiveness, we prioritize commits by the likelihood
score for them to be reverted. Commits with a higher likelihood score are recommended
for developers to check. Our average AUC-ROC and cost-effectiveness is 0.756 and 0.746
respectively; implying that by following our approach’s recommendation (i.e., a list of com-
mits sorted by the likelihood score to be reverted), developers can find 74.6% of the reverted
commits by inspecting 20% of the total changed LOC. This is useful for developers when
they have to check a number of commits in a limited time.

Considering TPR and TNR, we prioritize commits by recommending possibly reverted
commits identified by our approach for a close examination. Our average TPR and TNR is
0.222 and 0.979 respectively; implying that we can save the development effort by correctly
identifying 22.2% of the reverted commits. As a result, the development effort on these
commits may not be wasted and the maintenance difficulty that is introduced by revert-
ing these commits can be mitigated. Meanwhile, our approach can correctly identify 97.9%
of the not-reverted commits. This assures a small ratio of false alarms among not-reverted
commits, i.e., only 2.1% of the not-reverted commits are false alarms. Such a performance
indicates that the cost of our approach, i.e., developers would end up wasting time by check-
ing 2.1% of the not-reverted commits while in the same time saving time by identifying
22.2% of the reverted commits. Due to the impact of the reverted commits (e.g., impeding

21https://www.djangoproject.com/

https://www.djangoproject.com/

Empirical Software Engineering

Table 15 Performance on projects written by other programming languages

Project AUC-ROC Cost-effectiveness

RG NBMCM Ours RG NBMCM Ours

CNTK 0.500 0.700 0.719 0.195 0.333 0.669

Pytorch 0.500 0.650 0.734 0.165 0.431 0.645

Scikit-learn 0.500 0.683 0.715 0.192 0.328 0.592

Django 0.500 0.628 0.714 0.194 0.295 0.570

the development progress, increasing the difficulty of maintenance, or leading to last minute
pre-release changes), we believe that this a rational and worthwhile cost.

Implications for Practitioners First, we found that the ratio of reverted commits is 2.53%
on average. Due to the potential issues induced by reverting a commit, such as impeding the
development progress or increasing the difficulty of maintenance, the analysis and handling
of reverted commits cannot be ignored. Second, using our tool, possibly reverted com-
mits can be detected in an early stage. Then, developers can fix them or revert them early.
Third, there are some common important features in our studied projects, such the developer
related features “EXP” and “NDEV”. It means that developers should pay more attention
to the commits made by non-expert developers of the project. Additionally, the commits
that modify “hot” files (i.e., files modified by many developers) should also be checked
carefully. Fourth, when applying our approach on a new project, we can train the model by
learning from another project. But note that the use of a source project that has a similar
data distribution and with more reverted commits would result in better performance.

Implications for Researchers First, the detection method for reverted commits should be
revisited. A prior detection method by (Shimagaki et al. 2016) (i.e, only checking the
commit message) can detect 0.81% commits that are reverted on average in our dataset.
However, the reverted commits that did not follow a standard procedure are ignored. Thus,
we propose to add another detection method, i.e., detecting reverted commits by comparing
the changed code content of two commits. As a result, we detected 2.53% commits that are
reverted on average in our dataset. (2) The developer-related features and change-related
features are more discriminative for building an identification model. Further research for
enhancing the performance can pay more attention on these two dimensions. (3) It is hard
to achieve a high TPR and AUC-PR for reverted commits due to the high imbalance data
distribution of reverted commits. Since our paper is the first attempt on this problem, further
works are needed on how to enhance TPR and AUC-PR.

6 Threats to Validity

Threats to internal validity refer to errors in our implementation. One potential threat to
validity is the potential errors in commit feature extraction. For example, we measure EXP
by counting the number of previously submitted commits of the developer in the project. In
this way, the computation of EXP ignores the developer expertise in other projects. Also, it
may consider some less meaningful commits, such as commits that only modify comments.
Still, all of our considered commits are accepted, and not abandoned by project owners.

