
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

12-2019

Automating change-level self-admitted technical debt Automating change-level self-admitted technical debt

determination determination

Meng YAN
Zhejiang University

Xin XIA
Monash University

Emad SHIHAB
Concordia University, Montreal, Quebec, Canada

David LO
Singapore Management University, davidlo@smu.edu.sg

Jianwei YIN
Zhejiang University

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
YAN, Meng; XIA, Xin; SHIHAB, Emad; LO, David; YIN, Jianwei; and YANG, Xiaohu. Automating change-level
self-admitted technical debt determination. (2019). IEEE Transactions on Software Engineering. 45, (12),
1211-1229.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4352

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4352&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4352&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Meng YAN, Xin XIA, Emad SHIHAB, David LO, Jianwei YIN, and Xiaohu YANG

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/4352

https://ink.library.smu.edu.sg/sis_research/4352

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 1

Automating Change-level Self-admitted
Technical Debt Determination

Meng Yan, Xin Xia, Emad Shihab, David Lo, Jianwei Yin, and Xiaohu Yang

Abstract—Technical debt (TD) is a metaphor to describe the situation where developers introduce suboptimal solutions during
software development to achieve short-term goals that may affect the long-term software quality. Prior studies proposed different
techniques to identify TD, such as identifying TD through code smells or by analyzing source code comments. Technical debt identified
using comments is known as Self-Admitted Technical Debt (SATD) and refers to TD that is introduced intentionally. Compared with TD
identified by code metrics or code smells, SATD is more reliable since it is admitted by developers using comments. Thus far, all of the
state-of-the-art approaches identify SATD at the file-level. In essence, they identify whether a file has SATD or not. However, all of the
SATD is introduced through software changes. Previous studies that identify SATD at the file-level in isolation cannot describe the TD
context related to multiple files. Therefore, it is beneficial to identify the SATD once a change is being made. We refer to this type of TD
identification as “Change-level SATD Determination”, which determines whether or not a change introduces SATD. Identifying SATD at
the change-level can help to manage and control TD by understanding the TD context through tracing the introducing changes.
To build a change-level SATD Determination model, we first identify TD from source code comments in source code files of all versions.
Second, we label the changes that first introduce the SATD comments as TD-introducing changes. Third, we build the determination
model by extracting 25 features from software changes that are divided into three dimensions, namely diffusion, history and message,
respectively. To evaluate the effectiveness of our proposed model, we perform an empirical study on 7 open source projects containing
a total of 100,011 software changes. The experimental results show that our model achieves a promising and better performance than
four baselines in terms of AUC and cost-effectiveness (i.e., percentage of TD-introducing changes identified when inspecting 20% of
changed LOC). On average across the 7 experimental projects, our model achieves AUC of 0.82, cost-effectiveness of 0.80, which is a
significant improvement over the comparison baselines used. In addition, we found that “Diffusion” is the most discriminative dimension
among the three dimensions of features for determining TD-introducing changes.

Index Terms—Technical Debt, Software Change, Change-level Determination, Self-admitted Technical Debt

F

1 INTRODUCTION

Software companies and organizations always expect to de-
liver high quality software. However, in most practical set-
tings, there are many constraints during the software devel-
opment lifecycle that impact software quality. For example,
constraints related to budget, scheduling and resources. Due
to these constraints, developers may introduce suboptimal
solutions to achieve various short-term goals, such as cost
reduction, satisfying customers’ needs and market pressure
from competition [1]. Although the short-term goals are
achieved, the suboptimal solutions may hurt the software
in the long-term.

Technical debt (TD) is a metaphor that describes the
aforementioned situation [2], [3]. Like financial debt, this

• Meng Yan, Jianwei Yin, and Xiaohu Yang are with the College of Com-
puter Science and Technology, Zhejiang University, Hangzhou, China.
E-mail: mengy@zju.edu.cn, zjuyjw@cs.zju.edu.cn, yangxh@zju.edu.cn

• Xin Xia is with the Faculty of Information Technology, Monash Univer-
sity, Melbourne, Australia.
E-mail: xin.xia@monash.edu

• Emad Shihab is with Data-driven Analysis of Software (DAS) Lab at the
Department of Computer Science and Software Engineering, Concordia
University, Montreal, Canada.
E-mail: eshihab@encs.concordia.ca

• David Lo is with the School of Information Systems, Singapore Manage-
ment University, Singapore.
E-mail: davidlo@smu.edu.sg

• Xin Xia is the corresponding author.

Manuscript received ; revised

metaphor regards taking suboptimal solutions as a type
of “debt”, which brings a short-term benefit (e.g. higher
productivity or shorter release time) that needs to be paid
back (i.e., using maintenance effort) even with “interest” in
future. The “interest” is the potential penalty (i.e., increased
effort) that will have to be paid in the future as a result of
not performing the task optimally in the first place [4]. Prior
work has shown that TD is common and can have a negative
impact on the quality of the software [5], [6].

Due to the importance of TD, a number of studies
proposed methods to help identify it. Generally, there are
two main method used to identify TD [7]. One approach
is to identify TD through source code analysis (e.g., by
code metrics or code smells) [8]–[11]. The other approach
is to identify TD through source code comments, which is
referred to as Self-Admitted Technical Debt (SATD) [12]–
[17]. SATD refers to the TD that is introduced by a developer
intentionally and is documented by the developer using
source code comments [16]. For example, the comment
“FIXME handle EVT GET ALL SESSIONS later” in the Tom-
cat project indicates that the corresponding code needs to be
“fixed” in the future to handle the session problem.

Identifying TD through source code comments (i.e.,
SATD) has the following advantages compared with the
identification of TD through source code analysis. First,
SATD when compared with TD identified by code metrics
or code smells, is more reliable since it is ‘admitted’ by
developers [16]. The TD identified by code metrics or code

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 2

smells might suffer from high false positive rates [7], [18].
Second, SATD identification is more lightweight compared
with TD identified through source code analysis [7]. It does
not require the construction of abstract syntax trees or other
computationally expensive representations. For example,
some code smell detectors may provide refactoring recom-
mendations [19], [20] based on computationally expensive
source code representations to match structural patterns or
compute metrics, such as program dependence graphs [21]
and method call graphs [22]. On the other hand, SATD
identification only relies on source code comments that can
be easily and efficiently extracted from source code files
using regular expressions.

Thus far, all of the state-of-the-art approaches identify
SATD at the file-level (e.g., [16], [17]). In essence, they
identify whether a file has SATD or not. However, all of the
SATD is introduced through software change (i.e., a commit
to source control system) [17]. Therefore, it is beneficial to
identify the SATD once a change is being made. We refer to
this type of TD identification as “Change-level SATD Deter-
mination”. Change-level determination aims to determine
whether or not a change introduces SATD. Identifying SATD
at the change-level can yield many benefits, such as:

• It can help to understand the TD context by tracing
the introducing change. Previous studies that identi-
fy SATD on file-level in isolation cannot describe the
TD context related to multiple files. Understanding
the context of SATD-introducing changes can help
to address the TD and possibly mitigate introducing
TD.

• It can help to identify TD. Changes that are de-
termined as SATD-introducing ones can be used to
identify TD. In change-level SATD determination,
only change features are used. In this way, the deter-
mination can be performed when a change is submit-
ted. Once a SATD-introducing change is determined,
we can provide a warning to the whole development
team in a timely manner. Thus, it can help the team
to identify and address TD.

Therefore, in this paper, we propose an automated
change-level TD1 determination model that can determine
TD-introducing changes. To the best of our knowledge, this
is the first work to focus on change-level TD determination.
Particularly, we first identify TD from source code com-
ments in source code files of all versions. Then, we label
the changes that first introduce the TD comments as TD-
introducing changes by analyzing source code comments.
After labelling the TD-introducing changes, we extract 25
features that are grouped into three dimensions, i.e., d-
iffusion, history, and message. The diffusion dimension,
contains change features that depend on the comparison
of two neighbouring revisions (e.g., number of modified
subsystems and files) [23]. The history dimension aims to
measure change features that depend on historical activities
related to changed files and the developer that submitted
the change (e.g., the number of developers that changed the
modified files, and the number of historical changes made

1. In the remaining part of this paper, we use “TD” and “SATD”
exchangeably.

by the developer). The message dimension contains features
by analyzing the change message (e.g., whether or not the
change is a bug fix). Then, we build our determination mod-
el using a random forest classifier. In our model, it is noted
that we use comments analysis in the data labelling step
for identifying TD-introducing changes. And we use source
code analysis and change history statistics for extracting
change features.

