
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

8-2020 

How practitioners perceive automated bug report management How practitioners perceive automated bug report management 

techniques techniques 

Weiqin ZOU 
Nanjing University 

David LO 
Singapore Management University, davidlo@smu.edu.sg 

Zhenyu CHEN 
Nanjing University 

Xin XIA 
Monash University 

Yang FENG 
University of California, Irvine 

See next page for additional authors 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Software Engineering Commons 

Citation Citation 
ZOU, Weiqin; LO, David; CHEN, Zhenyu; XIA, Xin; FENG, Yang; and XU, Baowen. How practitioners perceive 
automated bug report management techniques. (2020). IEEE Transactions on Software Engineering. 46, 
(8), 836-862. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4353 

This Journal Article is brought to you for free and open access by the School of Computing and Information 
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in 
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional 
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4353&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4353&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Author Author 
Weiqin ZOU, David LO, Zhenyu CHEN, Xin XIA, Yang FENG, and Baowen XU 

This journal article is available at Institutional Knowledge at Singapore Management University: 
https://ink.library.smu.edu.sg/sis_research/4353 

https://ink.library.smu.edu.sg/sis_research/4353


1

How Practitioners Perceive Automated Bug
Report Management Techniques
Weiqin Zou, David Lo, Zhenyu Chen, Xin Xia, Yang Feng, Baowen Xu

Abstract—Bug reports play an important role in the process of debugging and fixing bugs. To reduce the burden of bug report
managers and facilitate the process of bug fixing, a great amount of software engineering research has been invested toward
automated bug report management techniques. However, the verdict is still open whether such techniques are actually required and
applicable outside the domain of theoretical research. To fill this gap, we conducted a survey among 327 practitioners to gain their
insights into various categories of automated bug report management techniques. Specifically, we asked the respondents to rate the
importance of such techniques and provide the rationale. To get deeper insights into practitioners’ perspective, we conducted follow-up
interviews with 25 interviewees selected from the survey respondents. Through the survey and the interviews, we gained a better
understanding of the perceived usefulness (or its lack) of different categories of automated bug report management techniques. Based
on our findings, we summarized some potential research directions in developing techniques to help developers better manage bug
reports.

Index Terms—Bug Report, Developer Perception

F

1 INTRODUCTION

Due to the complexity of software systems, bugs are in-
evitable. Bug fixing is one of the most important tasks dur-
ing the process of software development and maintenance.
In a recent report1, Tricentis2 did an analysis of 606 recorded
software failures in 2017. They found that those failures
alone affected as many as 3.7 billion people, and caused $1.7
trillion in financial losses. Thus, knowing how to effectively
and efficiently fix as many bugs as possible is of great help
for the development of software projects.

In practice, bug reports have been playing an important
role in bug fixing, since they provide specific details such
as description, reproducible steps, stack traces to help de-
velopers locate and fix defective code [93]. However, due to
the practice of accepting bug reports openly on the web,
developers often have to handle a large number of bug
reports [2]. Take Eclipse3 as an example, this project received
a total of 514,755 bug reports from October 2001 to April
2017, with an average of 91 new bug reports submitted to
Eclipse every day. Meanwhile, since bug reporters may vary

• Weiqin Zou, Zhenyu Chen and Baowen Xu are with State Key Laboratory
for Novel Software Technology, Nanjing University, China.
E-mail: wqzou@smail.nju.edu.cn, zychen@nju.edu.cn, bwxu@nju.edu.cn

• David Lo is with the School of Information Systems, Singapore Manage-
ment University, Singapore.
E-mail: davidlo@smu.edu.sg

• Xin Xia is with Faculty of Information Technology, Monash University,
Australia.
E-mail: xin.xia@monash.edu

• Yang Feng is with Department of Informatics, University of California,
Irvine, USA.
E-mail: yang.feng@uci.edu

• Zhenyu Chen and Xin Xia are the corresponding authors.

1. https://www.tricentis.com/software-fail-watch/
2. https://www.tricentis.com/
3. http://eclipse.org/

in reporting experience, not all bug reports contain sufficient
information to help developers fix bugs [93].

To help developers better manage bug reports, re-
searchers have been working on developing different bug
report management techniques, such as bug assignee recom-
mendation [2], [31], bug localization [44], [35] and duplicate
bug detection [84], [71]. However, it is not clear whether
these techniques are perceived as important or whether they
truly address practitioners’ gripes and challenges.

In this paper, we conducted a survey and follow-up
interviews to better understand how practitioners4 per-
ceive different kinds of automated bug report manage-
ment techniques. We first conducted a literature review
to check all relevant studies published in 17 conferences
and journals of software engineering. In total, we sum-
marized ten categories of automated bug report manage-
ment techniques namely, bug localization, bug assignment,
bug categorization, duplicate/similar bug detection, bug
report completion/refinement, bug-commit linking, bug re-
port summarization/visualization, bug fixing time predic-
tion, bug severity/priority prediction and re-opened bug
prediction. Then we distributed our survey to practitioners
with various backgrounds from both industry and OSS
communities to provide feedback on these categories. We
received a total of 327 responses. Specifically, we invited the
respondents to rate the importance of the ten categories of
bug report management techniques from very important to
very unimportant. We also asked them to provide rationale
for a randomly chosen subset of their ratings. Lastly, we
conducted interviews with 25 survey respondents to better
understand their perspectives. The following are our contri-
butions:

4. In this paper, we refer to “practitioners” as those who actively
engaged in software development either professionally or as an actively
pursued interest.

ppyeo
Typewritten Text
Published in IEEE Transactions on Software Engineering, 2018 September, Advance online. 
https://doi.org/10.1109/TSE.2018.2870414
Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

ppyeo
Typewritten Text



2

TABLE 1
Sources of Papers Reviewed.

Software Engineering Journals/Conferences Acronym
ACM Transactions on Software Engineering Methodology TOSEM
IEEE Transactions on Software Engineering TSE
Empirical Software Engineering EMSE
Automated Software Engineering ASE
Journal of Systems and Software JSS
Information and Software Technology IST
IEEE Transactions on Reliability TR
ACM SIGSOFT Symposium on the Foundation of Software
Engineering FSE

International Conference on Software Engineering ICSE
International Conference on Automated Software Engi-
neering ASE

International Conference on Program Comprehension ICPC
International Conference on Software Maintenance and
Evolution ICSME

International Symposium on Software Testing and Analy-
sis ISSTA

International Conference on Software Analysis, Evolution,
and Reengineering SANER

International Symposium on Empirical Software Engineer-
ing and Measurement ESEM

International Conference on Software Testing, Verification
and Validation ICST

International Conference on Mining Software Repositories MSR

• We summarize existing bug report management
techniques into ten major categories by performing a
literature review of papers published between 2006-
2017 in 17 conferences and journals.

• We investigate how 327 practitioners from diverse
backgrounds perceive the value of different cate-
gories of automated bug report management tech-
niques.

• We highlight the rationale behind participants’ rat-
ings of different categories of automated bug report
management techniques and present some poten-
tial improvements for specific automated bug report
management techniques.

The remainder of this paper is structured as follows:
In Section 2, we describe our research methodology. In
Section 3, we present the results of our study. We discuss the
insights and threats to the validity of our work in Section 4.
In the last two sections, we introduce the related work and
conclude our study.

2 RESEARCH METHODOLOGY

To understand how practitioners perceive research on au-
tomated bug report management, we followed a three-step
approach. First, we performed a literature review to identify
and categorize specific automated bug report management
techniques that were proposed by researchers. Next, we
designed and distributed a survey based on the categories
created at the end of the literature review. Lastly, we con-
ducted interviews to better understand the practitioners’
perspectives.

2.1 Literature Review
Our literature review included two parts, paper selection
and paper categorization.
Paper Selection: To identify related papers, we first picked
a set of 10 conferences and 7 journals, as shown in Ta-
ble 1. These are major software engineering conferences

where papers on bug report managements are likely to
be published, and these journals are impactful software
engineering journals (with impact factor > 2.0). Besides,
these 17 venues have also been used as sources for other
software engineering literature reviews, e.g. [66], [41], [90].

Next, we reviewed research papers published in these
conferences/journals between 2006-2017. We chose 2006 as
the starting point mainly because the research area took
off after Anvik et al.’s work on bug assignment that was
published in ICSE 2006 [2]. The first and the fifth authors
were responsible for extracting relevant papers from the
above-mentioned 17 venues. Specifically, these 17 venues
were randomly divided into two groups containing 8 and 9
venues respectively. Then each of the two researchers ran-
domly selected one group to work on. To help researchers
better select relevant papers, following [39], we defined
several inclusion and exclusion criteria. For each conference
proceeding or journal, papers were checked against these
filtering criteria.
Inclusion criteria:

• The main objective of the paper was to propose au-
tomated techniques (e.g. building tools) which help
to handle bug reports.

• The paper described the methodology and corre-
sponding evaluation results.

Exclusion criteria:

• Pure empirical studies on bug reports (these stud-
ies mainly focus on exploring characteristics of bug
reports rather than proposing approaches to help
automatically manage bug reports).

• Conference paper versions of later journal articles (if
a conference paper was extended to a journal paper,
the more complete journal paper was kept).

• Short papers.

To determine whether a paper meets the above criteria,
the researchers responsible for certain venues read each
paper’s title and abstract. They would further browse the
main content of those papers when they cannot determine
the relevance by merely reading the titles and abstracts.
After each researcher tabulated a list of relevant papers for
their assigned 8 or 9 venues, they cross-checked each other’s
paper list, and resolved disagreements through discussions.
At the end of the process, we identified 121 papers which
focused on automatically managing bug reports from ICSE,
FSE, ASE, ICSME, MSR, SANER (WCRE, CSMR-WCRE),
ESEM, ICPC, ISSTA, ICST conferences and TOSEM, TSE,
EMSE, ASE, JSS, IST, TR journals. The distribution of papers
across these conferences and journals is shown in Table 2.

Paper Categorization: Following [36], [37], we performed
open card sorting [67] to get the categories of automated bug
report management techniques. First, we created one card
for each of the 121 papers. Next, the first and fifth authors
worked together to identify categories of these papers in
two iterations.

Iteration 1: The two authors randomly chose 30 papers,
and discussed the categories of these papers. The resultant
classification scheme contains 10 categories shown in Table
2. During this process, we found that one paper by Zhang et



3

TABLE 2
Categories of Automated Bug Report Management Techniques.

ID Category Description Venue Total

B1 Bug localization

These techniques process a bug report, and locate
relevant source code files or methods that possibly
contain the bug. Some of these techniques also
recommend candidate repairs.

ICSME (6), TSE (3), ASE (3), WCRE
(3), MSR (3), FSE (2), IST (2), ICSE
(1), ICPC (1)

24

B2 Bug assignment
These techniques process a bug report, and recom-
mend the most appropriate developers to fix the
bug.

JSS (5), ICSE (3), MSR (3), FSE (2),
ICSM (2), TOSEM (1), TSE (1), EMSE
(1), IST (1), ESEM (1), ICPC (1),
WCRE (1)

22

B3 Bug categorization

These techniques process a bug report, and classify
it into different categories (e.g. reproducible bug
report or not, invalid bug report or not, bug fixing
request or feature request, security bug report or
not etc.)

MSR (3), ASE (2), ICSE (1), ICPC (1),
WCRE (1), ESEM (1), EMSE (1), ASE
Journal (1), IST (1)

12

B4 Duplicate/Similar bug
detection

These techniques detect duplicate/similar bug re-
ports in bug repositories.

ICSE(3), ASE (2), SANER (2), MSR
(2), ICSME (1), WCRE (1), EMSE (1),
JSS (1), IST (1)

14

B5 Bug report comple-
tion/refinement

These techniques aim to generate a high-quality
bug report. Some of these techniques automatically
generate a bug report when software crashes. Some
others help to make a better-quality bug report by
enriching/modifying an existing one.

FSE (2), ICPC (2), TSE (1), ICST (1),
IST (1), TR (1) 8

B6 Bug-Commit linking

These techniques aim to link bug reports with bug
fixing commits or bug inducing commits. With
these techniques, developers can better understand
which commits fix the bug and why/how/when
the bug is introduced.

FSE (3), ICPC (2), ASE (1), WCRE (1) 7

B7 Bug report summariza-
tion/visualization

These techniques process a bug report, and sum-
marize it into a much shorter form. Some of
these techniques also help developers better nav-
igate/understand bug reports through visualiza-
tion.

FSE (2), ICSE (1), TSE (1), EMSE (1) 5

B8 Bug fixing time pre-
diction

These techniques process a bug report, and predict
how long it will take to fix the bug. EMSE (4), ICSE (2), MSR (2), IST (2) 10

B9 Bug severity/priority
prediction

These techniques process a bug report, and predict
its severity/priority.

ICSM (2), FSE (1), ASE (1), WCRE
(1), EMSE (1), JSS (1), MSR (1) 8

B10 Re-opened bug predic-
tion

These techniques process a closed bug report, and
predict whether it is likely to be re-opened.

ICSE (1), WCRE (1), CSMR (1),
EMSE (1), ASE Journal (1) 5

al. aimed to address both bug severity prediction and bug
assignment problems [89]. In this case, we placed this paper
into these two categories separately.

Iteration 2: The two authors then tried to categorize the
remaining 91 papers into the 10 categories independently,
and they left out the papers which cannot be categorized
for a later discussion. Following [24], [19], Fleiss Kappa [23]
was used to measure the agreement between the two label-
ers, and the overall Kappa value was 0.93. This indicated
an almost perfect agreement between the labelers. After
completing the manual labeling process, the two authors
discussed their disagreements to reach a common decision.
They also identified the categories for the unlabeled papers.
During the discussion, 6 new categories were created for 6
papers that could not be grouped into the 10 categories in
Table 2.

These 121 papers were initially grouped into 16 cate-
gories. To make each category representative enough, we
filtered out those with less than 3 papers. Using this cri-
terion, six categories (each of which has only one paper)
that described studies on predicting the latency of bug
reporting [78], predicting the number of bug reports [82],
generating candidate repairs from bug reports [45], extract-
ing topics from bug reports [30], predicting the level of
defect backlog [68] and mining developers’ implementation

expertise from bug reports [3] were removed. Finally, we got
ten categories covering 115 papers. For each of those cate-
gories, we created a sentence that describes it. Table 2 shows
these 10 categories along with their descriptions. The full
details of the papers belonging to each category are available
at: http://github.com/SurfGitHub/bugmanaStudy.

2.2 Survey Design

Protocol: The goal of our survey is to collect the developers’
perceptions of the various kinds of automated bug report
management techniques. We specifically aimed to answer
the following three research questions based on the survey
results:

• RQ1: How do practitioners perceive automated bug
report management techniques?

• RQ2: Which are the highly-rated automated bug
report management techniques that practitioners
deem important?

• RQ3: Why do practitioners consider certain tech-
niques as important or unimportant?

In order to collect information that can help us answer
these research questions, we designed both close-ended and
open-ended survey questions, while limiting answer types
to numeric, Likert-scale and short free-form text based on
the guidelines in [40].

http://github.com/SurfGitHub/bugmanaStudy


4

In particular, we designed 10 close-ended questions for
the ten categories of automated bug report management
techniques. We listed these ten categories and asked respon-
dents to rate the importance of developing each category
to help them better manage bug reports. These questions
gathered answers for RQ1 and RQ2. To help survey respon-
dents better understand the categories, concise descriptions
(Description column in Table 2) for each category were pro-
vided. For each category, like in previous studies [7], [46],
we provided five options (i.e. very important, important,
neutral, unimportant and very unimportant), plus an addi-
tional option: “I don’t understand/prefer not to answer”.
The option “I don’t understand/prefer not to answer” was
provided in case respondents do not understand the cate-
gories of techniques based on the provided descriptions.

Next, we randomly sampled a maximum of two tech-
niques that a respondent had rated as important/very im-
portant, and up to two techniques that he/she rated as
unimportant/very unimportant. For these randomly sam-
pled techniques, we designed corresponding open-ended
questions to ask respondents the rationale behind their
ratings. These questions gathered answers for RQ3. In the
survey, we also asked some demographic questions (e.g.
profession, educational levels) so as to better understand
our respondents’ backgrounds and to further analyze results
by groups (e.g. developers, testers etc.).

Respondent Selection: Our goal is to collect a sufficient
number of responses from practitioners with diverse back-
grounds to better understand how they perceive various
automated bug report management techniques. Specifically,
following [41], we tried to get enough respondents from
both industry and OSS communities. The detailed selection
method is described as follows:

• For industrial professionals: We contacted profes-
sionals working in different companies from differ-
ent countries. When possible, we also asked them
to help us distribute our survey to their associates
and colleagues. Through this channel of distribution,
we were able to reach industrial professionals in
Google, Microsoft, Amazon, Facebook, LinkedIn, TP-
link, Huawei, Alibaba, Tencent, Cisco, Baidu and
many other small to large companies. This strategy
helped us better understand how industrial profes-
sionals perceive the value of automated bug report
management techniques proposed in the research
literature.