Empirical Software Engineering

These commits can also indicate that the developer has certain knowledge on this project.
Thus, we believe this threat is minor. Additionally, to mitigate the threat, we compute the
same features by following the method in previous studies (Kamei et al. 2013), and use a
third-party library, such as ChangeDisttler (Fluri et al. 2007) that has been used in past stud-
ies for commit feature extraction. In addition, to reduce the errors in our implementation,
we double-checked and fully tested the code, but there could still exist some errors we did
not find.

Threats to external validity refer to the generalizability of our identification tool. We
have analyzed 125,241 software commits from ten different open source projects. Further
studies are needed to reduce this threat further by analyzing even more dataset including
both open source and commercial projects.

Threats to construct validity refer to the suitability of our evaluation metrics. In this
study, one potential threat is that we use AUC and cost-effectiveness as the performance
measures, and use Wilcoxon signed-rank test to investigate whether the improvement of our
proposed model over the baselines is significant. One or all of the measures and tests have
been used in past studies (Lessmann et al. 2008; Nam and Kim 2015; Kamei et al. 2013;
Xia et al. 2016a; Yang et al. 2016; Yan et al. 2017).

7 RelatedWork

We divide our related work into two parts: studies on commit rework, and identification
models on software commits.

7.1 Commits Rework

Commits rework leads to the additional effort during software development. Rework can be
done due to by different reasons, such as rejecting a commit or reverting a commit. Before
a commit is checked into the main repository, it needs to be checked by code reviewers. A
problematic commit can be rejected for various reasons.

(Beller et al. 2014) and (Mäntylä and Lassenius 2009) investigate the reasons that com-
mits need to be reworked during the code review process. As a result, they find that
functional commits and evolvable (i.e., non-functional) commits might need to be reworked.
(Tao et al. 2014) conduct an empirical study to investigate a more fine-grained reason for
commits to be rejected or for reworked. They provide a comprehension list of commit
rework reasons (e.g., test failures and introducing new bugs) by manually inspecting 300
rejected commits in the Eclipse and Mozilla projects and a large-scale online survey of
Eclipse and Mozilla developers and the literature.

If a problematic commit has been checked into the main code repository, a popular and
coarse-grained approach for recovering from such a problematic commit is to revert it. A
few studies have been proposed to empirically investigate this problem.

(Yoon and Myers 2012) present a preliminary study that investigates when and how
the developers revert a commit. They conduct an exploratory study with 12 professional
developers and a follow-up online survey. As a result, they find that 75% of developers need
a reverting tool, and more robust reverting assistance tools would help developers write code
more correctly and efficiently. (Codoban et al. 2015) find that developers often use version
control systems (e.g., SVN and Git) to back out problematic commits (e.g., reaching a dead
end in implementation when doing trial and error programming) by reverting to previously
working state. (Souza et al. 2015) conduct an empirical study to investigate the relationship

Empirical Software Engineering

between rapid releases and reverted commits on Mozilla. As a result, they find that rapid
releases have an association with reverted commits. Namely, the reverted commits rate (i.e.,
the backout rate) increases after shortening the software release cycle. (Shimagaki et al.
2016) conduct an empirical study to better understand why commits are reverted in large
software systems. They quantitatively and qualitatively investigate two industrial and four
open source projects in terms of three aspects, the ratio of reverted commits, the survival
time of reverted commits and manually summarize the reasons for being reverted.

Our work is motivated by these prior research efforts. The difference is that our work
focuses on proposing a identification model to identify whether or not a commit will be
reverted.

7.2 IdentificationModels of Software Commits

Many studies have been proposed to identify various characteristic of a commit, such as
defective commit (Mockus and Weiss 2000; Kim et al. 2008; Kamei et al. 2013; Yang et al.
2016) and build co-change (McIntosh et al. 2014; Xia et al. 2015a; Macho et al. 2016).

Defective commit identification aims to identify whether or not a commit is a defect
inducing commit. For example, (Mockus and Weiss 2000) assess the risk of software
changes (i.e., the probability that changes are defect inducing) in 5ESS network switch
project. (Kim et al. 2008) classify each software change as buggy or clean by using the iden-
tifiers in added and deleted source code and textual features in change logs. (Kamei et al.
2013) conduct a large-scale empirical study of just-in-time quality assurance on a variety of
open source and commercial projects from multiple domains. They first apply effort-aware
evaluation (i.e., considering review effort for inspecting defective changes) on defective
change identification. Following their work, (Yang et al. 2016) propose the use of simple
unsupervised models for defective commit. They found that simple unsupervised models
outperform supervised models for identifying defective changes.