To evaluate the effectiveness of our model, we conduct
an empirical study on 7 open source projects containing a to-
tal of 100,011 changes, namely, Ant, Camel, Hadoop, Jmeter,
Log4j, Tomcat and Gerrit, which is an enhanced version of
the dataset provided by Maldonado et al. [17]. We adopt two
performance measures (i.e., AUC and cost-effectiveness) us-
ing 10 times 10-fold cross-validation setting; AUC is the area
under the receiver operator characteristic curve [24] and
cost effectiveness evaluates the model performance given a
certain cost threshold, e.g., a certain percentage of changed
code to inspect (e.g., 20%). In practice, when a team has
limited resources to inspect lines of code that potentially
contain TD, it is crucial that the manual inspection of the
top percentages of lines that are likely to contain TD can
help developers discover as many TD as possible. In our
study, by default, we define cost-effectiveness as the recall
of TD-introducing changes when using 20% of the entire
effort required to inspect all changes in test set to inspect
the top ranked changes based on the confidence levels
that our model outputs [23], [25]. And the total number
of lines modified by a change as a measure of the effort
required to inspect a change. We set the default threshold
as 20% by following many prior studies on change-level
determination [23], [26]–[31] and we also analyze the cost-
effectiveness by varying the threshold from 1% to 100%.

The experimental results show that our proposed model
achieves AUC of 0.82, cost-effectiveness of 0.80 on average
across 7 projects, which significantly improves the baseline
approach by a substantial margin. Additionally, in order
to understand what change factors impact TD-introducing
most, we perform feature importance analysis. It consists
of four steps: correlation analysis, redundancy analysis,
importance feature identification and effect size calculation.

In summary, the main contributions of this paper are:

1) We propose the problem of change-level TD deter-
mination, and we propose a change-level TD deter-
mination model, which utilizes 25 change features.
To the best of our knowledge, this paper is the first
work to perform change-level TD determination.

2) We evaluate our proposed model on 7 projects with
totally 100,011 changes. The experimental results
show that out approach achieves AUC of 0.82, cost-
effectiveness of 0.80 on average across 7 projects,
which significantly improves the baseline approach
in a substantial margin.

3) We investigate the most important features that
impact TD determination. The experimental results
show that “diffusion” features is the most important
dimension among the three dimensions of features.

Paper Organization. The rest of the paper is structured
as follows. Section 2 presents the data of our study. Sec-
tion 3 presents our empirical study setup, including research

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 3

TABLE 1: Summary of Studied Projects

Project # All changes # TD-introducing changes Ratio
Hadoop 13,183 328 2.49%

Log4j 3,274 74 2.26%
Tomcat 16,876 487 2.89%
Camel 23,188 831 3.58%
Gerrit 17,973 135 0.75%
Ant 13,252 317 2.39%

Jmeter 12,265 517 4.22%
Total 100,011 2,689 2.69%

questions, studied features, classifiers, validation setting
and performance measures. In Section 4, we provide the
experimental results and their analysis. In Section 5, we
discuss three more findings that impact the determination
model. Section 6 describes the threats to validity. Section 7
presents the related work of our study, including TD, self-
admitted technical debt and change-level determination. At
last, in Section 8, we conclude and present future plans.

2 EMPIRICAL STUDY DATA

To conduct our study, we use an enhanced version of
the publicly available dataset provided by Maldonado et
al. [17]. The manually classified dataset of software changes
from 7 open source projects, containing 100,011 changes
from Ant, Camel, Hadoop, Jmeter, Log4j, Tomcat and Gerrit.
This section details the dataset used in this study. First, we
describe the summary of studied open source projects. Sec-
ond, we describe the method of identifying TD-introducing
changes.

2.1 Dataset

Table 1 lists the statistics of the studied projects. The studied
projects cover different application domains, are of different
sizes and have a varying numbers of contributors. Hadoop2

is a framework that allows for the distributed processing
of large data sets across clusters of computers using simple
programming models. Log4j3 is a logging library for Java.
Tomcat4 is an open source implementation of the Java
Servlet, JavaServer Pages, Java Expression Language and
Java WebSocket technologies. Camel5 is a versatile open-
source integration framework based on known Enterprise
Integration Patterns. Gerrit6 is a free, web-based team code
collaboration tool. Ant7 is a Java library and command-line
tool whose mission is to drive processes described in build
files as targets and extension points dependent upon each
other. Jmeter8 is a Java application designed to load test
functional behavior and measure performance. The analysis
of the selected projects started on March 15, 2016. In total,
there are 100,011 changes in the studied projects.

2. http://hadoop.apache.org/
3. https://logging.apache.org/log4j/2.x/
4. http://tomcat.apache.org/
5. http://camel.apache.org/
6. https://www.gerritcodereview.com/
7. http://ant.apache.org/
8. http://jmeter.apache.org/

2.2 TD-introducing Change Identification

In the dataset, all the changes have been labeled as TD-
introducing or not. We refer the reader to the paper by
Maldonado et al. [17] for full details, however, to make this
paper self-sufficient, we explain the key points related to
the identification of TD-Introducing changes. The labelling
process of identifying TD-introducing change are as follows:

Step 1: checkout all file versions. Since the TD-introducing
change identification needs to track file change history, it
is required that all versions of files in the studied projects
be checked out from their version control systems. First, all
Java source code files in the latest version of the project are
identified. Then, all changes done to each file are tracked
by analyzing the source code repository. Each change to a
file will produce a new version of that file. The objective of
checking out all file versions is to analyze the source code
comments in each version file that indicate SATD. Once the
SATD is identified in all file versions, we consider the first
file version that contains the SATD as the file version that
introduces the SATD.

Step 2: extracting source code comments. The open source
library ScrML [32] is used to parse the source code and ex-
tract the comments and the related information, such as the
line that each comment starts, finishes and the type of com-
ment (i.e., Javadoc, Line, or Block). Since not all comments
can contain SATD [6], [12], we exclude irrelevant comments
by applying the heuristic rules mentioned in prior work [13],
[16]: (1) remove automatically generated comments with
fixed format (i.e., auto-generated constructor stubs, auto-
generated methods stubs and auto-generated catch blocks),
which are inserted as part of code snippets by the IDE to
generate constructors, methods and try catch blocks are
removed; (2) remove commented source code fragments
since they do not contain SATD. (3) Multiple single line
comments that are related to each other are grouped into
a block comment. (4) Javadoc and licence comments are
removed unless they contain at least one task annotation
(i.e., “TODO:”,“FIXME”, or “XXX:”) [16], [33].

Step 3: TD-introducing change identification. In this step,
we need to identify SATD comments extracted from step
2 first. To do so, the first author manually examined each
comment and classified the comments based on whether the
comment is a SATD comment or not. To mitigate personal
bias, we take a stratified sample of the full dataset, which is
a sample that achieves a confidence level of 99% and a confi-
dence interval of 5%. Then we invited another independent
Ph.D student at Zhejiang University to classify the stratified
sample of the comments and measured the level of agree-
ment between the two manual classifiers. We find a high
level of agreement with a Cohen’s Kappa coefficient [34] of
+0.75, which shows substantial agreement among different
labellers. Thus, we are confident in the classification of the
provided dataset.

Once the SATD comment has been identified, we can
identify their corresponding TD-introducing changes by
tracking the comment in the change history. In particular,
each change made to a file produces a different version
of that file, and by extracting them we can analyze each
file version looking for comments that indicate SATD. Once

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 4

we identify all file versions, we consider the first available
file version that contains the self-admitted technical debt
as the file version that introduced the self-admitted techni-
cal debt [17]. Table 1 lists the number of TD-introducing
changes. From the table, we can notice that all projects
have a high imbalance class distribution [35], i.e., the to-
tal ratio of TD-introducing changes is 2.69% on average
across 7 projects. In practice, it is difficult to determine
TD-introducing changes through manual analysis due to
the class imbalance phenomenon, because we may need to
check many changes until we capture a TD-introducing one.
This will cost a lot of inspection effort.

3 EMPIRICAL STUDY SETUP

In this section, we present the setup of our empirical
study. First, we mention the research questions that we
are interested to answer. Then, we present the 25 studied
features, which are grouped into three dimensions. Next, we
present the approach used in this study. Finally, we present
the validations settings and evaluation measures used to
evaluate our technique.

