
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

10-2018

Automating intention mining Automating intention mining

Qiao HUANG
Zhejiang University

Xin XIA
Monash University

David LO
Singapore Management University, davidlo@smu.edu.sg

Gail C. MURPHY
University of British Columbia

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Numerical Analysis and Scientific Computing Commons, and the Software Engineering

Commons

Citation Citation
HUANG, Qiao; XIA, Xin; LO, David; and MURPHY, Gail C.. Automating intention mining. (2018). IEEE
Transactions on Software Engineering. 46, (10), 1098-1119.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4354

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4354&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4354&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4354&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4354&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

1

Automating Intention Mining
Qiao Huang, Xin Xia, David Lo, Gail C. Murphy

Abstract—Developers frequently discuss aspects of the systems they are developing online. The comments they post to discussions
form a rich information source about the system. Intention mining, a process introduced by Di Sorbo et al., classifies sentences in
developer discussions to enable further analysis. As one example of use, intention mining has been used to help build various
recommenders for software developers. The technique introduced by Di Sorbo et al. to categorize sentences is based on linguistic
patterns derived from two projects. The limited number of data sources used in this earlier work introduces questions about the
comprehensiveness of intention categories and whether the linguistic patterns used to identify the categories are generalizable to
developer discussion recorded in other kinds of software artifacts (e.g., issue reports).
To assess the comprehensiveness of the previously identified intention categories and the generalizability of the linguistic patterns for
category identification, we manually created a new dataset, categorizing 5,408 sentences from issue reports of four projects in GitHub.
Based on this manual effort, we refined the previous categories. We assess Di Sorbo et al.’s patterns on this dataset, finding that the
accuracy rate achieved is low (0.31). To address the deficiencies of Di Sorbo et al.’s patterns, we propose and investigate a convolution
neural network (CNN)-based approach to automatically classify sentences into different categories of intentions. Our approach
optimizes CNN by integrating batch normalization to accelerate the training speed, and an automatic hyperparameter tuning approach
to tune appropriate hyperparameters of CNN. Our approach achieves an accuracy of 0.84 on the new dataset, improving Di Sorbo et
al.’s approach by 171%. We also apply our approach to improve an automated software engineering task, in which we use our
proposed approach to rectify misclassified issue reports, thus reducing the bias introduced by such data to other studies. A case study
on four open source projects with 2,076 issue reports shows that our approach achieves an average AUC score of 0.687, which
improves other baselines by at least 16%.

F

1 INTRODUCTION

During the process of software development, developers
frequently discuss how to resolve defects, what features
to implement, the overall project plan, and many other
points via various written communication channels, includ-
ing mailing lists, issue repositories, and code review sys-
tems [1]–[5]. These channels keep track of developer discus-
sions, easing the process of decision making and facilitating
effective communication in a distributed project team [1],
[5], [6]. The discussions are a rich source of information that
can be used to build multiple kinds of support tools for
developers [4], [7]–[9].

When developers participate in a communication chan-
nel, they may have different intentions. For example, the
intention of developer A could be describing a bug, while
the intention of developer B might be providing possible
solutions. To help make developer discussions more acces-
sible to analysis tools, Di Sorbo et al. proposed the concept
of intention mining. Specifically, they proposed a taxonomy
of intentions to classify sentences in developer discussions
from mailing lists into six categories: feature request, opinion
asking, problem discovery, solution proposal, information seeking,
and information giving [10]. To build an automatic tool for
classification, they manually extracted 231 heuristic linguis-

• Qiao Huang is with the College of Computer Science and Technology,
Zhejiang University, Hangzhou, China. E-mail: tkdsheep@zju.edu.cn

• Xin Xia is with the Faculty of Information Technology, Monash Univer-
sity, Australia. E-mail: xin.xia@monash.edu

• David Lo is with the School of Information Systems, Singapore Manage-
ment University, Singapore. E-mail: davidlo@smu.edu.sg

• Gail C. Murphy is with the Department of Computer Science, University
of British Columbia, Canada. Email: murphy@cs.ubc.ca

• Xin Xia is the corresponding author.

tic patterns based on a collection of 1,077 manually labelled
sentences from the Qt and Ubuntu mailing lists. They also
showed how the determination of sentences in developer
discussions related to four categories—feature request, prob-
lem discovery, information seeking, and information giving—can
help generate method descriptions [10]. This taxonomy of
intentions and the summarized linguistic patterns have also
been applied to the analysis of user feedbacks collected from
app reviews. For example, Panichella et al. [11] leveraged
the linguistic patterns for the intentions of information giving,
information seeking, feature request, and problem discovery to
classify sentences in app reviews.

While Di Sorbo et al.’s taxonomy has been shown to
be effective in analyzing developer discussion from mail-
ing lists [10] and user feedbacks from app reviews [11],
it is still unclear whether Di Sorbo et al.’s taxonomy of
intentions can be generalized to discussions in issue track-
ing systems. In addition, it is unclear whether Di Sorbo
et al.’s manually summarized heuristic linguistic patterns
still work well for this new setting. In this paper, we first
assess the generalizability of Di Sorbo et al.’s taxonomy on
sentences appearing in comments recorded in issue tracking
systems. We perform this assessment by randomly selecting
5,408 sentences from comments recorded in issue tracking
systems of four large and popular projects hosted on GitHub
(i.e., TensorFlow [12], Docker [13] (evolved to Moby), Boot-
strap [14], and VS Code [15]). Then, we categorize these
sentences manually, refining Di Sorbo et al.’s taxonomy
during the process. Specifically, we merge opinion asking into
information seeking since the ratio of sentences belonging to
opinion asking is rather low (i.e., 1%) and they can always be
classified as information seeking. We also add two additional
intentions — aspect evaluation and meaningless – to provide

ppyeo
Typewritten Text
Published in IEEE Transactions on Software Engineering, 2018 October, Advance online. https://doi.org/10.1109/TSE.2018.2876340Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

2

coverage of all sentences.
Next, to extend Di Sorbo et al.’s manual process, we pro-

pose a deep learning-based approach to categorize sentences
automatically and more accurately into different categories
of intentions compared to Di Sorbo’s previous heuristic ap-
proach. Our approach first learns a matrix representation of
a sentence using word embedding [16]. Next, our approach
builds a convolutional neural network (CNN) to classify
new sentences. CNN requires an initial setting of multiple
hyperparameters; previous studies [17]–[19] have shown
that tuning of hyperparameters is critical for a prediction
model to achieve good performance. However, this tuning
is tedious, time-consuming and requires expert knowledge.
To overcome these limitations that can restrict the use of the
approach, we propose an automatic hyperparameter tuning
approach, along with an ensemble learning component to
improve accuracy. Since CNN is computationally expensive
and requires a long training time, we also integrate batch
normalization [20] to substantially reduce the training time,
making the approach more applicable in practice.

To evaluate the performance of our approach, we com-
pare our approach with Di Sorbo et al.’s heuristic linguistic
pattern approach [10]. We perform experiments on both our
collected data (i.e., comments in issue reports) and Di Sorbo
et al.’s data (i.e., emails in mailing lists). The experimental
results show that our approach achieves an average accu-
racy of 0.8, which improves on Di Sorbo et al.’s approach by
91%. One might question whether our enhanced deep learn-
ing strategy is necessary to achieve this improvement. To
investigate this question, we compare our approach against
three other automated approaches that have been used to
classify sentences for various purposes: Kim’s CNN for
sentence classification [21], Gu and Kim’s natural language
processing approach [22], and traditional text classification
using bag-of-words features [23] and hyper-parameter tun-
ing strategies [24], [25]. Our experiments demonstrate that
our approach improves on these techniques by an average
improvement of at least 13% in terms of accuracy. In terms of
efficiency, in our experiments, our approach requires about
half an hour to automatically tune the hyperparameters and
train multiple CNNs for ensemble learning.

A substantial threat to the generalizability of our ap-
proach is bias in the labelling process used to train the
neural network. To investigate this bias, we conducted a
user study with 11 professional developers to check on the
appropriateness of intention categories that are produced
by our approach when it is applied to 140 sentences from
issue tracking systems of four other projects (i.e., Three.js,
Ruby on Rails, OpenCV and Scikit-Learn). We found that on
average across all categories, 89% of the classification results
are accepted by the majority of the developers, and 73% of
the classification results are accepted by all developers.

Finally, we apply our approach in a specific automated
software engineering task, namely rectifying misclassified
issue reports. Herzig et al. [26] found that issue reports
are often misclassified – many are marked as bug reports
when they are actually feature requests and vice versa.
This misclassification would introduce bias and threaten the
external validity of any study that builds on such data – e.g.,
defect prediction studies [27], [28]. Given an issue report
classified as bug report, our approach searches for sentences

that are likely to belong to feature requests and reclassifies
this issue report as a feature request if it contains at least one
such sentence. A case study on four open source projects
with 2,076 issue reports shows that our approach achieves
an average AUC score of 0.687, which improves a number
of baselines proposed by Antoniol et al. [29] by at least
16%. Different from the existing baselines, our approach not
only rectifies a misclassified issue report, but also shows the
reason why it should be categorized as such. This indicates
that our approach can serve as a support tool to help in
rectifying misclassified issue reports.

The main contributions of this paper are:
1) We assess the generalizability of Di Sorbo et al.’s taxon-

omy of intentions on discussions in issue tracking sys-
tems. We proceed to refine their taxonomy by merging
two intentions into one category, and adding two new
intentions.

2) We apply CNN and extend it to better classify sentences
into intention categories. We integrate batch normaliza-
tion with CNN to boost the training speed by at least 10
times. We improve the accuracy of CNN by at least 10%
with automatic hyperparameter tuning and ensemble
learning.

3) We show our approach achieves a good performance
in terms of accuracy and F1-score, which outperforms
both Di Sorbo et al.’s approach and other automated
approaches for sentence classification by a substantial
margin.

4) We conduct a user study with 11 professional developers
and we find that 89% of the classification results are
agreed by the majority of developers.

5) We conduct a case study to show how our approach can
be applied to improve an automated software engineer-
ing task.

Paper Organization. The remainder of the paper is orga-
nized as follows. We present background and related work
in Section 2. We introduce our taxonomy of intentions in
Section 3. We elaborate the preliminaries of deep learning in
Section 4. We describe the overall framework and technical
details of our approach in Section 5. We present our exper-
imental setup and results in Section 6. We present the user
study of our classification results in Section 7. We apply our
approach to improve an automated software engineering
task in Section 8. We discuss how to identify patterns in a
sentence the explain CNN’s classification result and discuss
threats to validity in Section 9. We conclude the paper and
mention future work in Section 10.

2 BACKGROUND AND RELATED WORK

2.1 Intention Mining

Although Di Sorbo et al. [10] proposed the concept of
intention mining from developer discussions, they did not
explicitly define what is intention. In Oxford English dictio-
nary, the word intention is defined as “A thing intended; an
aim or plan”. In this paper, we define the concept of intention
as the purpose underlying an expression by a developer in
a discussion. For example, in an issue report, the intention
of some comments is to describe a bug, while the intention
of some other comments is to provide possible solutions.

3

There are various potential applications of the intention
mining results. For example, we can leverage the identified
information seeking sentences to summarize frequently asked
questions in a project, or we can recommend the most
wanted features to the project manager based on identified
feature request sentences.

In practice, the comments posted by the same developer
can contain a mix of intentions. For example, a developer
posted the following comment for Issue #7654 on Tensor-
flow1:

Currently the initial load / full page refresh of tensorboard starts
on the scalars tab with all runs toggled on for rendering. If there
are a lot of runs in the logdir, the browser hangs for a noticeable
period of time while all of the charts for the runs are rendered. I
suggest making the initial load have runs off and letting the user
opt in / turn on the desired set of runs.

These three sentences have different intentions: the first
sentence introduces how tensorboard is initialized (informa-
tion giving); the second sentence reports a bug about the
low performance in rendering (problem discovery); the final
sentence requests a new feature to allow user customizing
the set of runs for initial loading (feature request). Di Sorbo et
al. first proposed the problem of intention mining from de-
veloper discussions [10]. This earlier work has the following
limitations:
1) It is unclear whether the six intention categories are com-

prehensive. Di Sorbo et al.’s study focused on only one
kind of developer discussions; its applicability to other
discussions, such as ones that occur in issue tracking
systems, is unknown.

2) The approach proposed by Di Sorbo et al. requires a
large amount of manual effort; all of the 231 heuristic
linguistic identification patterns are generated manually.
Moreover, since these patterns are generated from only
1,077 sentences, it is unclear whether the patterns dis-
covered on this data generalize beyond mailing lists. If
they cannot be generalized, the approach is limited in
its applicability as creating patterns manually requires
substantial effort.
Our paper aims to reduce the limitations of this earlier

work by: (1) assessing the generalizability, and potentially
refining, Di Sorbo et al.’s taxonomy on another kind of
developer discussion, and (2) proposing a more accurate
and automated intention mining approach.

While Di sorbo et al. focused on intention mining from
developer discussions (i.e., discussions in mailing lists),
there are also a number of studies on intention mining
from user feedback, especially from app reviews [11], [22],
[30]–[32]. These studies leveraged intention mining as a
fundamental component to support more complicated tasks.
Panichella et al. refined Di Sorbo et al.’s taxonomy of inten-
tions to classify sentences of app reviews into five intention
categories (i.e., feature request, problem discovery, information
seeking, information giving, and others). They manually ex-
tracted 246 linguistic patterns from 500 app reviews [11] and
most of these patterns are overlapping with those proposed
by Di Sorbo et al., which demonstrates that the taxonomy of
intentions and the linguistic patterns proposed by Di Sorbo

1. https://github.com/tensorflow/tensorflow/issues/7654

et al. are also effective for app reviews. In a later work,
Di Sorbo et al. proposed SURF to summarize app reviews
for software change recommendation [30]. Palomba et al.
proposed ChangeAdvisor, an approach that analyzes the
intentions of sentences contained in user reviews to extract
potential app changes, and recommend code components
impacted by the suggested changes [31]. Both SURF and
ChangeAdvisor leveraged the intention classifier proposed
by Panichella et al. [11].

Gu and Kim proposed SUR-miner, which first classified
sentences of app reviews into five intention categories—
aspect evaluation, praises, function requests, bug report, and
others—and then extracted aspects (e.g., specific set of op-
tions/suggestions) in sentences to understand what parts
of the app are loved by users [22]. In the intention mining
phase, given a sentence, their approach extracted and con-
sidered five types of features: character n-gram, trunk word,
POS tag, parsing tree and semantic dependence graph. Their
approach built a max entropy classifier based on these
features. In this paper, we also compare our approach with
their approach.

The approach we describe in this paper differs from
these studies in focusing on mining intentions from devel-
oper discussions rather than from app reviews, which are
more representative of an input from users to the developers
and are typically not in discussion form. In this paper, we
focus on intention mining in developer discussions, taking
inspiration from similar work in app reviews, and we leave
potential applications of the results to future work.