• For OSS active developers: We targeted at both
active developers in GitHub and those who had
reported/resolved many bug reports in Apache,
Mozilla and Eclipse (three projects that are com-
monly used in bug report management research
[2], [93], [86]). On one hand, we intensively mined
public commit logs of developers in GitHub and
randomly selected 1,000 active developers who made
more than 2,500 commits before March 2017. We sent
survey invitations to them through email addresses
mined from commit logs. On the other hand, we sent

emails to 7745 developers who handled (i.e. reported
or were assigned to resolve) more than 100 bug
reports in Apache (286)6, Mozilla (237)7 and Eclipse
(251)8. This strategy helped us better understand
how automated bug report management techniques
are perceived in OSS communities.

Data Analysis: After collecting all the survey responses, we
first dropped the “I don’t understand/prefer not to answer”
option that took only a very small proportion of all ratings.
We tabulated a total of 3,270 ratings from 327 survey respon-
dents, with each respondent rating 10 categories. Among
the 3,270 ratings, only 29 ratings (0.89%) were for the option
“I don’t understand/prefer not to answer”. This to a large
extent, indicated that most respondents understood the 10
categories of techniques we studied in this work. Then,
we converted the respondents’ ratings into Likert score
from 1 (very unimportant) to 5 (very important). Next, we
computed some statistics to observe how different demo-
graphic groups rated the categories. In RQ1, we calculated
the proportions of different ratings for the 10 categories by
participants with different backgrounds (e.g. roles, exper-
tise, education etc.). We further conducted Fisher’s exact test
[22] with Bonferroni correction [48] on proportions of “im-
portant” or “very important” ratings to explore whether one
demographic group tended to rate automated bug report
management techniques higher or lower than other groups.
In RQ2, we computed the rating details for each category
of bug report management techniques and adopted Scott-
Knot ESD test [73] to further explore the kind of techniques
that ranked higher among groups with different roles and
expertise levels. Lastly, we extracted comments made by
respondents to explain why some categories of automated
bug report management techniques are considered as im-
portant/very important or unimportant/very unimportant.

2.3 Interview Design

Protocol: To get deeper insights into the results of the
survey, we conducted follow-up interviews with some of
the original respondents. We did this by sending invitations
to 107 respondents who provided email addresses in the
survey or could be reached through personal contacts. 35
of these accepted our interview invitations. Since the inter-
views were expected to last about 45 minutes to 1 hour and
to ensure a sufficient time allocation to each category being
discussed, we decided to focus only on 4 categories of bug
report management techniques with each interviewee.

5. We performed two rounds of surveys. One was conducted in
March 2017 for 1000 active developers on GitHub. The other one
was conducted in April 2018 for 774 Apache, Mozilla and Eclipse
developers.

6. For the Apache project, we counted bug reports handled by all
526 members of Apache foundation in its JIRA system; 286 members
handled more than 100 bug reports before April 2018.

7. For the Mozilla project, we counted bug reports handled by users
with user ID ranging from 1 to 200,000 in its Bugzilla system; 237
users reported bugs within the recent half year (since October 2017)
and handled more than 100 bug reports before April 2018.

8. For the Eclipse project, we obtained a total of 251 users who
reported bugs to its Bugzilla system within the recent half year (since
October 2017) and handled more than 100 bug reports before April
2018.



5

During each interview, we kept to the following pro-
cess: First, we explained to the interviewee why we were
conducting the interview, and which few categories of bug
report management techniques we would discuss (more
details in Category Assignment below). Then, we discussed
each category sequentially.

During each discussion, we explained the category (what
it is about, why researchers study it, and its current state)
and ensured that they fully understood it before proceeding.
In so doing, we reduced the possibility of bias responses
resulting from not having a thorough comprehension of
the existing research work. Next, we asked them how they
perceive the category but this time we allowed the intervie-
wees to elaborate their viewpoints. We also asked auxiliary
questions for clarifications, clarity and insights.

Our interviewees were from China and other countries.
We interviewed those located in China through WeChat
or in person (for participants from Hangzhou); while we
interviewed the rest through Skype or Google Hangouts.
We followed the methodology used in [65], [1] to decide
when to stop interviewing, i.e. stopping interviews when
the saturation of the themes is reached. According to Strauss
and Corbin [69], if the already collected data is considered
sufficient and further data collection does not generate new
information, the sampling should be discontinued. Based on
this strategy, we stopped our interviews when we achieved
saturation of the themes after we interviewed 25 persons.
All 25 interviews lasted an average of about 1 hour with
median value of 1 hour; and they were audio-recorded and
transcribed for later analysis. Table 3 presents the intervie-
wees’ basic demographics.

Category Assignment: We adopted the following assign-
ment method: Given 10 categories, i.e. B1, B2, B3, ..., B10, we
considered every continuous 4 categories as an assignment
unit. Specifically, we took B1-B4 as the first unit, B5-B8
as the second unit, B9, B10, B1, B2 as the third unit. We
repeated this step until we got 25 units. After that, we
assigned units to interviewees by their ID number, i.e. the
ith unit was assigned to the ith interviewee, with i ranging
from 1 to 25. In this way, each category of automated bug
report management technique would be discussed by 10
(i.e. 25×4÷10) different interviewees. The details for the
assignments of categories to interviewees are provided in
the last column of Table 3.

3 RESULTS

In this section, we describe how practitioners rated cate-
gories of automated bug report management techniques that
are summarized in Table 2, together with the rationale of
their ratings. We mainly consider three research questions:

• RQ1: How do practitioners perceive automated bug
report management techniques? (Section 3.1)

• RQ2: Which are the highly-rated automated bug
report management techniques that practitioners
deem important? (Section 3.2)

• RQ3: Why do practitioners consider certain tech-
niques as important or unimportant? (Section 3.3)

TABLE 3
Interviewees’ demographics and their corresponding 4 categories of

bug report management techniques discussed.

ID Role Experience (years)
categories of bug
report management
techniques

P1 Developer 8 B1, B2, B3, B4
P2 Tester 10 B5, B6, B7, B8
P3 Developer 6 B9, B10, B1, B2
P4 Developer 14 B3, B4, B5, B6
P5 Project Manager 10 B7, B8, B9, B10
P6 Developer 20 B1, B2, B3, B4
P7 Developer 4 B5, B6, B7, B8
P8 Developer 8 B9, B10, B1, B2
P9 Project Manager 12 B3, B4, B5, B6
P10 Developer 6 B7, B8, B9, B10
P11 Tester 6.5 B1, B2, B3, B4
P12 Developer 12 B5, B6, B7, B8
P13 Developer 7 B9, B10, B1, B2
P14 Project Manager 25 B3, B4, B5, B6
P15 Developer 15 B7, B8, B9, B10
P16 Project Manager 10 B1, B2, B3, B4
P17 Developer 8 B5, B6, B7, B8
P18 Developer 9 B9, B10, B1, B2
P19 Developer 15 B3, B4, B5, B6
P20 Developer 11 B7, B8, B9, B10
P21 Developer 20 B1, B2, B3, B4
P22 Tester 15 B5, B6, B7, B8
P23 Developer 4 B9, B10, B1, B2
P24 Developer 10 B3, B4, B5, B6
P25 Developer 7 B7, B8, B9, B10

3.1 RQ1: How do practitioners perceive automated bug
report management techniques?

In total, we received 327 responses from 30 countries, of
which the top two countries are China (with 58.1% re-
sponses) and the United States of America (with 11.3%
responses). Among the 327 respondents, 299 are profes-
sional software developers, testers, or project managers.
The other 28 respondents are non-professionals but they
have participated in software development for an average
of 9.25 years. 164 of the total respondents have participated
in open source projects, among whom 143 are professional
developers, testers and project managers. The experiences
of our 327 respondents vary from 0.2 years to 35 years, with
average experience of 9.87 years.

Considering that 58.1% of the responses were from
China, we needed to verify that this would not pose a
potential threat to our study. To ensure this, we carried
out a comparison between rating results of respondents
from China (C) and those from outside China (OC). Specif-
ically, we applied Wilcoxon Test [5] and Cliff’s Delta Effect
Size [15] to the ratings from respondents in the C and OC
groups. The results revealed that there indeed existed a
difference (the p-value of Wilcoxon Test is 2.2e−016), but the
difference (measured by Cliff’s Delta Effect Size) was small
(the calculated effect size is 0.296, whose value falls into the
range 0.147 - 0.33 which corresponds to a small difference).
Besides, we found that both the C and OC groups of
participants have the same median value of ratings. Thus,
we conclude that the response imbalance based on country
of origin would not affect our results too much.

After collecting all responses from 327 respondents, we
investigated how participants from various demographic
groups rate the 10 categories of automated bug report man-
agement techniques. Following [46], [41], we considered the



6

following demographic groups:

• All respondents (All)
• Respondents who are developers (Dev)
• Respondents who are testers (Test)
• Respondents who are project managers (PM)
• Respondents with low experience, which we define

as the 25% with the least experience in years (<= 4.0
years in this survey) (ExpLow)

• Respondents with high experience, which we define
as the 25% with the most experience in years (>= 15
years in this survey) (ExpHigh)

• Respondents with medium experience, i.e. remaining
respondents with more than 4.0 but less than 15 years
of experience (ExpMed)

• Respondents with advanced degree, i.e. Master’s,
Ph.D., M.D. (Adv)

• Respondents without advanced degree (NonAdv)
• Respondents who have participated in OSS projects

(OS)
• Respondents who are professional software engi-

neers (Prof)

Figure 1 presents the importance of the 10 categories
of automated bug report management techniques as per-
ceived by respondents in different demographic groups.
Note that 29 ratings (out of 3,270 ratings) for “I don’t
understand/prefer not to answer” were excluded from the
statistics, i.e. only 3,241 ratings were counted. The horizontal
axis shows different demographic groups and the vertical
axis shows the proportion of different ratings received from
a demographic group. For example, in the All group, there
were a total of 3,241 ratings, of which 31.0%, 37.2%, 21.4%,
7.6% and 2.7% of them were “Very Important”, “Important”,
“Neutral”, “Unimportant” and “Very unimportant” ratings
respectively.

From the figure we can observe that practitioners in all of
the 10 groups picked more “Very Important” and “Impor-
tant” ratings than “Unimportant” or “Very Unimportant”
ratings. More than 60% - 81% respondents of all groups
rated the various categories of automated bug report man-
agement techniques as “Very Important” or “Important”.
Only a minority (less than 17.3%) picked “Unimportant” or
“Very Unimportant” ratings in the various categories.

On the whole, the majority (60% – 81%) of practitioners
with various backgrounds considered the automated bug
report management techniques as important/very impor-
tant.

In order to better understand whether one demographic
group tended to rate higher or lower than other group(s), we
further conducted Fisher’s exact test [22] with Bonferroni
correction [48] on the proportions of “Important” or
“Very Important” ratings from different demographic
groups. Fisher’s exact test is typically used for categorical
data and is always conducted between two nominal
variables. Specifically, it is used to test whether the relative
proportions of one variable are independent of the other
variable. Bonferroni correction aims to control the family-
wise error rate for multiple comparisons. We conducted
Fisher’s exact test with Bonferroni correction on four sets of

demographic groups, i.e. groups with different roles (Test
vs. PM vs. Dev), groups with different experience levels
(ExpHigh vs. ExpMed vs. ExpLow), groups with different
educational background (Adv vs. NonAdv) and groups
contributing to different kinds of projects (OS vs. Prof).

The detailed results are as follows:

• For groups with different roles, we found that among
the ratings that developers (Dev) provided, 65.4%
of them were either important or very important.
The figures were 81.0% and 68.3% for testers (Test)
and project managers (PM) respectively. To validate
the significance of rating differences among these
groups, we first conducted a Fisher’s exact test on
each of the three possible pairwise comparisons (Test
vs. PM, Test vs. Dev and PM vs. Dev). Then we ap-
plied the Bonferroni correction for the three tests. Af-
ter the Fisher’s exact test with Bonferroni correction,
we found that all three comparisons were significant
(p-value < 0.05/3). This meant that developers
and project managers were more negative about
automated bug report management techniques than
testers. Meanwhile, project managers were slightly
more positive about the importance of these tech-
niques than developers. These differences, to some
extent, can be explained by the fact that testers may
be more likely to directly handle different kinds of
tasks related to bug reports than developers and
project managers.

Project managers (68.3%) were slightly more posi-
tive about automated bug report management tech-
niques than developers (65.4%); and both of them
were more negative than testers (81%) towards
these techniques.

• For groups with different experience levels, we
found that among the ratings that practitioners with
high experience (ExpHigh) provided, 60.6% of them
were either important or very important. The figures
were 77.3% and 67.4% for practitioners with low
(ExpLow) and medium (ExpMed) experience respec-
tively. Similarly, we conducted Fisher’s exact test to
the three possible pairwise comparisons (ExpHigh
vs. ExpLow, ExpHigh vs. ExpMed and ExpMed vs.
ExpLow). After Bonferroni correction, we found that
all three comparisons were significant (p-value <
0.05/3). This meant that practitioners with high
experience were more negative about the importance
of automated bug report management techniques
than those with low and median experience. This
may be because experienced practitioners can easily
do some bug report management tasks manually and
have a better understanding of the shortcomings of
existing techniques.

Experienced practitioners were more negative
about automated bug report management tech-
niques (60.6% for ExpHigh) than less experienced
ones (67.4% for ExpMed and 77.3% for ExpLow).



7

Fig. 1. Importance of 10 categories of automated bug report management techniques to respondents of various demographic groups.

TABLE 4
Detailed ratings from survey responses on automated bug report management techniques.

ID Bug Report Management Technique Very Important Important Neutral Unimportant Very Unimportant
B1 Bug localization 49.2% 33.4% 9.6% 6.2% 1.5%
B2 Bug assignment 33.4% 38.9% 19.0% 5.8% 2.8%
B3 Bug categorization 33.3% 41.0% 17.7% 5.5% 2.4%
B4 Duplicate/Similar bug detection 35.8% 41.6% 18.3% 3.4% 0.9%
B5 Bug report completion/refinement 34.5% 42.8% 18.8% 3.1% 0.9%
B6 Bug-Commit linking 36.7% 44.4% 15.1% 2.8% 0.9%
B7 Bug report summarization/visualization 25.9% 34.9% 25.6% 10.8% 2.8%
B8 Bug fixing time prediction 17.8% 28.3% 31.2% 15.3% 7.5%
B9 Bug severity/priority prediction 25.6% 37.3% 26.9% 8.3% 1.9%
B10 Re-opened bug prediction 17.8% 29.1% 32.2% 15.0% 5.9%

• For groups with different educational backgrounds,
we found that, among the ratings that practitioners
with advanced degree (Adv) provide, 69.0% of them
were either important or very important. The figure
was 67.3% for practitioners without advanced degree
(NonAdv). Again, we conducted Fisher’s exact test
to validate the significance of the difference. The p-
value of difference between groups Adv and Non-
Adv was 0.240, which meant the observed difference
is not statistically significant (p-value > 0.05).

There was no statistically significant difference be-
tween the perceptions of practitioners with ad-
vanced degree and those without advanced degree.

• For groups contributing to different kinds of
projects, we found that, among the ratings that OSS
practitioners provided, 63.2% of them were either
important or very important. The figure was 68.5%
for professional practitioners. Similarly, we used
Fisher’s exact test to validate the significance of the
difference. The p-value of difference between groups
OSS practitioners and professional practitioners was
5.141e−05, which meant the observed difference is
indeed significant (p-value < 0.05; Bonferroni
correction is not needed for the single test.)
This meant that OSS practitioners were more

doubtful about the importance of automated bug
report management research than professional
practitioners. This may be because people have
more tolerance of bug reports not being handled
in time in OSS community than in the industry.

Professional practitioners rated automated bug re-
port management techniques higher (68.5%) than
OSS practitioners (63.2%).

3.2 RQ2: Which are the highly-rated automated bug
report management techniques that practitioners deem
important?

Table 4 shows the rating details for each category by 327
respondents. During our calculation, the option “I don’t
understand/prefer not to answer” was excluded. From
the table, we found that for each category, a majority of
respondents were positive with it. The proportion of im-
portant and very important ratings ranged from 46.1% to
82.6%. Two categories were particularly favored by our
respondents; they were bug localization and bug-commit
linking. A total of 82.6% respondents rated bug localization
as either important or very important. The number was
81.1% for bug-commit linking. The categories receiving the
lowest percentages of important and very important ratings



8

TABLE 5
Ranks of ten categories of automated bug report management

techniques according to the Scott-Knott ESD tests for all respondents.

Group Category of Bug Report Management Technique

1

B1 (Bug localization)
B4 (Duplicate/Similar bug detection)
B5 (Bug report completion/refinement)
B6 (Bug-Commit linking)

2 B2 (Bug assignment)
B3 (Bug categorization)

3 B7 (Bug report summarization/visualization)
B9 (Bug severity/priority prediction)

4 B8 (Bug fixing time prediction)
B10 (Re-opened bug prediction)

TABLE 6
Ranks of ten categories of automated bug report management

techniques according to the Scott-Knott ESD tests for developers,
testers and project managers respectively.

Group Category of Bug Report Management Technique
Developers

1 B1, B4, B5, B6
2 B2, B3
3 B7, B9
4 B8, B10

Testers
1 B1, B2, B3, B5, B6, B7, B9
2 B4, B8, B10

Project Managers
1 B1, B2, B3, B4, B5, B6, B7, B9
2 B8, B10

were bug fixing time prediction and re-opened bug predic-
tion. The percentages were 46.1% and 46.9% respectively.