3.1 Research Questions
We formalize our study with the following three research
questions:
RQ1: Can we effectively determine the changes that in-
troduce TD? In this RQ, we evaluate the effectiveness of
the proposed model in determining changes that introduce
technical debt. To answer this RQ, we will conduct an em-
pirical study to evaluate proposed model on 7 open source
projects. Additionally, we compare our performance with
several baselines, i.e., Random Guess (RG) determination
model and determination based on commit messages.
RQ2: Which dimension of features are most important in
determining TD-introducing changes? In the second RQ,
we would like to know which dimension of features are
most discriminative and whether all the three dimensions
are necessary. To answer this RQ, we build three different
models based on three dimensions of features, i.e., diffusion,
history and message, respectively. Except for the features
used, the other configurations of the model are kept the
same.
RQ3: How effective are our models when varying levels
of inspection effort are allocated/inspected? Prior effort-
aware studies showed that the effectiveness of their pre-
diction models may vary under different effort allocations.
Therefore, we also examine the effectiveness of our models
under varying effort allocations as well. By default, we
set the percentage of changed LOC to inspect as 20% to
compute cost-effectiveness. Then, we compute the cost-
effectiveness of our model and baselines while varying the
percentages of changed LOC to inspect.

3.2 Features Studied
In total, we extract 25 change features divided into three u-
nique dimensions: diffusion, history and message. All these
features are derived from the source code control system’s
repository (e.g., Git). Table 2 presents a summary of the

extracted features. We decided to focus on these features
since:

1) Prior work shows that they perform well for pre-
dicting defective changes [23], [31], [37]–[39]. These
features describes the complexity of a change or the
history of changed files, such as diffusion and his-
tory dimensions. We conjecture that these features
also have an impact on introducing technical debt.

2) Prior work on SATD shows that these features
have an impact on TD-introducing, such as mes-
sage dimension which can indicate the activity of
change [17].

In the following sections, we will present the details of
the features in each dimension.

Diffusion: The diffusion of a change is one of the most
important dimension for predicting defective changes [23].
We conjecture that the diffusion dimension can also be
leveraged to determine the likelihood of technical debt
introduction. Totally, we extract 16 change features in this
dimension as listed in Table 2.

In detail, NS represents the number of modified sub-
systems and ND represents the number of modified direc-
tories. We use the root directory name as the subsystem
name and the directory name to identify directories. For
example, if a change modifies a file with the path “camel-
core/src/main/java/org/apache/camel/Body.java”, then
the subsystem is “camel-core”, the directory name is “camel-
core/src/main/java/org/apache/camel”. Entropy aims to
measure the distribution of the change across the different
files [40]. We compute entropy of a change as: H(P) =
−
∑n

k=1(pk ∗ log2pk), where probability pk ≥ 0 and it
indicates the proportion that filek is modified in a change
(i.e., modified lines in filek respects to total modified lines
of a change), thus, (

∑n
k=1 pk) = 1. For example, a change

modifies three files, A, B, and C with modified lines 30, 20,
and 10, respectively, The Entropy is measured as 1.46 by
using the formula: (= − 30

60 log2
30
60 − 20

60 log2
20
60 − 10

60 log2
10
60).

Changes with higher entropy have a larger spread which
may have larger likelihood for introducing technical debt.
Lines of code added (i.e., LA) and lines of code deleted (i.e.,
LD) that describes the size of a change. They can be directly
measured from source control repository. Prior study may
also divide them into size group. Note that we measure NS,
ND, Entroyp, LA and LD by following Kamei et al.’s work
[23].

Number of files added, modified, deleted, renamed or
copyied (i.e., FA, FM, FD, FR and FC) aim to measure
different activities on files that are also used in prior s-
tudies [41], [42]. We conjecture that changes touching more
files are more likely to introduce technical debt. Number
of low, medium, high, and crucial significance level code
changes (i.e., LCC, MCC, HCC and CCC) aim to measure
a fine-grained activities for each source code change (one
software change may contain many source code changes).
The significance level expresses how strongly a code change
may impact other source code entities and whether a code
change may be functionality modifying or functionality p-
reserving [36]. We adopt the significance level for each code
change proposed by Fluri et al. [36], [43]. They presented a

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 5

TABLE 2: Studied Features

Dimension Name Definition Rationale

Diffusion

NS Number of modified subsystems We conjecture that changes touching more subsystems
are more likely to introduce technical debt.

ND Number of modified directories We conjecture that changes touching more directories
are more likely to introduce technical debt.

Entropy Distribution of modified code across
each file

We conjecture that changes with high entropy are more
likely to introduce technical debt, since a developer will
have to recall and track more scattered changes across
each file.

LA Lines of code added We conjecture that changes touching more lines of
code are more likely to introduce technical debt.LD Lines of code deleted

FA Number of files added

We conjecture that changes touching more files are
more likely to introduce technical debt.

FM Number of files modified
FD Number of files deleted
FR Number of files renamed
FC Number of files copied
LCC Number of low significance level code

changes
The significance level expresses how strongly a change
may impact other source code entities and whether a
change may be functionality modifying or functionality
preserving [36]. We conjecture that changes with more
high and crucial significant code changes are more
likely to introduce technical debt

MCC Number of medium significance level
code changes

HCC Number of high significance level code
changes

CCC Number of crucial significance level
code changes

language num number of modified programming
languages in this change

We conjecture that changes with more languages are
more likely to introduce technical debt.

file type num number of modified file types in this
change

We conjecture that changes touching more file types are
more likely to introduce technical debt.

History
NDEV Number of developers that changed the

modified files
We conjecture that changed files touched by more
developers before are more likely to introduce technical
debt, since different developers have different design
thoughts and code styles.

NUC Number of unique changes to the
modified files before

We conjecture that lager NUC changs are more likely to
introduce technical debt, since a developer will have to
recall and track many previous changes.

EXP Developer experience The experience of developers has an impact on
introducing TD [12].

Message

msg length Message length: number of words in
the message Message contains purpose of this change. Past study

has found that TD removal has a correlation with
change purposes [17]. We conjecture changes with
different purposes have an impact on TD-introducing.

has bug Whether message of this change
contains word “bug”

has feature Whether message of this change
contains word “feature”

has improve Whether message of this change
contains word “improve”

has document Whether message of this change
contains word “document”

has refactor Whether message of this change
contains word “refactor”

taxonomy of code changes according to tree edit operations
in the abstract syntax tree [36], [43]. As a result, they classify
each code change type with a significance level (i.e., low,
medium, high and crucial) that expresses how strong a code
change may impact other source code entities (i.e., how
likely other source code entities have to be changed). For
example, code changes in a method body are considered
to have a low or medium significance level, whereas code
changes on the interface of a class have a high or crucial
significance level [43]. We conjecture that the significance
level may have a impact on introducing technical debt. We
measure FA, FM, FD, FR, FC, LCC, MCC, HCC and CCC by
adopting ChangeDistiller [36].

Additionally, one change may modify different types
of files, (i.e., they have different extensions) and written
in different programming languages. We use file type num
and language num to measure the unique number of file
types and language types. In terms of file type num, we
count the number of file extensions in a change. In terms

of language num, we match the file extensions with specific
languages’ file extensions. In detail, we consider “Java”,
“C/C++”, “Python”, “Javascript”, “ruby”, “bash”, “php”,
and “html”. Note that number of file extensions is not equal
to number of languages, since a change may modify doc-
uments, images, or configuration files which is not related
to programming languages. Also, a programming language
such as C++ might use multiple types of file extensions such
as “c”, “h” and “cpp”.

History: Features in the history dimension aim to mea-
sure historical information related to changed files and
the developer that submit the change. For example, NDEV
indicates number of developers that changed the modified
files before. Higher NDEV means that the changed files are
touched by more developers before. NUC indicates number
of unique changes to the modified files before. EXP indicates
number of previous submitted changes of the developer
who make the current change. Higher EXP means the de-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 6

veloper have higher experience. Prior study may also divide
it into experience dimension. Note that we measure NDEV,
NUC and EXP by following Kamei et al.’s work [23].