2.2 Classification of Software Artifacts

In general, intention mining is a classification of software
artifacts into categories that could be relevant for soft-
ware evolution. Aside from mining developer discussions,
there are also many other studies which apply classifica-
tion techniques to analyze other types of software artifacts.
For example, a large number of studies applied different
classification techniques to classify different types of bug
reports [33]–[37]. Antoniol et al. [29] used text classification
techniques to predict whether a change requests is a bug
report or a feature request. Chaparro et al. [38] proposed
an automated approach to detect the absence (or presence)
of expected behavior and steps to reproduce in descriptions
of bug reports. Petrosyan et al. [39] proposed an approach
to discover tutorial sections that explain a given API type.
Their approach classifies fragmented tutorial sections using
supervised text classification based on linguistic and struc-
tural features. Hou and Mo [40] applied Naive Bayes to
categorize the content of API discussions in online forums.
Prasetyo et al. [41] applied texting mining techniques to
classify microblogs into two categories: relevant and irrel-
evant to engineering software systems. Thung et al. [42]
combined both design and network metrics to condense a
reverse-engineered class diagram by predicting if a class is
important or not. Our work is different from these studies,
since we focus on mining intentions from developer discus-
sions; and thus it complements the existing body of work
on classifying software artifacts.

https://github.com/tensorflow/tensorflow/issues/7654

4

2.3 Deep Learning in SE
Recently, a number of studies have explored the possibility
of applying deep learning techniques to software engineer-
ing, e.g., bug localization [43], [44], defect prediction [45],
code completion [46], software community question re-
trieval [47], [48], and API search [49].

Deep learning aims to model high-level abstractions in
data by building neural networks with multiple layers [50],
and it has following advantages: (1) it largely reduces
the cost on feature engineering by automatically learning
advanced features from raw data; and (2) it can achieve
very good performance and significantly outperform other
solutions in multiple domains by a substantial margin [16],
[51]–[53].

On the other hand, deep learning approaches also have
the following disadvantages: (1) it is computationally expen-
sive, and the training process can cost several weeks [54]
for a complicated network learned from massive training
data even with multi-GPU accelerating; and (2) the setting
of hyperparameters has a large effect on the performance
of the model, and suitable setting of these hyperparameters
requires much experience or expert knowledge.

Considering the promising results of deep learning, in
this paper, we aim to leverage deep learning to mine
intentions from developer discussions, and we also aim
to overcome the weaknesses of deep learning models by
reducing model building time and automatically tuning
hyperparameters.

3 TAXONOMY OF INTENTIONS

Di Sorbo et al. proposed a taxonomy of intentions, which
contains six categories: feature request, opinion asking,
problem discovery, solution proposal, information seeking,
and information giving [10]. In this section, we investigate
the comprehensiveness of Di Sorbo et al.’s intention cate-
gories, considering whether the categories cover different
kinds of sentences posted in a different kind of developer
discussion in different projects. We choose Di Sorbo et al.’s
taxonomy as a starting point because they are the first who
proposed the problem of intention mining. Besides, they
have shown that their approach based on the taxonomy can
be successfully applied for source code re-documentation by
extracting method descriptions from developer discussions.
If their taxonomy is still effective for developer discussions
in issue tracking systems, then we can directly apply their
taxonomy and focus on improving the efficiency and accu-
racy of sentence classification.

We collected developer discussions from issue tracking
systems of four large-scale projects on GitHub, namely Ten-
sorFlow, Docker, Bootstrap, and VS Code. Although there
are other issue tracking systems like Bugzilla and JIRA,
we chose to focus on projects hosted on GitHub. The four
projects belong to different application domains and have a
large number of issue reports. Specifically, TensorFlow is a
software library for numerical computation using data flow
graphs; Docker is a tool providing container technology;
Bootstrap is a front-end framework for web development;
and VS Code is a source code editor for building and de-
bugging modern web and cloud applications. Besides, since
GitHub is based on social coding, it also provides several

metrics to show the popularity of a project. For example, the
two metrics stars and watchers represent how many people
are interested in this project and are continuously following
it. The metric forks represents how many projects are devel-
oped based on this original project. Based on the recorded
large number of stars/watchers/forks of the four selected
project, the projects that we selected are popular in the open
source community; this helps us collect sentences posted
by different developers with a diversity of writing styles.
Finally, Table 1 presents statistics of these four projects. The
columns are project name, number of stars/watchers/forks,
programming language used in the project, total number of
issues, number of issues we analyzed, number of sentences
we manually labelled, and time period of the issues we
analyzed.

The first author first conducted a preliminary exploration
with 200 issue reports randomly selected from TensorFlow.
The purpose of this exploration is to investigate whether
Di Sorbo et al.’s taxonomy of intentions and their linguistic
patterns show promise to be effective for classifying sen-
tences from developer discussions in issue tracking sys-
tems. We chose TensorFlow since: 1) TensorFlow is one
of the most popular deep learning frameworks, and our
proposed approach is based on deep learning; 2) the first
author was learning how to use TensorFlow when the study
began, thus making it easier to understand the intentions
of developer discussions in TensorFlow. Since there are a
large number of comments in these 200 issue reports, we
extracted the paragraphs of comments, and performed a
stratified sampling of the paragraphs (i.e., more paragraphs
would be randomly selected from issue reports with more
comments). Then, we split the sampled paragraphs into
sentences with the Stanford CoreNLP toolkit [55]. Next, we
used regular expression to remove source code and stack
traces – since they do not contain user intentions. In this
way, we got 2,256 sentences in total. Note that our sentences
were sampled from the randomly selected 200 issue reports,
instead of directly sampling from all issue reports. We chose
the sampling strategy based on a limited number of issue
reports because the context of a sentence is often needed
to understand the likely intention behind the sentence. For
example, the sentence “if you download tensorflow from github
instead of ‘git clone’, you will not meet this” in TensorFlow Issue
#4312 seems to belong to information giving. However, since
it was extracted from an issue report about a configuration
error, it would be easy to understand that the word ‘this’
in the sentence refers to the error and this error could be
avoided if we download tensorflow using ‘git clone’. Thus,
this sentence should belong to solution proposal. From this
example, we can see that it can require substantial effort
if sentences are sampled from all issue reports to achieve
reliability in intentions determination, as many issue reports
may need to be consulted to determine the content of
sentences.

We first applied Di Sorbo et al.’s linguistic patterns
to classify these sentences extracted from the 200 issue
reports of TensorFlow, and we found that about 55% of
all sentences could not be classified (i.e., they could not
be matched with any patterns). Although some sentences
might be meaningless (e.g., “Sorry for my late reply”), it
is not likely that more than half of the comments in an

5

TABLE 1
Statistics of the analyzed projects (recorded on April 13rd, 2017).

Project Stars Watchers Forks Language # Total Issues # Analyzed Issues # Labeled Sentences Time Period
TensorFlow 55,396 4,993 26,380 C++/Python 6,075 200 2256 Nov 2015 - Jan 2017

Docker 43,101 3,213 12,797 Go 15,652 100 1216 Jun 2013 - Dec 2016
Bootstrap 109,884 6,839 50,557 JavaScript 14,885 100 1123 Sep 2011 - Dec 2016
VS Code 26,771 1,495 3,664 TypeScript 23,933 100 813 Nov 2015 - Mar 2017

TABLE 2
The refined taxonomy of intentions based on Di Sorbo et al.’s work. The two new categories are highlighted in bold.

Category Decription TensorFlow Docker Bootstrap VS Code
Num Ratio Num Ratio Num Ratio Num Ratio

Information Share knowledge and experience with other people, or inform other people about 543 24% 287 24% 305 27% 194 24%Giving (IG) new plans/updates (e.g. “The typeahead from Bootstrap v2 was removed.”).
Information Attempt to obtain information or help from other people (e.g. “Are there any 359 16% 263 22% 192 17% 148 18%Seeking (IS) developers working on it?”).
Feature Require to improve existing features or implement new features (e.g. “Please 213 9% 128 11% 107 10%) 88 11%Request (FR) add a titled panel component to Twitter Bootstrap.”).
Solution Share possible solutions for discovered problems (e.g. “I fixed this for UI Kit 274 12% 129 11% 109 10% 59 7%Proposal (SP) using the following CSS.”).
Problem Report bugs, or describe unexpected behaviors (e.g. “the firstletter issue was 400 18% 127 10% 132 12% 103 13%Discovery (PD) causing a crash.”).
Aspect Express opinions or evaluations on a specific aspect (e.g. “I think BS3’s new 349 16% 184 15% 159 14% 159 20%Evaluation (AE) theme looks good, it’s a little flat style.”).
Meaningless Sentences with little meaning or importance (e.g. “Thanks for the feedback! ”). 118 5% 98 8% 119 11% 62 8%(ML)

issue report are meaningless. Thus, the result show that a
lot of information would be missed when using Di Sorbo
et al.’s linguistic patterns. Besides, we found that while
many sentences were classified as solution proposal or feature
request by linguistic patterns, they did not seem to belong
to these categories. For example, the sentence “Currently
there is no way to do this with 2d convolutions as mentioned
by @alphaf52.” in TensorFlow Issue #1136 was classified as
solution proposal while it should belong to information giving.
Thus, the result show that while the majority of Di Sorbo et
al.’s taxonomy of intentions and their linguistic patterns are
still effective for developer discussions from issue tracking
systems, refinement is needed to cover more sentences in
this kind of developer discussions.

Next, to increase the generalizability of our study, we
randomly selected 100 issue reports from the other three
projects, using the same selection approach as for Tensor-
Flow. The high cost of manually labelling sentences, and the
context required for manually inspection, limits the overall
number of issue reports, paragraphs and sentences con-
sidered. The approach taken also enables the investigation
of the impact of different amount of training data on the
effectiveness of our approach when cross-project prediction
is employed. In total, we collected 5,408 sentences from 500
issue reports in these four projects.

Then, we created one card for each sentence, where
the card contained the natural language description of the
sentence, and the context of the sentence, specifically the
full paragraph in which the sentence appeared and the
corresponding issue number. We used two iterations of a
card sorting approach [56] to label these sentences.
Iteration 1. We first randomly picked 1,000 sentences from
the 5,408 sentences in the dataset. The first two authors
manually and independently categorized these sentences
based on the six intention categories proposed by Di Sorbo
et al. [10]. If an author considered the sentence could not
be categorized into any of the six categories, it was set
aside for further discussion. Next, the first two authors and

an invited post-doc (who is not a co-author of this paper)
worked together to discuss the disagreements in the labeling
process and cases that could not be categorized into the six
categories. We found:

1) Only 11 (1.1%) sentences were manually classified as
opinion asking by any one of the two labelers. We also
applied Di Sorbo et al.’s linguistic patterns to classify
the 1,000 sentences in Iteration 1 and only 7 (0.7%)
sentences were classified as opinion asking. This finding
is consistent with Di Sorbo et al.’s work, where they
found that among all the 1,077 sentences extracted from
mailing lists, only 17 sentences (1.6%) were classified as
opinion asking. On the other hand, sometimes it is difficult
to clearly distinguish these two categories. For example,
the sentence “What do you think about the Zeros solution?”
in TensorFlow Issue #783 can be categorized into either
category. Such ambiguity also exists in Di Sorbo et al.’s
manually summarized linguistic patterns for these two
categories. For example, they identified the pattern “Is
[something] you prefer?” for the opinion asking category,
while they also identified the pattern “Which [something]
do you prefer/favor/like?” for the information seeking cate-
gory. Considering the low ratio of sentences belonging
to opinion asking and the fact that opinion asking is, in
essence, a sub-category of information seeking, we merge
opinion asking into the information seeking category in this
study to avoid the ambiguity.

2) Some sentences express opinions or evaluations on a
specific aspect, and cannot to be categorized into the six
categories. The evaluated aspects can vary; for instance,
sometimes the evaluated aspect is a bug, a feature, a
project, a developer or something else. For example,
in the sentence “But I think it’s cleaner than my old test,
and I prefer a non-JS solution personally.” in Bootstrap
Issue #1935 expresses the user’s preference for a certain
type of solution. Thus, we create a new category aspect
evaluation to complement the intention categories. Sen-
tences belonging to aspect evaluation can help us better

6

understand user preferences and viewpoints. Moreover,
the category of aspect evaluation is also inspired by
Gu and Kim’s study [22]. For example, we found that
some feature requests have been discussed for years,
but developers are still not willing to implement them.
We can extract relevant aspect evaluation sentences to
summarize the positive and negative views of different
developers, which may be used to help maintainers
better understand what users want and what developers
are concerned about.

3) Some sentences in developer discussions are meaning-
less for bug resolution or feature implementation, e.g.,
“Thanks for your reply”. In this study, we create a new
category meaningless to include these meaningless sen-
tences. Although Di Sorbo et al.’s linguistic patterns do
not cover such sentences, this meaningless category is
necessary for our approach, since any input sentence
would finally be assigned to one intention category in
our approach.

We use Fleiss Kappa [57] to measure the agreement
between the two labelers. There are 295 sentences (29.5% of
all sentences) with disagreement between the two labelers,
and the Kappa value is 0.64, which indicates substantial
agreement. In total, there are 172 (17.2%) sentences that are
not able to be categorized by at least one labeler into the six
categories of Di Sorbo et al.’s taxonomy. About half of these
sentences are meaningless and most of the other sentences
belong to the case we described for the aspect evaluation
category.

Among the sentences that are disagreed with the two
labelers, most of them belong to the case where one labeler
chose information giving category while the other labeler
chose solution proposal or feature request category. Note that
Di Sorbo et al. defined the description of information giving
as “linguistic patterns exploited to inform/update other users
about something”. This definition is a bit vague since the
sentences of some other categories (e.g., solution proposal
or aspect evaluation) are also to inform other users about
something. To improve the consistency during the manual
labeling process, if a sentence seems to belong to multiple
categories, we always prefer the other categories instead
of information giving. Thus, our definition of information
giving emphasizes more about the information with less
subjectivity (e.g., knowledge, project plan), and the sentence
should state the explicit kind of information.

Besides, a feature is more related to a new proposed
functionality, while an aspect is more related to an exist-
ing characteristic of a project. When developers propose
a solution or a feature request, the style they write their
sentences may be similar to aspect evaluation sentences (e.g.,
“I think configure need an option to decide target environment”
in TensorFlow Issue #4312 (feature request) and “I think the
best solution is to explicitly add a second derivative function
in Python” in TensorFlow Issue #4174 (solution proposal)).
In such case, we prefer solution proposal and feature request
instead of aspect evaluation.

In summary, at the end of this iteration, we find that the
majority of categories in Di Sorbo et al.’s taxonomy of inten-
tions are still applicable for developer discussions in issue
tracking systems. We have only made a few adjustments.

The final seven intention categories identified at the end of
this iteration are shown in Table 2.
Iteration 2. The first two authors then independently la-
belled the remaining 4,408 sentences of the four projects
into the seven categories as shown in Table 2. There are
621 sentences (14.1% of all sentences) with disagreement
between the two labelers, and the overall Kappa value in
this iteration is 0.78, which is higher than that of the first
iteration, since the two labelers already had some experience
to understand different intentions. Also, in this iteration,
all sentences are successfully categorized with the new
taxonomy of intentions. After completing the manual label-
ing process, the two labelers and another post-doc worked
together to discuss their disagreements to reach a common
decision.