On the whole, a majority of respondents were positive
about each category of bug report management tech-
niques. B1 (Bug Localization) and B6 (Bug-Commit Link-
ing) were particularly favored by practitioners (with 82.6%
and 81.1% ratings respectively).

In order to gain a better insight into what categories
of bug report management research were highly rated by
practitioners, we further used Scott-Knott Effect Size Differ-
ence (ESD) [73] to group techniques into statistically distinct
ranks based on their Likert scores. As a variant of Scott-
Knott test [62], Scott-Knott ESD test aims to merge two
groups whose difference has a negligible effect size into one
group. As highlighted by [73], the Scott-Knott test assumes
that data is normally distributed, and it may create groups
that are trivially different from one another. To address the
limitations of Scott-Knott test, Tantithamthavorn et al. pro-
posed the Scott-Knott Effect Size Difference (ESD) test to
correct the non-normal distribution of an input dataset and
merge any two statistically distinct groups whose difference
has a negligible effect size into one group [73].

Similar to Section 3.1, we identified highly rated auto-
mated bug report management techniques across different
demographic groups, i.e. all respondents, respondents who
are developers, testers and project managers, respondents
with low experience, medium experience and high experi-
ence respectively.

Table 5 presents the 10 categories of techniques as

TABLE 7
Ranks of ten categories of automated bug report management

techniques according to the Scott-Knott ESD tests for respondents with
low, medium and high experience respectively.

Group Category of Bug Report Management Technique
Low Experience

1 B1
2 B2, B3, B4, B5, B6, B9
3 B7, B8, B10

Medium Experience
1 B1, B3, B4, B5, B6
2 B2, B9
3 B7
4 B8, B10

High Experience
1 B4, B5, B6
2 B1, B2, B3
3 B7,B9
4 B8, B10

ranked according to the Scott-Knott ESD test for all re-
spondents. We found that four categories of bug report
management technique, i.e. B1 (bug localization), B4 (du-
plicate/similar bug detection), B5 (bug report comple-
tion/refinement) and B6 (bug-commit linking) belonged
to the first group. This meant that B1, B4, B5 and B6
were ranked substantially higher than other categories.
Two categories, namely B8 (bug fixing time prediction)
and B10 (re-opened bug prediction) belonged to the
last group, i.e. they were given substantially lower rat-
ings as compared to other categories by respondents.

For all respondents, B1, B4, B5 and B6 were ranked highest
among all 10 categories; while B8 and B10 were ranked
lowest.

Table 6 presents the 10 categories of techniques as ranked
according to the Scott-Knott ESD tests for developers, testers
and project managers respectively. We found that both
B10 (re-opened bug prediction) and B8 (bug fixing time
prediction) were ranked lower than other techniques by
developers, testers and project managers. The top 3 most
ranked techniques among developers, testers and project
managers were B1 (bug localization), B5 (bug report com-
pletion/refinement) and B6 (bug-commit linking). Addi-
tionally, we observed that different from testers, develop-
ers and project managers considered B4 (duplicate/similar
bug detection) more important than other categories; on
the other hand, different from developers, testers and
project managers thought more highly of B2 (bug assign-
ment), B3 (bug categorization), B7 (bug report summariza-
tion/visualization) and B9 (bug severity/priority predic-
tion).

Testers and project managers thought more highly of B2,
B3, B7 and B9 than developers; while developers and
project managers ranked B4 higher than testers. B1, B5
and B6 were ranked highest while B8 and B10 were ranked
lowest across all roles respectively.

Table 7 presents the 10 categories of techniques as ranked
according to the Scott-Knott ESD tests for respondents with
low, medium and high experience respectively. Similar to



9

Table 5 and 6, B8 (bug fixing time prediction) and B10 (re-
opened bug prediction) were ranked lowest by respondents
with different experience levels. From the table, we found
that different from practitioners with low experience, both
practitioners with median and high experience thought
more highly of B4 (duplicate/similar bug detection), B5 (bug
report completion/refinement) and B6 (bug-commit link-
ing). Moreover, we noticed that respondents of high experi-
ence appreciated B1 (bug localization) less than respondents
of low or median experience. Perhaps high experienced
practitioners may locate bugs more easily by themselves
than less experienced ones.

Practitioners of high experience rated B1 lower than those
who are less experienced; while practitioners of low expe-
rience appreciated B4, B5 and B6 less than those who are
more experienced. B8 and B10 were ranked lowest across
all experience levels.

3.3 RQ3: Why do practitioners consider certain tech-
niques as important or unimportant?

To better understand why certain techniques are deemed as
important or unimportant by practitioners, we conducted a
thematic analysis on the answers/comments collected from
the survey respondents and interviewees. Thematic analysis
is a technique that aims to identify and record “themes”
(i.e. patterns) within textual documents [17], [9]. It generally
includes 5 steps: (1) reading through the documents to
get familiar with the data, (2) generating initial codes for
the data, (3) searching potential themes among the codes,
(4) reviewing and refining the themes and (5) defining
and naming the final themes. Thematic analysis has been
performed in many past software engineering studies, e.g.
[16], [64].

Before conducting the thematic analysis, we first did
some preprocessing to both the survey and interview data.
For the survey part, we carefully read all the comments
from the 327 respondents and manually removed comments
which do not describe any rationale. For the interview part,
we transcribed each audio record into text, segmented the
text into units and removed units unrelated with the 10 cate-
gories of bug report management techniques. After that, we
placed both the survey and interview data together and split
them into 10 parts, with each part only containing comments
that are related to a certain category of techniques.

In total, 4 researchers, including two non-authors, were
involved in the thematic analysis on 10 categories of bug
report management techniques. For each category of bug
report management techniques, steps (1) to (4) were carried
out by two researchers separately. Then, they discussed and
resolved conflicts in defining and naming the final themes
(step (5)).

The following subsections 3.3.1 to 3.3.10 present the
results of thematic analysis on each category of bug re-
port management techniques respectively. The results can
be briefly divided into three parts: (1) Reasons for im-
portant/very important ratings, (2) Reasons for unimpor-
tant/very unimportant ratings and (3) Improvements and
Expectations mentioned by some practitioners. To help peo-
ple better identify relevant themes, in this paper, we use

! and % to represent the reasons for important/very im-
portant ratings and unimportant/very unimportant ratings
respectively.

3.3.1 Bug Localization (B1)

(1) Reasons for important / very important ratings
After analyzing the data, we identified two kinds of

rationale for why practitioners considered bug localization
techniques important/very important, i.e. speeding up bug
fixing and helping novices become familiar with software
projects.
!Speed up bug fixing: Eight interviewees and twelve
survey respondents thought that a reliable bug localization
technique was useful since it could speed up the process of
bug fixing. Several explanations were provided by them as
follows:

• Narrow down search space. As one survey respon-
dent mentioned, “Any automated process that can help
with the debugging process, particularly through static
code analysis, would be very useful. Even if it only
narrowed down the search area, if it was reliable it
could significantly speed up locating the cause of a bug”
(Survey). And if you can find the bug more quickly,
“you can fix it more quickly, then you can work more
efficiently.”(P21)

• Find buggy code owner. One interviewee explained
that with the help of this technique, they could find
developers who knew the buggy code best to help
them solve the bug more quickly. “It is more difficult
to fix a bug within code that was written by others. This
technique can help you find the owner of the buggy code
and then you can ask him or her for some help when you
encounter problems.” (P3)

• Estimate bug fixing time. One survey respondent
mentioned that automated bug localization could
help casual contributors determine whether they
could help to fix a bug quickly. “This would be useful
as a casual contributor to see at a glance whether I know
the relevant area of the code, since this is a strong signal
that I might be able to fix it quickly.” (Survey)

• Save time spent in reading bug reports. Some in-
terviewees and survey respondents said that reliable
bug localization techniques could help save the time
developers spent in reading bug reports. As a survey
respondent commented, “It would also be useful as a
frequent contributor to be able to skim or skip parts of the
report.” (Survey)

!Familiarize new developers with the code: Besides
speeding up bug fixing, three interviewees commented that
another extra advantage of a bug localization technique was
that it could help novice engineers get more familiar with
the files of code especially working in a big software project.
As P21 stated, “If you have a big complicated software project
that has thousands of files like Mozilla or like Wikipedia. And a
new developer is not familiar with all of them. They cannot read
all the thousands of files on the first day of their work. So if there
was some automatic system that helps them find where the bug is,
it helps them become familiar with the different files of code. I was
a novice engineer, I remember how it was. If there was something



10

that shows me around and helps you become familiar with the
code. I would really appreciate it.”

(2) Reasons for unimportant / very unimportant ratings
Two kinds of rationale were provided by practitioners

for their unimportant/very unimportant ratings, i.e. they
doubted the reliability of automated bug localization and
they did not have a big need for such techniques.
%Questionable reliability: Six interviewees and five sur-
vey respondents were skeptical about the feasibility in
building effective bug localization tools. They gave various
reasons for their doubts:

• Bugs have different characteristics. Some thought
that different bugs from different domains had differ-
ent characteristics that could not always be located.
As P18 stated, “Bugs from different domains have differ-
ent characteristics. I do not think these bugs can be well
located by bug localization techniques based on specific
algorithms or certain patterns. Sometimes, an inaccurate
localization would mislead us and take us more time to fix
the bug.”

• Existing techniques may only work on simple bugs.
Some of them felt that automated tools might only
work for simple bugs. One interviewee said, “It seems
that existing techniques mainly make use of the textual
similarity between bug reports and source code files to
perform bug localization. However, I encountered many
bugs that have very little similarity between their bug
reports and code files. I wonder what kind of bugs such
techniques can localize? Maybe only simple bugs?” (P3)

• Different people may describe a bug in different
ways. Some others commented that a bug with the
same root cause might be described in different ways
by different people, which they felt no tools could
locate.
“Different people will use different ways to describe a bug,
how can tools understand that they are actually the same
one?” (P23)

%Unnecessary and potentially harmful: One interviewee
said he did not need such techniques since he was main-
taining a very stable product with only simple bugs to fix.
“Our major work is to maintain a well-operated system which has
been running for more than 20 years. We mostly conduct minor
changes to our system and most bugs we encountered are very
easy to fix.” (P1)

Another interviewee shared his concerns that these
techniques might hinder the further growth of novice
developers. “Manually debugging bugs is an essential step
for a novice developer to become an experienced one. I think a
developer with a smart mind is more valuable than a novice
person equipped with an AI like tool. Automatically helping a
fresh hand locate bugs is bad for him or her in the long run.” (P16)

(3) Improvements and Expectations
Incorporate additional relevant information: Eight
interviewees mentioned that bug screenshots, stack traces,
recorded logs and videos were very useful in locating bugs.
Some of them suggested making full use of these kinds of
information to improve the performance of bug localization

techniques. The relevant comments are as follows:

“When we locate bugs, we not only read bug reports but also
read screenshots, logs and stack traces that play a key role in bug
localization. You should try to combine these kinds of information
together so that you may get a workable tool.” (P6)
“Besides screenshots, sometimes our bug reporters would also
upload some videos to show what bugs they are exactly facing.
Those videos are really helpful in locating bugs.” (P23)

Find hard-to-locate bugs: Seven interviewees expressed a
great need for techniques that can help them locate specific
kinds of bugs such as performance bugs, memory leak
bugs, environment-related bugs caused by hardware crash
or bad network etc. Those bugs, as they said, were always
hard to locate. Some of their comments are as follows:

“Our platform includes some third-party or open source compo-
nents. For those bugs occurred in these components, we always
need to spend much time sometimes even more than a 1 week to
fix them. Besides, memory leak bugs are also difficult to locate.”
(P16)
“In my experience, two kinds of bugs are very hard to locate:
performance bugs and environment-related bugs caused by such
as bad network or hardware crash. It would be fantastic if some
kind of techniques can help us locate these bugs.” (P13)
“It would be great if such techniques can help us locate bugs that
hide in code with complex logic.” (P8)
“We often encountered random bugs that were introduced by
using some encryption and decryption algorithms. Locating them
is a difficult task.” (P25)

3.3.2 Bug Assignment (B2)

(1) Reasons for important / very important ratings
Three kinds of rationale were identified during our the-

matic analysis, i.e. speeding up bug fixing, saving triager’s
valuable time and improving the visibility of unnoticed bug
reports.
!Speed up bug fixing: Seven interviewees and eight
survey respondents mentioned that bug assignment
techniques could help bug reports to be resolved in a faster
way by helping to direct them to suitable developers. In
this way, much unnecessary communication within/across
teams or departments could be avoided. And this could
further “happy customers if a bug is resolved asap and reduce
the loss caused to an organization due to bugs.” (Survey)

“Making it clear what the problem is and making it clear who
is responsible for handling (or further diagnosing) the bug is the
most critical part of getting a bug fixed.” (Survey)
“Wrongly assigned bug reports will always face tossing between
different developers within or even across teams or departments.
Such tossing is very time-consuming and would drive us crazy if
these bugs have high priority but cannot be fixed in time.” (P16)
“Remove some routine operations that delay the time before real
work starts.” (Survey)

!Save triager’s valuable time: Five interviewees and
three survey respondents said this technique could help



11

save much manual work in assigning bugs. As some
interviewees explained, only experienced people (who
are very familiar with the system) are qualified for bug
assignment. Automated bug assignment tools can save their
precious time and allow them to do other more value-added
tasks.

“In our company, only experienced developers can be appointed as
bug triagers. They usually spend a lot of time to ensure that each
bug goes to the right fixer. So, if you can help them automatically
identify qualified fixers, they would be very happy since they can
have more time to do other important tasks.” (P6)
“Developers often neglect triage because it’s time-consuming and
not as rewarding as development / fixing the bugs.” (Survey)

!Improve bug report visibility: Six survey respondents
mentioned that automated bug assignment let developers
realize the existence of some bugs that were not noticed
before. One survey respondent said that a lot of bugs
reported to many open source projects (which have many
bugs coming in) go untriaged for a long time.

“The important part of triaging to me would be, for example, to
automatically check if a bug still persists or if it has been fixed in
the meantime without anyone realizing.” (Survey)
“Bugs which the developers are not made aware of are less likely
to be noticed and fixed.” (Survey)
“Many open source projects have a high volume of bugs coming
in and a lot of them can go untriaged for a long time.” (Survey)

(2) Reasons for unimportant / very unimportant ratings
After analyzing the data, we found that some practi-

tioners thought automated bug assignment techniques to be
unimportant because they doubted the performance of such
techniques or they did not have such a need.
%Questionable reliability: Two interviewees and two
survey respondent were skeptical about the effectiveness
of automated bug assignment techniques. They thought
that bug assignment depended a lot on the knowledge a
developer had. One interviewee doubted whether existing
techniques could properly assign bugs of same root cause
but with different descriptions properly.

“I can’t imagine it would work very well without most of the
knowledge one of the project’s developers has in their head.”
(Survey)
“Existing bug assignment techniques seem to be mainly based on
textual similarity, how can it handle those bugs that share the
same root cause but described in different ways?” (P23)

%Unnecessary: Five interviewees and three survey respon-
dents commented that they did not need such a technique
either because they could do it manually, or they did not
have an enforced assignment process.

• Manual assignment is sufficient. Four interviewees
and two survey respondents said that they did not
need such a tool since they could easily assign bug
reports to suitable developers.
“Usually it is not hard to find the right contact” (Survey)
“Our development is in a quick way. Each version itera-
tion would last no more than one month, during which

only few bugs will manifest. Both our developers and
QAs are familiar with modules thus bugs can always be
assigned properly.” (P13)

• There is no assignment process. One interviewee
and one survey respondent said that they did not
have an assignment process, instead, the developers
took on the work by themselves.
“Some teams practice agile methodology, scrum. So if
you work according to the agile scrum methodology then,
usually developers themselves just decided, I will take this
one and you will take this bug and we’ll share this. That’s
how it usually works with agile or scrum. No assignment
process. They just take the work, people just take the work
themselves.” (P21)
“For the most part though, the core team contributors
decide on their own what to work on. Our model is
based on trust and autonomy and has very little central
control.” (Survey)

(3) Improvements and Expectations

Incorporate additional relevant information: In terms
of feasibility in building effective bug assignment tools,
seven interviewees thought that bug assignment tools could
not work effectively without considering other sources of
information in addition to the text in the bug reports, – e.g.
developers’ expertise and their current state (i.e. availability
etc.) etc.

“Effective bug assignment requests a good understanding of the
system, involved developers (e.g. whether they are busy or not,
tasks at hand) and bugs’ effect on business. How can a bug
assignment technique work without complementing such context
information? ” (P18, P3)
“I think it will greatly improve the performance of bug
assignment techniques if you also consider the root cause of bugs
and developers’ expertise (i.e. who are good at solving which
kinds of bugs (e.g. memory leak, performance, UI and workflow
problems)).” (P11)

Associate bugs to their relevant components: Eight
interviewees said that their bugs would be first assigned
based on components, then re-assigned to the components’
developers. Some of them desired some tools that could
help them correctly associate bugs with all relevant
components. In this way, they could easily find right
developers related to the components to work out the
solution for a bug.