Build co-change identification aims to identify whether or not a commit requires build
co-change. For example, (McIntosh et al. 2014) build a classifier that identify whether or
not a software change lead to a build co-changing. (Xia et al. 2015a) propose cross-project
build co-change identification to improve the performance of build co-change identification
in projects in the initial development phases. Subsequently, (Macho et al. 2016) improve
the existing performance by taking into account detailed information about source code
changes.

The similarity between our work and these aforementioned work is the used commit
features. Many of the commit features that are used in our work are inspired by the prior
work, such as diffusion metrics (Kamei et al. 2013; McIntosh et al. 2014; Xia et al. 2015a),
message metrics (Kim et al. 2008), experience metrics (Kamei et al. 2013; Yang et al. 2016)
and history metrics (Kamei et al. 2013; Yang et al. 2016). The difference between our work
and these aforementioned work is that we aim to identify whether or not a commit will
be reverted. To the best of our knowledge, our work is the first work for reverted commit
identification.

8 Conclusion

In this paper, we characterize reverted commits and propose a model to identify reverted
commits by extracting 27 commit features that are divided into three dimensions, namely
change, developer and message. The model can identify whether or not a commit will be

Empirical Software Engineering

reverted in the future. To evaluate the effectiveness of our identification model, we perform
an empirical study on ten open source projects with totally 125,241 software commits.

Our experimental results show that: (1) Our approach achieves a promising perfor-
mance and outperforms baselines by a substantial margin in terms of AUC-ROC, cost-
effectiveness, AUC-PR and TPR. In terms of the average performance across the ten studied
projects, our approach achieves an AUC-ROC of 0.756, a cost-effectiveness of 0.746, a
TPR of 0.222 and an AUC-PR of 0.193 which significantly improves over the baselines in
a substantial margin; achieves a TNR of 0.979 which achieves a comparable performance
compared with baselines. (2) “Developer” is the most discriminative dimension among the
three dimensions of studied features. However, using all the three dimensions of commit
features leads to better performance. (3) The features “LA”, “LD” “EXP”, “NDEV”, and
“NUC” are the most discriminative features for identifying reverted commits.

Acknowledgment This research was partially supported by the National Key Research and Development
Program of China (2018YFB1003904), NSFC Program (No. 61602403) and China Postdoctoral Science
Foundation (No. 2017M621931).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

Abdi H (2007) Bonferroni and šidák corrections for multiple comparisons. Encyclopedia of measurement
and statistics 3:103–107

Beller M, Bacchelli A, Zaidman A, Juergens E (2014) Modern code reviews in open-source projects: Which
problems do they fix? In: Proceedings of the 11th working conference on mining software repositories.
ACM, pp 202–211

Bird C, Nagappan N, Murphy B, Gall H, Devanbu P (2011) Don’t touch my code!: examining the effects
of ownership on software quality. In: Proceedings of the 19th ACM SIGSOFT symposium and the 13th
European conference on foundations of software engineering. ACM, pp 4–14

Boyd K, Costa VS, Davis J, Page CD (2012) Unachievable region in precision-recall space and its effect on
empirical evaluation. In: Proceedings of the international conference on machine learning, NIH public
access, vol 2012, p 349

Bradley AP (1997) The use of the area under the roc curve in the evaluation of machine learning algorithms.
Pattern Recognit 30(7):1145–1159

Breiman L (2001) Random forests. Mach Learn 45(1):5–32
Breunig MM, Kriegel HP, Ng RT, Sander J (2000) Lof: identifying density-based local outliers. In: ACM

Sigmod record, vol 29. ACM, pp 93–104
Codoban M, Ragavan SS, Dig D, Bailey B (2015) Software history under the lens: a study on why and how

developers examine it. In: 2015 IEEE international conference on software maintenance and evolution
(ICSME). IEEE, pp 1–10

da Costa DA, McIntosh S, Shang W, Kulesza U, Coelho R, Hassan AE (2017) A framework for evaluating the
results of the szz approach for identifying bug-introducing changes. IEEE Trans Softw Eng 43(7):641–
657