During the labeling process, we faced the following
challenges:
1) While the intentions of most sentences can be easily

decided by reading the sentence itself or the context
sentences in the paragraph, 0.8% of the sentences re-
quire labelers to carefully consider more sentences in
the context paragraphs or comments posted by other
developers. These sentences are the major cause of the
disagreements between the two labelers. To address this
challenge, the two labelers and another post-doc read the
context paragraphs, and sometimes even the whole issue
report, to make the final decision.

2) 1.3% sentences can be categorized into more than one
intention categories simultaneously. To address this chal-
lenge, the two labelers and another post-doc discussed
these sentences and decided the most suitable intention
category based on agreement.
Table 2 shows the categories of the labelled sentences

and the distribution of sentences for the four projects con-
sidered in our study. Note that the distribution of sentences
varies in different projects. For example, TensorFlow has
the highest proportion of sentences belonging to problem
discovery. One possible reason is that Tensorflow is still at
an early stage of development with rapid release cycles.

4 BACKGROUND ON DEEP LEARNING

Our approach uses deep learning. In this section, we intro-
duce background material on representing sentences using
word embedding and the CNN architecture for sentence
classification needed to understand the approach we intro-
duce.

4.1 Sentence Representation

Traditional text classification techniques are usually based
on a Vector Space Model (VSM) using bag-of-words fea-
tures. In VSM, each word is treated as a discrete atomic
symbol, and a sentence is represented as a vector of these
symbols. Such an encoding cannot provide useful informa-
tion regarding relationships that may exist between indi-
vidual symbols. For example, while both Maven and Ant
are Java build tools, we cannot calculate their “distance”
using the encoding of discrete atomic symbols to evaluate
whether they are semantically close to each other. Another
downside of representing words as unique, discrete symbols

7

is that the data becomes sparse. For example, if a vocabulary
contains millions of unique words, then a sentence with a
few words has to be represented by a vector with a very
large dimension size while most values in the vector are just
zero.

To address the issue of identifying semantically simi-
lar words, there are other techniques like latent semantic
indexing (LSI) [58], probabilistic latent semantic analysis
(pLSA) [59], and latent Dirichlet allocation (LDA) [60] that
are able to map a document to a probabilistic distribution
of different topics, and each topic is also represented by
a probabilistic distribution of different words. In general,
these techniques are called topic modelling, and the “topics”
produced by these techniques are clusters of words that
usually appear in similar context. However, topic modelling
cannot be directly used for classification, since its original
purpose is to discover the hidden semantic structures (i.e.,
different topics) from a large collection of unlabeled docu-
ments. Topic modelling is more widely used for information
retrieval. However, some previous studies [61], [62] have
shown that older and simpler IR technique (e.g., VSM), can
perform better than more complicated IR techniques (e.g.,
LDA) for certain applications like bug localization.

Recently, a number of neural-network-based ap-
proaches [16], [63], [64] have been proposed to represent
each word by a low dimensional vector called “word em-
bedding”. Word embedding depends on the distributional
hypothesis [65], which states that words in the same context
within a sentence tend to share semantic meaning. Thus,
semantically similar words (e.g., Maven and Ant) would be
close in the embedding space and we can easily evaluate the
distance between them by calculating the cosine similarity
of their corresponding embedding vectors. Word embed-
ding has been successfully applied in software engineering
tasks [44], [47]. In this paper, to learn word embedding, we
follow these previous studies to leverage Mikolov et al.’s
Skip-gram model [16], which is popular for its simplicity
and efficiency during training.

Using word embedding, we represent a sentence by a
L × D matrix, where L represents the maximum length of
all sentences in the training dataset, and D represents the
dimension size of embedding space. Note that D is a hyper-
parameter and all words would have the same dimension
size when learning word embedding. In the matrix, the ith

row represents the embedding vector of the ith word in
the sentence. If a sentence’s length l is less than L, we pad
the last L − l rows by zeros. We must pad since our CNN
requires a fixed size of input matrix.

During the training phase, we use all sentences in the
training dataset to learn word embedding, and we also store
a dictionary which records the embedding vector of each
unique word. In the prediction phase, given a new sentence,
we first lookup the dictionary to retrieve the embedding
vector for each word in the sentence. If a word cannot be
found in the dictionary, it would be mapped to a special
token in the dictionary called UNK (i.e., unknown word)
and its embedding vector would be initialized as a vector of
zeros. This implementation is based on the API provided by
TensorFlow and it is also used by previous studies of deep
learning in software engineering [49]. Finally, If the length
of a new sentence is larger than L, we only keep the first L

words so that the sentence is still represented by a L × D
matrix.

4.2 CNN for Sentence Classification
In this section, we focus on introducing the basic idea and
important technical details of Kim’s Convolutional Neural
Network (CNN) architecture for sentence classification [21].
The CNN consists of multiple layers, including an input
layer, convolutional layer, pooling layer and output layer.
The training of CNN follows an iterative process. In each
iteration, data is passed through the layers. Each layer
contains multiple neurons, which receive the output values
of the previous layer and apply specific transformation to
these values.

CNN has parameters and hyperparameters. The earlier are
randomly initialized and will be learned during training,
while the later are set by humans before training and their
values will remain the same during the training process.
For example, the dimension size of word embedding is one of
the hyperparameters.

CNN starts with the input layer, which takes as input
the matrix representation of a sentence. Here we denote this
matrix asM . Then the convolutional layer receives the input
matrix and performs convolution operation on it using dif-
ferent filters. Each filter is also a matrix, denoted as F , having
the same width as the input matrixM , but varying in height.
The purpose of each filter with height n is to capture the
semantic information of each n-gram sequence (i.e., series of
n consecutive words) in the sentence through convolution
operation. Let Mi:i+n−1 represents the sub-matrix of M
from the ith row to the (i+n− 1)th row, which contains the
embedding vectors of n continuous words (i.e., n-grams). A
convolution operation is the dot product between the filter
matrix F and the n-grams sub-matrix Mi:i+n−1, adding by
a bias value bi, which is computed as follows:

oi = F ·Mi:i+n−1 + bi (1)

The filter is applied repeatedly to each possible n-
grams in the input sentence with convolution operation
and produces an output vector O of length L − n + 1, i.e.,
O = [o1, o2, . . . , oL−n+1]. The neural network will automati-
cally learn appropriate parameters (i.e., values) in each filter
matrix F and the bias value bi through training, so that the
output vector O can carry semantic information of different
n-gram sequences in the input sentence. In practice, to
enable the network to learn enough semantic information in
different granularities (i.e., n-grams with different length),
multiple filters with various heights are used. Note that the
combination of filter heights and the number of filters for each
height are two hyperparameters.

Figure 1 shows an example of the CNN architecture. The
input sentence “We need Java API support” is represented as
a matrix of size 5×4 (i.e., five words, each represented as an
embedding vector of size 4). Then in the convolutional layer
we perform convolution operations on the input matrix via
different filters. Suppose we have a filter of size 2×4, then it
would perform convolution operation with the sub-matrix
of each 2-gram sequences in the input sentence, including
“We need”, “need Java”, “Java API” and “API support”, re-
spectively. Thus, given an input matrix of size 5 × 4 and a

8

Convolution results
2 filters for each filter size (2,3,4)

Embedding
Dimension Size= 4

We

need

Java

API

support

Information Giving

Information Seeking

Feature Request

Solution Proposal

Problem Discovery

Aspect Evaluation

Others

N*K matrix representation
of sentence

1-max
pooling result

Concatenation of
pooling results

Classification
result

Fig. 1. An example of the CNN architecture.

filter of size 2× 4 , we would get a vector of 4 output values
after the convolution operations (i.e., marked by red color
in Figure 1).

The convolutional layer is followed by a pooling layer
which serves to progressively reduce the number of param-
eters that needs to be passed to the output layer and reduce
the computation cost. Specifically, the pooling layer receives
the output vector of each filter in convolutional layer and
applies a 1-max pooling function (i.e., extracts the maximum
value) to the vector. Suppose we have m filters in total,
then the pooling layer would receive m vectors and output
m individual values. The pooling outputs of all filters are
concatenated as a high-level feature vector and passed to
the output layer.

The output layer contains n neurons and each neuron
corresponds to one specific category for classification. Note
that in Kim’s CNN, the output layer only contains two neu-
rons since it focuses on binary classification. When receiving
the input vector (denoted as V , with size m × 1) with m
values, the output layer first perform linear transformation
on it, computed as follows:

Y =W ∗ V +B (2)

Here W is a matrix of size n ×m and B is vector with
n values. Thus, the output Y is a vector with n values.
The values in W and B are also automatically learned by
neural network through training. Then, a softmax function
is applied to normalize the values in Y so that each neuron’s
output can represent the probability of the input sentence
belonging to one specific category. The softmax function is
computed as follows:

Softmax (yi) =
eyi∑n
j=1 e

yj
(3)

Suppose the input sentence belongs to the ith category,
then we denote G as a ground truth vector in which the ith
element value is 1 and all the other element values are 0.
Then we use the cross-entropy function to measure the loss
between the prediction result (i.e., the normalized vector
Y produced by the output layer) and the ground truth
(i.e., vector G). The cross-entropy function is computed as
follows:

Loss(Y,G) = −
K∑
i

Gilog(Yi) (4)

The training process of CNN is an optimization task
that proceeds in multiple iterations. In each iteration, the
network predicts the labels of sentences in training data,
and measures the loss between the prediction result and the
ground truth label of each sentence. Then, the network will
use backpropagation [66] to adjust the network parameters
(e.g., values in the matrix of each filter). In the subsequent
iterations, the training process of CNN tries to lower the
average loss on the training data. Such process repeats many
rounds until the average loss reaches convergence (i.e., its
value has stabilized across iterations). In practice, we need
to set a learning rate to decide how fast we would like the
neural network to adjust the parameters. A higher learning
rate can speed up the training process, but it may negatively
impact the performance on classification. By default, Kim’s
CNN set learning rate as 10−4 .

5 APPROACH

In this section, we first present the overall framework of
our approach. Then we introduce how we integrate batch
normalization into CNN to improve its time efficiency,
and how we improve the accuracy of CNN by automatic
hyperparameter tuning and ensemble learning.

5.1 Overall Framework
Figure 2 presents the overall framework of our approach.
It contains two phases: a training phase and a prediction
phase. In the training phase, we first learn word embedding
of all unique words in training data and represent each
sentence by a matrix. Then we take as input the matrix
representation of each sentence to train a CNN, which
predicts the probability of an input sentence to belong to
each of the intention categories. Since the CNN requires
an initial setting of multiple hyperparameters, we propose
an automatic hyperparameter tuning approach to search
and select the appropriate values of two most important
hyperparameters (i.e., dimension size of word embedding
and number of filters for convolution operation) in a greedy
way. The selected hyperparameters are then passed to the
ensemble learning component, where we train multiple
CNNs with different combination of filter heights, to achieve
a more stable performance.

In the testing phase, for each new sentence, we first
lookup the dictionary of word embedding learned in the
training phase, and retrieve the embedding vector of each
word in the sentence to represent the sentence by a matrix.
Then we feed the sentence matrix into the ensemble learning
component, and each CNN will predict the label of the
sentence. Finally, the label predicted by the most CNNs will
be chosen as the final prediction result.

5.2 Adapted CNN with Batch Normalization
To adapt Kim’s CNN architecture to solve our problem (i.e.,
intention mining), we modify the output layer of their CNN
from 2 neurons (i.e., binary classification) to 7 neurons (i.e.,

9

Sentences
for training

Learn word
embedding

Matrix
representation

of sentences 3-gram

4-gram

2-gram

Input
Layer

Conv
Layer

BN
Layer

Pooling
Layer Output

Layer

Sentences
for testing

Automatic
hyperparameter

tuning

Ensemble of
CNN models

C1

C2

Cn

Dictionary

Lookup
Matrix

representation
of sentences

Classifiers
voting

Prediction
results

Training
Phase

Prediction
Phase

Fig. 2. Overall framework of our approach.

7-class classification, one for each intention category). By
training appropriate parameters for each layer, the network
would learn how to represent high-level semantic meaning
of the input sentence using these parameters. And it also
learns the relationship between this high-level representa-
tion and the corresponding intention. Given a new sentence,
the trained network would also extract its high-level repre-
sentation and identify its intention category even if there is
no keywords matching between the new sentence and the
sentences in training data.

One problem with deep learning is its high computation
cost. Since a deep neural network has multiple layers with
millions or even billions of parameters to learn during train-
ing [50], it is very time consuming if a practitioner wants to
re-run the training process for hyperparameter tuning or
debugging. Ioffe and Szegedy [20] pointed out that training
deep neural network is complicated because the distribu-
tion of each layer’s inputs changes during training, as the
parameters of the previous layers change. This slows down
the training by requiring lower learning rate and careful
parameter initialization. They refer to this phenomenon
as internal covariate shift and they proposed an algorithm
called batch normalization to accelerate the training process
by reducing internal covariate shift.

In our approach, we add a batch normalization (BN)
layer between the convolutional layer and the pooling layer.
In practice, the BN layer is usually added after the convo-
lutional layer or the fully-connected layer (i.e. the layer that
concatenates all pooling results in our architecture) [20]. We
choose to add BN layer after the convolutional layer follow-
ing Ioffe and Szegedy [20]. In general, batch normalization
can reduce the number of iterations required to minimize
the loss function. However, the more BN layers added, the
more time is needed for a single iteration to run during
the training process. Since our preliminary experiment has
shown that adding one BN layer is already enough to
drastically reduce the training time, we do not add another
BN layer in our architecture to avoid potential negative

impact on efficiency introduced by multiple BN layers. In
future work, we plan to further investigate the impact of
adding BN layers in different places.

By adding the BN layer, the output of the convolutional
layer would be normalized before feeding to the pooling
layer. For each filter of the convolution layer, suppose there
are m output values, we refer to these m values as a
mini-batch, represented by X = (x1, x2, ..., xm). We first
calculate the mean value µX and variance σ2

X of the mini-
batch X . Next, we normalize each output value xi so that
the distributions of the normalized values of X̂ have the
expected mean value of 0 and the variance of 1, i.e.,

x̂i ←
xi − µX√
σ2
X + ε

(5)

In the above equation, a small constant ε (10−3 by default)
is added to avoid dividing by zero during normalization.
Finally, we scale and shift the normalized values with a pair
of parameters γ and β, and we feed each transformation
result yi to the corresponding neuron in the pooling layer,
i.e.,

yi ← γx̂i + β ≡ BNγ,β (xi) (6)

In the above equation, the values of γ and β are automat-
ically learned by the neural network during the training
process. Note that γ and β are independent for each in-
dividual filter. If we have N filters, then the network will
learn N pairs of γ and β. Using batch normalization, we
are able to set a higher learning rate while the trained CNN
model still performs good. In practice, we set learning rate
to 10−3 , and it will automatically decay to 10−4 as the
training progresses.

5.3 Automatic Hyperparameters Tuning
Training CNN requires initial setting of multiple hyperpa-
rameters (e.g., the number of filters). Previous studies [17]–
[19] have shown that hyperparameter tuning is important

10

for a prediction model to achieve better performance. How-
ever, manual hyperparameter tuning is tedious and requires
much experience or expert knowledge. To address the above
issue, we propose an automatic hyperparameter tuning
approach.