“Whenever we received a bug report, we would first figure out
which component this bug belongs to, then assign it to the
developers who are currently responsible for the component.” (P1)
“We often have bugs that are related to more than one component.
It’s pretty convenient if you can associate bugs with several
components. This helps people who have expertise in different
components and different topics to work together and work out a
solution.” (P21)

Assign a bug to a pair of developers: One interviewee
suggested assigning each bug to a pair of developers (i.e.



12

a senior one and a novice one) rather than a single proper
fixer. The senior developer guides the novice developer to
fix the bug. He said this strategy works well in his company.

“In our company, two developers are responsible for fixing a bug
– a senior experienced developer aims to roughly figure out the
potential root cause of the bug and a novice one aims to fix the
bug under the guidance. This practice is good since it can ensure
the development progress and help novice developers obtain an
overall view of the system.” (P8)

Collaborate with human: One interviewee thought it
would be good if tools could correctly assign as many
simple bugs as possible and leave only complex bugs
to humans to handle. Another interviewee thought an
automated bug assignment system should have the ability
to improve itself through interactions with humans.

“I think it may be more practical to, e.g. try to have most simple
bugs effectively assigned by tools and only leave complex bugs
which cannot be handled by tools to the triagers.” (P6)
“I think a good bug assignment system should be able to receive
feedbacks from people and get improved through learning.” (P23)

3.3.3 Bug Categorization (B3)

(1) Reasons for important / very important ratings
After thematic analysis, we identified the following three

kinds of reasons why practitioners deemed automated bug
categorization as important/very important:
!Better resource allocation: Eight interviewees and ten
survey respondents mentioned that automated bug cat-
egorization techniques could help people better allocate
resources. With such techniques, developers can easily filter
bug reports to work on and thus get a higher throughput in
bug fixing.
“I am a maintainer of an open source project with about a million
users and hundreds of contributors. I’ve become a bottleneck in
categorizing bug reports and assigning them to contributors. As
a result, contributors don’t know what to work on and many
bugs don’t get fixed. Tooling in this space might help with
better resource allocation and higher throughput in fixing bugs.”
(Survey)

!Save manual work in classifying bugs: Five interviewees
and four survey respondents thought this technique can
save much manual work in classifying bug reports,
especially for those large open source projects or
crowdtesting projects.

“You cannot expect a brand new person on the job to just jump
into it and start classifying bugs. The responsibility is supposed
to be with the project manager and they should have a lot of
experience, otherwise they will make a lot of mistakes. This kind
of technique will be very useful and important.” (P21)
“I think this kind of technique will help large open source projects
and crowdtesting projects a lot because they often have many bug
reports reported by various users.” (P6)

!Facilitate postmortem analysis: Two interviewees and
two survey respondents commented that bug classification
could help in later analysis. Two kinds of help were men-
tioned in their comments as follows:

• Evaluation of product quality. One interviewee and
one survey respondent stated that automated bug
reports classification could help them better under-
stand what problems their products have.
“Sometimes we need to analyze bug reports to figure out
what problems our products tend to have. This technique
would help a lot when we do such an analysis.” (P9)

• Identification of common bug fix solution. Two in-
terviewees and one survey respondent thought that
classified bug reports could more likely help them
find a common solution to a certain kind of bugs.
“If bugs have been divided, we will likely find a common
solution of this kind of bugs.” (Survey)

(2) Reasons for unimportant / very unimportant ratings
During analysis, we found that practitioners considered

this technique unimportant either because they could man-
ually do it or they were skeptical about the effectiveness of
this technique.
%Manual work is sufficient: Two interviewees and three
survey respondents said they could manually do bug
classification easily. As P11 stated, “In our company, testers
are required to fill in the report whether the bug is valid and
reproducible. And they are experienced at doing this. If they
cannot determine, which is very rare, our project manager or
developers will do them a favor.” (P11)

%Questionable reliability: Two survey respondents
expressed their doubt on the reliability of automated bug
categorization techniques. As one respondent explained,
“Categories are very quickly devalued (at least subjectively) by
even a few miscategorisations. A categorisation algorithm is
likely to put too much weight on just the presence of words. Even
if a bug report mentions a category name 10 times it does not
necessarily mean that it belongs in that category.” (Survey)

(3) Improvements and Expectations
Incorporate information from screenshots: Some intervie-
wees suggested making more use of screenshots to do
automated bug categorization. They explained that their
testers were often required to attach bug screenshots while
reporting bugs and these screenshots helped them a lot in
classifying bugs manually.
“It’s not hard to classify bug reports when they have screenshots.
In our company, testers are requested to provide relevant
screenshots while filing a bug report.” (P1)

Classify bugs based on other desired categories: Half of
the interviewees mentioned that instead of classifying bugs
as valid or invalid, severe or non-severe, they would like to
see more research work done to classify bugs based on their
root cause, potential impact on business, reproducibility and
security concerns etc. Some representative comments are as
follows:

• [Root cause and business impact] “Is it possible for the
research community to classify bugs at a more fine-grained



13

level? E.g. by telling us whether the bug is a performance
bug or a functional bug, whether the bug will affect a large
number of users. This is what we really want.” (P24)

• [Reproducibility] “Reproducibility in particular is
great, because reproduction is always the longest step in
actually fixing a bug” (P9)

• [Security concerns] “I usually work with very open
bug reporting systems that don’t have any secrets because
it’s open source. However, it may sometimes happen that
something does have to be secret. For example, some bug
reports are about security. The bug report itself should be
secret so that bad people won’t use the same way then walk
into my website without the password. So, if I see that this
bug report must be secret, then I will mark it as something
that should be secret, so there will be less damage.” (P21)

3.3.4 Duplicate / Similar Bug Detection (B4)

(1) Reasons for important / very important ratings
We identified the following four major reasons respon-

dents/interviewees provided for their important/very
important ratings:
!Save developers’ time: Eight interviewees and twenty
two survey respondents mentioned that duplicate bug
detection techniques could save developers’ time in
identifying duplicate bugs.

“In our team, there is a bug report manager being responsible
for reviewing bug reports submitted by different testers. He needs
to check a bug report’s validity and mark whether it’s duplicate
or not. This process sometimes is very time-consuming when he
has to search and read existing bug reports in our JIRA system.
Anything that can help him identify duplicate bugs will do a great
help.” (P9)
“For any sufficiently large open source project, it becomes very
difficult to keep track of all the issues that are open and avoid
duplication - it’s an N:N problem. For maintainers, marking
duplicates can be a time-consuming housekeeping task. Anything
that gets me that time back is helpful.” (Survey)

!Save reporters’ time: Six interviewees and ten survey
respondents thought that this technique could help
reporters avoid reporting duplicate bug reports by
providing potential duplicate reports to them. Some said
it was difficult for reporters to find out whether their bugs
had been reported or not.

“It’s the hard part of bug reporting for both reporter and the
developer.” (Survey)
“Users filing bugs that are already duplicates of other bugs is a
big problem and automatically detecting duplicates during the
bug filing process is very helpful.” (Survey)

!Provide hints for bug fixing: Four interviewees and
six survey respondents mentioned that duplicate bug
reports could help fix bugs. Some interviewees said that
when they encountered a new bug, they would search bug
tracking systems to find whether there were some potential
duplicate/similar/relevant bug reports that could provide
some fixing hints.

“Whenever I found a previous bug report related to the bug I was
fixing, I would check whether its solution could be applied to my
bug. Sometimes I would directly refer to its fixer for further help
to fix my bug.” (P4)

!Filter bug reports: Four interviewees and two survey
respondents commented that duplicate/similar bug report
detection could help developers choose what bug reports
to work on. P21 said, “As an engineer and product manager,
duplicate bug reports are an indication of importance.” (P21).
One survey respondent said, “with the help of duplicate bug
detection techniques, developers can more easily find those non-
duplicate bug reports to work on.” (Survey)

(2) Reasons for unimportant / very unimportant ratings
Four interviewees and one survey respondent men-

tioned the following three reasons why they thought this
technique was unimportant/very unimportant:
%Duplicate bug reports are rare: Two interviewees said
that they did not need such techniques since they seldom
came across duplicate bugs. As P1 stated, “We seldom
encountered duplicate bugs in our project.” (P1)

%Manual work is sufficient: One interviewee and one
survey respondent said it was not difficult for people to
manually identify duplicate bug reports.

“When duplicate bug reports do happen, I don’t think that’s a big
problem. I don’t think it’s a big waste of time. It’s not very difficult,
an engineer or a product manager who is familiar with the project
is supposed to identify duplicate bug reports very quickly. ” (P21)
“People can find duplicates on their own.” (Survey)

%Developers directly fix bugs without considering
duplicate reports: One interviewee said they did not care
whether a bug had been reported or fixed, instead, they
would directly fix it.

“As long as a bug occurs in certain version of our product, we
just fix it without considering whether or not it has been reported
or fixed in other versions.” (P24)

(3) Improvements and Expectations
Identify duplicate bugs with different symptoms: Five
interviewees mentioned that it was difficult for them to
identify bugs that had different symptoms but had the same
root cause. They hoped researchers could help them better
identify this kind of duplicate bug reports.

“We do hope some techniques can be developed to help us find
those bugs with same root cause but different symptoms.” (P6)

Perform more empirical analysis on duplicate bugs:
Five interviewees hoped that researchers could do some
empirical analysis on duplicate bug reports. They would
like to know what kind of bugs tend to be duplicated,
the difference between duplicate bugs of projects from
different domains (e.g. traditional PC applications vs.
mobile applications) etc.



14

“It would be very helpful if researchers can do some summa-
rizations on duplicate bug reports. We are eager to know the
characteristics of bugs that tend to be duplicate. In this way, we
can propose suitable actions to cope with these duplicate bugs.”
(P16)
“I think it is necessary to do some comparisons between duplicate
bugs from different domains. Duplicate bugs that occurred within
PC products may have different characteristics compared to those
occurred within mobile products. These comparisons may provide
a good guidance for developers working in different companies.”
(P19)

3.3.5 Bug report completion / refinement (B5)

(1) Reasons for important / very important ratings
We identified three kinds of rationale practitioners pro-

vided for why they deem automated bug report comple-
tion/refinement techniques important/very important as
follows:
!Easier bug fix and reproduction: Nine interviewees and
fourteen survey respondents commented that a complete
and correctly-filled bug report was the top prerequisite
of successful bug reproducing and fixing. Some of them
mentioned that it was unavoidable for reporters to make
some mistakes in filing reports especially in a complex
system with many components. Any tool that could help
them get a better bug report or know that some key items
were wrongly filled would be highly appreciated. Some
pertinent comments are as follows:

“The more details a bug report gives, the easier it is to reproduce
and fix a bug. We sometimes received bug reports whose important
information (e.g. component and hardware platform for android
apps) was missing or wrongly filled. It would be helpful if some
items can be automatically filled; and knowing some items are
wrongly filled itself is also important when locating bugs.” (P7)
“Some bugs are difficult to reproduce (race conditions, ”Heisen-
bugs” and the like). Any helpful information about the state the
system was in when the bug occurred can be vital to locate the
root cause.” (Survey)
“I have seen in projects like Fedora that there are many component
options and they are hard to fill in correctly.” (P19)

!Better reporting experience: Seven interviewees and five
survey respondents felt that with the help of such tools,
the work of bug reporters would be easier as they would
not need to collect/fill all necessary items and would
feel more relieved when they wrongly filled some items
unintentionally. This would motivate them to submit a
good bug report.

“Anything that makes it easier to submit a good bug report will
make it more likely that people do so.” (P14)
“I always made some mistakes when I submit a bug report, e.g.
wrongly assigned a value to a field such as platform or version,
which will cause the difficulty in bug fixing” (Survey)
“Usually it is a human that collects this information when there
is an issue or a crash situation and there is room for avoiding
some critical information due to the nature of human. On the
other hand there might be information that a tool can collect at

the crash which cannot be recovered by any other means later on
by a human.” (Survey)

!Ease of manual analysis: Two survey respondents
mentioned that automatically generated bug reports may
have the consistent format, which would make it possible
for people to easily do some analysis on them, e.g. to find
the possible cause for the same bug by highlighting the
commonalities and to know the number of users reporting
the same problem.

“Maybe it is possible to collect multiple automatically generated
bug reports for the same bug and highlight the commonalities and
thus focusing on the possible cause.” (Survey)
“...The format will be consistent, which means you can run all
sorts of interesting analyses (e.g. how many users reporting the
same problem).” (Survey)

(2) Reasons for unimportant / very unimportant ratings
Practitioners who were negative about the development

of bug completion/refinement techniques felt so because
they did not have such a need or they doubted the quality
of an automatically generated bug report.
%Unnecessary: Three interviewees mentioned that
bug report completion/refinement techniques were not
applicable to their products because their experienced
testers were not likely to make mistakes while filling a bug
report. Another interviewee declared that their bug reports
requested only a bug description, thus they did not need
such a technique. Some representative comments made by
interviewees are as follows:

“In our company, testers are always familiar with the tested
products. We also have strict rules on how to file a bug report.
Thus it’s almost impossible for testers to submit an incomplete or
a wrongly filled bug report.” (P2)
“The project I have worked most closely on for the longest time
(Interchange e-commerce framework) does not have a component
selection – it just asks for a bug description.” (P12)

%Questionable quality: Two interviewees and two survey
respondents doubted whether it was really possible to
automatically generate a workable bug report with detailed
description and reliable reproducible steps.

“I can understand that some basic information such as version,
hardware platform, operation system can be collected. How is that
possible to exactly describe the way to reproduce the bug? Even
human cannot do it well sometimes.” (P9)

(3) Improvements and Expectations
Place greater emphasis on specific bug report informa-
tion: Six interviewees highlighted the importance of some
items within a bug report, including priority, potential im-
pact on users, reproducible steps, environmental configu-
rations and product/component etc. They hoped bug com-
pletion/refinement tools can provide accurate and reliable
information in these specific areas.

• [Priority and potential impact on users] “Whether
this bug has a high priority and how many users are



15

affected are what we really care about.” (P24)
• [Reproducible steps and product/component] “I

hope an automatically generated bug report can tell us
how to reproduce the bug and which product/component
it belongs to, then we can quickly find the right person to
fix it.” (P14)

• [Environmental configurations] “If the software
crashed, you typically really need to know what exactly
they’re doing, whether they’re running windows or
whatever, what browser they’re using, the version of the
browser. Otherwise it’s a waste of time. Some normal
general users may feel difficulty in filling some items
when they report a bug report.”(P17)

Guarantee user privacy: One survey respondent desired
an automated bug report generation tool that guarantees
user privacy. As he/she stated, “A lot of my development is in
Java, so having a high quality automatically reported bug report
that adequately guards privacy and what caused it would be very
useful!” (Survey)

3.3.6 Bug-Commit Linking (B6)

(1) Reasons for important / very important ratings
After analyzing the data, we identified the following five

major reasons why practitioners considered bug-commit
linking techniques important/very important:
!Speed up bug fixing: Seven interviewees and sixteen
survey respondents said that bug-commit linking
techniques were very helpful for developers in that
they could fix bugs easier by directly referring to bug
introducing commits.

“Sometimes it’s not that easy to identify relevant commits to
bugs especially those that randomly occurred. If we know bug
introducing commits, then we can directly go to the commits,
study the code changes and propose a solution. Suppose we are
not familiar with the product, we still can assign the bug to the
commit submitting person to fix it.” (P17)
“Being able to move from buggy code back to a discussion about
the implementation that originally introduced the bug is one
invaluable part of the multi-step process of variable isolation.”
(Survey)

!Improve bug / commit understanding: Four interviewees
and eleven survey respondents thought this technique was
helpful since it could help developers better understand
why some commits were introduced and what happened
to reported bugs. This kind of status tracking was also very
essential for release management where “release managers
need to exactly know which bugs will be fixed in each release
recycle.” (Survey)

“It’s very tricky to force people to do it [the linking], you just have
to really encourage it because it’s really nice if someone comes in
and just happens to pick something...And then it turns out that
if they fix it, but nobody knows because the bug database didn’t
get updated or whatever. So it’s tricky. That’s more social thing. I
feel like every single change you make to the code base, there’s a
reason for it.” (P22)

“It helps determine why some commits were introduced.
Especially if a “hack” was needed, this helps understanding the
context of some code. You need to know why/what/when and
by whom happened to those issues/bugs. Referencing is very
important.” (Survey)

!Save developers’ time: Six interviewees and three
survey respondents mentioned that automated bug-commit
linking techniques that can do away with manual linking
would surely save developers’ time. As two interviewees
explained, it was time consuming to get things done
manually, especially when they had as many as several
hundred commits submitted to the codebase everyday.

“It takes a lot of time to manually dig up these cross-links.”
(Survey)
“It would be very useful if you can link bugs with their inducing
commits. But it is too hard for us to manually do this, every day
we have several hundred commits submitted to our project.” (P24)

!Help find preventive measures for similar problems:
Four interviewees and two survey respondents thought
that links between bugs and relevant commits could help
developers/teams better understand their products (e.g.
which parts were error-prone) and find the weaknesses of
their development process (e.g. what went wrong with the
testing). They would then be able to take some corrective
actions to avoid similar problems in the future.