Davis J, Goadrich M (2006) The relationship between precision-recall and roc curves. In: Proceedings of the
23rd international conference on machine learning. ACM, pp 233–240

Fan Y, Xia X, Lo D, Hassan AE (2018a) Chaff from the wheat: characterizing and determining valid bug
reports. IEEE transactions on software engineering

Fan Y, Xia X, Lo D, Li S (2018b) Early prediction of merged code changes to prioritize reviewing tasks.
Empir Softw Eng, pp 1–48

Fluri B, Gall HC (2006) Classifying change types for qualifying change couplings. In: 14th IEEE
international conference on program comprehension, 2006. ICPC 2006. IEEE, pp 35–45

Fluri B, Wuersch M, PInzger M, Gall H (2007) Change distilling: tree differencing for fine-grained source
code change extraction. IEEE Trans Softw Eng 33(11):725–743

Empirical Software Engineering

Fu Y, Yan M, Zhang X, Xu L, Yang D, Kymer JD (2015) Automated classification of software change
messages by semi-supervised latent dirichlet allocation. Inf Softw Technol 57:369–377

Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The weka data mining software:
an update. ACM SIGKDD Explorations Newsletter 11(1):10–18

Han J, Pei J, Kamber M (2011) Data mining: concepts and techniques. Elsevier, Amsterdam
Hassan AE (2008) Automated classification of change messages in open source projects. In: Proceedings of

the 2008 ACM symposium on applied computing. ACM, pp 837–841
Hassan AE (2009) Predicting faults using the complexity of code changes. In: Proceedings of the 31st

international conference on software engineering. IEEE Computer Society, pp 78–88
Herzig K, Just S, Zeller A (2013) It’s not a bug, it’s a feature: how misclassification impacts bug prediction.

In: Proceedings of the 2013 international conference on software engineering. IEEE Press, pp 392–401
Hindle A, German DM, Holt R (2008) What do large commits tell us?: a taxonomical study of large commits.

In: Proceedings of the 2008 international working conference on mining software repositories. ACM,
pp 99–108

Huang J, Ling CX (2005) Using auc and accuracy in evaluating learning algorithms. IEEE Trans Knowl Data
Eng 17(3):299–310

Huang Q, Shihab E, Xia X, Lo D, Li S (2017) Identifying self-admitted technical debt in open source projects
using text mining. Empir Softw Eng, pp 1–34

Jiang T, Tan L, Kim S (2013) Personalized defect prediction. In: Proceedings of the 28th IEEE/ACM
international conference on automated software engineering. IEEE Press, pp 279–289

Kabinna S, Shang W, Bezemer CP, Hassan AE (2016) Examining the stability of logging statements. In:
2016 IEEE 23rd international conference on software analysis, evolution, and reengineering (SANER),
vol 1, pp 326-337

Kamei Y, Shihab E, Adams B, Hassan AE, Mockus A, Sinha A, Ubayashi N (2013) A large-scale empirical
study of just-in-time quality assurance. IEEE Trans Softw Eng 39(6):757–773

Kim S, Whitehead Jr EJ, Zhang Y (2008) Classifying software changes: clean or buggy? IEEE Trans Softw
Eng 34(2):181–196

Lampert TA, Gançarski P (2014) The bane of skew. Mach Learn 97(1–2):5–32
Lessmann S, Baesens B, Mues C, Pietsch S (2008) Benchmarking classification models for software defect

prediction: a proposed framework and novel findings. IEEE Trans Softw Eng 34(4):485–496
Li H, Shang W, Zou Y, Hassan AE (2016) Towards just-in-time suggestions for log changes. Empir Softw

Eng, pp 1–35
Li H, Shang W, Zou Y, Hassan AE (2017) Towards just-in-time suggestions for log changes. Empir Softw

Eng 22(4):1831–1865
Li H, Chen THP, Shang W, Hassan AE (2018) Studying software logging using topic models. Empir Softw