Zhang and Wallace conducted a sensitivity analysis of
(and wrote a practitioners’ guide to) CNN for sentence
classification [67]. They found that the dimension size of
word embedding, the number of filters, and the combination
of filter heights are the most important hyperparameters
that have a large effect on performance, and should be
tuned. Based on their findings, we focus on tuning of the
first two hyperparameters. The third hyperparameter will
be considered in the ensemble learning step (see Section 5.4).

In practice, it is impossible to enumerate the full search
space of hyperparameters. In this paper, we first search
and select the values of the first two hyperparameters in a
greedy way. Specifically, we first enumerate the dimension
size of word embedding from 64 to 320 with a step of
64, and train a CNN for each candidate dimension size.
Note that during the enumeration process, all the other
hyperparameters are set to their default values (i.e., the
same values as those appearing in the published source code
of Kim’s CNN implementation based on TensorFlow [68]).
Among all the candidate dimension sizes, we choose the one
whose corresponding CNN achieves the minimum average
loss on the training dataset. Similarly, we then enumerate
the number of filters from 64 to 320 with a step of 64, and
also choose the one whose corresponding CNN achieves
the minimum average loss. Note that we do not increase
these two hyperparameters further beyond 320 since most
computation of our CNN is completed by GPU and the
memory resource of our GPU is limited. We choose 64 as
the step size since many previous studies (e.g., [52], [69]) in
deep learning used multiples of 64 as values of these two
hyperparameters.

5.4 Ensemble Learning
As for the hyperparameter of combination of filter heights,
previous studies [20], [70]–[72] on CNN for image classifica-
tion have shown that the ensemble of multiple CNNs with
different combination of filter heights can achieve better
and more stable performance. Thus, instead of choosing
the “best” combination of filter heights, we simply combine
multiple CNNs trained with different combinations of filter
heights to predict new sentences together. Note that all these
CNNs trained for ensemble learning use the automatically
tuned dimension size of word embedding and number of
filters by the approach described in Section 5.3.

In this paper, we consider ten combinations of filter
heights, including (1,2,3), (2,3,4), (3,4,5), (4,5,6), (1,2,3,4),
(2,3,4,5), (3,4,5,6), (1,2,3,4,5), (2,3,4,5,6) and (1,2,3,4,5,6).
These combinations are produced by an enumeration from
1-gram to 6-gram with at least three different heights for one
combination. Although there are still other combinations,
we omit them since we need to control both the memory
and time cost.

Finally, given a new sentence in the prediction phase,
each CNN in the ensemble learning component will predict
the label of the sentence and the label predicted by the most
CNNs will be chosen as the final prediction result.

6 EXPERIMENT & RESULTS

In this section, we evaluate the performance of our approach
for automatically identifying intention categories. We first
present the experiment design, including the evaluation
setting and research questions. Then we present our experi-
ment results.

6.1 Experiment Design
6.1.1 Evaluation Settings
The experimental environment is a desktop computer
equipped with Nvidia GTX 1080 GPU, Intel(R) Core(TM) i7-
6700 CPU and 16GB RAM, running Ubuntu 16.04 LTS. We
evaluate the performance of our approach in the following
three settings:
10-Fold-Cross-Validation Setting. We first evaluate our ap-
proach using Di Sorbo et al.’s published dataset (i.e., email
data). Di Sorbo et al. studied two projects (i.e., Ubuntu and
Qt), and looked at both projects to manually summarize
linguistic patterns. To be fair, our approach also needs to be
allowed to look into both projects to automatically learn mod-
els. Thus, we evaluate our approach using 10 times 10-fold-
cross-validation [23]. Specifically, we first randomly shuffle
the dataset and divide it into ten folds of approximately
equal size by a stratified random sampling. Then, each fold
is used as a testing dataset to evaluate the prediction model
built on the other nine folds (i.e., training dataset). The entire
process is repeated ten times to alleviate possible sampling
bias in random shuffle and sampling, and we record the
average evaluation results.
Cross-Project Setting. We then evaluate the performance of
our approach using the 4 projects in our dataset considering
cross-project prediction. Each time, we choose one project
as “target project” (i.e., for prediction), then we refer to
the other three projects as “source projects”. We build a
prediction model by using all sentences in source projects,
and predict the labels of all sentences in target project. The
reason is that we would like to investigate whether our
prediction model built on source projects can be generalized
to other projects. As shown in Section 3, the annotation
effort is large, and it is impractical to annotate sufficient data
within every new project that we want to apply our pro-
posed approach to build a prediction model. Finally, since
our approach introduces randomness (e.g., the parameters
of each filter in CNN are randomly initialized), we repeat
the cross-project prediction 10-times and record the average
evaluation results.
Cross-Discussion-Type Setting. We have annotated sen-
tences from two different kinds of developer discussions,
i.e., issue reports (our dataset), and emails (Di Sorbo et al.’s
dataset). In this setting, we evaluate the performance of our
approach by training a prediction model using all sentences
in Di Sorbo et al.’s (our) dataset to predict sentences in our
(Di Sorbo et al.’s) dataset. Due to randomness involved in
our approach, we also repeat the cross-discussion-type pre-
diction 10-times and record the average evaluation results.

Note that when we compare our approach with Di
Sorbo et al.’s patterns, we remove sentences belonging to
aspect evaluation and meaningless in our dataset since these
two intentions are not part of Di Sorbo et al.’s taxonomy
and covered by their linguistic patterns. Also, since we

11

merge opinion asking into information seeking, if a sentence
is classified by Di Sorbo et al.’s patterns as opinion asking,
we consider it as information seeking.
Evaluation Metrics. Followed by Di Sorbo et al.’s study [10],
we use accuracy, precision, recall, and F1-score to evaluate
the performance of our approach. Accuracy is the propor-
tion of sentences that are correctly classified among all sen-
tences for all classes. Precision for class Ci is the proportion
of sentences that are correctly classified as class Ci among
all sentences that are classified as class Ci. Recall for class
Ci is the proportion of sentences that are correctly classified
as class Ci among all sentences that belong to class Ci. F1-
score for class Ci is the harmonic mean of its precision and
recall.

Accuracy evaluates the overall performance of an ap-
proach, while precision, recall and F1-score evaluate the
performance of an approach for a specific intention category.
These evaluation metrics are widely used in previous stud-
ies of software engineering studies that involve classification
process [73]–[77].

6.1.2 Research Questions

In this paper, we investigate the following four research
questions:
RQ1: How effective is our approach based on deep learn-
ing?

Our approach aims to classify sentences of developer
discussions from issue tracking systems. For the approach to
be useful, we need to consider how accurate it is in sentence
classification and how it compares with existing approaches.
To answer this research question, we investigate three spe-
cific sub-questions, as shown below:
RQ1-1: How does our approach compare to Di Sorbo et
al.’s approach?

Since our taxonomy of user intentions is an extension of
Di Sorbo et al.’s work, we choose their linguistic pattern-
based approach as a baseline and compare it with our
approach. We compare the two approaches using the three
experiment settings described in Section 6.1.1.
RQ1-2: How does our approach compare to other auto-
mated approaches in related studies?

There are other approaches that also classify sentences
into categories, other than intentions. Thus, we investigate
how the approaches compare in performance when adapted
to our task (i.e., mining intentions of sentences). Specifi-
cally, we compare our approach with the following three
approaches:

CNN: In Section 5.2 we introduced how we adapt Kim’s
CNN architecture to our work. We use the implementa-
tion of their approach based on TensorFlow. The code is
published in GitHub [68]. Note that Kim’s CNN did not
contain the batch normalization layer and we use the default
hyperparameter setting in the published source code.

NLP: Gu et al. proposed a classification technique in
which they designed text features based on natural language
processing (NLP) to distinguish five categories of Android
App review sentences [22]. Their approach can be adapted
to solve our problem, since all the features extracted by their
approach exist for any types of sentences. Specifically, their
approach requires Stanford CoreNLP tools [55] to parse a

sentence. We re-implement their approach using the same
tool and compare it with our approach.

SMO, LibSVM, NBM, RF and kNN: In general, the
intention mining task belongs to text classification. Many
traditional text classification techniques are based on Vec-
tor Space Model (VSM) using bag-of-words features. Each
unique word is regarded as a feature, and a sentence is
represented as a vector of feature values. In practice, bag-of-
words features extracted from raw text data requires basic
preprocessing. In this paper, we follow previous studies [34],
[78] to do three basic pre-processing steps, including TF-
IDF transformation and stemming and stop words removal.
Since there are many classification techniques that can be
applied to VSM-based data representation, we choose 4
different classification techniques to build different classi-
fiers, namely Support Vector Machine (SVM), Naive Bayes
Multinomial (NBM), Random Forest (RF), and k-Nearest
Neighbor (kNN). These classification techniques are also
widely used in previous studies [23], [74], [79]. Our imple-
mentation of these classifiers is based on Weka [80], which
is a suite of machine learning software written in Java.
Specifically, Weka provides two different implementations
for SVM, namely SMO [81] and LibSVM [82]. We evaluate
both SMO and LibSVM in our experiment. All of these
classifiers are evaluated with the default hyper-parameter
setting in Weka.

DE-SVM and Auto-Weka: Recently, a number of studies
have shown that deep learning could be outperformed
by traditional machine learning approaches when they are
trained properly. For example, Fu and Menzies [24] pro-
posed DE-SVM, which applied a simple optimizer called
differential evolution to carefully tune SVM, and they found
that DE-SVM outperforms a CNN based approach for bi-
nary classification. Another example is Fakhoury et al.’s
work [25], in which they applied Auto-Weka [83] to auto-
matically search for the optimal classifier and correspond-
ing hyperparameter settings to maximize the performance
for the task of linguistic smell detection. The optimization
algorithm of Auto-Weka is based on Bayesian optimization,
and it was reported to perform better than a CNN-based
approach. Thus, in this paper, we also follow these two stud-
ies to apply hyperparameter tuning algorithms for different
machine learning models. Specifically, DE-SVM only focuses
on tuning for LibSVM, and we follow Fu and Menzies to use
differential evaluation to tune the same hyperparameters for
LibSVM, including kernel (‘liner’, ‘poly’, ‘rbf’ or ‘sigmoid’),
C (1 to 50), gamma (0 to 1) and coef0 (0 to 1). For Auto-
Weka, we directly integrate its API with our Java code and
it would automatically choose the best classifier with tuned
hyperparameters. The objectives of both DE-SVM and Auto-
Weka are to maximize accuracy.
RQ1-3: How much time and memory does it take for our
approach to run?

If our approach cannot run efficiently in a reasonable cost
of time and memory, developers might not be willing to use
it in practice even if it could achieve a high accuracy. To
improve the training speed of our approach, we integrate
batch normalization with CNN. Thus, we are interested
to investigate its benefit on time efficiency. On the other
hand, our approach uses GPU acceleration, which requires
to load the network into the memory of GPU. In general,

12

setting a larger value for certain hyperparameters like the
dimension size of word embedding or the number of filters
would increase the memory cost, since more neurons would
be created for the network. Thus, we are interested to
investigate the memory cost of our approach. To answer this
research question, we first evaluate the training time cost
of our approach with and without BN, and other baseline
approaches under different experiment settings. Then we
evaluate the memory cost of our approach and compare it
with other baseline approaches.
RQ2: Does our automatic hyperparameter tuning approach
find the best setting of hyperparameters?

Since our automatic hyperparameter tuning runs in a
greedy way, the full search space is pruned a lot. Specifically,
our approach only enumerates 4 + 4 + 10 = 18 different
settings since the other hyperparameters are fixed when we
enumerate one specific hyperparameter. If we enumerate
all possible combinations of the three hyperparameters (i.e.,
using grid search), there would be 4 ∗ 4 ∗ 10 = 160 dif-
ferent settings. Thus, we investigate whether our automatic
hyperparameter tuning approach finds a setting whose per-
formance is close to that using the best hyperparameter
setting. To answer this research question, we first use grid
search to enumerate all possible settings of hyperparameters
and choose the setting that achieves the best accuracy to
compare with our approach. Note that during grid search,
the search spaces of both the dimension size of word em-
bedding and the number of filters are still from 128 to 320
with a step of 64, and the candidate combinations of filter
heights are the same with those presented in Section 5.3.
Then we compare the hyperparameters selected and the
corresponding accuracy results achieved by our approach
and grid search.
RQ3: Do developers agree with our taxonomy of inten-
tions and the classification results of our approach?

One of our initial questions to investigate in this paper is
whether Di Sorbo et al.’s intention mining approach can be
generalized across a different kind of developer discussion
and a different set of projects. Our preliminary exploration
during the manual labeling process has shown that refine-
ments were needed to the intention categories and that
many sentences were not covered by the linguistic patterns
manually learned by Di Sorbo et al.’s work. Although we
refined the taxonomy of intentions for developer discus-
sions from issue tracking systems and we manually labelled
more sentences to evaluate our automated approach, it is
still unknown whether developers agree with our taxonomy
of intentions and the classification results of our approach.
As a further investigation into this generalization question,
we conduct a user study in which we ask professional devel-
opers to assess whether they agree with intention categories
produced using our approach that was trained with data
manually annotated by the authors on different projects. The
details of the user study are presented in Section 7.
RQ4: Can our approach help improve a downstream
automated software engineering task?

The output of our approach is a set of classified sen-
tences with different intentions. However, it is still not clear
whether these classified sentences can be applied in soft-
ware engineering tasks. To further demonstrate the value
of our proposed approach, we apply it for a specific task,

TABLE 3
Comparison of our approach with Di Sorbo et al.’s approach in terms of

accuracy

Approach Issue Email Issue to Email Email to Issue
Ours 0.839 0.791 0.658 0.579

Pattern 0.305 0.746 0.746 0.305

TABLE 4
Comparison of our approach with Di Sorbo et al.’s approach in terms of

F1-score for each intention category

Setting App. Intention Category Avg.IG IS FR SP PD

Issue Ours 0.802 0.904 0.793 0.788 0.818 0.821
Pattern 0.294 0.511 0.420 0.283 0.600 0.422

Email Ours 0.782 0.883 0.792 0.742 0.887 0.817
Pattern 0.743 0.874 0.789 0.733 0.879 0.804

Issue to Email Ours 0.563 0.809 0.578 0.443 0.760 0.631
Pattern 0.743 0.874 0.789 0.733 0.879 0.804

Email to Issue Ours 0.488 0.678 0.580 0.428 0.520 0.538
Pattern 0.294 0.511 0.420 0.283 0.600 0.422

namely rectifying misclassified issue reports. The details of
this application are presented in Section 8.