Message: Features in the message dimension aim to ex-
tract useful information from change logs (i.e., message
written by developer that submits the change). Prior s-
tudies found that message can indicate the purpose of a
change [44], [45]. We group them into six categories: fixing
bug, adding feature, improvement, documentation, refactor-
ing and other [46]. We use has bug, has feature, has improve,
has document and has refactor to represent the purpose of
a change. We measure them by simply checking whether
the message contains the related words as Table 2 shows.
Additionally, we use msg length to represent the length of
message by counting the number of words.

3.3 Approach

We use the extracted change features to characterize a soft-
ware change. Then, we train a classifier on our extracted
features to determine whether a newly submitted change
introduces TD. By default, we adopt Random Forest (RF) to
construct the determination model and use the implementa-
tion in Weka [47]. Random Forest is an ensemble approach
that is specifically designed for decision tree classifier [48].
The basic idea behind random forest is to combine multiple
decision trees for classification. Each decision tree is built
by using a random subset of the extracted features. The
advantages of random forest are: 1) it is generally highly
accurate and feature importance can be generated automat-
ically; 2) Since random forest unifies many trees that are
learned differently, it can mitigate the overfitting problem
and is not sensitive to outliers.

3.4 Validation Settings

To validate we use the widely used method 10-fold cross-
validation. We perform 10 times stratified 10-fold cross-
validation. In each stratified 10-fold cross validation, we
randomly divide the dataset into ten folds by using stratified
random sampling. The objective of the stratified random
sampling is to keep the class distribution of each fold the
same as the original dataset. Then, nine folds are used to
train the classifier, while the remaining one fold is used to
evaluate the performance. This process is repeated 10 times,
so that each fold is used exactly once as the testing set. We
perform 10-fold cross validation 10 times to reduce the bias
due to random training data selection [31]. As a result, there
are 100 effectiveness values for each project, and we present
the average of the 100 values.

3.5 Performance Measures

In this study, we use AUC and Cost-effectiveness to evaluate
the effectiveness of the proposed model.
AUC: AUC represents the area under the receiver operating
characteristic (ROC) curve. In the ROC curve, the true
positive rate (TPR) is plotted as a function of the false
positive rate (FPR) across all thresholds. The value of AUC
ranges from 0 to 1, and higher AUC values means better
performance. AUC is also widely used in many software

engineering studies [42], [49], [50]. The AUC of 0.7 is con-
sidered as promising performance [49], [50]. In summary, we
choose AUC as our performance measure for the following
reasons:

(1) Threshold independent. AUC is a threshold indepen-
dent measure [51]. A threshold represents the likelihood
threshold for deciding an instance is classified as positive
or negative. Usually, the threshold is set as 0.5 and other
performance measures for a classifier such as precision,
recall and F1-score rely on the determination of threshold.
However, we may need to change the threshold in some
cases, such as the class imbalance case. We use AUC to
avoid the threshold setting problem since AUC measures
the classification performance across all thresholds (i.e.,
from 0 to 1).

(2) Robust towards class distribution. AUC is robust to-
wards class distribution [49]. Other performance measures
such as precision, recall, and F1-score are highly affected by
class distribution, it might make it difficult to fairly compare
two models [50], [52]. Unlike them, AUC is insensitive
to class distribution [49]. Thus, it is recommended as the
primary indicator for comparative studies [49].

(3) Statistical interpretable. AUC has a statistical interpre-
tation [49]. In our context, it evaluates the possibility that a
classifier ranks a randomly chosen TD-introducing change
higher than a randomly chosen not TD-introducing change.
Since our motivation is to determine TD-introducing change
and prioritize the inspecting tasks, AUC is an appropriate
measure to evaluate the performance of our approach and
the baseline method.
Cost-effectiveness: Cost-effectiveness aims to measure the
performance considering the limited inspecting resources.
It has been widely used for evaluating software defect
prediction models [23], [25], [26], [31], [53]. The main idea
is to simulates the practical usage of the proposed model.
In practice, it is important to take into account the cost-
effectiveness of using our determination model to focus on
verification and validation activities. Cost effectiveness is
an appropriate measure that can evaluate how effective a
model is to prioritize changes that are assigned to inspect. In
our context, we consider the effort required to inspect those
changes determined as TD-introducing. Due to the limited
resources, developers can only inspect a limited number
of software changes, and they would expect to identify as
many TD-introducing changes as possible. Thus, following
prior studies [23], [26], [31], the cost-effectiveness in our
study denotes the recall of TD-introducing changes when
using 20% of the entire effort required to inspect all changes
to inspect the top ranked changes. And the total number of
lines modified by a change (LA + LD) as a measure of the
effort required to inspect a change.

4 RESULTS

In this section, we aim to answer the aforementioned three
research questions. In RQ1, we evaluate the performance of
our proposed determination model on seven open source
projects and compare it with a baseline model. In RQ2,
we present the results of three determination models built
using three dimensions of features, i.e., diffusion, history,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 7

and message dimensions. In RQ3, we present the cost-
effectiveness analysis when different percentages of LOC are
inspected.

4.1 RQ1: Can we effectively determine the changes that
introduce TD?

Motivation: As shown in previous work [7], [16], technical
debt can be determined from source code comments in
source code files. However, there is no automatic way to
determine whether a change introduces TD. The differences
between TD determination at the file-level and that at the
change-level lie in two aspects : first, the research object is
different. TD determination on file-level aims to investigate
source code comments, while TD determination on change-
level aims to investigate software changes. Understanding
and tracing the TD-introducing changes can help to address
TD and mitigate introducing TD. Second, the employing
time on the development phase is different. TD determi-
nation at the file-level can be employed before a product
releases. It can serve as a technical debt management step
before a release. TD determination at the change-level can
be employed when each change is submitted. It can serve as
a continuous activity of technical debt management.

Approach: To answer this research question, we conduct an
empirical study on seven open source projects. We imple-
ment our proposed model on top of the Weka tool [47]. By
default, we built our model using a Random Forest classifier
and adopt 10 times stratified 10-fold cross validation to
estimate the accuracy of our model as default. In this way,
there will be 100 effectiveness values for each project. We
report the average value and perform statistical test on the
100 effectiveness values.

In order to compare the effectiveness of the proposed
model with other methods, we implement four baselines:

Baseline 1, Random Guess (RG). RG is usually adopted as
a baseline when there is no previous method for addressing
the same research question [54]. In random determination,
the model randomly determines TD-introducing changes.
In terms of the performance measures, the AUC of RG is
0.5 [54]. In terms of cost-effectiveness, it only relates to
the order of instances in the testing set. Thus, we sort the
changes in testing set randomly and we repeat the random
sorting 10 times to get the average cost-effectiveness in RG.

In addition, since change messages may also indicate
that a change introduces technical debt or not, we design
the following text classification baselines based on commit
messages using Naive Bayes (NB), Naive Bayes Multino-
mial (NBM) and Random Forest (RF). Therefore, the other
baselines are:

Baseline 2, Naive Bayes classification based on Change
Messages (NBCM). Naive Bayes is a simple probabilistic
classifier based on applying Bayes’ theorem with strong
independence assumption between features. It assigns class
labels to problem instances, represented as vectors of feature
values, where the class labels are drawn from some finite
set. An advantage of Naive Bayes is that it only requires a
small number of training data to estimate the parameters
necessary for classification [55].

Baseline 3, Naive Bayes Multinomial classification based
on change Messages (NBMCM). Naive Bayes multinomi-
al(NBM) is one of the variants of the Naive Bayes algorithm,
which builds a classifier based on multinomially distributed
data [56]. We adopt NB and NBM as baseline classifiers since
they are simple text classification techniques that have been
used in many software text analysis studies [16], [54], [57].
Baseline 4, Random Forest classification based on Change
Messages (RFCM). We adopt RF as a baseline classifier
since it is used as the default classifier in our determination
model.

Baselines 2, 3 and 4 (i.e., NBCM, NBMCM and RFCM)
are built in the following steps. First, we preprocess all
the change messages by tokenization, stop-word removal
and stemming [16]. Tokenization aims to break a stream of
text up into words, phrases, symbols, or other meaningful
elements called tokens. In our experiment, we only keep
tokens that contain English letters and convert all words
to lowercase. Stop-word removal aims to remove words
that are used often and carry little meaning, such as “I”,
“to”, “the”, “of”. Stemming aims to reduce inflected (or
sometimes derived) words to their word stem, base or root
form. We employ the well-known Porter stemmer9 to reduce
a word to its representative root form. Second, we use the
resulting textual tokens and count the number of times each
token appears to represent each change message. Third, we
constructs a classifier based on the textual representation
using NB, NBM, and RF respectively.