Eng, pp 1–40
Long JD, Feng D, Cliff N (2003) Ordinal analysis of behavioral data. Handbook of psychology
Macho C, McIntosh S, Pinzger M (2016) Predicting build co-changes with source code change and com-

mit categories. In: 2016 IEEE 23rd international conference on software analysis, evolution, and
reengineering (SANER), vol 1. IEEE, pp 541–551

Mäntylä MV, Lassenius C (2009) What types of defects are really discovered in code reviews? IEEE Trans
Softw Eng 35(3):430–448

McCallum A, Nigam K et al (1998) A comparison of event models for naive bayes text classification. In:
AAAI-98 workshop on learning for text categorization, Madison, WI, vol 752, pp 41-48

McIntosh S, Adams B, Nagappan M, Hassan AE (2014) Mining co-change information to understand when
build changes are necessary. In: 2014 IEEE international conference on software maintenance and
evolution (ICSME). IEEE, pp 241–250

Mockus A, Votta LG (2000) Identifying reasons for software changes using historic databases. In: icsm,
pp 120–130

Mockus A, Weiss DM (2000) Predicting risk of software changes. Bell Labs Tech J 5(2):169–180
Nam J, Kim S (2015) Clami: defect prediction on unlabeled datasets (t). In: 2015 30th IEEE/ACM

international conference on automated software engineering (ASE). IEEE, pp 452–463
Romano J, Kromrey JD, Coraggio J, Skowronek J, Devine L (2006) Exploring methods for evaluating group

differences on the nsse and other surveys: Are the t-test and cohen’s d indices the most appropriate
choices. In: Annual meeting of the southern association for institutional research, Citeseer

Rosen C, Grawi B, Shihab E (2015) Commit guru: analytics and risk prediction of software commits. In:
Proceedings of the 2015 10th joint meeting on foundations of software engineering. ACM, pp 966–969

Scott AJ, Knott M (1974) A cluster analysis method for grouping means in the analysis of variance.
Biometrics, pp 507–512

Empirical Software Engineering

Shimagaki J, Kamei Y, McIntosh S, Pursehouse D, Ubayashi N (2016) Why are commits being reverted?:
a comparative study of industrial and open source projects. In: 2016 IEEE international conference on
software maintenance and evolution (ICSME). IEEE, pp 301–311

Śliwerski J, Zimmermann T, Zeller A (2005) When do changes induce fixes? In: ACM Sigsoft software
engineering notes, vol 30. ACM, pp 1–5

Souza R, Chavez C, Bittencourt RA (2015) Rapid releases and patch backouts: a software analytics approach.
IEEE Softw 32(2):89–96

Tantithamthavorn C, McIntosh S, Hassan AE, Ihara A, Matsumoto K (2015) The impact of mislabelling
on the performance and interpretation of defect prediction models. In: 2015 IEEE/ACM 37th IEEE
international conference on software engineering (ICSE), vol 1, pp 812–823

Tantithamthavorn C, McIntosh S, Hassan AE, Matsumoto K (2017) An empirical comparison of model
validation techniques for defect prediction models. IEEE Trans Softw Eng 43(1):1–18

Tao Y, Han D, Kim S (2014) Writing acceptable patches: an empirical study of open source project patches.
In: 2014 IEEE international conference on software maintenance and evolution (ICSME). IEEE, pp 271–
280

Tian Y, Nagappan M, Lo D, Hassan AE (2015) What are the characteristics of high-rated apps? a case
study on free android applications. In: 2015 IEEE international conference on software maintenance and
evolution (ICSME). IEEE, pp 301–310

Valdivia Garcia H, Shihab E (2014) Characterizing and predicting blocking bugs in open source projects. In:
Proceedings of the 11th working conference on mining software repositories. ACM, pp 72–81

Wilcoxon F (1992) Individual comparisons by ranking methods. Breakthroughs in statistics, pp 196–202
Wolpert DH, Macready WG (1999) An efficient method to estimate bagging’s generalization error. Mach

Learn 35(1):41–55
Xia X, Lo D, Qiu W, Wang X, Zhou B (2014) Automated configuration bug report prediction using text

mining. In: 2014 IEEE 38th annual computer software and applications conference (COMPSAC). IEEE,
pp 107–116