“You don’t just have this is fixed by such and such a commit. You
want to say this was broken in such a commit because..., then you
can work out why didn’t our tools catch it? What was wrong with
our testing?” (P22)
“Sometimes we would have a long discussion to summarize what
problems we have, which parts of our product are error prone
and why, whether we can avoid them in the future. Tools that
exactly link bugs and relevant commits would help a lot during
our analysis.” (P14)

!Help ensure bug fix correctness: One interviewee and
two survey respondents thought that linking bugs with
their fixing commits could help guard the correctness of
bug fixing commits, e.g. testers could design better test
cases by knowing the fixing points and the third party
could do a better code review.

“If testers know the bug fixing points in advance, then they can
design more proper test cases to do a better test.” (P2)
“Helpful in 3rd party review of fixes.” (Survey)

(2) Reasons for unimportant / very unimportant ratings
In terms of necessity of bug-commit linking tools during

their own development, four interviewees and four survey
respondents did not perceive much value in this kind of
technique:
%Existing support for linking bugs and bug fixing
commits should suffice: Four interviewees and three
survey respondents declared that it was easy to link bugs
with bug-fixing commits on GitHub/Gitlab.



16

“GitHub already provides the function of automatically linking
bug fixing commits with bug reports. The only thing you need to
do is to add the bug ID in the commit log. E.g. fix #xxx, close
#xxx, resolved #xxx. Then the bug report will be automatically
closed. It’s easy.” (P7)

%Does not make sense for large commits: Two
interviewees said that linking bugs and commits did
not make sense during their development because their
commits were always large.

“We do not commit often. Actually, we always submit large
commits that contain both feature implementation and bug fixing.
Knowing which commits introduced a bug cannot help us narrow
down search space while locating bugs. ” (P12)

%Questionable reliability in complex cases: One
interviewee and one survey respondent were skeptical
about the effectiveness of such techniques in complex
cases. The interviewee did not believe tools could find
bug inducing commits that humans could not. One survey
respondent doubted its capability in complex projects.

“At most time when I receive a bug report, I can immediately
realize where the problem is. For those I cannot determine, I don’t
think tools can.” (P19)
“In practice bug systems and source control systems don’t always
line up 1:1 in more complex projects.” (Survey)

3.3.7 Bug Summarization / Visualization (B7)

(1) Reasons for important / very important ratings
We identified four major reasons why practitioners

deemed bug summarization/visualization techniques as
important/very important as follows:
!Improve problem understanding: Three interviewees
and three survey respondents thought this kind of technique
could help find problems their products tended to have and
could further give hints on what to improve.

“Getting a high level visualization of bugs could be useful for
understanding where there are problems and what could be done
to improve the process.” (Survey)

!Speed up bug fixing: Four interviewees and three
survey respondents thought this kind of technique could
help speed up bug fixing because developers could easily
understand the problem without reading unnecessary
details or manually summarizing and experienced triagers
could do a quicker bug assignment.

“A good bug report summary can help us get a quick overview of
the bug report. We do not need to read everything of the report.
We also do not need to manually add summaries to the bug reports
in our backlog list.” (P10)
“For a bug triager who is familiar with the whole system,
providing a good short (e.g. 20-words-length) summary is enough
for him/her to effectively triage the bug.” (P7)

!Help bug-fix prioritization: Two interviewees and two
survey respondents mentioned that this kind of technique
could help them easily select the next bug report to work on.

“Being able to skim read a list of bug summaries and pick the
next on your agenda is usually better and sorting summaries by
severity scales only helps the process in a minor way. Being able
to cherry-pick the next bug you need to work on quickly from a
supply of open ones is the key metric.” (Survey)

!Aid discovery of customers’ potential interests / needs:
As one interviewee mentioned, in their bug tracking
system, some bug reports actually were feature requests.
Summarizing these feature requests could also help project
managers have an additional insight on what customers
really wanted and they could further recommend some
attractive features to them.

“Both bugs and feature requests are reported in our JIRA system.
Project managers would always check the JIRA data to find
out what bugs we fixed before and what features our customers
usually requested. Thus they can further recommend these
attractive features to potential customers. Summarizing these
reports can help them a lot while conducting these analyses.” (P5)

(2) Reasons for unimportant / very unimportant ratings
Three major reasons were mentioned by practitioners

for why they thought it was unimportant to develop bug
summarization/visualization techniques.
%Hinder bug fixing: Different from bug triagers or project
managers who may value this kind of technique a lot, four
interviewees and five survey respondents mentioned that
such techniques were not needed by bug fixers since what
they wanted were detailed bug reports.

“Bugs are all about the details. Summarizing a bug report seems
almost certain to render it useless.” (Survey)
“Bug summarization would ignore lots of details that are essential
for bug reproducing. I cannot see its values in fixing bugs.” (P15).

%Unnecessary: One interviewee and one survey
respondent said they did not have such a need for
bug report summarization techniques. One explained
that they seldom encountered bug reports with too much
information. The other one declared that the item of
one-line summary of bug reports in JIRA or Bugzilla was
already enough for them to briefly understand what the
problem was.

“This isn’t something I have ever felt a need for. Bug reports with
too much information are a rarity and when they occur extracting
the key information is usually trivial.” (Survey)
“The one-line summary item of a bug report is already a summary
of a bug in the JIRA or Bugzilla system. I think it’s already good
enough for us to understand the problem.” (P17)

%Questionable reliability: One interviewee and two
survey respondents were skeptical about the effectiveness
of bug summarization/visualization techniques.



17

“Unless the bug is stupid simple, having a summarization
wouldn’t help and I don’t see how a bug report could be visualized
unless it has to do with graphics programming, just read the
bug.” (Survey).

(3) Improvements and Expectations
Include essential information: Five interviewees expressed
their opinions on what makes a good bug report summary.
They mentioned that a good summarization should contain
the essential information that could help developers
quickly understand and fix the bug. These information
should include for example, one-line summary, steps to
reproduce, potential effect on users, priority/severity,
reporter, suggested fixing methods and some key
exceptional logs (if they exist) etc. Some relevant
comments are as follows:

“One line summary is so important, because you have to try and
get the information as to say what’s going on. Um, but I think
that and then your priority and severity, so there is how bad is it?
How bad is it for your customers? And the priority is now which
one are we going to fix next? I think those three are the absolute
essentials.” (P22)
“It is valuable if you provide a summarization that filters out all
unnecessary details but keeps essential items for bug fixers, such
as a brief description of a bug, reproducible steps and some key
exceptional logs etc.” (P20)
“If you could also briefly suggest fixing solutions, that would be
very fantastic. Reporter’s name should also be included for later
contact in bug fixing.’ (P25)

Visualize bug dependency: One survey respondent
described a tool that he/she thought would be useful, i.e. a
tool that tries to “visualize the dependency graph of bugs that
are currently considered must-fix for a specific release and make
it easy to add or remove bugs from the list.” (Survey)

3.3.8 Bug Fixing Time Prediction (B8)

(1) Reasons for important / very important ratings
After performing thematic analysis, we identified the

following three major reasons why practitioners considered
bug fixing time prediction techniques important/very im-
portant:
!Help make a better overall schedule: Three interviewees
and four survey respondents thought that knowing bug
fixing time could help developers themselves make a better
schedule for doing different tasks.

“Actually, for many developers, fixing bugs is only a small part of
their daily routine. When they are busy, knowing whether the bug
is big or not is useful enough for them to decide when to fix it. I
mean, they don’t need to spend extra time to study bug reports or
relevant code and can avoid unnecessary context switches.” (P10)
“The estimates can help prioritize and plan.” (Survey)

!Help manage customer expectation: Six interviewees
and two survey respondents said that estimating bug fixing
time was helpful for managers in that managers could
better understand the progress of the whole project and

could tell their customers the duration needed to fix their
problems.

“To log scope of dev in fixing bug, from that info managers are
able to: - Know scope for one sprint --> deal with customers if
scope is expanded - Know performance of dev.” (Survey)
“People who aren’t as experienced won’t be upset that the problem
isn’t fixed, because often people say like, why don’t you fix this
this thing? Well, because it’s really hard. If you could say it’s
really hard to fix. That helps people understand why you’re not
fixing it.” (P22)

!Save developers’ time: Four interviewees and one
survey respondent thought this technique could help
save developers’ time in estimating bug fixing time. One
interviewee and one survey respondent mentioned that
developers were bad at estimating the time it took to fix
bugs. Another interviewee said that estimating bug fixing
time was not easy and would always require an experienced
developer to make such an estimation.

“Software developers are very very bad at estimating the time that
it takes to develop something or to fix something. Sometimes you
said that it will take you a week and it takes five minutes. And
sometimes you think that it will take a week and it takes a year. So,
something the developers are very, very bad at doing this.” (P21)
“If you don’t know where it’s coming from, you have to spend
time setting up a test environment and reproduce it and then
figure out what’s going on and then modify code for it. It
depends...that’s why so often you have to have an engineering
lead sit there. But then most engineering leads don’t want to sit
and go through hundred bug reports. It’s hard.” (P22)

(2) Reasons for unimportant / very unimportant ratings
Some practitioners were negative about the development

of such techniques mainly because they did not believe such
techniques could work reliably or they did not have a strong
need for such techniques.
%Questionable reliability: Six interviewees and fourteen
survey respondents thought it was unlikely that the
prediction results could be accurate enough to be of much
value. Some of them thought bug fixing time prediction
was a complex task that required consideration of many
factors, while some said bugs were not something they
could schedule to resolve.

“Bug fixing time is too unpredictable, or at least depends on too
many complex factors for it to be sufficiently precisely predictable.
(An estimate of ”between 1 and 2 months” is not very helpful.)”
(Survey)
“Completely unimportant - a bug can be very easy to fix, or they
can be devilishly difficult - and even human estimates are often
woefully off, so I don’t treat bugs as something you can schedule
for resolution.” (Survey)

%Unnecessary: Three interviewees and three survey
respondents mentioned that there was no need for such a
prediction. Three interviewees explained that they had a
default fixing time for each kind of bugs in their company.
One survey respondent who worked on OSS projects



18

said he/she just did not care about the bug fixing time.
Another survey respondent commented he/she could do
this manually.

“In our company, every kind of bugs have a default fixing time.
For example, the majority of bugs should be fixed within 1-2 days.
Online bugs should be fixed immediately etc. Predicting bug fixing
time does not make any sense in our case.” (P2)
“In FLOSS, I pretty much don’t care. It gets done when it gets
done.” (Survey)
“I can/need to do this manually.” (Survey)

(3) Improvements and Expectations
In terms of features of an effective prediction model,

several interviewees provided their opinions as follows:
Consider potential impact on customers: Six interviewees
mentioned that the potential impact of a bug on customers
especially those best paying ones was one of the most
important factors that determined how soon the bug should
be fixed.

“How much would a bug affect our customers largely determines
how long we should take to fix the bug. If a bug affected our best
paying users, e.g. those vip game players, then the bug must be
solved as soon as possible.” (P23)

Consider fixers’ expertise and schedule: Three interviewees
suggested including the potential fixers’ expertise and their
current schedule into the model.

“Different developers will spend totally different time in fixing
the same bug. How can you precisely predict a bug’s fixing
time without knowing who is going to fix it, whether he/she
is concentrated on fixing bugs or trying to fix bugs while in
meetings...The results will be totally different.” (P5)

Consider code complexity and cost of testing: Three
interviewees thought that the complexity of buggy code
and the cost to test the fixing points were important
considerations in predicting bug fixing time.

“When you try to predict a bug’s fixing time, you also need to take
the code complexity of potential buggy points into consideration.
Besides, some bug fixings are very hard to test, which means you
also need to consider how much efforts developers make to test
their fixes during bug fixing.” (P20)

Work on higher granularity level: One interviewee
suggested not to provide exact time prediction but to
provide a relatively higher-granularity-level prediction, e.g.
one day or one week instead of several hours..

“Rather than predict exactly how much time (e.g. several hours)
it would take to fix the bug, I think it is more practical to predict,
e.g. whether you can fix it in a day or in a week.” (P25)

3.3.9 Bug Severity / Priority Prediction (B9)

(1) Reasons for important / very important ratings

Two major reasons were identified during our thematic
analysis, i.e. helping people better allocate effort/time and
save developers’ time in determining the severity/priority
of the bugs.
!Improve resource allocation: Nine interviewees and
eleven survey respondents commented that identifying
bug priority/severity was good for effort/time allocation.
This technique could help them focus their efforts on real
important things.

“Not all bugs have the same severity/priority. We should always
fix high priority/severity bugs to avoid potential bad impact on
our business and customers’ experience.” (P5)
“Especially in open source projects the committers work on
parts they are interested in. The interests might not match
with the importance of the bugs. Bug reporters often do not
change the default priority. Perhaps it is difficult for them
to decide how important the bug is. Often estimation of
importance is also difficult for committers. This might help that
committers prefer working on the most important bugs.” (Survey)

!Save developers’ time: Four interviewees and two
survey respondents mentioned that automated bug
severity/priority detection could save developers’ time
spent in identifying the severity/priority of a bug and help
them avoid mistakes in some cases.

“If you let the users set the priority, then every user will set the
highest priority for their bugs. This is really not useful, so we
always need to find the severity/priority by ourselves. If the tool
can work well, then it can save us a lot of time.” (P25)
“We do this mostly by manual, but we may make mistakes and
this would place the whole project at risk. If some tools can help
us to do this effectively, it will do a great help.” (Survey)

(2) Reasons for unimportant / very unimportant ratings

We identified two major reasons for unimportant/very
unimportant ratings as follows:
%Questionable reliability: Six interviewees and two
survey respondents doubted the feasibility of predicting
bug severity/priority based just on the textual content of
bug reports. They explained that bug severity/priority
prediction was also determined by many other factors, such
as whether the bug would cause data breach, whether it
would affect many users etc.

“Is it possible to precisely predict the severity or priority of a
bug just based on the content of a bug report? I do not believe
that. For us, we also considered many other things, such as its
potential impact on users, or whether it caused data breach.” (P15)

%Unnecessary: Three interviewees and five survey re-
spondents thought it was unimportant to develop such
techniques mainly because they could do it manually or
knowing a bug’s severity/priority would not help them too
much.

• Manual work is sufficient. Three interviewees and
two survey respondents said they did not need such
techniques because they could do this manually



19

based on some simple heuristics.

“This is usually quite easy to do based on the conditions
under which the bug was reported and some simple heuris-
tics.”(Survey)
“Actually in our company, we have detailed heuristic rules
describing how to determine a bug’s severity/priority.”
(P8)

• No practical value. Two survey respondents
thought it was not important to identify a bug’s
severity/priority. One said the “severity” and
“priority” were too coarse. The other one thought
prioritization was just a second metric that helped
only to sort but not address bugs.

“Prioritization is just a secondary metric that only helps
sort, not address bugs. In practice, in a priority ordered
list, you’ll skip over some of the ones ranked at the top
simply because you’re not able to solve them yet, even
though they are higher priority. So a strictly priority
driven view would be prohibitive.” (Survey)
“These tools are not useful because ”severity” and ”pri-
ority” are not useful, in my experience. They are too
coarse. A bug can render a program unusable for one
group of users but be totally irrelevant to many others (for
instance, ”crash on startup on Windows XP” is critical
to those who use Windows XP, but irrelevant to everyone
else). Similarly, a bug might be must-fix for release 1.1
but already moot in 2.0 due to unrelated changes – and
both releases are being developed in parallel, so release
managers need to track both.” (Survey)

(3) Improvements and Expectations
Explain prediction result: Eight interviewees and three
survey respondents thought that simply providing
prediction results was insufficient, extra evidence should
be provided to convince developers. Such evidence could
be, e.g. the number and type of users affected by the bug,
whether the bug is exploitable for malicious purposes, the
current schedule/strategy/progress of a project etc.

“When you predict something is bad, you need to explain why.
For example, does this bug block system’s execution? How many
users might be affected by it, how much time should we take to
fix it, what is the potential economic loss etc. Sometimes, a VIP
customer’s phone call would make a low severity/priority bug rank
high in our to-be-fixed bug list.” (P15)
“It would be useful if the tool can tell which releases of a program
are affected by a bug and the likelihood of a bug being exploitable
for malicious purposes.” (Survey)
“A project’s strategy and progress would also dynamically affect
a bug’s severity/priority. I think this should also be considered.”
(P23)

Correctly classify high priority / severity bugs: Two
interviewees mentioned that an ideal bug severity/priority
tool should at least have a high accuracy when predicting
such bugs and that it should not miss detecting them.
Otherwise it would prove to be impractical.

“I think a very important aspect of a practical bug severity/priority

prediction tool should be: if a bug has a high severity/priority, you
should not miss it.” (P23)

3.3.10 Re-opened Bug Prediction (B10)

(1) Reasons for important / very important ratings
Two reasons were revealed during thematic analysis,

i.e. helping avoid incomplete bug fixes and helping track
a bug’s status.
!Avoid incomplete bug fixes: Seven interviewees and
three survey respondents mentioned that re-opened bug
prediction could help avoid incomplete bug fixes which
were thought as complete. As explained by several
interviewees, developers would pay more attention to the
fixing points when being told that the bug report might
be re-opened. Besides, two interviewees said that testers
would also be more careful to test the changing point if
they knew that the fixes might cause other problems and be
re-opened.