To investigate whether the improvement of proposed
model over the baseline model is statistically significant, we
employ the Wilcoxon signed-rank test [58] with a Bonferroni
correction [59] at 95% significance level. Wilcoxon signed-
rank test is a non-parametric hypothesis test used when
comparing two related samples, matched samples, or re-
peated measurements on a single sample to assess whether
their population mean ranks differ. Bonferroni correction is
used to counteract the problem of multiple comparisons. In
addition, we compute Cliff’s delta to measure the effect size.
Cliff’s delta is a non-parametric effect size measure that can
evaluate the amount of difference between two approaches.
It defines a delta of less than 0.147, between 0.147 and 0.33,
between 0.33 and 0.474 and above 0.474 as “Negligible”,
“Small”, “Medium”, “Large” effect size, respectively [60].
Results: Table 3 presents the AUC and cost-effectiveness
values of our determination model (Ours) and four base-
lines. On average across the seven projects, our model
achieves an AUC of 0.82 and cost-effectiveness of 0.80.
As shown in the table, our model consistently shows an
improvement over the baseline across the 7 projects in
terms of AUC and cost-effectiveness. We use “Improved”
to represents the improvement ratio, it is computed as
Ours−baseline

baseline ∗ 100%. On average, our model improves RG,
NBCM, NBMCM and RFCM by 64%, 14%, 17% and 12%
in terms of AUC, by 232%, 78%, 66% and 53% in terms of
cost-effectiveness, respectively.

The row “W/T/L” in Table 3 reports the number of
projects for which the corresponding determination model
obtains a significantly better, equal, and worse performance
than our model. And Table 4 presents the adjusted p-values

9. http://tartarus.org/martin/PorterStemmer/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 8

TABLE 3: AUC and Cost-effectiveness for our model (Ours) compared with the baselines. The best performance values
are highlighted in bold. The row “W/T/L” reports the number of projects for which the corresponding model obtains a
statistically significantly better, equal, and worse performance than our model.

Project AUC Cost-effectiveness
RG NBCM NBMCM RFCM Ours RG NBCM NBMCM RFCM Ours

Hadoop 0.5 0.75 0.76 0.73 0.87 0.19 0.52 0.56 0.49 0.87
Log4j 0.5 0.70 0.69 0.73 0.81 0.25 0.69 0.66 0.73 0.89

Tomcat 0.5 0.70 0.74 0.74 0.81 0.22 0.33 0.36 0.42 0.71
Camel 0.5 0.72 0.72 0.72 0.81 0.31 0.65 0.46 0.54 0.88
Gerrit 0.5 0.76 0.60 0.76 0.76 0.22 0.03 0.43 0.54 0.72
Ant 0.5 0.73 0.71 0.73 0.85 0.22 0.40 0.37 0.42 0.64

Jmeter 0.5 0.65 0.67 0.67 0.81 0.30 0.53 0.55 0.55 0.93
Average 0.5 0.72 0.70 0.73 0.82 0.24 0.45 0.48 0.53 0.80

Improved 64% 14% 17% 12% – 232% 78% 66% 53% –
W/T/L 0/0/7 0/1/6 0/0/7 0/1/6 – 0/0/7 0/0/7 0/0/7 0/0/7 –

TABLE 4: Adjusted P-values and Cliff’s Delta comparing AUC and cost-effectiveness scores for our approach with baselines.

Project AUC Cost-effectiveness
RG NBCM NBMCM RFCM RG NBCM NBMCM RFCM

Hadoop 1.00 (L)*** 0.99 (L)*** 0.98 (L)*** 1.00 (L)*** 1.00 (L)*** 1.00 (L)*** 1.00 (L)*** 1.00 (L)***
Log4j 1.00 (L)*** 0.62 (L)*** 0.62 (L)*** 0.50 (L)*** 1.00 (L)*** 0.65 (L)*** 0.70 (L)*** 0.53 (L)***

Tomcat 1.00 (L)*** 0.98 (L)*** 0.84 (L)*** 0.86 (L)*** 1.00 (L)*** 1.00 (L)*** 0.99 (L)*** 0.96 (L)***
Camel 1.00 (L)*** 0.99 (L)*** 0.99 (L)*** 0.98 (L)*** 0.99 (L)*** 0.67 (L)*** 0.88 (L)*** 0.86 (L)***
Gerrit 1.00 (L)*** – 0.87 (L)*** – 1.00 (L)*** 0.96 (L)*** 0.88 (L)*** 0.71 (L)***
Ant 1.00 (L)*** 0.97 (L)*** 0.98 (L)*** 0.96 (L)*** 1.00 (L)*** 0.88 (L)*** 0.91 (L)*** 0.80 (L)***

Jmeter 1.00 (L)*** 1.00 (L)*** 1.00 (L)*** 1.00 (L)*** 1.00 (L)*** 0.91 (L)*** 0.97 (L)*** 0.97 (L)***
***p<0.001, **p<0.01, *p<0.05, –p>0.05; L: Large effect size according to Cliff’s delta

and effect sizes according to Cliff’s delta. From the table,
in terms of AUC, we notice that our approach significant-
ly improves the RG, NBMCM in all the seven projects,
and all the effect size are large; our approach significantly
improves NBCM and RFCM in six projects, there is no
significant difference in Gerrit. In terms of cost-effectiveness,
our approach significantly improves the baselines in all the
seven projects, and all the effect size are large. Thus, our
approach shows statistically significant improvement over
the baseline in most of the datasets, and the improvements
are substantial.

For each project, our model achieves a promising and better
performance than the baseline in terms of AUC and cost-
effectiveness. On average across the seven projects, our model
achieves AUC of 0.82, cost-effectiveness of 0.80, which signifi-
cantly improves the baseline approach in a substantial margin
in most cases.

4.2 RQ2: Which dimension of features are most impor-
tant in determining TD-introducing changes?

Motivation: In addition to determining TD-introducing
changes with high accuracy, we are interested in investi-
gating which features are the best contributors to our deter-
mination model. By default, our determination model com-
bines three dimensions of features: diffusion, history and
message. They characterize changes from different aspects.
Some aspects may be more discriminative for determining
TD-introducing changes. For answering this RQ, we can
investigate two questions: first, whether our model benefits
from all features; second, which dimension is the most
discriminative for determining TD-introducing changes.

Approach: We build three determination models by learn-
ing on features in each dimension and denote them as the

dimension name (i.e., diffusion, history and message). In
each model, we keep the classifier (i.e., Random Forest) as
the same. We compare their performance by experimenting
on the 7 projects and using 10 times stratified 10-fold cross
validation setting. In each cross validation, in order to
confirm a fair comparison, we keep the training and testing
sets the same as in the comparison.

Additionally, in order to investigate whether the differ-
ence between our determination model (i.e., learning on
all features) and the three determination models that learn
on each dimension of features is statistically significant, we
adopt the Wilcoxon signed-rank test [58] with a Bonferroni
correction [59] at 95% significance level and compute the
Cliff’s delta to measure the effect size.

Results: Table 5 presents the results of AUC and cost-
effectiveness values. We list the performance of three mod-
els built on each dimension of features (in column “Dif-
fusion”,“History”,“Message”, respectively) and the model
built on all features (in column “All features”). The best
performance between three dimensions is underlined. And
the performance highlighted in bold is the best among the
four columns.

From Table 5, we see that the most discriminative di-
mension is “Diffusion” in terms of AUC. On average across
7 projects, the model “Diffusion” achieves AUC of 0.78 that
is the best among the three dimensions. Additionally, our
model (using all features) achieves the best AUC in all the
projects compared with the other three models. In terms
of cost-effectiveness, the best dimension varies in different
projects. In projects Log4j, Tomcat, Gerrit and Ant the best
dimension is “Diffusion’ among the three dimensions. In
projects Hadoop, Camel, and Jmeter, the best dimension
is “Message”. Our model (using all features) achieves the
best cost-effectiveness in six projects, and it shows worse

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 9

TABLE 5: Performance for difference dimension of features. The best performance between three models built on three
dimensions is underlined. The column “All features” represents the performance of our model that using all dimensions
of features. And the performance highlighted in bold is the best among the four columns.