6.2 Experiment Results
RQ1-1: How does our approach compare to Di Sorbo et
al.’s approach?

Table 3 presents the accuracy achieved by our approach
and Di Sorbo et al.’s approach under different experiment
settings. Table 4 - 6 present the F1-score, precision and recall
achieved by the two approaches for each intention category
under different experiment settings, respectively. The name
of each intention category is represented by its correspond-
ing acronym, and the best result for each evaluation setting
is highlighted in bold.
10-Fold-Cross-Validation Setting. In summary, our ap-
proach achieves an average accuracy of 0.791 on the email
dataset, while Di Sorbo et al.’s approach achieves an accu-
racy of 0.746. The results show that our approach is able
to learn the semantic patterns of sentences in Di Sorbo et
al.’s dataset and performs slightly better than Di Sorbo et
al.’s manually summarized patterns. Most importantly, our
approach saves the manual effort required to summarize the
linguistic patterns.
Cross-Project Setting. On average across the issue reports
from four projects, our approach achieves accuracy of 0.839,
which improves the pattern-based approach (average accu-
racy of 0.305) by 175%. Since a large number of sentences
cannot be covered by any one of Di Sorbo et al.’s linguistic
patterns, it is reasonable that their approach achieves low
accuracy.
Cross-Discussion-Type Setting. When using our issue re-
ports as training data, our approach achieves an accuracy
of 0.658 when predicting sentences in Di Sorbo et al.’s email
dataset, which is relatively lower than the accuracy achieved
by their approach (i.e., 0.746). This is reasonable since their
linguistic patterns are manually created based on sentences
in their dataset, thus fitting well to these sentences. When
using Di Sorbo et al.’s dataset as training data, our ap-
proach achieves an average accuracy of 0.579 across the
four projects in our issue report dataset, which improves
Di Sorbo et al.’s approach by 90%. This result indicates

13

TABLE 5
Comparison of our approach with Di Sorbo et al.’s approach in terms of

precision for each intention category

Setting App. Intention Category Avg.IG IS FR SP PD

Issue Our 0.752 0.909 0.815 0.809 0.858 0.829
Pattern 0.514 0.947 0.552 0.477 0.828 0.664

Email Our 0.733 0.888 0.814 0.762 0.930 0.825
Pattern 0.884 0.981 0.748 0.910 0.958 0.896

Issue to Email Our 0.428 0.831 0.645 0.654 0.803 0.672
Pattern 0.884 0.981 0.748 0.910 0.958 0.896

Email to Issue Our 0.705 0.663 0.460 0.383 0.502 0.543
Pattern 0.514 0.947 0.552 0.477 0.828 0.664

TABLE 6
Comparison of our approach with Di Sorbo et al.’s approach in terms of

recall for each intention category

Setting App. Intention Category Avg.IG IS FR SP PD

Issue Our 0.867 0.900 0.774 0.778 0.786 0.821
Pattern 0.205 0.350 0.339 0.201 0.472 0.313

Email Our 0.845 0.879 0.773 0.733 0.853 0.816
Pattern 0.641 0.788 0.835 0.613 0.812 0.738

Issue to Email Our 0.820 0.787 0.525 0.335 0.722 0.638
Pattern 0.641 0.788 0.835 0.613 0.812 0.738

Email to Issue Our 0.372 0.694 0.781 0.484 0.539 0.574
Pattern 0.205 0.350 0.339 0.201 0.472 0.313

that while the majority of Di Sorbo et al.’s taxonomy of
intentions are still effective for developer discussions in
issue tracking systems, a refinement is needed for their
linguistic patterns to cover more sentences in this kind of
developer discussions.
Qualitative Analysis. To gain more insights about the ad-
vantages and disadvantages of our approach and Di Sorbo
et al.’s approach, we conduct a qualitative analysis, in which
we manually check the sentences that are misclassified
by any one of the two approaches. For Di Sorbo et al.’s
approach, the results show that it achieves a much lower
accuracy on the issue dataset than that achieved on the email
dataset. Specifically, we note that the recall of all categories
achieved by Di Sorbo et al.’s approach on the issue dataset
are quite low (i.e., less than 0.472). One reason is that a lot of
sentences in the issue dataset are not covered by Di Sorbo et
al.’s linguistic patterns. However, we also note the precision
of information giving, feature request and solution proposal
achieved by Di Sorbo et al.’s approach are also relatively
low (i.e., less than 0.552). By manually checking the mis-
classified sentences, we find that although some sentences
contain the linguistic patterns, their true intentions can be
completely different. For example, the sentence “I should
add, the threading point is partly my speculation based on what I
observed in performance running xgboost and other applications
that use a multithreaded blas through R” in TensorFlow Issue
#491 is misclassified as solution proposal, while it should
belong to information giving. This sentence is misclassified
because it contains the linguistic pattern “[someone] should
add [something]”, however, the “thing” that is added here
is not a feature but a threading point to provide more
details about the developer’s observation. Another example
is the sentence “An easy way to reproduce it is to run bazel
fetch //tensorflow/contrib/session bundle/.” in TensorFlow Issue
#4312, which is misclassified as solution proposal, while it
should belong to information giving. This sentence contains

TABLE 7
The accuracy achieved by different approaches for each project in our

dataset

Approach TensorFlow Bootstrap Docker VScode Average
Ours 0.705 0.828 0.867 0.862 0.816
CNN 0.589 0.743 0.766 0.744 0.711
NLP 0.519 0.601 0.641 0.611 0.593
SMO 0.457 0.570 0.565 0.539 0.533

LibSVM 0.240 0.272 0.236 0.239 0.247
NBM 0.402 0.423 0.498 0.442 0.441

RF 0.352 0.430 0.463 0.435 0.420
kNN 0.214 0.241 0.250 0.273 0.245

DE-SVM 0.469 0.581 0.559 0.545 0.539
Auto-Weka 0.425 0.487 0.469 0.450 0.458

the linguistic pattern “a way is”, however, its intention is to
provide the command to reproduce the bug. From these ex-
amples, we can see that since most of the linguistic patterns
are just some key phrases along with some placeholders
indicating generic subjects (i.e., somebody) or generic direct
objects (i.e., something), at times it is difficult for Di Sorbo
et al.’s approach to capture the high-level intention of the
whole sentence.

On the other hand, we also investigate why our ap-
proach performs worse under the cross-discussion-type set-
ting (i.e., Issue-to-Email and Email-to-Issue), when com-
pared with the results achieved by our approach using
the email dataset or issue dataset alone. For example, un-
der the Issue-to-Email setting, our approach only correctly
identified about 33% of all sentences belonging to solution
proposal. One reason is that many sentences of solution
proposal in Di Sorbo et al.’s email dataset are a bit vague
to understand their intentions. For example, the sentence
“One way would be to add them in an #ifdef Q QDOC block and
document them.” in QT mailing list (2014-August/017822) is
labelled as solution proposal, while our approach classifies
it as feature request. The email that contains this sentence
is about how to deal with some special member functions
when QT framework has moved to C++11. In general, this is
a discussion about the implementation of C++11 rules, and
both intentions (i.e., solution proposal and feature request)
should be reasonable under such context. This example also
shows that, in some cases, the proposed solutions can also
be adding new features. Thus, while our approach misclas-
sified more sentences under the Issue-to-Email setting, some
of the misclassified results are still reasonable in practice. As
for the Email-to-Issue, our approach performs even worse.
An additional reason is that we only have no more than
1,000 sentences as training dataset, which makes it difficult
to capture enough patterns of different intentions.
RQ1-2: How does our approach compare to other auto-
mated approaches in related studies?
Cross-Project Setting. Table 7 presents the accuracy results
achieved by each approach, and the best result for each
project is highlighted in bold. The accuracy achieved by our
approach ranges between 0.705 and 0.867, with an average
of 0.816. In comparison, the average accuracy achieved by
CNN, NLP, SMO, LibSVM, NBM, RF, kNN, DE-SVM and
Auto-Weka are 0.711, 0.593, 0.533, 0.247, 0.441, 0.420, 0.245,
0.539 and 0.458, respectively. In summary, our approach
improves the average accuracy over CNN, NLP, SMO, Lib-
SVM, NBM, RF, kNN, DE-SVM and Auto-Weka by 15%,
38%, 53%, 230%, 85%, 94%, 233%, 51% and 78% respectively.

14

TABLE 8
The average F1-score achieved by different approaches across all four

projects for each intention category in our dataset

Approach IG IS FR SP PD AE ML Avg.
Ours 0.781 0.911 0.781 0.782 0.804 0.796 0.860 0.816
CNN 0.670 0.850 0.690 0.579 0.674 0.698 0.796 0.708
NLP 0.597 0.614 0.610 0.486 0.609 0.545 0.662 0.589
SMO 0.504 0.495 0.571 0.535 0.690 0.505 0.587 0.555

LibSVM 0.395 0.000 0.000 0.000 0.000 0.000 0.000 0.056
NBM 0.437 0.423 0.403 0.374 0.521 0.486 0.525 0.452

RF 0.361 0.421 0.439 0.227 0.635 0.374 0.452 0.416
kNN 0.065 0.300 0.072 NaN 0.480 0.093 0.223 0.206

DE-SVM 0.535 0.461 0.559 0.528 0.662 0.527 0.545 0.545
Auto-Weka 0.492 0.192 0.507 0.533 0.677 0.309 0.236 0.421

TABLE 9
The average precision achieved by different approaches across all four

projects for each intention category in our dataset

Approach IG IS FR SP PD AE ML Avg.
Ours 0.732 0.916 0.803 0.803 0.843 0.804 0.934 0.834
CNN 0.651 0.864 0.705 0.614 0.654 0.719 0.798 0.715
NLP 0.610 0.602 0.609 0.552 0.639 0.609 0.539 0.594
SMO 0.536 0.414 0.671 0.633 0.714 0.618 0.493 0.583

LibSVM 0.247 0.000 0.000 0.000 0.000 0.000 0.000 0.035
NBM 0.442 0.440 0.392 0.388 0.509 0.472 0.610 0.465

RF 0.514 0.302 0.735 0.565 0.738 0.590 0.321 0.538
kNN 0.438 0.227 0.646 0.319 0.666 0.414 0.130 0.406

DE-SVM 0.449 0.468 0.737 0.662 0.700 0.581 0.657 0.608
Auto-Weka 0.350 0.556 0.633 0.570 0.680 0.513 0.739 0.577

We also investigate the performance of each approach
for each intention category. Table 8 - 10 presents the F1-
score, precision and recall of each category achieved by
each approach, respectively. Due to space limitation, the
name of each category is abbreviated and we report the
average results of each category across the four projects.
For each intention category, the best results of F1-score are
highlighted in bold. Our approach achieves the best perfor-
mance for all categories. Additionally, the F1-score achieved
by our approach for each category is higher than 0.78, which
is higher than that achieved by other approaches. As for
precision and recall, our approach achieves the best results
for most categories, while LibSVM achieves the best recall
for information giving and NLP achieves the best recall for
meaningless. Note that LibSVM achieves a recall of 1.0 for
information giving, but it achieves a recall of zero for all the
other categories. This indicates that LibSVM with the de-
fault parameter setting classifies all sentences as information
giving. Specifically, LibSVM uses the rbf kernel by default,
while DE-SVM also chooses rbf kernel as the best kernel
in several cases. However, with carefully tuned values of
hyperparameters like gamma and coef0, DE-SVM substan-
tially improves the performance of LibSVM. The result is
also consistent with Fu and Menzies’ finding that when
applying LibSVM for text classification, a carefully tuning
is necessary [24]. On the other hand, Auto-Weka does not
outperform DE-SVM in our experiment. Specifically, Auto-
Weka chooses RF (i.e., random forest) as the best classifier
in most cases and this tuned RF classifier does outperform
its default version. Finally, we also note that SMO seems to
be the best classifier among all the default machine learn-
ing models, however, both DE-SVM and Auto-Weka didn’t
choose SMO as the base model for hyperparameter tuning.
Thus, we apply a simple grid search algorithm to tune SMO.
We find that when setting its kernel as NormalizedPolyKernel
and exponent as 1.3, we can achieve an average accuracy of

TABLE 10
The average recall achieved by different approaches across all four

projects for each intention category in our dataset

Approach IG IS FR SP PD AE ML Avg.
Ours 0.844 0.907 0.762 0.772 0.773 0.788 0.800 0.807
CNN 0.700 0.837 0.678 0.582 0.704 0.684 0.798 0.712
NLP 0.599 0.633 0.615 0.459 0.596 0.497 0.865 0.609
SMO 0.483 0.623 0.510 0.470 0.674 0.436 0.738 0.562

LibSVM 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.143
NBM 0.444 0.409 0.424 0.383 0.538 0.521 0.467 0.455

RF 0.283 0.700 0.329 0.144 0.564 0.276 0.788 0.441
kNN 0.035 0.447 0.038 0.029 0.388 0.054 0.820 0.259

DE-SVM 0.676 0.462 0.459 0.445 0.635 0.509 0.469 0.522
Auto-Weka 0.832 0.116 0.444 0.521 0.681 0.232 0.142 0.424

0.561, which improves its default version by 5%. However,
this tuned SMO still cannot outperform our approach.
Other Settings. Table 11 presents the accuracy results
achieved by each approach under 10 times 10-fold-cross-
validation using Di Sorbo et al.’s dataset (second row) and
cross-discussion-type setting using both datasets (the last
two rows). We observe that our approach improves other
approaches by a substantial margin.
Qualitative Analysis. Since all the evaluation results show
that our approach improves the baseline approaches in
terms of accuracy by a substantial margin, we are inter-
ested in those sentences that are correctly classified by our
approach only. We manually checked a number of cases
and found that both our approach and baseline approaches
can easily classify sentences with important keywords (e.g.,
crash and error) in sentences belonging to problem discovery.
However, our approach can also correctly classify sentences
that are relatively vague. For example, the sentence “I set the
breakpoint as indicated in #8859 (comment) but this code wasn’t
called when clicking on the ‘Install’ button of the new extension
panel.” does not contain any words like crash or error, but
it belongs to problem discovery since the user describes an
unexpected behavior. Our approach successfully identified
this sentence and we hypothesize that our approach has
learned the hidden linguistic pattern during training.

Finally, we also analyze the sentences misclassified by
our approach. We find that some of these sentences contain
relatively complicated subordinate clause. For example, the
sentence “I also have a feeling that using .{size}-{n} as a class
instead of .col-{size}-{n} might cause some problems down the
line.” in Bootstrap Issue #17228 belongs to aspect evaluation
while our approach classifies it as problem discovery. We hy-
pothesize that our approach may have overweighted “cause
some problems” phrase and ignored “have a feeling that”,
thus leading to misclassification. To solve this problem,
more sentences with subordinate clause are likely needed
for training.
RQ1-3: How much time and memory does it take for our
approach to run?
Time Cost. Table 12 shows the training time cost of each
approach. The training time cost for Di Sorbo et al.’s ap-
proach is not presented, since they did not show the time
cost to manually summarize the linguistic patterns. The
results show that, when using BN, our approach requires
about half an hour to train the CNN using our dataset.
We believe the training time cost is acceptable, since the
prediction model only needs to be trained once and our
approach achieves a high accuracy. If BN is not used, our

15

TABLE 11
The accuracy achieved by different approaches using the email and

issue report dataset.