“If they can do, then it to some extent can help developers realize,
oh, this problem I may did not imagine I made fixes. Then I will
pay more attention.” (P20)
“Re-opened bugs especially those occurred online would have a
very bad impact on our service and business. All of us don’t want
to see these bugs occurred again. If some kind of tools can tell us
certain bugs (especially those with high priority) are very likely
to be reopened, our testers would pay much more attention to
testing the bug fixing code.” (P8)

!Help users track their bugs: One interviewee and two
survey respondents thought this kind of technique could
help users know the status and progress of the bug they
reported, whether it was partly fixed, completely fixed
or when it would be fixed at all. One survey respondent
mentioned that this could further reduce developers’
burden in handling extra bug reports caused by users’
unawareness of the current state of the bugs.

“That’s the interesting thing with a history of a bug, trying to get
a sense of what’s going on. But often it’s the case if you think you
fixed it, it turns out you didn’t fix their exact problems ... Often
it’ll be that you fixed it, but not entirely. The user reported this,
we did part of it, we marked it fixed, but here’s the rest...” (P22)
“It helps end user or tester to look old report and file a better
report or no report at all. This way developer can save time to
review lot of bug reports.” (Survey)

(2) Reasons for unimportant / very unimportant ratings
Practitioners considered this technique unimportant

mainly because they did not have a need for such a tech-
nique or they doubted its reliability.
%Unnecessary: Five interviewees and nineteen survey
respondents did not feel the need for such kind of
techniques due to various reasons. Some said re-opened
bugs were very rare; some said they did not care whether a
bug was re-opened or not; some thought such predictions
would be saying to developers that their bugfixes were bad;
some thought they could do nothing even if they knew



20

the bug would be re-opened; some thought this technique
would inject additional uncertainty into the maintenance
process.

[Uncommon] “We seldom met re-opened bugs. Those re-opened
bugs we met before are either previous bugs reintroduced by
developers when implementing new features or are performance
bugs which are very hard to fix completely. (P5)”
“Re-opened bugs? We never encountered such bugs.” (P3)
[Irrelevant] “If it’s re-opened, it’s re-opened, it’s just another
(particularly annoying, but still just another) bug.” (Survey)
[May offend developers] “It sounds like you were being told
your bugfix is bad.” (P25)
[Not actionable] “This doesn’t appear to be a particularly useful
data point. I don’t see what you can do if you can preempt a bug
being reopened.” (Survey)
[Introduce additional uncertainty] “The only real purpose of
something like this seems to be to inject additional uncertainty
into the process and a competent maintainer doesn’t need that.
In a not-FLOSS context, this just strikes me as a big brother-y
way for management to further misunderstand the process of
making software. I worry it’d be a bad metric, one that furnishes
a numerical excuse for imposing bad process changes that end up
doing more harm than good.” (Survey)

%Questionable reliability: Two interviewees and five
survey respondents doubted whether it was really possible
to predict whether a bug would be re-opened or not:
some thought only by testing can we know this; some
did not believe such a tool could have more insights than
themselves; some thought this kind of technique could
not help in those reopened bugs that were caused by an
inadequate or breaking fix.

[Unlikely to work unless testing is involved]“It sounds like
science fiction that the software could predict whether or not the
bug will be reopened. I don’t see how unless it’s able to run tests.”
(P18)
[Unlikely to provide additional insight]“I don’t know what
basis such a tool would operate on, but unless it has a lot more
insight into the code than I do, it won’t be telling me much.”
(Survey)
[Unlikely to work due to deep analysis needed]“Reopening
sometimes happens because the original report was unclear and
the fix did not address the issue as perceived by the reporter.
You could possibly alleviate this by detecting weasel words, bad
grammar or just lack of detail in the report. I believe (but I have
no statistics to back this up) that the majority of bug reports are
reopened because of an objectively inadequate or breaking fix and
I don’t think algorithms are going to help here.” (Survey)

(3) Improvements and Expectations
Explain prediction result: Five interviewees mentioned that
simple prediction was not enough and that more evidences
should be provided to persuade developers to believe
the prediction results. These evidences could include, for
example, extra testing failures, buggy patterns within code,
fixing the wrong problems, better ways to fix the bug, extra
cost to completely solve the problem, or potential impact
on business if the bug is not specially treated etc.

“I think it would be good if you can tell us how much extra effort
we should take to completely fix the re-opened bug.” (P10)
“If you found my bugfixes match with some buggy patterns, then
I may accept your prediction results. If you can further tell us
the potential business impact if we do not pay attention to your
prediction, then it will be better.” (P23)
“You should tell me the reasons why my bug would be reopened.
Did you find any bugs within my bugfix through extra tests? Or
you know the better way to fix the problem? Or you can tell that
I fixed the wrong problems?” (P25)

Incorporate additional relevant information: Four
interviewees thought other kinds of information, besides
bug reports, should be made use of to improve the
performance of re-opened bug prediction tools. Some
of them said that initial fixer’s expertise (e.g. whether
he/she was good at fixing this kind of bugs) and macro
development environment (e.g. whether the bug was fixed
under the pressure of releasing) should also be considered
while conducting re-opened bug prediction. Some others
said whether developers were willing to fix the bug and
whether the bug was complex or not were also indicators
of re-opened bug prediction.

“I think the first fixer’s expertise is very indicative in determining
whether a closed bug will get re-opened. I mean, we tend to
make mistakes when we do not have enough expertise in fixing
bugs. Meanwhile, fixing bugs under great pressure such as before
releasing is also error-prone. All of these should be considered.”
(P15)
“Sometimes you also need to consider whether the fixer is willing
to fix the bug. If he/she is reluctant to resolve the bug, then he/she
may not carefully fix it.” (P23)
“The complexity of the problem would also affect the likelihood to
re-open a bug.” (P13)

4 DISCUSSION

In this part, we first present some general insights across
categories. Then we provide detailed insights into specific
techniques. Lastly, we discuss the threats to the validity of
our study.

4.1 General insights across categories

Practitioners view bug report management techniques as impor-
tant. From the rating results (Table 4), we found that on the
whole, automated bug report management techniques were
considered as important by the majority of practitioners: 6
categories received 70%-82.6% important/very important
ratings; 4 categories received 46.1%-69% important/very
important ratings (these 4 lower-rated categories received a
relatively larger ratio of neutral ratings, ranging from 25.6%
to 32.2%).

By analyzing the rationale provided by intervie-
wees/survey respondents in Section 3.3, we found that
overall practitioners with different roles perceived various
benefits in automated bug report management techniques.
Some often-mentioned benefits were: speeding up bug
fixing, saving manual work in managing bug reports,



21

helping developers/teams make better schedules etc. These
potential benefits not only supported the value of past
research in automated bug report management techniques,
but also highlighted the importance of advancing such
techniques in the future.

Adoption depends on how convinced developers are on the
reliability of recommendations made by bug report management
techniques. Although the general perspective was positive,
some of our interviewees and survey respondents were
negative towards the development of some automated bug
report management techniques. By analyzing the negative
comments in Section 3.3, we found that “questionable
reliability” was a common theme that cut across almost
all categories of bug report management techniques.
This indicates a necessity of further work to make
those techniques more reliable/convincing. Some points
(towards individual techniques) that were suggested by
survey/interview participants in Section 3.3 (e.g. providing
explanations for recommendation results) may provide
some hints in this direction.

More than one source of data needs to be considered to improve
bug report management techniques. In the Improvements and
Expectations part of Section 3.3, some interviewees/survey
respondents expressed their opinions on how to make bug
report management techniques more reliable/convincing.
From those comments, we identified one commonly-
mentioned direction that researchers/tool builders may
take on: making use of other kinds of information. It would
be useful for researchers and relevant tool builders to find
out the exact information practitioners usually used when
doing their day-to-day bug report management tasks in
practice. For example, we found that the effects on paying
customers was highlighted as a vital factor in determining
how to handle a bug – and this has not been considered in
prior work on bug severity/priority prediction (B9).

Software engineering practice is diverse; it is essential to better
characterize context and situations where a particular bug
report management technique is especially needed. A number
of opposing comments were given by practitioners. Take
bug categorization as an example, some practitioners
commented, “I can do this manually” and “it’s easily done
manually in a good issue tracker”, while others commented,
“I’ve become a bottleneck in categorising bug reports”.
The same situation is observed for bug-commit linking
techniques. These examples may indicate that we need to
perform an in-depth analysis on characterizing situations
where some specific techniques are needed. It would be
worthwhile if some effort can be made to investigate
what factors (such as project size/type, developer
background/skill/role etc.) can affect the adoption of
specific techniques. Gaining a better understanding of these
would help us develop truly useful techniques for those
practitioners who are in need of help.

Difficult cases deserve more attention. As often-mentioned by
our interviewees/survey respondents in Section 3.3, there
were several specific kinds of bugs bothering practitioners
a lot during their bug report management practice. These

bugs included performance bugs, bugs that hid in imported
third-party components, environment-related bugs caused
by hardware crash or bad network, duplicate bugs with
different symptoms but with the same root causes, and
those that involved several components/products etc.
Considering that most existing studies mainly focus on
building general purpose models for managing bug reports,
it would be very valuable if more effort could be spared to
particularly address these specific kinds of bugs to better
mitigate practitioner’s real gripes and issues.

It is worthwhile to integrate research prototypes to commonly
used tools. As mentioned above, all categories of automated
bug report management techniques are perceived as im-
portant by most practitioners. It would be very valuable to
effectively integrate research prototypes that implement bug
report management techniques into existing bug tracking
systems such as Bugzilla and JIRA. Both Bugzilla and JIRA
allow developers to create add-ons (aka. plug-ins)910 and
existing research prototypes can initially be introduced as
add-ons to the default Bugzilla and Jira instances. Thung
et al. have endeavored to do this for duplicate bug report
detection and bug localization [74], [75]. However, the plug-
ins are only for Bugzilla and they are not actively main-
tained and advertised. Also, the techniques implemented in
their prototypes are dated (i.e. [60], [91]) and more advanced
techniques have been proposed in the literature (e.g. [29],
[83], [44]).

The creation of such add-ons can help improve the
process of bug management, from bug reporting to bug
fixing: when users submit a bug report, the system can
automatically indicate whether this bug has been reported,
or provide essential information to help him/her complete
a bug report; after the bug is reported, the system can
automatically tell triagers whether this bug is severe/valid
or not, and further indicate who is suitable to handle this
bug; when developers are trying to fix the bug, this system
can help to locate potential buggy code and link the bug
report with related commits after it is fixed.

4.2 Insights into specific categories
Our survey respondents and interviewees provided com-
ments to specific bug report management techniques. We
can draw some insights from their comments. We highlight
them below:

4.2.1 Bug Localization (B1)

More efforts should be made to characterize capability of existing
techniques. Several interviewees doubted that bug localiza-
tion techniques could locate difficult bugs. Such perspective
was also reported by [41]. Thus, it would be valuable to
conduct empirical studies to investigate characteristics of
bugs that are successfully located by existing techniques.
This can highlight strengths and weaknesses of current
state-of-the-art and help future studies to focus on types of
bugs that are not handled well yet.

9. https://www.bugzilla.org/docs/4.4/en/html/extensions.html
10. https://developer.atlassian.com/jiradev/jira-platform/building-

jira-add-ons



22

More pieces of relevant information should be incorporated to
improve prediction performance. Many interviewees said that
they often manually investigated attached screenshots, stack
traces and logs to locate bugs. To the best of our knowledge,
most studies only considered bug report text and project
source code [91], [61], [54]. A few recent studies considered
additional sources of information such as stack traces [52],
[83] and logs [44], [42]. However, none had comprehensively
used all pieces of information that developers often inves-
tigate to locate bugs. For example, none had made use of
screenshots to better locate bugs. Future studies may want
to use advanced image processing techniques to analyze
these screenshots to better locate bugs.

Specialized techniques are needed for important families of bugs.
As highlighted in Section 3.3, there were several specific
types of bugs that bothered developers much; they included
performance issues, environment-related bugs (e.g. those
caused by bad network or hardware failure), memory leak
etc. Existing bug localization techniques are often designed
for generic bugs. It would be worthwhile to design special-
ized bug localization techniques that are targeted to locate
several high-value families of bugs much more accurately
by considering unique characteristics of those bugs.

4.2.2 Bug Assignment (B2)
Developers’ availability need to be considered. Several
interviewees mentioned that the consideration of bug
type (e.g. memory leak, null pointer etc.), developers’
expertise (e.g. what kinds of bugs they are good at fixing)
and developers’ availability (e.g. whether they are on
a vacation or are participating in many other projects)
was essential for developing a good bug assignment tool.
It would be interesting for future research to utilize all
such kinds of information to improve automated bug
assignment techniques. Existing research (e.g. [32], [4], [85])
had mainly considered solving the problem of inferring
developers’ expertise and expertise needed to fix a bug
report, and matching those. However, none of them had
taken developers’ availability into consideration. Ignoring
this may cause delay in the handling of bug reports and
make such techniques less practical.

Pairwise bug assignment is worth a try. One interviewee high-
lighted the value of assigning a bug to a pair of developers
(i.e. an experienced developer and a novice one); it may be
worthwhile to design suitable automated bug assignment
tools that can assign bug reports to such pairs of developers.

4.2.3 Bug Categorization (B3)
Screenshots should be fully made use of. Some interviewees
mentioned that screenshots within a bug report were very
useful in categorizing bugs. To date, there is no study that
tried to make use of screenshots to classify bug reports. It
would be interesting to see future studies that incorporate
image processing techniques to improve bug categorization
tools further by making use of these screenshots.

It would be very helpful to automatically identify non-
reproducible bug reports. We found that practitioners paid
special attention to reproducible bug reports. Some

researchers had conducted studies on the reproducibility
of bug reports: Erfani et al. explored the characteristics
of non-reproducible bug reports by manually checking
32,000 non-reproducible reports [21]. Chaparro et al. tried
to detect the missing information (e.g. steps to reproduce)
in bug descriptions [14]. However, no existing work have
developed a solution that can automatically identify non-
reproducible reports. Novel solutions leveraging natural
language processing and search-based algorithms can
possibly be designed to automatically replay bug report
descriptions to see if the same issue can be reproduced.
Other possibilities include the design of text classification
solutions built on top of a set of well engineered features
that can differentiate reproducible from non-reproducible
reports.

More work on root-cause-based bug categorization is needed.
Some interviewees hoped researchers can help them to
classify bugs based on their root causes. There had been
several studies trying to address this problem with the help
of machine learning techniques [77], [76], [72]. Thung et
al. proposed a technique that can classify bug reports into
three categories, i.e. control and data flow, structural and
non-functional [77], [76]. Tan et al. tried to automatically
identify memory and semantic bug reports in Mozilla [72].
However, the root cause categories they considered are
coarse grained. The extent to which such coarse grained
root cause categories help developers is still unclear.
Additionally, existing work only evaluated the proposed
solutions on a few projects and their accuracy need to be
improved. Thus, there is much room for future research in
this topic.

4.2.4 Duplicate/Similar Bug Detection (B4)
It is interesting to study the potential of duplicate bug reports in
facilitating bug localization and repair. We noticed that some
respondents commented that detecting duplicate/similar
bug reports could provide hints for bug fixing. This, to
some extent, coincided with the core idea of an existing
study [8] that utilized duplicate bug reports to facilitate bug
assignment. It would be interesting to investigate whether it
is possible to make use of duplicate bug reports to facilitate
automated bug localization and repair. For example, one
can consider identifying and merging pertinent pieces
of information within duplicate bug reports, and use
them as hints to identify buggy code and generate repair
candidates. Past studies on bug localization (e.g. [54], [44],
[83]) and automated repair (e.g. [45]) had not considered
this opportunity.

It would be valuable to find ways to identify duplicate bug
reports with the same root cause but different symptoms. Several
interviewees told us that duplicate bug reports with the
same root cause but different symptoms could not be
easily identified by developers. These bug reports often
required developers to perform deep investigation into
the source code. Existing studies mainly exploited explicit
or latent textual similarity between bug reports to detect
duplicate reports [71], [55]. A few tried to utilize structural
information or execution traces within bug reports to



23

facilitate duplicate bug detection [84], [70]. However, it is
still a question mark whether these techniques can identify
those duplicate bug reports with same root cause but
different symptoms -- textual descriptions of such reports
may differ much from one another. Future studies are
needed to investigate applicability of existing techniques to
such hard cases and to design more suitable solutions if the
existing ones fail.

More empirical studies are needed to explore characteristics of
duplicate bug reports. We were advised by interviewees to
investigate what kind of bugs tended to be duplicated, and
the characteristics of duplicate bug reports from different
domains. This request, to some extent, agreed with [7]
who reported that practitioners hoped data scientists could
help them to answer which bugs they commonly made.
It would be valuable if researchers spare some effort to
study this problem to help developers better understand
their products and mistakes and identify problems that may
affect many users.