Project AUC Cost-effectiveness
Diffusion History Message All features Diffusion History Message All features

Hadoop 0.83 0.63 0.56 0.87 0.81 0.56 0.85 0.87
Log4j 0.77 0.56 0.58 0.81 0.78 0.43 0.72 0.89

Tomcat 0.79 0.65 0.59 0.81 0.65 0.56 0.64 0.71
Camel 0.79 0.69 0.63 0.81 0.84 0.69 0.92 0.88
Gerrit 0.70 0.60 0.52 0.76 0.62 0.36 0.48 0.72
Ant 0.83 0.64 0.59 0.85 0.57 0.43 0.52 0.64

Jmeter 0.76 0.60 0.52 0.81 0.85 0.65 0.88 0.93
Average 0.78 0.62 0.57 0.82 0.73 0.53 0.72 0.80

TABLE 6: Adjusted P-values and Cliff’s Delta comparing AUC and cost-effectiveness scores for our approach with the
models built using a dimension of features.

Project AUC Cost-effectiveness
Diffusion History Message Diffusion History Message

Hadoop 0.61 (L)*** 1.00 (L)*** 1.00 (L)*** 0.44 (M)*** 1.00 (L)*** 0.15 (S)*
Log4j 0.28 (S)*** 0.96 (L)*** 0.88 (L)*** 0.48 (L)*** 0.96 (L)*** 0.57 (L)***

Tomcat 0.40 (M)*** 1.00 (L)*** 1.00 (L)*** 0.40 (M)*** 0.85 (L)*** 0.47 (M)***
Camel 0.58 (L)*** 1.00 (L)*** 1.00 (L)*** 0.54 (L)*** 0.82 (L)*** –
Gerrit 0.47 (M)*** 0.90 (L)*** 0.97 (L)*** 0.41 (M)*** 0.95 (L)*** 0.81 (L)***
Ant 0.27 (S)*** 1.00 (L)*** 1.00 (L)*** 0.34 (M) *** 0.83 (L) *** 0.51 (L)***

Jmeter 0.82 (L)*** 1.00 (L)*** 1.00 (L)*** 0.73 (L) *** 0.98 (M) *** 0.42 (M) ***
W/T/L 0/0/7 0/0/7 0/0/7 0/0/7 0/0/7 0/1/6

***p<0.001, **p<0.01, *p<0.05,–p>0.05
“L”, “M” and “S” represent “Large”, “Medium” and “Small” effect size according to Cliff’s delta respectively.

than “Message” in Camel. On average across 7 projects, our
model achieves the best in terms of both AUC and cost-
effectiveness.

In order to test whether the differences between our
model and the models built on subset features are statis-
tically significant, Table 6 presents the results of Wilcoxon
signed-rank test with Bonferroni correction. We also present
Cliff’s delta to measure the effect size and highlight the
non-negligible effect size in bold. The row “W/T/L” reports
the number of projects for which the corresponding model
obtains a significantly better, equal, and worse performance
than our model (using all features).

From the table, we can find that the improvements of our
model over all the three models built on three dimensions
are statistically significant (p-value < 0.05) in each project
in terms of AUC. And all the effect sizes are non-negligible.
In terms of cost-effectiveness, the results show that our
model significantly outperforms “Diffusion”, “History” and
“Message” in 7, 7, 6 projects with non-negligible effect size.
There is no significant difference (p-value > 0.05) in Camel
compared with “Message” dimension. Thus, the statistical
test results indicate that our model shows a significant
improvement in terms of AUC, and shows comparable or
significant better performance in terms of cost-effectiveness
over the three models built on three dimension features.
This also suggests that we should use all the three dimen-
sions of change features when applying our model.

“Diffusion” is the most discriminative dimension among the
three dimensions of features for determining TD-introducing
changes. However, using all the three dimensions of change
features is better when applying our determination model.

4.3 RQ3: How effective are our models when varying
levels of inspection effort are allocated/inspected?

Motivation: Although one would like to capture all of
the TD-introducing changes, there is always a conflicting
interest between the amount of effort (changed LOC to
inspect) one allocates and the amount of TD-introducing
changes they can capture. Therefore, it is important to
investigate the cost-effectiveness of our models. By default,
we set the percentage of changed LOC to inspect as 20%
to compute model cost-effectiveness, i.e., how many TD-
introducing changes can be captured when inspecting 20%
of the changed LOC in testing set according to the output
of our model. Additionally, we are also interested to investi-
gate the cost-effectiveness of our model and the comparison
with baselines when different percentages (from 1 to 100) of
changed LOC are inspected. The experiment is conducted
using the same dataset, features and settings with RQ1, the
only difference is that we vary the percentage of changed
LOC to inspect in this RQ.

Approach: To answer this RQ, we plot cost-effectiveness
graphs that show the percentages of TD-introducing
changes that can be detected by inspecting different percent-
ages of changed LOC. In detail, we set the percentages from
1 to 100. As a result, there are 100 cost-effectiveness values in
each plot. Note that for each percentage, we use the average
effectiveness value of 100 values produced by 10 times 10-
fold cross validation. In addition, we also plot the cost-
effectiveness graphs of two baselines, i.e., RG and RFCM.
Since the result of RQ1 shows that RFCM outperforms other
two baselines based on change messages (i.e., NBCM and
NBMCM), we do not show the cost-effectiveness graphs of
NBCM and NBMCM.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 10

(a) Hadoop (b) Log4j (c) Tomcat

(d) Camel (e) Gerrit

(f) Ant (g) Jmeter

Fig. 1: Cost-effectiveness graphs of 7 projects

Results: Figure 1 presents cost-effectiveness graphs for 7
projects of our model (Ours), RG and RFCM. We can notice
that our model is better than the baselines for a wide range
of percentages of changed LOC to inspect. For Hadoop and
Tomcat, the percentage range for which our model achieves
better performance is from 1% to 93%. For Log4j and Ant,
the percentage range for which our model achieves better
performance is from 1% to 90%. For Camel and Jmeter,
the percentage range for which our model achieves better
performance is from 1% to 99%. For Gerrit, the percentage
range for which our model achieves better performance
is from 1% to 33%. We notice that our model performs
worse than RFCM in the higher percentages of LOC to
inspect in Gerrit, i.e., greater than 33%. However, in practice,
developers would not inspect such a high number of LOC
due to limited project budget and tight project schedule.

Our model can detect more TD-introducing changes than base-
line for a wide range of percentages of changed LOC to inspect,
hence it is cost effective.

5 DISCUSSION

As shown in previous sections, our model can achieve
a promising performance in determining TD-introducing
changes. However, there are some other observations worth
for further investigation. In this section, we will report
other observations including four aspects: (1) what change
features are more important that impact TD introduction?
(Section 5.1) (2) what is the impact of using other underlying
classifiers? (Section 5.2) (3) how effective of our model when
using time-wise validation setting? (Section 5.3) (4) how
effective of our model when using cross-project setting?
(Section 5.4) (5) other general discussions. (Section 5.5)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 11

5.1 Investigating the importance of features

Motivation: In addition to determining TD-introducing
changes with high accuracy, we are also interested in under-
standing what change features impact TD-introducing the
most. There are 25 software change features in our deter-
mination model. Being aware of what features impact TD-
introducing the most can help to gain a deeper understand-
ing of why developers introduce TD. In addition, for devel-
opers, they can know what features they should carefully
consider when determining whether or not they submit a
TD-introducing change. For researchers, feature importance
analysis can encourage them to propose more discriminative
features for determining TD-introducing changes.

Approach & Results: Following previous studies [61]–[63],
we use a four step process:
Step 1: Correlation Analysis. This step aims to reduce
collinearity among the features. For each project, this step
will compute the correlations among the features by using
variable clustering analysis implemented in the R package
Hmisc10. As a result, it will produce a hierarchical overview
of the correlations among all the features. The correlated fea-
tures are grouped into sub-hierarchies. To remove correlated
features, we use the same method in the previous study
[61]. If the correlations of features in the sub-hierarchy are
above 0.7, we randomly select one feature and remove the
other features from a sub-hierarchy. And during the random
selection, we will following a guideline, i.e., trying to drop
the same feature set for all the studied projects [64].

After step 1, we remove 8, 4, 2, 3, 12, 4 and 3 features
in Hadoop, Log4j, Tomcat, Camel, Gerrit, Ant and Jmeter,
respectively.
Step 2: Redundancy Analysis. After reducing the collinearity
among the features, this step aims to remove redundant
features that do not have a unique signal relative to the
other features. In this step, we use the redun function in
the rms11 R package.