Xia X, Lo D, McIntosh S, Shihab E, Hassan AE (2015a) Cross-project build co-change prediction. In: 2015
IEEE 22nd international conference on software analysis, evolution and reengineering (SANER). IEEE,
pp 311–320

Xia X, Lo D, Shihab E, Wang X, Yang X (2015b) Elblocker: predicting blocking bugs with ensemble
imbalance learning. Inf Softw Technol 61:93–106

Xia X, Lo D, Pan SJ, Nagappan N, Wang X (2016a) Hydra: massively compositional model for cross-project
defect prediction. IEEE Trans Softw Eng 42(10):977–998

Xia X, Shihab E, Kamei Y, Lo D, Wang X (2016b) Predicting crashing releases of mobile applications. In:
Proceedings of the 10th ACM/IEEE international symposium on empirical software engineering and
measurement. ACM, p 29

Xia X, Bao L, Lo D, Kochhar PS, Hassan AE, Xing Z (2017) What do developers search for on the web?
Empir Softw Eng, pp 1–37

Yan M, Fu Y, Zhang X, Yang D, Xu L, Kymer JD (2016) Automatically classifying software changes via
discriminative topic model: supporting multi-category and cross-project. J Syst Softw 113:296–308

Yan M, Fang Y, Lo D, Xia X, Zhang X (2017) File-level defect prediction: unsupervised vs. supervised mod-
els. In: 2017 ACM/IEEE international symposium on empirical software engineering and measurement
(ESEM), IEEE, pp 344–353

Yan M, Xia X, Shihab E, Lo D, Yin J, Yang X (2018) Automating change-level self-admitted technical debt
determination. IEEE Trans Softw Eng

Yang Y, Zhou Y, Liu J, Zhao Y, Lu H, Xu L, Xu B, Leung H (2016) Effort-aware just-in-time defect pre-
diction: simple unsupervised models could be better than supervised models. In: Proceedings of the
2016 24th ACM SIGSOFT international symposium on foundations of software engineering. ACM,
pp 157–168

Yoon Y, Myers BA (2012) An exploratory study of backtracking strategies used by developers. In: Proceed-
ings of the 5th international workshop on co-operative and human aspects of software engineering. IEEE
Press, pp 138–144

Empirical Software Engineering

Meng Yan is a post-doctoral research fellow in College of Com-
puter Science and Technology, Zhejiang University. He received his
PhD degree in June 2017 from the School of Software Engineer-
ing, Chongqing University. His currently research focuses on how to
improve developer’s productivity, how to improve software quality
and how to reduce the effort during software development by ana-
lyzing rich software repository data. More information at: https://
yanmeng.github.io/

Xin Xia is a lecturer at the Faculty of Information Technology,
Monash University, Australia. Prior to joining Monash University, he
was a post-doctoral research fellow in the software practices lab at
the University of British Columbia in Canada, and a research assis-
tant professor at Zhejiang University in China. Xin received both
of his Ph.D and bachelor degrees in computer science and software
engineering from Zhejiang University in 2014 and 2009, respectively.
To help developers and testers improve their productivity, his cur-
rent research focuses on mining and analyzing rich data in software
repositories to uncover interesting and actionable information. More
information at: https://xin-xia.github.io/

David Lo received his PhD degree from the School of Computing,
National University of Singapore in 2008. He is currently an Asso-
ciate Professor in the School of Information Systems, Singapore
Management University. He has more than 10 years of experience
in software engineering and data mining research and has more than
200 publications in these areas. He received the Lee Foundation and
Lee Kong Chian Fellow for Research Excellence from the Singa-
pore Management University in 2009 and 2018, and a number of
international research and service awards including multiple ACM
distinguished paper awards for his work on software analytics. He
has served as general and program co-chair of several prestigious
international conferences (e.g., IEEE/ACM International Conference
on Automated Software Engineering), and editorial board mem-
ber of a number of high-quality journals (e.g., Empirical Software
Engineering).