Approaches Email Email to Issue Issue to Email
Ours 0.791 0.579 0.658
CNN 0.710 0.522 0.569
NLP 0.575 0.460 0.483
SMO 0.707 0.370 0.450

LibSVM 0.273 0.231 0.173
NBM 0.607 0.349 0.347

RF 0.693 0.329 0.383
kNN 0.604 0.239 0.370

DE-SVM 0.714 0.374 0.402
Auto-Weka 0.707 0.349 0.329

TABLE 12
Training time cost of each approach under different experiment setting

Approach Issue Email Issue to Email Email to Issue
Our (with BN) 30min 6min 38min 7min

Our (without BN) 5.6h 1h 7.2h 1.2h
Kim’s CNN 20min 4min 24min 5min

NLP 4min 1min 6min 1min
SMO 11s 2s 12s 3s

LibSVM 9s 1s 10s 2s
NBM 1s 1s 1s 1s

RF 3min 1min 4min 1min
kNN 1s 1s 1s 1s

DE-SVM 20min 10min 16min 11min
Auto-Weka 16min 15min 15min 15min

approach would require several hours to train. In summary,
batch normalization accelerates the training speed of CNN
by at least 10 times. As for the other approaches, most
prediction models based on bag-of-words features achieve
the fastest training speed. However, they cannot achieve a
high accuracy. The NLP-based approach requires about 6
minutes to train from 5K sentences. Finally, our approach
only needs several seconds to classify thousands of sen-
tences in the prediction phase, which indicates that our
approach is efficient enough to be used in practice.
Memory Cost. Our approach runs on a Nvidia GTX 1080
GPU. This GPU has 8GB memory available. During our
automatic hyperparameters tuning process, we enumerate
the dimension size of word embedding and the number of
filters from 64 to 320 with a step of 64. We cannot increase
these two hyperparameters further beyond 320 since the
GPU’s memory would not be sufficient in such a case. As
a comparison, all the other baseline approaches run on a
CPU and their memory cost is rather low (i.e., no more
than 2G). Thus, the high cost of memory is a drawback
of our approach. To solve the memory issue, we can use
a better GPU or multiple GPUs since the current GPU (i.e.,
Nvidia GTX 1080) used in our paper is originally designed
for PC gamers and its official selling price is about 500
dollars in 2018. In future work, we also plan to improve
the architecture of our network to reduce its size. Note that
increasing the amount of training data would not increase
the size of the network; this is the case since we use Mini-
batch Gradient Descent [84] to train the network, which
means that we only feed a fixed number of sentences into
the network for each iteration of the training process.
RQ2: Does our automatic hyperparameter tuning approach
find the best setting of hyperparameters?

Since our automatic hyperparameter tuning runs in a
greedy way, the full search space is pruned a lot. Specifically,

our approach only enumerates 4 + 4 + 10 = 18 different
settings since the other hyperparameters are fixed when we
enumerate one specific hyperparameter. If we enumerate
all possible combinations of the three hyperparameters (i.e.,
using grid search), there would be 4 ∗ 4 ∗ 10 = 160 different
settings. In this RQ, we investigate whether our automatic
hyperparameter tuning approach finds a setting whose per-
formance is close to that using the best hyperparameter
setting. To answer this research question, we first use grid
search to enumerate all possible settings of hyperparameters
and choose the setting that achieves the best accuracy to
compare with our approach. Note that during grid search,
the search spaces of both the dimension size of word em-
bedding and the number of filters are still from 128 to 320
with a step of 64, and the candidate combinations of filter
heights are the same with those presented in Section 5.3.
Then we compare the hyperparameters selected and the
corresponding accuracy results achieved by our approach
and grid search.

Table 13 presents the hyperparameters selected and the
corresponding accuracy results achieved by our approach
and grid search. Although our approach does not select the
same hyperparameters for three out of the four projects,
the accuracy achieved by our approach is slightly better
than that achieved by grid search. This shows that ensem-
ble learning can help improving the performance. We also
notice that, both the dimension size and number of filters
selected by our approach or grid search are larger than Yoon
Kim’s default setting, which indicates that hyperparameter
tuning is needed when applying CNN in different tasks
with dataset collected from different domains.

7 USER STUDY

One of our initial questions to investigate in this paper
is whether Di Sorbo et al.’s intention mining approach
can be generalized across a different kind of developer
discussion and a different set of projects. We showed that
refinements were needed to the intention categories and that
an approach that could learn patterns to identify categories,
instead of patterns being learned manually as in Di Sorbo et
al.’s approach, can identify intention categories in a wider
set of projects with higher accuracy. However, the question
still remains with the approach we introduce whether it
generalizes in the sense of finding intention categories ac-
curately across more projects.

As a further investigation into this generalization ques-
tion, we conducted a user study in which we asked pro-
fessional developers to assess whether they agree with
intention categories produced using our approach that was
trained with data manually annotated by the authors on
different projects. For this study, we trained a prediction
model using all of the 5,408 sentences in the dataset we
created and which we described in Section 3. We then
selected another four popular projects in GitHub: Three.js,
Ruby on Rails, OpenCV and Scikit-Learn. For each project,
we randomly selected 20 issues and randomly extracted 500
sentences from these issues. We then applied our approach
(prediction model) to classify each of the 500 sentences
into an intention category. Finally, we randomly selected 5
sentences from each category forming a dataset for the user

16

TABLE 13
Comparison of the hyperparameter settings and corresponding accuracy achieved by grid search and our automatic tuning approach

Hyperparameters TensorFlow Bootstrap Docker VS Code
Grid Search Auto Tuning Grid Search Auto Tuning Grid Search Auto Tuning Grid Search Auto Tuning

Dimension size 256 320 256 256 320 256 320 320
Number of filters 192 256 256 256 256 192 192 320
Combination of filter heights (1,2,3,4,5,6) Ensemble (1,2,3,4,5) Ensemble (2,3,4,5,6) Ensemble (3,4,5,6) Ensemble

Accuracy 0.701 0.705 0.817 0.828 0.865 0.867 0.852 0.862

study consisting of 20 sentences for each intention category
and 140 sentences in total.

We recruited 11 developers from an outsourcing com-
pany which has more than 2,000 employees and mainly
does outsourcing projects for US and European corporations
(e.g., StateStreet Bank, Cisco, and Reuters). Each of the
recruited developers has previous experience as a developer
in IT companies or as a contributor in open source software
projects.

Table 14 presents the demographics of the 11 developers,
including their working experience counted in years, the
programming language mostly used in their daily work,
their job role, their experience in each evaluated project (the
name of each project is abbreviated). Specifically, for each
project, ‘-’ means the developer does not have any experi-
ence in this project; ‘+’ means the developer has necessary
domain knowledge or has experience in similar projects;
‘++’ means the developer has rich experience in the project
itself. According to the demographics, the 11 developers are
of different professional experience, varying from 2 years to
8 years, with an average professional experience of 4.2 years.
This diversity of experience helps to reduce any bias where
agreement with predictions is only achieved by a specific
group of developers (e.g., novice or senior developers).

We explained our taxonomy of intentions to the de-
velopers and showed them some example sentences for
each category. For the user study dataset, we asked each
developer to read each sentence (140 per developer) and
indicate whether the predicted intention category by our
approach is correct. We also provided the developers with
the context of the sentences, in the form of corresponding
paragraphs and issue numbers as we did for the creation
of the training dataset (Section 3). The developers were
aware that it was an approach we developed that was
producing the intention categories. Although the recruited
developers do not have rich experience with every project
from which the sentences in the user study dataset were
drawn, we believe their experience in development allow
them to identify the intentions of the sentences.

Table 15 presents the percentage of sentences for each
category that were agreed upon by the developers. We
present the results in two different settings, where Majority
means a sentence is considered as correctly classified if the
majority of developers agree on it (i.e., when at least 6
developers agree), and All means a sentence is considered as
correctly classified if all developers agree on it. The results
show that, on average across the seven categories, about
89% of the classification results are agreed by the majority of
developers, and 73% of the classification results are agreed
by every developer.

For some classified sentences that are not agreed upon
by developers, we also received some feedback from de-

TABLE 14
Demographics of the 11 developers

Dev. Exp. Language Job Role Experience in Projects
Th Ru CV Sci

P1 2 years Java QA - + - -
P2 4 years Java\Python QA - + - +
P3 6 years Python\Go DevOps - + + +
P4 2 years Java\SQL Database - - - -
P5 8 years JavaScript Web + ++ + +
P6 3 years JavaScript Web + + - -
P7 5 years Java Web + + - -
P8 5 years Java\Python Data Mining - - + ++
P9 4 years C++ Mobile App + - - -
P10 4 years Java Mobile App - + - -
P11 3 years C++ Network - + - -

TABLE 15
User study results

Agreement IG IS FR SP PD AE ML Avg
Majority 0.85 0.85 0.80 0.90 0.90 0.90 1.00 0.89

All 0.60 0.65 0.75 0.60 0.75 0.80 0.90 0.73

velopers about their own opinions on what should be the
intention category of the sentence. Delving further into these
cases, we found two major situations:
1) The sentence contains multiple intentions. For example,

the sentence “And why do stitching modules crashes even
with CUDA explicity disabled?” in OpenCV Issue #7438 is
classified as problem discovery since it reports an unex-
pected crash. However, many developers also regard it
as information seeking since the user is asking why.

2) The classifier does not consider context information. For
example, the sentence “I believe, the main point here is
to have some standard, ‘official’ container for such data.”
in OpenCV Issue #8428 is classified as aspect evalua-
tion since the user is expressing his view on the main
point. However, one developer in our study who has
rich experience in open source community inferred that
this sentence should be considered as feature request. By
checking the corresponding issue, we found that, indeed,
it is a request for a new feature, i.e., support for a half-
precision floating point which only occupies 16 bits in
memory.
To summarize, our user study results show the develop-

ers agreed on most of the predicted intention categories of
the 140 sentences, thus providing an additional evidence on
the generalizability of our approach.

Finally, to understand practitioners’ opinions and expec-
tations on intention mining, we conducted a survey with
the 11 participants in our user study. Our survey has three
questions, as shown below:
• Q1: Do you perceive our taxonomy of intentions in developer

discussions as useful/meaningful?

17

• Q2: Would you be interested in using a tool performing
intention mining for your work? If so, what kind of work
would you apply intention mining to?

• Q3: Could you explain the reasons for your answers in Q1
and Q2? (Optional)
For Q1, eight participants agreed that our taxonomy is

useful/meaningful, and the major reason is that the tax-
onomy has fully covered the common types of intentions
they dealt with in developer discussions. The other three
participants did not agree, and one of them gave a reason.
This participant stated that although the taxonomy seems to
be meaningful, he could not figure out how to use it in his
daily work.

For Q2, only six participants showed their interest in
applying intention mining to their work, and most of them
only gave general reasons, such as “This seems fancy” or
“This might help us better understand our project”. For
the other five participants who showed no interest, their
major reasons are that they do not have such requirement or
data for analysis. Nevertheless, one participant introduced
our work to his team leader, who showed great interest in
our work and shared with us a scenario that can benefit
from intention mining. This team developed their project
for an important customer, who required regular delivery of
releases. To better track the development progress, the team
leader would like to analyze the developer discussions in
the company’s internal channels (i.e., discussions through
mailing lists or the bug tracker). Especially, he would like
to have a tool which can automatically extract specific
discussions about bugs and features. Based on this data,
textual analysis (e.g., name entity recognition) could be
more effectively applied to tell what features or bugs are
discussed recently. If developers are found to be frequently
discussing features or bugs from early releases, then it might
indicate that the project’s delivery for the next release is at
risk of delay. Thus, intention mining seems promising to
help monitor the development progress.

In summary, most participants perceived our tax-
onomy of intentions in developer discussions as use-
ful/meaningful, however, it is still unclear how intention
mining could be applied to practitioners’ daily work. Thus,
we encourage future research to investigate how to apply
intention mining to solve more software engineering tasks.

8 APPLICATION ON RECTIFYING MISCLASSIFIED
ISSUE REPORTS

In this section, to further demonstrate the value of our
proposed approach, we apply it for a specific task, namely
rectifying misclassified issue reports.

A number of studies have proposed approaches to mine
data from issue tracking systems to predict where bugs
will occur in the future (aka. defect prediction [27], [28]).
To conduct such study, the first thing is to pick out issue
reports that really report bugs. An issue report usually has
a tag or a field which records the type of the issue report
(e.g., bug report or feature request). The issue reports that
are labelled as bug reports are often used as the ground
truth data for various mining tasks (e.g., defect prediction).
However, Herzig et al. [26] conducted an empirical study
and found that many issue reports are misclassified – issue

TABLE 16
Number of BUG and FR issue reports in each project

Type HttpClient Lucene Tomcat5 Rhino
BUG 298 678 660 299
FR 30 49 32 30

reports labeled as bugs may actually be feature requests
and vice versa. This misclassification have been shown to
introduce bias and threaten the external validity of studies
that build on such data.

The study of Herzig et al. requires manual examination
of a large number of issue reports, which is time-consuming.
To help reduce the manual effort in rectifying the mis-
classified issue reports, we apply our approach to search
for sentences that are likely to belong to feature requests
in an issue report. If an issue report classified as a bug
report (BUG) contains n such sentences, we should consider
rectifying its label as a feature request (FR)2. Although there
may exist multiple intentions in a comment (i.e., one or more
paragraphs) proposed by a developer, we found that in most
issue reports of feature requests, the intention of feature
request usually dominates other intentions. For example,
the developer may start with some background descrip-
tion (information giving) or problem statement (problem
discovery), and then propose the feature request. On the
other hand, it is rare to find sentences belonging to feature
request in issue reports of bug. Based on these finding, we
set n = 1 as the default threshold so that we can find more
misclassified BUGs.

Based on the dataset published by Herzig et al., we
conducted a case study on four open source projects, namely
HttpClient, Lucene, Tomcat5 and Rhino, with 2,076 issue
reports in total. Among the four projects, HttpClient and
Lucene use JIRA tracker, while Tomcat5 and Rhino use
Bugzilla tracker. Table 16 shows the number of issue reports
that truly belong to BUG and the number of issue reports
that are rectified by Herzig et al. from BUG to FR in each
project. Since Herzig et al.’s dataset only contains the ID
of the issue report (along with the original and rectified
labels), we first crawl the text description of each issue
report in the dataset and split them into sentences. Since
our CNN code is written in Python, to make the whole
process fully automatic, here we use the Python package
NLTK [85] to split sentences and we use regular expression
to filter out source code and stack traces. Then we apply
our sentence classifier trained from our own dataset (i.e.,
the four GitHub projects) to classify each sentence into
one intention category. Based on the classified sentences,
we design a simple heuristic approach, which considers
an issue report as FR if it contains at least one sentence
belonging to feature request.