After step 2, none of the remaining features are redun-
dant in Tomcat, Camel, Gerrit, Ant and Jmeter. In Hadoop,
there is one redundant feature, i.e., “ND”. In Log4j, there are
two redundant features, i.e., “FD” and “FA”. Therefore, we
remove one more feature in Hadoop and remove two more
features in Log4j. After this step, there are 16, 19, 23, 22,
13, 21 and 22 features remaining in Hadoop, Log4j, Tomcat,
Camel, Gerrit, Ant and Jmeter, respectively.
Step 3: Important Feature Identification. This step aims to
determine the importance of each feature. We use the bigrf 12

R package to implement. It leverages a random forest model
with 10-times stratified 10-fold cross-validation to investi-
gate the most important features. The feature importance
evaluation is based on an internal error estimate of a random
forest classifier, which is called “Out Of the Bag” (OOB)
estimate [65]. The key idea behind it is to check whether
the OOB estimate will be reduced significantly or not when
features are randomly permuted one by one.

In each run of 10-fold cross-validation, we have 10 im-
portance values for each feature. To determine which of the

10. http://cran.r-project.org/web/packages/Hmisc/index.html
11. https://cran.r-project.org/web/packages/rms/rms.pdf
12. http://cran.r-project.org/web/packages/bigrf/bigrf.pdf

features are the most important, we apply Scott-Knott Effect
Size Difference (ESD) test for the importance values taken
from all 10 runs of 10-fold cross-validation [64], [66], [67].
Note that Scott-Knott ESD test is different from Scott-Knott
test [68]. Scott-Knott test assumes that the data is normally
distributed. This might cause that the created groups are
trivially different from one another. Scott-Knott ESD test can
correct the non-normal distribution of an input dataset and
merge any two statistically distinct groups (i.e., the groups
have a negligible effect size) into one group.

After step 3, Table Table 7, 8, 9 10, 11, 12 and 13 present
top 10 features as ranked according to Scott-Knott ESD test
results in Hadoop, Log4j, Tomcat, Camel, Gerrit, Ant and
Jmeter, respectively13.

Step 4: Effect of Important Features. This step aims to deter-
mine the effect of important features. To understand the
impact of each feature, we compare the feature values of
the remaining features between TD-introducing and not
TD-introducing changes. We apply the Wilcoxon rank-sum
test [69] at 95% significance level to analyze the statistical
significance of the difference between TD-introducing and
not TD-introducing changes. Then, to show the effect size
of the difference between the two groups, we calculate the
Cliff’s Delta. The effect sizes can be positive or negative. A
higher level of a feature with a positive effect can increase
the likelihood of a change being TD-introducing change,
while a higher level of a feature with a negative effect can
decrease that likelihood.

After step 4, we compute the p-value and effect size to
compare the impact of each feature. Tables 7 – 13 preset the
p-value and effect size values.

Based on the results shown in these tables, we have the
following findings:

1) “Entropy” are ranked in the top 10 important group-
s for 6 projects. Most of them have a non-negligible
positive effect. This indicates that changes with
higher entropy are more likely to introduce TD. The
reason is that in a high entropy change, a developer
will have to recall and track more scattered changes
across each file.

2) “Msg length” are ranked in the top 10 important
groups for 7 projects. Most of them have a non-
negligible positive effect. This indicates that changes
with longer message length are more likely to intro-
duce TD. This may be resulted from that developers
need more detailed message for describing an TD-
introducing change.

3) “LA” and “LD” are ranked in the top 10 important
groups across 5 projects. “FA” and “ND” are ranked
in the top 10 important groups across 4 projects.
And most of them have a non-negligible positive
effect. This indicates that larger size changes are
more likely to introduce TD. The reason is that
larger size changes (i.e., change more number of
LOC, more files, or more directories) have a higher
chance to introduce TD.

4) Among code change significant features “LCC”,
“MCC”, “HCC” and “CCC”, “MCC” are the most

13. Full list of important features can be found in Appendices

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 12

important feature and ranked in the top 10 impor-
tant groups across 5 projects. And most of them
have a non-negligible positive effect. This indicates
that changes with more medium significant code
changes are more likely to introduce TD. Medium
significant code changes mainly consist of condition
changes (e.g., loop and if-else changes) [70].

5) We notice that “EXP” and “NUC” have a non-
negligible negative effect in Ant and Log4j, respec-
tively. This indicates that changes with higher value
of “EXP” and “NUC” may have less chance for
introducing TD. In terms of “EXP”, our finding
suggests that lower experience developers may tend
to introduce TD. In terms of “NUC”, our finding
suggests that files which are not frequently modified
previously may tend to introduce TD.

In summary, the features “Entropy”, “msg length”,
“LA”, “LD”, “FA”, “ND”, and “MCC” are the important
features for determining TD-introducing changes.

TABLE 7: Importance of features in Hadoop as ranked
according to the Scott-Knott ESD test. The second and third
columns show P-values, Cliff’s Delta for the features. The
features with non-negligible effect sizes are in bold.

Group Features p-value Cliff’s delta
1 NUC <0.001 -0.130
2 Entropy <0.001 0.409 (Medium)
3 EXP >0.05 0.047
4 FA <0.001 0.561 (Large)
5 msg length <0.001 0.184 (Small)
6 HCC <0.001 0.297 (Small)
7 NS <0.01 0.078
8 FD <0.001 0.069
9 language num <0.001 0.195 (Small)
10 FR <0.001 0.052

TABLE 8: Importance of features in Log4j

Group Features p-value Cliff’s delta
1 LA <0.001 0.570 (Large)
2 EXP >0.05 -0.057

3 Entropy >0.05 0.105
msg length <0.001 0.315 (Small)

4 NUC <0.001 -0.265 (Small)
5 LD >0.05 0.028
6 MCC <0.01 0.168 (Small)
7 file type num >0.05 0.008
8 CCC <0.01 0.113
9 HCC <0.01 0.128
10 NS >0.05 0.071

TABLE 9: Importance of features in Tomcat

Group Features p-value Cliff’s delta
1 LA <0.001 0.585 (Large)
2 EXP >0.05 -0.033
3 NUC <0.001 0.113
4 Entropy <0.001 0.337 (Medium)
5 msg length <0.001 0.273 (Small)
6 LD <0.001 0.313 (Small)
7 LCC <0.001 0.282 (Small)
8 MCC <0.001 0.210 (Small)
9 ND <0.001 0.299 (Small)
10 FA <0.001 0.216 (Small)

TABLE 10: Importance of features in Camel

Group Features p-value Cliff’s delta
1 Entropy <0.001 0.493 (Large)
2 EXP >0.05 -0.027
3 NUC <0.001 0.113
4 msg length <0.001 0.335 (Medium)
5 LCC <0.001 0.457 (Medium)
6 LD <0.001 0.351 (Medium)
7 FA <0.001 0.427 (Medium)
8 MCC <0.001 0.380 (Medium)
9 ND <0.001 0.457 (Medium)
10 CCC <0.001 0.284 (Small)

TABLE 11: Importance of features in Gerrit

Group Features p-value Cliff’s delta
1 NUC >0.05 0.034

2 EXP <0.05 -0.122
LA <0.001 0.415 (Medium)

3 msg length <0.001 0.531 (Large)
4 CCC <0.001 0.156 (Small)
5 FR >0.05 -0.011
6 language num <0.05 0.097
7 has bug >0.05 0.029
8 FC >0.05 -0.005
9 has refactor <0.001 0.029
10 has feature <0.01 0.031

TABLE 12: Importance of features in Ant

Group Features p-value Cliff’s delta
1 LA <0.001 0.701 (Large)
2 EXP <0.001 -0.292 (Small)
3 msg length <0.001 0.436 (Medium)
4 Entropy <0.001 0.401 (Medium)
5 NUC <0.001 0.231 (Small)
6 LD <0.001 0.404 (Medium)
7 MCC <0.001 0.428 (Medium)
8 FA <0.001 0.364 (Medium)
9 ND <0.001 0.392 (Medium)
10 HCC <0.001 0.308 (Small)

TABLE 13: Importance of features in Jmeter

Group Features p-value Cliff’s delta
1 EXP >0.05 0.026
2 LA <0.001 0.472 (Medium)
3 NUC >0.05 0.025
4 Entropy <0.001 0.158 (Small)
5 LCC <0.001 0.404 (Medium)
6 msg length <0.001 0.124
7 LD <0.001 0.278 (Small)
8 MCC <0.001 0.323 (Small)
9 ND <0.001 0.184 (Small)
10 HCC <0.001 0.188 (Small)

5.2 Investigating the impact of different classifiers

By default, we use Random Forest as the classifier in our
determination model. However, the model can use other
classifiers too. In order to investigate the impact of other
underlying classifiers, we investigate four more classifiers,
namely Naive Bayes (NB), Naive Bayes Multinomial (NBM),
Decision Tree (DT) and K-Nearest Neighbor (KNN). NB and
NBM have been briefly introduced in RQ1. We describe DT
and KNN briefly in this subsection.