4.2.5 Bug Completion/Refinement(B5)
Privacy is an important consideration. One survey respondent
mentioned that “having a high quality automatically re-
ported bug report that adequately guards privacy and what
caused it would be very useful!”. This points to a new
direction for existing bug report completion studies that
designed techniques to automatically generate bug reports,
e.g. [50], [51], to consider the privacy issue. Ideas from
existing studies that tried to preserve privacy of low level
testing and debugging data [11], [10], [20] can potentially be
adapted to manage the privacy issue.

4.2.6 Bug-Commit Linking (B6)
It would be valuable to explore the possibility of using bug-
commit links to create better bug report summaries. Among the
positive comments, one commented on the value of moving
between bug reports and bug-introducing commits. This
comment highlighted the possibility of using bug-commit
links to create better bug report summaries that incorporate
information from bug introducing commits. This summary
will present a more complete story that can potentially
better help developers avoid, detect, and fix similar bugs
happening in the future.

4.2.7 Bug Summarization/Visualization (B7)
Extra effort is needed to explore the weaknesses / strengths of
existing techniques. When being asked what makes a good
summary, some interviewees said that a good summarized
bug report should contain several items, such as a brief
description of the bug, reproducible steps, potential impact
on users/business and some short key exceptional logs if
possible. To the best of our knowledge, existing studies
mainly focused on generating a summary by extracting
sentences from the description and comments of a bug
report [59], [47]. Whether such sentences contain the above-
mentioned items (e.g. steps to reproduce) that are desired by
practitioners has no been explored yet. It would be worth-
while to conduct further investigation into this problem.
Such investigation can highlight strengths and weaknesses

of current state-of-the-art techniques and help future studies
focus on extracting important items that are often missed by
existing bug summarization techniques.

4.2.8 Bug Fixing Time Prediction (B8)
Additional information can be used to improve prediction perfor-
mance. Practitioners pointed out that besides the textual con-
tent of bug reports, other factors such as developer expertise
and their schedule, bug severity/priority, potential impact
on business/customers, complexity of source code changes
and cost involved to test the fixed code were also important
to be considered in predicting bug fixing time. Several kinds
of information mentioned above have been exploited by
existing studies; they are developer expertise [28], [34], bug
severity/priority [58], [88] and complexity of source code
changes [12], [87]. However, other information such as de-
veloper schedule and testing cost have not been utilized yet.
Future studies can be performed to investigate possibilities
to include such information to improve automated bug
fixing time prediction tools.

4.2.9 Bug Severity/Priority Prediction (B9)
Comprehensive explanations should accompany prediction results.
Some practitioners said that it would help if such technique
provided some explanations of its prediction results. To
the best of our knowledge, existing studies mainly focused
on applying machine learning or information retrieval
methods to bug reports to build bug severity/priority
prediction models [43], [79], [80]. None of them ever
reported comprehensive explanations to the predicted
results. It would be helpful if future research investigates
ways to present extra evidence (that developers can
appreciate) to backup prediction results.

Domain knowledge can be integrated into prediction models to
boost their performance. Some interviewees highlighted that
customers’ interests and potential economic lost caused by
bugs would greatly affect the assessment of bugs’ sever-
ity/priority. They said that bugs reported by vip customers
always had a higher priority; and bugs that might cause
large economic lost or affect many users ranked higher and
should be fixed as soon as possible. It would be valuable
if such domain knowledge from individual project can be
mined and integrated into the prediction model. To achieve
this, as indicated in [7], enhancing the collaborations be-
tween academic and industry might be a good solution.

4.2.10 Re-opened Bug Prediction (B10)
Further investigation into the potential impact of re-opened bugs
and the extra effort required to completely fix them is needed.
Several practitioners rated this technique as unimportant
mainly because it did not provide more informative in-
formation on the prediction results. Why is a bug report
predicted as likely to be re-opened? What is the impact of
reopening a particular bug report on development process
and company’s business? How much extra effort is needed
to resolve a bug report that is likely to be reopened? To
gain some insights into the first question, Zimmermann
et al. comprehensively investigated various reasons for re-
opened bugs [92]. Shihab et al. performed top node analysis



24

to explore the factors that were most indicative for a re-
opend bug [63]. However, little work has been done to study
the potential impact of re-opened bugs and the extra cost to
completely fix them. It would be appreciated if such kinds of
information is provided to help developers better assess and
take suitable actions based on recommendations produced
by such re-opened bug prediction tool.

4.3 Threats to Validity
Literature Review. In this paper, we did a literature review
to summarize existing studies on automated bug report
management techniques. It is possible that we miss some
relevant studies. To mitigate this threat, we have taken the
following steps: (1) we have considered 17 venues that
are major conferences or impactful software engineering
journals where papers on bug report management are likely
to be published; the conferences and journals were also used
as sources for prior literature review studies in software
engineering [41], [90], [66], and (2) we chose 2006 (the year
when the research area of bug report management took off)
as the starting year of papers considered in our literature
review. We believe that these steps help to provide a degree
of assurance on the completeness of our literature review in
covering representative techniques on automated bug report
management.

During the process of categorizing existing techniques,
we adopted several “checks and balances” to avoid
potential subjective bias from a single person. Specifically,
two researchers worked together to finish the task. Each
step was cross-verified by the two persons and the Kappa
value of 0.93 indicates a high agreement on the resulted
10 categories of automated bug report management
techniques.

Survey. In this study, we mainly used Likert scale (which
was widely used in various research studies across multiple
domains, e.g. [7], [46], [41]) to collect practitioners’ rating
results of automated bug report management techniques.
It is possible that some respondents may have provided
dishonest answers (e.g. saying what we want to hear or
saying what they want us to hear) for various reasons. To
help reduce this response bias, we (1) allowed our survey
respondents to be anonymous; participants are untraceable
if they do not leave email addresses; they can also leave
new/anonymous email addresses and (2) guaranteed that
no personal information would be disseminated in our
paper; we explicitly specified this in our survey invitation
emails. As found by Ong et al. [56], anonymity and confi-
dentiality helped in obtaining candid answers from survey
respondents. Besides, the majority of our respondents were
not our personal acquaintances, this also increased the like-
lihood of acquiring objective responses.

Some respondents may not understand all the auto-
mated bug report management techniques studied in this
paper; to alleviate this threat, we provided an additional
option (i.e. “I don’t understand/prefer not to answer”) for
each question in our survey, and we found that the option
was chosen 29 times (0.89% of all 3,270 ratings). Still, we
need to acknowledge that it is possible that some par-
ticipants overestimate their understanding about the tech-
niques studied in this work. Besides, following the advice in

[40] (i.e. using the proper language medium for intended re-
spondents), we translated our survey into Chinese to make
sure that respondents from China could understand our
survey questions well. We designed our survey in English
and Chinese since English is a lingua franca and Chinese is
the most spoken language in the world.

Since the survey participants are self-selected, the re-
sults/findings might be biased towards those who are more
likely/willing to fill the questionnaire (e.g. practitioners
with extra free time). As explained in [37], “Avoiding the
self-selection principle is impossible”, any sponsorship or an
encouragement might increase practitioner’s participation.
To improve the generalizability of our findings, we surveyed
327 practitioners, including both industrial professionals
in different companies from different countries and OSS
contributors. The number of people we surveyed is similar
to prior studies [38], [49].

Since software engineering perceptions and practices
are diverse, individual opinions of respondents may
not be agreeable to or representative of everyone. We
mitigated this by surveying 327 respondents from various
backgrounds. We reported all sides of the story capturing
diverse opinions from various practitioners.

Interview. Following the strategy of prior studies [65],
[1], we stopped our interviews when we reached the
saturation of themes after interviewing 25 practitioners.
The number of interviewees considered in this study
is similar with prior studies, e.g. [25], [33]. We need to
acknowledge that opinions provided by our interviewees
may not be representative of and agreeable to everyone.
Still, considering that our interviewees hold various roles
and have different levels of expertise, when combined with
the survey results, we believe that our study uncovered
various valuable insights regarding software engineers’
perceptions of automated bug report management.

Thematic Analysis. Due to the exploratory nature of our
study, we used thematic analysis as our research method
to analyze the survey comments and transcribed interview
data, so as to get a general and specific view of practi-
tioner’s perception into the importance of automated bug
report management techniques. In order to avoid potential
bias from individual’s analysis, in this study, each step of
thematic analysis was independently performed by two
researchers and all disagreements were solved through
discussions. Note that although we provided the numbers
of interviewees/survey respondents that mentioned certain
themes in Section 3.3, we cannot declare the strength or
pervasiveness of a theme merely by these numbers because
we did not ask each participant about each theme separately.

5 RELATED WORK

In the past decade, researchers have conducted some studies
to investigate practitioners’ perception of various software
engineering research work [46], [7], [49]. Lo et al. inves-
tigated how software engineering research were relevant
to the practitioners in the field [46]. In their study, 512
practitioners working in Microsoft rated the relevance of 571
papers published in ICSE, ESEC/FSE and FSE. They found



25

that practitioners were generally positive about the studies
done by the research community. Besides, they revealed
several fundamental reasons why practitioners considered
certain research ideas to be unwise, which is crucial for
future software engineering research. Similarly, Carver et
al. investigated how industry practitioners perceived the
relevance of the work published in ESEM [13]. They found
that the ESEM research work was valuable and worthwhile
for the software practitioners, meanwhile, they also high-
lighted some topics for which those practitioners would like
to see additional research undertaken. In [18], Devanbu et
al. shed some light on the relationship between quantitative
evidence and practitioner’s belief in software engineering
settings. They found that practitioners did have strong
prior beliefs based on their experience rather than empirical
evidence. Furthermore, to help data scientists in software
engineering focus on these important tasks that were per-
ceived by the practitioners, Begel et al. conducted a survey
among practitioners and summarized 145 questions that
practitioners mostly wanted researchers to solve [7]. The
above studies aimed to get practitioners’ perspective on the
general topic of software engineering. Different from them,
our study focused on gaining practitioners’ perception on
a specific topic in software engineering, i.e. automated bug
report management techniques.

Besides the studies mentioned above, some other stud-
ies have investigated differences between researchers’ and
practitioners’ perceptions on some specific software engi-
neering techniques [41], [57]. Kochhar et al. investigated
how practitioners perceive existing research work on au-
tomated bug localization techniques [41]. They surveyed
386 practitioners and analyzed factors that affected their
adoptions of a bug localization technique; they also high-
lighted some research directions to develop techniques
that mattered to practitioners. This study is most related
to our study. Unlike this study, we investigated a wider
range of bug management techniques rather than focused
only on bug localization. In [57], Palomba et al. studied
how developers perceived bad code smells detected by
the research community. Particularly, they investigated the
extent developers considered detected bad code smells as
serious design problems. They evaluated 12 kinds of bad
code smells and found that some bad code smells were not
considered as threats by the developers. Similarly, Bavota et
al. investigated how practitioners perceived software cou-
pling [6]. Specifically, they presented some class coupling
that was detected by structural, dynamic, semantic, and
logical coupling measures and explored to what extent this
coupling aligned with developers’ perception of coupling.
They found that class coupling caught by semantic coupling
measure could better estimate practitioners’ mental model.
Both of these two studies explored practitioners’ perception
of the value of a specific research work, i.e. bad code smells
and class coupling. Unlike these studies, we investigated
a different topic, i.e. automated bug report management
techniques.

The studies mentioned above mainly focused on in-
vestigating how practitioners perceived the value of exist-
ing software engineering research work. There were other
studies that aimed to help researchers better understand
the characteristics of software development and developers’

behavior [49], [53], [26], [27], [81]. Meyer et al. conducted a
survey among practitioners to understand how they per-
ceived and evaluated productivity [49]. They found that
practitioners considered themselves as productive when
they finished many or big tasks. Treude et al. explored
practitioners’ expectations on tools that summarized their
activities [81]. Specifically, they studied what kinds of infor-
mation practitioners wanted the tools to collect, how they
summarized their activities and what factors might affect
their summary. Murphy et al. [53] conducted an interview
with 14 interviewees and a survey among 364 respondents
to understand how video game development was different
from traditional software development. Gousios et al. inves-
tigated the challenges of pull-based development from both
the integrators’ and contributors’ views [26], [27]. In our
work, we considered an orthogonal research problem unlike
the above studies, i.e. how practitioners perceive automated
bug report management techniques.

6 CONCLUSION AND FUTURE WORK

In this study, we surveyed 327 practitioners from diverse
backgrounds on how they perceive the importance of 10 cat-
egories of automated bug report management techniques.
Specifically, we asked them to rate the categories and pro-
vide the rationale of their ratings. To dig deeper into practi-
tioners’ perception, we also conducted follow-up interviews
with 25 practitioners.

We found that on the whole, the majority of practi-
tioners saw the value of existing automated bug report
management studies. They mentioned various benefits of
advancing these techniques, including speeding up bug
fixing, reducing manual work in managing bug reports, and
helping to make a better schedule for developers/teams, etc.
However, some practitioners also expressed their doubts on
the effectiveness of those automated techniques. As they ex-
plained and suggested, it would be necessary for researchers
or relevant tool builders to make use of all necessary sources
of information, especially those that practitioners often used
in practice, to improve techniques’ performance. Besides,
for some techniques, e.g. bug fixing time prediction and re-
opened bug prediction, it would be worthwhile to provide
extra evidence or explanation to convince practitioners in a
tool’s recommendations.

Our study also revealed several specific improve-
ments/expectations practitioners desired during their bug
report management practice. For example, we highlighted
several kinds of bugs that many interviewees deemed as
difficult to resolve, such as performance bugs, environment-
related bugs (e.g. those caused by bad network or hardware
failure), etc. As another example, some interviewees/survey
respondents desired some techniques that could help them
solve the privacy problems related to bug reports. It would
be appreciated if researchers and relevant tool builders focus
more efforts on these particular problems.

In the future, we plan to work on some of these op-
portunities, e.g. integrate existing research techniques to
commonly used tools, perform additional investigation into
usage scenarios of various bug report management tech-
niques and improve effectiveness of these techniques by



26

considering additional domain knowledge we glean from
this study.

ACKNOWLEDGEMENT

We are grateful for the survey and interview participants
who answered our survey questions and provided many
insightful comments. We strongly thank the anonymous
reviewers for their constructive comments. Zhenyu Chen
and Xin Xia are the corresponding authors. This research is
partly supported by National Natural Science Foundation
of China (Grant No. 61690201, 61373013), the China Schol-
arship Council Scholarship.

REFERENCES

[1] M. Aniche, C. Treude, I. Steinmacher, I. Wiese, G. Pinto, M.-A.
Storey, and M. A. Gerosa. How modern news aggregators help
development communities shape and share knowledge. In Pro-
ceedings of the 40th International Conference on Software Engineering,
pages 499–510, 2018.

[2] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this
bug? In Proceedings of the 28th international conference on Software
engineering, pages 361–370, 2006.

[3] J. Anvik and G. C. Murphy. Determining implementation ex-
pertise from bug reports. In Proceedings of the 4th International
Workshop on Mining Software Repositories, pages 2–9, 2007.

[4] J. Anvik and G. C. Murphy. Reducing the effort of bug report
triage: Recommenders for development-oriented decisions. ACM
Transactions on Software Engineering and Methodology, 20(3):10:1–
10:35, 2011.

[5] R. A. Armstrong. When to use the bonferroni correction. Oph-
thalmic and Physiological Optics, 34(5):502–508, 2014.

[6] G. Bavota, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and
A. De Lucia. An empirical study on the developers’ perception of
software coupling. In Proceedings of the 35th International Conference
on Software Engineering, pages 692–701, 2013.

[7] A. Begel and T. Zimmermann. Analyze this! 145 questions for
data scientists in software engineering. In Proceedings of the 36th
International Conference on Software Engineering, pages 12–23, 2014.

[8] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim. Duplicate
bug reports considered harmful ... really? In Proceedings of the 24th
IEEE International Conference on Software Maintenance, pages 337–
345, 2008.

[9] V. Braun and V. Clarke. Using thematic analysis in psychology.
Qualitative research in psychology, 3(2):77–101, 2006.

[10] P. Broadwell, M. Harren, and N. Sastry. Scrash: A system for
generating secure crash information. In Proceedings of the 12th
conference on USENIX Security Symposium, pages 19–30, 2003.

[11] A. Budi, D. Lo, L. Jiang, and Lucia. Kb-anonymity: A model for
anonymized behaviour-preserving test and debugging data. In
Proceedings of the 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 447–457, 2011.

[12] G. Canfora, M. Ceccarelli, L. Cerulo, and M. Di Penta. How long
does a bug survive? an empirical study. In Proceedings of the 18th
Working Conference on Reverse Engineering, pages 191–200, 2011.

[13] J. C. Carver, O. Dieste, N. A. Kraft, D. Lo, and T. Zimmermann.
How practitioners perceive the relevance of esem research. In Pro-
ceedings of the 10th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, pages 56:1–56:10, 2016.

[14] O. Chaparro, J. Lu, F. Zampetti, L. Moreno, M. Di Penta, A. Mar-
cus, G. Bavota, and V. Ng. Detecting missing information in bug
descriptions. In Proceedings of the 11th Joint Meeting on Foundations
of Software Engineering, pages 396–407, 2017.

[15] N. Cliff. Ordinal methods for behavioral data analysis. Psychology
Press, 2014.