https://yanmeng.github.io/
https://yanmeng.github.io/
https://xin-xia.github.io/

Empirical Software Engineering

Ahmed E. Hassan is the IEEE Fellow, the NSERC Steacie Fel-
low, the Canada Research Chair (CRC) in Software Analytics, and
the NSERC/BlackBerry Software Engineering Chair at the School
of Computing at Queen’s University, Canada. His research interests
include mining software repositories, empirical software engineer-
ing, load testing, and log mining. He received a PhD in Computer
Science from the University of Waterloo. He spearheaded the cre-
ation of the Mining Software Repositories (MSR) conference and its
research community. He also serves on the editorial boards of IEEE
Transactions on Software Engineering, Springer Journal of Empir-
ical Software Engineering, and PeerJ Computer Science. Contact
ahmed@cs.queensu.ca. More information at: http://sail.cs.queensu.
ca/

Shanping Li received his Ph.D. degree from the College of Computer
Science and Technology, Zhejiang University in 1993. He is currently
a professor in the College of Computer Science and Technology, Zhe-
jiang University. His research interests include Software Engineering,
Distributed Computing, and the Linux Operating System.

Affiliations

Meng Yan1,2 ·Xin Xia3 ·David Lo4 ·Ahmed E. Hassan5 · Shanping Li1

Meng Yan
mengy@zju.edu.cn

David Lo
davidlo@smu.edu.sg

Ahmed E. Hassan
ahmed@cs.queensu.ca

Shanping Li
shan@zju.edu.cn

1 College of Computer Science and Technology, Zhejiang University, Hangzhou, China
2 Alibaba-Zhejiang University Joint Institute of Frontier Technologies, Hangzhou, China
3 Faculty of Information Technology, Monash University, Melbourne, Australia
4 School of Information Systems, Singapore Management University, Singapore, Singapore
5 Software Analysis and Intelligence Lab (SAIL), Queen’s University, Kingston, ON, Canada

http://sail.cs.queensu.ca/
http://sail.cs.queensu.ca/
http://orcid.org/0000-0002-6302-3256
mailto: mengy@zju.edu.cn
mailto: davidlo@smu.edu.sg
mailto: ahmed@cs.queensu.ca
mailto: shan@zju.edu.cn

	Characterizing and identifying reverted commits
	Citation

	Characterizing and identifying reverted commits
	Abstract
	Introduction
	Paper Organization

	Empirical Study Dataset
	Dataset
	Reverted Commit Identification
	Step 1: Identification of reverting commits
	Step 2: Identification of reverted commits
	Step 1: Get changed content of each commit
	Step 2: Identify reverted commits

	Empirical Study Setup
	Studied Features
	Change
	Developer
	Message

	Performance Measures
	AUC-ROC
	Cost-Effectiveness

	Classifier
	Validation Settings
	Research Questions

	Results
	RQ1: Can we Effectively Identify the Commits that will be Reverted?
	Motivation
	Approach
	Baseline 1: Random Guess (RG)
	Baseline 2: Naive Bayes Multinomial based on Commit Message (NBMCM)
	Results

	RQ2: How Effective is Our Model When Built on a Subset of Commit Features?
	Motivation
	Approach
	Result

	Which Commit Features are Most Discriminative for Identifying Reverted Commits?1007
	Motivation
	Approach & Results
	Step 1: Correlation Analysis
	Step 2: Redundancy Analysis
	Step 3: Important Feature Identification

	RQ4: How Effective is our Approach when Considering more Evaluation Measures?
	Motivation
	Approach
	True Positive Rate (TPR)
	True Negative Rate (TNR)
	AUC-PR
	Imbalance Handling Approach
	Baseline 3: ZeroR
	Results

	Discussion
	Investigating the Effectiveness of our Model when Different Percentages of Changed LOC are Inspected
	Investigating the Impact of Different Classifiers
	Logistic Regression (LR)
	Bayes Network (BN)

	Investigating the Effectiveness of Cross-Project Identification
	Investigating the Effectiveness of Outlier Detection Method
	One-Class SVM
	Local Outlier Factor (LOF)

	Investigating the Effectiveness on Projects Written in other Programming Languages
	Implications
	Usage Scenarios, Benefits and Costs of our Approach
	Implications for Practitioners
	Implications for Researchers

	Threats to Validity
	Related Work
	Commits Rework
	Identification Models of Software Commits

	Conclusion
	References
	Affiliations