Considering the dataset is highly imbalanced (i.e., most
issues are BUG), we use the Area Under the receiver oper-
ator characteristic Curve (AUC) [86] of FR class to evaluate
our approach. AUC is a robust evaluation metric for imbal-
anced dataset [87], and a higher AUC score indicates that
the classifier has a higher probability to rank a randomly

2. A feature request is also known as a request for enhancement, often
shortened as RFE.

18

TABLE 17
AUC scores of our approach and baseline approaches for each project

Approach HttpClient Lucene Tomcat5 Rhino Average
Ours 0.651 0.658 0.695 0.745 0.687
SMO 0.487 0.552 0.513 0.580 0.533

LibSVM 0.500 0.500 0.500 0.500 0.500
NBM 0.545 0.635 0.593 0.600 0.593

RF 0.500 0.500 0.500 0.517 0.504
kNN 0.540 0.614 0.567 0.557 0.570
LR 0.490 0.543 0.537 0.566 0.534

ADTree 0.510 0.528 0.530 0.500 0.517
DE-SVM 0.513 0.545 0.498 0.533 0.522

Auto-Weka 0.515 0.526 0.498 0.580 0.530

chosen FR issue higher than a randomly chosen BUG is-
sue. We also compare our approach with traditional text
classification approaches. Similar to the baseline approaches
introduced in RQ2, we investigate four different classifica-
tion techniques, namely SVM, NBM, RF and kNN. We also
investigate two additional classification techniques, namely
Logistic Regression (LR) and ADTree, which are used in a
previous study by Antoniol et al. [29], where they applied
text mining to classify issue reports as bug reports or feature
requests. Since all these classifiers requires training data, we
perform 10-times 10-fold cross-validation for each project.

Table 17 shows the AUC scores achieved by our ap-
proach and baseline approaches for each project. The re-
sults show that our approach outperforms the baseline
approaches for each project. On average, our approach
achieves an AUC score of 0.69, which improves the best
baseline approach (i.e., NBM) by 16%. We also apply the
Wilcoxon signed-rank test [88] at 95% significance level
and compute the Cliff’s delta (δ) [89] when comparing
our approach with each baseline. The results show that
our approach statistically significantly outperforms (i.e., p-
value < 0.05) each baseline with a large improvement (i.e.,
|δ| ≥ 0.474). Another advantage of our approach is that
it does not require training data for these projects, which
eliminate the effort to label some data for each project, and
make it applicable for new projects.

Finally, we manually read the issue reports that are clas-
sified as BUG by Herzig et al., while our approach classified
them as FR. We find that some of these issues should belong
to FR instead. For example, in an issue report of LUCENE3

that is labelled with BUG, our approach identifies a sentence
belonging to feature request, which says: It would be nice
if I had an API that would allow me to say “I only want one
segment and I want its name to be foo.”. It is clear that the issue
reporter is requesting for an enhancement of the Lucene
API. Through this case, we can see that our approach can
not only identify issues reports of FR, but also tells why
the issue reports belong to FR. As stated by Herzig et al.,
they cannot guarantee that their manual inspection does
not contain errors. Thus, we believe our approach can serve
as a support tool to save manual effort and reduce bias
when manual inspecting issue reports and rectifying the
misclassified ones.

3. https://issues.apache.org/jira/browse/LUCENE-523

9 DISCUSSION

9.1 Interpretability of CNN’s classification result

Although our approach outperforms Di Sorbo et al.’s ap-
proach in terms of accuracy when classifying sentences
of developer discussions from issue tracking systems, one
drawback of our approach is that it cannot interpret the
classification result. For example, given the sentence “There-
fore, it would be nice if AdaDelta could be added to the set
of available optimizers.” in TensorFlow Issue #516, Di Sorbo
et al.’s approach could successfully identify it as feature
request since it matches the linguistic pattern “[something]
should/could be [verb]”. Thus, the phrase “AdaDelta could be
added” can be highlighted to interpret why this sentence
belongs to the feature request category. Such interpretability
is important in practice, as it can help to support further
automated information extraction processes. For example,
Zhou et al. [1] leveraged the specific patterns detected in
sentences contained in API documents to translate such
sentences to First Order Logic formulae and to detect in-
consistencies between source code and API documents. To
investigate the interpretability of our approach, we conduct
an explorative study, in which we try to locate important
patterns in the sentence based on the intermediate outputs
of neural network.

When we feed a sentence into the trained CNN model,
suppose the network has N filters in total, we would get
a high-level feature vector V with N values where each
value corresponds to the pooling result of each filter. This
feature vector V is fully connected with the output layer
Y. Suppose the sentence is classified as a feature request,
which corresponds to the ith neuron in the output layer
whose output value yi is calculated as:

yi = bi +
N∑
j=1

wijvj (7)

In this equation, vj represents the pooling result of the
jth filter, while wij and bi are weight values automatically
learned during training. Since a larger value of yi indicates
that the sentence is more likely to belong to the ith class (i.e.,
feature request in this example), we can use wijvj to evalu-
ate the “contribution” of each filter to the final classification
result. In general, a larger value of wijvj corresponds to
more contribution. Thus, we can pick out the filter whose
corresponding wijvj ranks the top among all the filters.
Since vj is the result of pooling function, which equals to
the maximum value of the filter’s original output vector Oj ,
we can trace back to find its position in vector Oj . Suppose
this maximum value corresponds to the kth value of vector
Oj , then we can trace back again to locate the kth n-gram se-
quence in the sentence. This n-gram sequence should be an
important pattern to explain why this sentence is identified
as feature request, since the corresponding mathematical
transformation result of this sequence contributes the most
to the final classification result.

As an example, we input the sentence “Therefore, it
would be nice if AdaDelta could be added to the set of available
optimizers.” into the trained CNN model, and analyze the
intermediate outputs to locate the X-gram sequences of
the top-10 filters. Among these filters, two of them have

19

the height of 5, and their corresponding 5-gram sequences
are “it would be nice if ” and “if AdaDelta could be added”.
Other filters are with smaller heights and most of their
corresponding X-gram sequences are overlapping with the
two 5-gram sequences mentioned above. From this example,
we can see that CNN is also able to identify reasonable
patterns in the form of key phrases in a sentence to interpret
its classification result. As a future work, we plan to conduct
a more formal study to improve interpretability of CNN’s
classification results.

9.2 Implications
Although our approach achieves a high accuracy when
classifying sentences from developer discussions in issue
tracking systems, the ultimate goal of intention mining is
to leverage certain types of intentions for further analysis to
solve software engineering tasks. In general, given a specific
task, not all sentences in developer discussions are worthy
for textual analysis, and intention mining can serve as a data
pre-processing tool to filter out the noisy data.

As an example, we present a “Where should I post?”
problem, that can benefit from intention mining. During our
manual sentence labeling process, we found that a number
of issue reports are directly closed by the project maintainer
due to its unsuitable topic. For example, in TensorFlow Issue
#773, the issue reporter asked “Is there any way to get the
gradients of activations (not the parameters), and watch them
in Tensorboard?”. From this question, we can see that he is
seeking for help about TensorFlow’s functionality. Thus, the
maintainer closed this issue report and suggested to post his
question on Stack Overflow, since it is not a bug, or a feature
request. Both the issue reporter and the maintainer would
waste their time due to the question asked in the wrong
place. To address this problem, we can possibly design
an automatic tool to analyze the textual description and
give appropriate suggestions when a developer is asking
general questions instead of reporting bugs or proposing
feature requests. To do so, a possible solution is to apply
our pre-trained CNN model to check whether the issue
report contains problem discovery or feature request sentences.
Additionally, we can extract information seeking sentences to
perform further analysis, such as identifying whether the
post is a general question or bug-related question. In future
work, we would like to validate whether intention mining
can be effectively applied to solve this problem.

9.3 Threats to Validity
Threats to internal validity relates to the errors in our
code, the used taxonomy and the personal bias in manual
classification of sentences. To reduce errors in our code, we
have double checked and fully tested our code, still there
could be errors that we did not notice. To reduce the impact
of undetected errors in our code, we also published our
source code and dataset to enable other researchers replicate
and extend our work. To reduce subjectivity in the design
of sentence taxonomy, we extended the taxonomy proposed
by Di Sorbo et al.’, which has been shown to be effective in
analyzing developer discussions from mailing lists and user
feedbacks from app reviews. To reduce the personal bias
in manual annotation process, we strictly followed the card

sorting process and had the first two authors involved label
the sentences independently. The high Kappa level reported
indicates a substantial agreement between the labelers. We
further reduced bias by using an external evaluator to help
resolve disagreements. These steps increase our confidence
in the manually created dataset. We also provided the con-
text of the sentence, such as the paragraph the sentence is in
and the corresponding issue report, to avoid the difficulty in
classifying sentences containing the word like “this”, “that”,
“it”, and “they”. The user study on which we report later in
this paper (see Section 7) also helps reduce threats by having
professional developers assess whether or not the categories
we produced using model learned from training data from
this dataset are meaningful and appropriate. Another threat
is that participants’ degree of carefulness and effort in our
user study may also affect the validity of our user study
results. To reduce this threat, we recruited participants who
expressed interests in our research and double checked the
user study results to make sure there is no error due to
inconsistency (i.e., the participant mistakenly labelled the
entire category).

Threats to external validity relates to the generalizability of
our results. Although we have collected a large number of
sentences (i.e., 5,408), these sentences were sampled from a
limited number (i.e., 100 or 200) of issue reports instead of
all issue reports from each project, which might reduce the
diversity of our dataset. Also, the number of sampled issues
didn’t follow a stratified sampling strategy (i.e., TensorFlow
has the lowest number of total issues while we sampled 200
issues from TensorFlow), which might introduce bias to our
experiment results. Besides, considering the huge number of
projects hosted on GitHub, the experiment results achieved
with the data extracted from only four projects may not
be generalizable to developer discussions recorded in other
projects. Moreover, although GitHub issue tracker is widely
used, there are also other popular issue tracking systems
(e.g., Bugzilla and JIRA), and it is unknown whether our
approach still works well for developer discussions from
these issue tracking systems. In a future work, we plan
to collect more data from more projects hosted on differ-
ent issue tracking systems for evaluation to mitigate this
threat. On the other hand, we used cross-project prediction
to evaluate our approach, and the results show that our
approach can be trained from existing project and performs
well when applied to a new project. However, when using
data from issue reports to train our approach and predict
data in emails, the prediction result is less accurate, which
indicates that our approach does not fully bridge the gap be-
tween different communication channels. We plan to reduce
this threat further by improving our approach further and
analyzing more sentences from other forms of developer
discussion.

Threats to construct validity relates to the suitability of our
evaluation measures. We used accuracy, precision, recall and
F1-score which are also used by Di Sorbo et al.’s study [10],
and past studies to evaluate the performance of various
automated software engineering techniques [73]–[77]. Thus,
we believe there is little threat to construct validity.

20

10 CONCLUSION AND FUTURE WORK

In this paper, we manually categorize 5,408 sentences from
issue reports of four projects in GitHub, and refine Di Sorbo
et al.’s taxonomy of intentions. We propose a deep learn-
ing based approach to automatically and more accurately
classify sentences into different categories of intentions. Our
approach integrates CNN with batch normalization to boost
the training speed by at least 10 times. We also propose an
automatic hyperparameter tuning approach, along with an
ensemble learning component to further improve the accu-
racy of CNN with a reasonable training time cost. Our ap-
proach achieves an average accuracy of 0.8 on both Di Sorbo
et al.’s and our dataset, which improves Di Sorbo et al.’s
approach and the other automated sentence classification
approaches by a substantial margin. To further investigate
the generalizability of our approach, we conducted a user
study with 11 professional developers and we find that 89%
of the classification results are agreed by the majority of
developers. Finally, we conducted a case study to show how
our approach can serve as a support tool to help in rectifying
misclassified issue reports.

In the future, we plan to refine our approach further
by considering the context of a sentence, and leveraging
multi-label learning algorithms [90] to classify a sentence
into multiple intention categories simultaneously. We also
plan to evaluate the performance of our approach with
developer discussions from other communication channels,
e.g., a code review system. Finally, we plan to apply our
approach to downstream tasks. For example, since the F1-
score achieved by our approach for information seeking is
rather high (i.e., more than 0.9), we plan to leverage the
identified sentences of information seeking to summarize
frequently asked questions from the issue tracking system of
a project. Then, we plan to summarize different solutions for
these FAQs by extracting the sentences of solution proposal.
Acknowledgment. We would like to thank Di Sorbo et al.
for sharing their replication package. We also thank the
reviewers for their valuable comments. To enable other
researchers to replicate and extend our study, we have pub-
lished our source code and our dataset at https://github.
com/tkdsheep/Intention-Mining-TSE.

REFERENCES

[1] S. Panichella, G. Bavota, M. Di Penta, G. Canfora, and G. Antoniol,
“How developers’ collaborations identified from different sources
tell us about code changes,” in Software Maintenance and Evolution
(ICSME), 2014 IEEE International Conference on. IEEE, 2014, pp.
251–260.

[2] Q. Hong, S. Kim, S. C. Cheung, and C. Bird, “Understanding a de-
veloper social network and its evolution,” in Software Maintenance
(ICSM), 2011 27th IEEE International Conference on. IEEE, 2011, pp.
323–332.

[3] N. Bettenburg and A. E. Hassan, “Studying the impact of social
structures on software quality,” in Program Comprehension (ICPC),
2010 IEEE 18th International Conference on. IEEE, 2010, pp. 124–
133.

[4] G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella, “Who
is going to mentor newcomers in open source projects?” in Pro-
ceedings of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering. ACM, 2012, p. 44.

[5] S. Panichella, G. Canfora, M. Di Penta, and R. Oliveto, “How the
evolution of emerging collaborations relates to code changes: an
empirical study,” in Proceedings of the 22nd International Conference
on Program Comprehension. ACM, 2014, pp. 177–188.

[6] A. Begel and N. Nagappan, “Global software development: Who
does it?” in Global Software Engineering, 2008. ICGSE 2008. IEEE
International Conference on. IEEE, 2008, pp. 195–199.

[7] S. Panichella, J. Aponte, M. Di Penta, A. Marcus, and G. Canfora,
“Mining source code descriptions from developer communica-
tions,” in Program Comprehension (ICPC), 2012 IEEE 20th Interna-
tional Conference on. IEEE, 2012, pp. 63–72.

[8] E. Knauss, D. Damian, J. Cleland-Huang, and R. Helms, “Patterns
of continuous requirements clarification,” Requirements Engineer-
ing, vol. 20, no. 4, pp. 383–403, 2015.

[9] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this
bug?” in Proceedings of the 28th international conference on Software
engineering. ACM, 2006, pp. 361–370.

[10] A. Di Sorbo, S. Panichella, C. A. Visaggio, M. Di Penta, G. Canfora,
and H. C. Gall, “Development emails content analyzer: Intention
mining in developer discussions (t),” in Automated Software En-
gineering (ASE), 2015 30th IEEE/ACM International Conference on.
IEEE, 2015, pp. 12–23.

[11] S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Canfora,
and H. C. Gall, “How can i improve my app? classifying user
reviews for software maintenance and evolution,” in Software
maintenance and evolution (ICSME), 2015 IEEE international confer-
ence on. IEEE, 2015, pp. 281–290.

[12] “Tensorflow,” https://github.com/tensorflow/tensorflow.
[13] “Docker,” https://github.com/moby/moby.
[14] “Bootstrap,” https://github.com/twbs/bootstrap.
[15] “Vscode,” https://github.com/Microsoft/vscode.
[16] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,

“Distributed representations of words and phrases and their com-
positionality,” in Advances in neural information processing systems,
2013, pp. 3111–3119.

[17] W. Fu, T. Menzies, and X. Shen, “Tuning for software analytics:
Is it really necessary?” Information and Software Technology, vol. 76,
pp. 135–146, 2016.