[16] J. Coelho and M. T. Valente. Why modern open source projects fail.
In Proceedings of the 11th Joint Meeting on Foundations of Software
Engineering, pages 186–196, 2017.

[17] D. S. Cruzes and T. Dyba. Recommended steps for thematic syn-
thesis in software engineering. In Proceedings of the 5th International
Symposium on Empirical Software Engineering and Measurement,
pages 275–284, 2011.

[18] P. Devanbu, T. Zimmermann, and C. Bird. Belief & evidence
in empirical software engineering. In Proceedings of the 38th
international conference on software engineering, pages 108–119, 2016.

[19] M. El Mezouar, F. Zhang, and Y. Zou. Are tweets useful in the bug
fixing process? an empirical study on firefox and chrome. Empirical
Software Engineering, 23(3):1704–1742, 2018.

[20] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth. Taintdroid: an information-
flow tracking system for realtime privacy monitoring on smart-
phones. ACM Transactions on Computer Systems, 32(2):5:1–5:29,
2014.

[21] M. Erfani Joorabchi, M. Mirzaaghaei, and A. Mesbah. Works for
me! characterizing non-reproducible bug reports. In Proceedings of
the 11th Working Conference on Mining Software Repositories, pages
62–71, 2014.

[22] R. A. Fisher. On the interpretation of χ 2 from contingency tables,
and the calculation of p. Journal of the Royal Statistical Society,
85(1):87–94, 1922.

[23] J. L. Fleiss. Measuring nominal scale agreement among many
raters. Psychological bulletin, 76(5):378–382, 1971.

[24] J. Fowkes, P. Chanthirasegaran, R. Ranca, M. Allamanis, M. Lap-
ata, and C. Sutton. Autofolding for source code summarization.
IEEE Transactions on Software Engineering, 43(12):1095–1109, 2017.

[25] T. Fritz, E. M. Huang, G. C. Murphy, and T. Zimmermann. Per-
suasive technology in the real world: a study of long-term use of
activity sensing devices for fitness. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 487–496,
2014.

[26] G. Gousios, M.-A. Storey, and A. Bacchelli. Work practices and
challenges in pull-based development: The contributor’s perspec-
tive. In Proceedings of the 38th International Conference on Software
Engineering, pages 285–296, 2016.

[27] G. Gousios, A. Zaidman, M.-A. Storey, and A. Van Deursen.
Work practices and challenges in pull-based development: the
integrator’s perspective. In Proceedings of the 37th International
Conference on Software Engineering, pages 358–368, 2015.

[28] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy. Charac-
terizing and predicting which bugs get fixed: an empirical study
of microsoft windows. In Proceedings of the 32nd International
Conference on Software Engineering, pages 495–504, 2010.

[29] A. Hindle, A. Alipour, and E. Stroulia. A contextual approach to-
wards more accurate duplicate bug report detection and ranking.
Empirical Software Engineering, 21(2):368–410, 2016.

[30] A. Hindle, C. Bird, T. Zimmermann, and N. Nagappan. Do
topics make sense to managers and developers? Empirical Software
Engineering, 20(2):479–515, 2015.

[31] G. Jeong, S. Kim, and T. Zimmermann. Improving bug triage
with bug tossing graphs. In Proceedings of the 7th joint meeting of
the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering, pages 111–120,
2009.

[32] H. Kagdi and D. Poshyvanyk. Who can help me with this change
request? In Proceedings of the 17th International Conference on
Program Comprehension, pages 273–277, 2009.

[33] J. Kasurinen, J.-P. Strandén, and K. Smolander. What do game
developers expect from development and design tools? In Proceed-
ings of the 17th International Conference on Evaluation and Assessment
in Software Engineering, pages 36–41, 2013.

[34] R. Kikas, M. Dumas, and D. Pfahl. Using dynamic and contextual
features to predict issue lifetime in github projects. In Proceedings
of the 13th Working Conference on Mining Software Repositories, pages
291–302, 2016.

[35] D. Kim, Y. Tao, S. Kim, and A. Zeller. Where should we fix this
bug? a two-phase recommendation model. IEEE transactions on
software Engineering, 39(11):1597–1610, 2013.

[36] M. Kim, T. Zimmermann, R. DeLine, and A. Begel. The emerging
role of data scientists on software development teams. In Pro-
ceedings of the 38th International Conference on Software Engineering,
pages 96–107, 2016.

[37] M. Kim, T. Zimmermann, R. DeLine, and A. Begel. Data scientists
in software teams: State of the art and challenges. IEEE Transactions
on Software Engineering, (1):1–1, 2017.

[38] M. Kim, T. Zimmermann, and N. Nagappan. An empirical study
of refactoringchallenges and benefits at microsoft. IEEE Transac-
tions on Software Engineering, 40(7):633–649, 2014.

[39] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bai-
ley, and S. Linkman. Systematic literature reviews in software
engineering–a systematic literature review. Information and software
technology, 51(1):7–15, 2009.



27

[40] B. A. Kitchenham and S. L. Pfleeger. Personal opinion surveys.
In Guide to advanced empirical software engineering, pages 63–92.
Springer, 2008.

[41] P. S. Kochhar, X. Xia, D. Lo, and S. Li. Practitioners’ expectations on
automated fault localization. In Proceedings of the 25th International
Symposium on Software Testing and Analysis, pages 165–176, 2016.

[42] G. Laghari, A. Murgia, and S. Demeyer. Fine-tuning spectrum
based fault localisation with frequent method item sets. In Pro-
ceedings of the 31st IEEE/ACM International Conference on Automated
Software Engineering, pages 274–285, 2016.

[43] A. Lamkanfi, S. Demeyer, Q. D. Soetens, and T. Verdonck. Com-
paring mining algorithms for predicting the severity of a reported
bug. In Proceedings of the 15th European Conference on Software
Maintenance and Reengineering, pages 249–258, 2011.

[44] T.-D. B. Le, R. J. Oentaryo, and D. Lo. Information retrieval and
spectrum based bug localization: better together. In Proceedings of
the 10th Joint Meeting on Foundations of Software Engineering, pages
579–590, 2015.

[45] C. Liu, J. Yang, L. Tan, and M. Hafiz. R2fix: Automatically generat-
ing bug fixes from bug reports. In Proceedings of the 6th International
Conference on Software Testing, Verification and Validation, pages 282–
291, 2013.

[46] D. Lo, N. Nagappan, and T. Zimmermann. How practitioners per-
ceive the relevance of software engineering research. In Proceedings
of the 10th Joint Meeting on Foundations of Software Engineering,
pages 415–425, 2015.

[47] R. Lotufo, Z. Malik, and K. Czarnecki. Modelling the ‘hurried’
bug report reading process to summarize bug reports. Empirical
Software Engineering, 20(2):516–548, 2015.

[48] J. H. McDonald. Handbook of biological statistics. Sparky House,
2009.

[49] A. N. Meyer, T. Fritz, G. C. Murphy, and T. Zimmermann. Software
developers’ perceptions of productivity. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pages 19–29, 2014.

[50] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, and D. Poshy-
vanyk. Auto-completing bug reports for android applications.
In Proceedings of the 10th Joint Meeting on Foundations of Software
Engineering, pages 673–686, 2015.

[51] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, C. Vendome,
and D. Poshyvanyk. Automatically discovering, reporting and
reproducing android application crashes. In Proceedings of the 9th
IEEE International Conference on Software Testing, Verification and
Validation, pages 33–44, 2016.

[52] L. Moreno, J. J. Treadway, A. Marcus, and W. Shen. On the use
of stack traces to improve text retrieval-based bug localization.
In Proceedings of the 30th IEEE International Conference on Software
Maintenance and Evolution, pages 151–160, 2014.

[53] E. Murphy-Hill, T. Zimmermann, and N. Nagappan. Cowboys,
ankle sprains, and keepers of quality: How is video game devel-
opment different from software development? In Proceedings of the
36th International Conference on Software Engineering, pages 1–11,
2014.

[54] A. T. Nguyen, T. T. Nguyen, J. Al-Kofahi, H. V. Nguyen, and
T. N. Nguyen. A topic-based approach for narrowing the search
space of buggy files from a bug report. In Proceedings of the 26th
IEEE/ACM International Conference on Automated Software Engineer-
ing, pages 263–272, 2011.

[55] A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, D. Lo, and C. Sun.
Duplicate bug report detection with a combination of information
retrieval and topic modeling. In Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering, pages
70–79, 2012.

[56] A. D. Ong and D. J. Weiss. The impact of anonymity on re-
sponses to sensitive questions. Journal of Applied Social Psychology,
30(8):1691–1708, 2000.

[57] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, and A. De Lucia.
Do they really smell bad? a study on developers’ perception of bad
code smells. In Proceedings of the 30th IEEE international conference
on Software maintenance and evolution, pages 101–110, 2014.

[58] L. D. Panjer. Predicting eclipse bug lifetimes. In Proceedings of
the 4th International Workshop on mining software repositories, pages
29–32, 2007.

[59] S. Rastkar, G. C. Murphy, and G. Murray. Summarizing software
artifacts: a case study of bug reports. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering, pages
505–514, 2010.

[60] P. Runeson, M. Alexandersson, and O. Nyholm. Detection of
duplicate defect reports using natural language processing. In Pro-
ceedings of the 29th international conference on Software Engineering,
pages 499–510, 2007.

[61] R. K. Saha, J. Lawall, S. Khurshid, and D. E. Perry. On the
effectiveness of information retrieval based bug localization for
c programs. In Proceedings of the 30th IEEE International Conference
on Software Maintenance and Evolution, pages 161–170, 2014.

[62] A. J. Scott and M. Knott. A cluster analysis method for grouping
means in the analysis of variance. Biometrics, 30(3):507–512, 1974.

[63] E. Shihab, A. Ihara, Y. Kamei, W. M. Ibrahim, M. Ohira, B. Adams,
A. E. Hassan, and K.-I. Matsumoto. Studying re-opened bugs in
open source software. Empirical Software Engineering, 18(5):1005–
1042, 2013.

[64] D. Silva, N. Tsantalis, and M. T. Valente. Why we refactor?
confessions of github contributors. In Proceedings of the 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pages 858–870, 2016.

[65] L. Singer, F. Figueira Filho, and M.-A. Storey. Software engineering
at the speed of light: how developers stay current using twitter. In
Proceedings of the 36th International Conference on Software Engineer-
ing, pages 211–221, 2014.

[66] D. I. K. Sjøberg, J. E. Hannay, O. Hansen, V. B. Kampenes, A. Kara-
hasanovic, N.-K. Liborg, and A. C. Rekdal. A survey of controlled
experiments in software engineering. IEEE transactions on software
engineering, 31(9):733–753, 2005.

[67] D. Spencer. Card sorting: Designing usable categories. Rosenfeld
Media, 2009.

[68] M. Staron, W. Meding, and B. Söderqvist. A method for forecasting
defect backlog in large streamline software development projects
and its industrial evaluation. Information and Software Technology,
52(10):1069–1079, 2010.

[69] A. Strauss and J. M. Corbin. Grounded theory in practice. SAGE,
1997.

[70] C. Sun, D. Lo, S.-C. Khoo, and J. Jiang. Towards more accurate
retrieval of duplicate bug reports. In Proceedings of the 26th
IEEE/ACM International Conference on Automated Software Engineer-
ing, pages 253–262, 2011.

[71] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo. A discriminative
model approach for accurate duplicate bug report retrieval. In Pro-
ceedings of the 32nd ACM/IEEE International Conference on Software
Engineering, pages 45–54, 2010.

[72] L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, and C. Zhai. Bug char-
acteristics in open source software. Empirical Software Engineering,
19(6):1665–1705, 2014.

[73] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Mat-
sumoto. An empirical comparison of model validation techniques
for defect prediction models. IEEE Transactions on Software Engi-
neering, 43(1):1–18, 2017.

[74] F. Thung, P. S. Kochhar, and D. Lo. Dupfinder: integrated tool
support for duplicate bug report detection. In Proceedings of
the 29th ACM/IEEE international conference on Automated software
engineering, pages 871–874, 2014.

[75] F. Thung, T.-D. B. Le, P. S. Kochhar, and D. Lo. Buglocalizer:
integrated tool support for bug localization. In Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pages 767–770, 2014.

[76] F. Thung, X.-B. D. Le, and D. Lo. Active semi-supervised defect
categorization. In Proceedings of the 23rd International Conference on
Program Comprehension, pages 60–70, 2015.

[77] F. Thung, D. Lo, and L. Jiang. Automatic defect categorization.
In Proceedings of the 19th Working Conference on Reverse Engineering,
pages 205–214, 2012.

[78] F. Thung, D. Lo, L. Jiang, F. Rahman, and P. T. Devanbu. When
would this bug get reported? In Proceedings of the 28th IEEE
International Conference on Software Maintenance, pages 420–429,
2012.

[79] Y. Tian, D. Lo, and C. Sun. Information retrieval based nearest
neighbor classification for fine-grained bug severity prediction. In
Proceedings of the 19th Working Conference on Reverse Engineering,
pages 215–224, 2012.

[80] Y. Tian, D. Lo, X. Xia, and C. Sun. Automated prediction of
bug report priority using multi-factor analysis. Empirical Software
Engineering, 20(5):1354–1383, 2015.

[81] C. Treude, F. Figueira Filho, and U. Kulesza. Summarizing and
measuring development activity. In Proceedings of the 10th Joint
Meeting on Foundations of Software Engineering, pages 625–636, 2015.



28

[82] J. Wang and H. Zhang. Predicting defect numbers based on defect
state transition models. In Proceedings of the 6th International Sym-
posium on Empirical Software Engineering and Measurement, pages
191–200, 2012.

[83] S. Wang and D. Lo. Amalgam+: Composing rich information
sources for accurate bug localization. Journal of Software: Evolution
and Process, 28(10):921–942, 2016.

[84] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun. An approach
to detecting duplicate bug reports using natural language and
execution information. In Proceedings of the 30th International
Conference on Software Engineering, pages 461–470, 2008.

[85] J. Xuan, H. Jiang, Y. Hu, Z. Ren, W. Zou, Z. Luo, and X. Wu.
Towards effective bug triage with software data reduction tech-
niques. IEEE transactions on knowledge and data engineering,
27(1):264–280, 2015.

[86] J. Xuan, H. Jiang, Z. Ren, and W. Zou. Developer prioritization in
bug repositories. In Proceedings of the 34th International Conference
on Software Engineering, pages 25–35, 2012.

[87] F. Zhang, F. Khomh, Y. Zou, and A. E. Hassan. An empirical study
on factors impacting bug fixing time. In Proceedings of the 19th
Working Conference on Reverse Engineering, pages 225–234, 2012.

[88] H. Zhang, L. Gong, and S. Versteeg. Predicting bug-fixing time: an
empirical study of commercial software projects. In Proceedings of
the 35th international conference on software engineering, pages 1042–
1051, 2013.

[89] T. Zhang, J. Chen, G. Yang, B. Lee, and X. Luo. Towards more
accurate severity prediction and fixer recommendation of software
bugs. Journal of Systems and Software, 117(C):166–184, 2016.

[90] T. Zhang, H. Jiang, X. Luo, and A. T. Chan. A literature review of
research in bug resolution: Tasks, challenges and future directions.
The Computer Journal, 59(5):741–773, 2016.

[91] J. Zhou, H. Zhang, and D. Lo. Where should the bugs be fixed?
more accurate information retrieval-based bug localization based
on bug reports. In Proceedings of the 34th International Conference on
Software Engineering, pages 14–24, 2012.

[92] T. Zimmermann, N. Nagappan, P. J. Guo, and B. Murphy. Char-
acterizing and predicting which bugs get reopened. In Proceedings
of the 34th International Conference on Software Engineering, pages
1074–1083, 2012.

[93] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schroter,
and C. Weiss. What makes a good bug report? IEEE Transactions
on Software Engineering, 36(5):618–643, 2010.


	How practitioners perceive automated bug report management techniques
	Citation
	Author

	Introduction
	Research Methodology
	Literature Review
	Survey Design
	Interview Design

	Results
	RQ1: How do practitioners perceive automated bug report management techniques?
	RQ2: Which are the highly-rated automated bug report management techniques that practitioners deem important?
	RQ3: Why do practitioners consider certain techniques as important or unimportant?
	Bug Localization (B1)
	Bug Assignment (B2)
	 Bug Categorization (B3)
	 Duplicate / Similar Bug Detection (B4)
	Bug report completion / refinement (B5)
	Bug-Commit Linking (B6)
	Bug Summarization / Visualization (B7)
	Bug Fixing Time Prediction (B8)
	Bug Severity / Priority Prediction (B9)
	Re-opened Bug Prediction (B10)


	Discussion
	General insights across categories
	Insights into specific categories
	Bug Localization (B1)
	Bug Assignment (B2)
	Bug Categorization (B3)
	Duplicate/Similar Bug Detection (B4)
	 Bug Completion/Refinement(B5)
	Bug-Commit Linking (B6)
	Bug Summarization/Visualization (B7)
	Bug Fixing Time Prediction (B8)
	Bug Severity/Priority Prediction (B9)
	Re-opened Bug Prediction (B10)

	Threats to Validity

	Related work
	Conclusion and Future Work 
	References