[18] V. Nair, T. Menzies, N. Siegmund, and S. Apel, “Using bad learners
to find good configurations,” arXiv preprint arXiv:1702.05701, 2017.

[19] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Mat-
sumoto, “Automated parameter optimization of classification
techniques for defect prediction models,” in Proceedings of the 38th
International Conference on Software Engineering. ACM, 2016, pp.
321–332.

[20] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proceed-
ings of the 32nd International Conference on Machine Learning (ICML-
15), 2015, pp. 448–456.

[21] Y. Kim, “Convolutional neural networks for sentence classifica-
tion,” in Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), 2014, pp. 1746–1751.

[22] X. Gu and S. Kim, “What parts of your apps are loved by
users?(t),” in Proceedings of the 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE Com-
puter Society, 2015, pp. 760–770.

[23] J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques.
Elsevier, 2011.

[24] W. Fu and T. Menzies, “Easy over hard: a case study on deep learn-
ing,” in Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering. ACM, 2017, pp. 49–60.

[25] S. Fakhoury, V. Arnaoudova, C. Noiseux, F. Khomh, and G. An-
toniol, “Keep it simple: Is deep learning good for linguistic smell
detection?” in 2018 IEEE 25th International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 2018, pp.
602–611.

[26] K. Herzig, S. Just, and A. Zeller, “It’s not a bug, it’s a feature: how
misclassification impacts bug prediction,” in Proceedings of the 2013
International Conference on Software Engineering. IEEE Press, 2013,
pp. 392–401.

[27] S. Kim, T. Zimmermann, E. J. Whitehead Jr, and A. Zeller, “Pre-
dicting faults from cached history,” in Proceedings of the 29th
international conference on Software Engineering. IEEE Computer
Society, 2007, pp. 489–498.

[28] T. Zimmermann and N. Nagappan, “Predicting defects using
network analysis on dependency graphs,” in Software Engineering,
2008. ICSE’08. ACM/IEEE 30th International Conference on. IEEE,
2008, pp. 531–540.

[29] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G.
Guéhéneuc, “Is it a bug or an enhancement?: a text-based ap-
proach to classify change requests,” in Proceedings of the 2008
conference of the center for advanced studies on collaborative research:
meeting of minds. ACM, 2008, p. 23.

https://github.com/tkdsheep/Intention-Mining-TSE
https://github.com/tkdsheep/Intention-Mining-TSE
https://github.com/tensorflow/tensorflow
https://github.com/moby/moby
https://github.com/twbs/bootstrap
https://github.com/Microsoft/vscode

21

[30] A. Di Sorbo, S. Panichella, C. V. Alexandru, J. Shimagaki, C. A.
Visaggio, G. Canfora, and H. C. Gall, “What would users change
in my app? summarizing app reviews for recommending software
changes,” in Proceedings of the 2016 24th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering. ACM,
2016, pp. 499–510.

[31] F. Palomba, P. Salza, A. Ciurumelea, S. Panichella, H. Gall, F. Fer-
rucci, and A. De Lucia, “Recommending and localizing change
requests for mobile apps based on user reviews,” in ICSE 2017, to
appear.

[32] L. Villarroel, G. Bavota, B. Russo, R. Oliveto, and M. Di Penta,
“Release planning of mobile apps based on user reviews,” in Pro-
ceedings of the 38th International Conference on Software Engineering.
ACM, 2016, pp. 14–24.

[33] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo, “A discriminative
model approach for accurate duplicate bug report retrieval,” in
Proceedings of the 32nd ACM/IEEE International Conference on Soft-
ware Engineering-Volume 1. ACM, 2010, pp. 45–54.

[34] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An approach
to detecting duplicate bug reports using natural language and
execution information,” in Software Engineering, 2008. ICSE’08.
ACM/IEEE 30th International Conference on. IEEE, 2008, pp. 461–
470.

[35] H. Valdivia Garcia and E. Shihab, “Characterizing and predicting
blocking bugs in open source projects,” in Proceedings of the 11th
working conference on mining software repositories. ACM, 2014, pp.
72–81.

[36] E. Shihab, A. Mockus, Y. Kamei, B. Adams, and A. E. Hassan,
“High-impact defects: a study of breakage and surprise defects,”
in Proceedings of the 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software engineering. ACM,
2011, pp. 300–310.

[37] T. Zimmermann, N. Nagappan, P. J. Guo, and B. Murphy, “Charac-
terizing and predicting which bugs get reopened,” in Proceedings
of the 34th International Conference on Software Engineering. IEEE
Press, 2012, pp. 1074–1083.

[38] O. Chaparro, J. Lu, F. Zampetti, L. Moreno, M. Di Penta, A. Mar-
cus, G. Bavota, and V. Ng, “Detecting missing information in
bug descriptions,” in Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering. ACM, 2017, pp. 396–407.

[39] G. Petrosyan, M. P. Robillard, and R. De Mori, “Discovering
information explaining api types using text classification,” in
Software Engineering (ICSE), 2015 IEEE/ACM 37th IEEE International
Conference on, vol. 1. IEEE, 2015, pp. 869–879.

[40] D. Hou and L. Mo, “Content categorization of api discussions,” in
Software Maintenance (ICSM), 2013 29th IEEE International Confer-
ence on. IEEE, 2013, pp. 60–69.

[41] P. K. Prasetyo, D. Lo, P. Achananuparp, Y. Tian, and E.-P. Lim,
“Automatic classification of software related microblogs,” in Soft-
ware Maintenance (ICSM), 2012 28th IEEE International Conference
on. IEEE, 2012, pp. 596–599.

[42] F. Thung, D. Lo, M. H. Osman, and M. R. Chaudron, “Condensing
class diagrams by analyzing design and network metrics using
optimistic classification,” in Proceedings of the 22nd International
Conference on Program Comprehension. ACM, 2014, pp. 110–121.

[43] A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen,
“Combining deep learning with information retrieval to localize
buggy files for bug reports (n),” in Automated Software Engineering
(ASE), 2015 30th IEEE/ACM International Conference on. IEEE, 2015,
pp. 476–481.

[44] X. Ye, H. Shen, X. Ma, R. Bunescu, and C. Liu, “From word embed-
dings to document similarities for improved information retrieval
in software engineering,” in Proceedings of the 38th International
Conference on Software Engineering. ACM, 2016, pp. 404–415.

[45] S. Wang, T. Liu, and L. Tan, “Automatically learning semantic fea-
tures for defect prediction,” in Proceedings of the 38th International
Conference on Software Engineering. ACM, 2016, pp. 297–308.

[46] V. Raychev, M. Vechev, and E. Yahav, “Code completion with
statistical language models,” in ACM SIGPLAN Notices, vol. 49,
no. 6. ACM, 2014, pp. 419–428.

[47] B. Xu, D. Ye, Z. Xing, X. Xia, G. Chen, and S. Li, “Predicting seman-
tically linkable knowledge in developer online forums via con-
volutional neural network,” in Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering. ACM,
2016, pp. 51–62.

[48] G. Chen, C. Chen, Z. Xing, and B. Xu, “Learning a dual-language
vector space for domain-specific cross-lingual question retrieval,”

in Automated Software Engineering (ASE), 2016 31st IEEE/ACM
International Conference on. IEEE, 2016, pp. 744–755.

[49] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep api learning,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering. ACM, 2016, pp. 631–642.

[50] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol.
521, no. 7553, pp. 436–444, 2015.

[51] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition
with deep recurrent neural networks,” in Acoustics, speech and
signal processing (icassp), 2013 ieee international conference on. IEEE,
2013, pp. 6645–6649.

[52] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2016, pp. 770–778.

[53] I. Lenz, H. Lee, and A. Saxena, “Deep learning for detect-
ing robotic grasps,” The International Journal of Robotics Research,
vol. 34, no. 4-5, pp. 705–724, 2015.

[54] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural
networks and tree search,” Nature, vol. 529, no. 7587, pp. 484–489,
2016.

[55] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard, and
D. McClosky, “The stanford corenlp natural language processing
toolkit.” in ACL (System Demonstrations), 2014, pp. 55–60.

[56] D. Spencer, Card sorting: Designing usable categories. Rosenfeld
Media, 2009.

[57] J. L. Fleiss, “Measuring nominal scale agreement among many
raters.” Psychological bulletin, vol. 76, no. 5, p. 378, 1971.

[58] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman, “Indexing by latent semantic analysis,” Journal of
the American society for information science, vol. 41, no. 6, p. 391,
1990.

[59] T. Hofmann, “Probabilistic latent semantic indexing,” in ACM
SIGIR Forum, vol. 51, no. 2. ACM, 2017, pp. 211–218.

[60] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
Journal of machine Learning research, vol. 3, no. Jan, pp. 993–1022,
2003.

[61] S. Wang, D. Lo, Z. Xing, and L. Jiang, “Concern localization
using information retrieval: An empirical study on linux kernel,”
in Reverse Engineering (WCRE), 2011 18th Working Conference on.
IEEE, 2011, pp. 92–96.

[62] S. Rao and A. Kak, “Retrieval from software libraries for bug
localization: a comparative study of generic and composite text
models,” in Proceedings of the 8th Working Conference on Mining
Software Repositories. ACM, 2011, pp. 43–52.

[63] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A neural
probabilistic language model,” Journal of machine learning research,
vol. 3, no. Feb, pp. 1137–1155, 2003.

[64] R. Collobert and J. Weston, “A unified architecture for natural lan-
guage processing: Deep neural networks with multitask learning,”
in Proceedings of the 25th international conference on Machine learning.
ACM, 2008, pp. 160–167.

[65] Z. S. Harris, “Distributional structure,” Word, vol. 10, no. 2-3, pp.
146–162, 1954.

[66] R. Hecht-Nielsen et al., “Theory of the backpropagation neural
network.” Neural Networks, vol. 1, no. Supplement-1, pp. 445–448,
1988.

[67] Y. Zhang and B. Wallace, “A sensitivity analysis of (and prac-
titioners’ guide to) convolutional neural networks for sentence
classification,” arXiv preprint arXiv:1510.03820, 2015.

[68] “Implementation of kim’s cnn based on tensorflow,” https://
github.com/dennybritz/cnn-text-classification-tf.

[69] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[70] R. Wu, S. Yan, Y. Shan, Q. Dang, and G. Sun, “Deep image: Scaling
up image recognition,” arXiv preprint arXiv:1501.02876, vol. 7,
no. 8, 2015.

[71] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,”
in Proceedings of the IEEE international conference on computer vision,
2015, pp. 1026–1034.

[72] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 2818–2826.

https://github.com/dennybritz/cnn-text-classification-tf
https://github.com/dennybritz/cnn-text-classification-tf

22

[73] F. Rahman and P. Devanbu, “How, and why, process metrics are
better,” in Proceedings of the 2013 International Conference on Software
Engineering. IEEE Press, 2013, pp. 432–441.

[74] T. Jiang, L. Tan, and S. Kim, “Personalized defect prediction,”
in Automated Software Engineering (ASE), 2013 IEEE/ACM 28th
International Conference on. IEEE, 2013, pp. 279–289.

[75] J. Nam, S. J. Pan, and S. Kim, “Transfer defect learning,” in Pro-
ceedings of the 2013 International Conference on Software Engineering.
IEEE Press, 2013, pp. 382–391.

[76] L. Guo, B. Cukic, and H. Singh, “Predicting fault prone modules
by the dempster-shafer belief networks,” in Automated Software
Engineering, 2003. Proceedings. 18th IEEE International Conference on.
IEEE, 2003, pp. 249–252.

[77] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and A. Bener,
“Defect prediction from static code features: current results, limi-
tations, new approaches,” Automated Software Engineering, vol. 17,
no. 4, pp. 375–407, 2010.

[78] X. Xia, D. Lo, E. Shihab, X. Wang, and B. Zhou, “Automatic,
high accuracy prediction of reopened bugs,” Automated Software
Engineering, vol. 22, no. 1, pp. 75–109, 2015.

[79] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, A. Ihara, and
K. Matsumoto, “The impact of mislabelling on the performance
and interpretation of defect prediction models,” in Software Engi-
neering (ICSE), 2015 IEEE/ACM 37th IEEE International Conference
on, vol. 1. IEEE, 2015, pp. 812–823.

[80] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “The weka data mining software: an update,” ACM
SIGKDD explorations newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[81] J. Platt, “Fast training of support vector machines using
sequential minimal optimization,” in Advances in Kernel Methods

- Support Vector Learning, B. Schoelkopf, C. Burges, and
A. Smola, Eds. MIT Press, 1998. [Online]. Available: http:
//research.microsoft.com/∼jplatt/smo.html

[82] C.-C. Chang and C.-J. Lin, “Libsvm: a library for support vector
machines,” ACM transactions on intelligent systems and technology
(TIST), vol. 2, no. 3, p. 27, 2011.

[83] L. Kotthoff, C. Thornton, H. H. Hoos, F. Hutter, and K. Leyton-
Brown, “Auto-weka 2.0: Automatic model selection and hyper-
parameter optimization in weka,” The Journal of Machine Learning
Research, vol. 18, no. 1, pp. 826–830, 2017.

[84] G. Hinton, N. Srivastava, and K. Swersky, “Neural networks
for machine learning lecture 6a overview of mini-batch gradient
descent,” 2012.

[85] S. Bird, “Nltk: the natural language toolkit,” in Proceedings of the
COLING/ACL on Interactive presentation sessions. Association for
Computational Linguistics, 2006, pp. 69–72.

[86] J. Huang and C. X. Ling, “Using auc and accuracy in evaluating
learning algorithms,” IEEE Transactions on knowledge and Data
Engineering, vol. 17, no. 3, pp. 299–310, 2005.

[87] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking
classification models for software defect prediction: A proposed
framework and novel findings,” IEEE Transactions on Software
Engineering, vol. 34, no. 4, pp. 485–496, 2008.

[88] F. Wilcoxon, “Individual comparisons by ranking methods,” Bio-
metrics bulletin, vol. 1, no. 6, pp. 80–83, 1945.

[89] N. Cliff, Ordinal methods for behavioral data analysis. Psychology
Press, 2014.

[90] M.-L. Zhang and Z.-H. Zhou, “A review on multi-label learning
algorithms,” IEEE transactions on knowledge and data engineering,
vol. 26, no. 8, pp. 1819–1837, 2014.

http://research.microsoft.com/~jplatt/smo.html
http://research.microsoft.com/~jplatt/smo.html

	Automating intention mining
	Citation

	Introduction
	Background and Related Work
	Intention Mining
	Classification of Software Artifacts
	Deep Learning in SE

	Taxonomy of Intentions
	Background on Deep Learning
	Sentence Representation
	CNN for Sentence Classification

	Approach
	Overall Framework
	Adapted CNN with Batch Normalization
	Automatic Hyperparameters Tuning
	Ensemble Learning

	Experiment & Results
	Experiment Design
	Evaluation Settings
	Research Questions

	Experiment Results

	User Study
	Application on Rectifying Misclassified Issue Reports
	Discussion
	Interpretability of CNN's classification result
	Implications
	Threats to Validity

	Conclusion and Future Work
	References