Decision Tree (DT): C4.5 is one of the most popular decision
tree algorithms [55]. It builds decision trees from a set of

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 13

TABLE 14: Performance of different classifiers

Project AUC Cost-effectiveness
NB NBM DT KNN RF NB NBM DT KNN RF

Hadoop 0.79 0.80 0.60 0.57 0.87 0.40 0.53 0.86 0.84 0.87
Log4j 0.70 0.81 0.67 0.52 0.81 1.00 1.00 0.97 1.00 0.89

Tomcat 0.78 0.76 0.69 0.56 0.81 0.39 0.57 0.69 0.42 0.71
Camel 0.81 0.79 0.66 0.55 0.81 0.85 0.93 0.90 0.81 0.88
Gerrit 0.81 0.74 0.50 0.52 0.76 0.96 0.96 0.97 0.97 0.72
Ant 0.85 0.84 0.64 0.59 0.85 0.44 0.52 0.50 0.49 0.64

Jmeter 0.77 0.75 0.53 0.56 0.81 0.78 0.92 0.92 0.92 0.93
Average 0.79 0.78 0.61 0.55 0.82 0.69 0.78 0.83 0.78 0.80

TABLE 15: Performance of time-wise validation for our model (Ours) compared with baselines. The better performance
values are highlighted in bold.

Project AUC Cost-effectiveness
RG RFCM Ours RG RFCM Ours

Hadoop 0.5 0.65 0.83 0.21 0.44 0.80
Log4j 0.5 0.60 0.74 0.22 0.37 0.76

Tomcat 0.5 0.67 0.74 0.21 0.32 0.43
Camel 0.5 0.66 0.78 0.22 0.34 0.61
Gerrit 0.5 0.69 0.66 0.21 0.47 0.59
Ant 0.5 0.63 0.78 0.22 0.38 0.55

Jmeter 0.5 0.61 0.75 0.25 0.46 0.85
Average 0.5 0.65 0.75 0.22 0.40 0.65

Improved 50% 15% – 195% 63% –

training instances using information entropy. Instances are
classified by comparing their factors with various conditions
captured in the nodes and branches of the tree.

K-Nearest Neighbor (KNN): K-nearest neighbors algorithm
(KNN) is a non-parametric method used for classification
or regression. In KNN classification, the output is a class
membership. An instance is classified by a majority vote of
its neighbors. Namely, the instance is assigned to the class
most common among its k nearest neighbors [55].

Table 14 presents the performance of different models
built on our extracted features using different classifiers.
We implement these classifiers on top of Weka and use
the default parameter settings [47]. In terms of AUC, the
best classifier is random forest on average. We notice that
random forest model achieves the best performance com-
pared with other classifiers across six projects. In terms of
cost-effectiveness, we notice that the random forest model
achieves the best performance compared with other clas-
sifiers across four projects, and perform worse than other
models in three projects. On average, the best classifier is
DT that slightly better than random forest in terms of cost-
effectiveness. However, it achieves a very low AUC value as
the table shows. Thus, in practice, we suggest to use random
forest as the underlying classifier to build our model.

5.3 Investigating the effectiveness of time-wise evalua-
tion setting
In the experimental setting of RQ1, we use the 10 times 10-
fold cross validation setting to evaluate the effectiveness
of our model. However, in practice, developers may use
a time-wise (i.e., based on the chronological order of the
changes) validation setting. Thus, we want to investigate the
effectiveness of our model when using time-wise evaluation
setting.

In time-wise validation, for each project, we first rank
all changes in chronological order according to the commit

date and time. Then, all the changes are divided into n
approximately equal parts according to the total number
of changes. Each part will have approximately n/6 changes.
After that, we will build a classification model on part i,
and apply it to determine changes in part i+ 1. In this way,
there will be n− 1 effectiveness values for each project. This
kind of validation is used to simulate real-life usage of the
determination model.

In our evaluation, we first rank all changes in chrono-
logical order according to the commit date. Then, all the
changes are divided into 6 approximately equal parts. After
that, we will build a model on part i, and apply it to predict
changes in part i + 1. In this way, there will be 5 effectiveness
values for each project. Since we only have 5 AUC and cost
effectiveness scores, we do not apply any statistical testing
due to the small sample.

Table 15 presents the results of time-wise validation. We
also implement the baselines Random Guess and Random
Forest classification based on Change Messages (i.e., RG and
RFCM as described in RQ1) to compare with our model
under the same time-wise evaluation setting. From the
table, we notice that our model can also achieves promising
performance in terms of AUC and cost-effectiveness. It
performs better than baselines across 6 projects in terms
of AUC, and 7 projects in terms of cost-effectiveness. Con-
sidering the average across 7 projects, our model achieves
AUC of 0.75 that improves RG and RFCM by 50% and 15%
respectively. And it achieves cost-effectiveness of 0.65 that
improves RG and RFCM by 195% and 63% respectively.

5.4 Investigating the effectiveness of cross-project de-
termination

In the experimental setting of RQs 1 and 2, we train our
determination model by learning from the historical labeled
dataset within the project. However, for new projects or
projects with limited development history, there is often not

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 14

TABLE 16: AUC of cross-project determination

Hadoop Log4j Tomcat Camel Gerrit Ant Jmeter
Hadoop – 0.77 0.76 0.80 0.77 0.82 0.68

Log4j 0.80 – 0.68 0.73 0.72 0.77 0.69
Tomcat 0.85 0.77 – 0.80 0.76 0.84 0.74
Camel 0.82 0.79 0.77 – 0.80 0.83 0.72
Gerrit 0.75 0.81 0.71 0.75 – 0.80 0.64
Ant 0.77 0.78 0.75 0.77 0.72 – 0.69

Jmeter 0.80 0.73 0.77 0.78 0.72 0.80 –
Average 0.80 0.77 0.74 0.77 0.75 0.81 0.69

TABLE 17: Cost-effectiveness of cross-project determination

Hadoop Log4j Tomcat Camel Gerrit Ant Jmeter
Hadoop – 0.89 0.54 0.90 0.89 0.55 0.67

Log4j 0.80 – 0.60 0.90 0.90 0.55 0.83
Tomcat 0.88 0.96 – 0.97 0.97 0.56 0.87
Camel 0.85 0.96 0.66 – 0.96 0.63 0.82
Gerrit 0.75 0.85 0.49 0.74 – 0.58 0.44
Ant 0.86 0.96 0.59 0.89 0.96 – 0.67

Jmeter 0.86 0.99 0.70 0.99 0.96 0.55 –
Average 0.83 0.93 0.60 0.90 0.94 0.57 0.72

enough labeled data for building a model. An alternative
solution is to learn from other projects that have enough
labeled data, i.e., cross-project determination. In this section,
we would like to investigate how effective of our model for
cross-project determination.

For each target project, we built the determination model
by learning from other alternative projects (refer to as source
project. In this way, there are 6 source projects for each target
project. In the evaluation, we use the source project as training
data, use the target project as testing data. In this way, there
are 6 effective values for each target project.

Tables 16 and 17 present the results of cross-project
determination. The results show that our determination
model can also achieves a reasonable result in terms of AUC
and cost-effectiveness. There are 6 projects which achieve
greater than AUC of 0.7 considering average across 6 alter-
native source projects. In terms of cost-effective, the average
performance among six source projects ranges from 0.60
to 0.94. One issue is that the performance of cross-project
determination may be not stable, it depends on the source
project selection. For example, for target project Jmeter, the
cost-effectiveness is promising when learning on Tomcat,
but it is poor when learning on Gerrit. Thus, the results
indicate that our determination model can also be effective
for cross-project determination, but should be careful about
the source project selection.

5.5 Other General Discussion

Benefit of change-level approach for identifying TD. Com-
pared with file-level approach, one benefit of change-level
approach is that it can help to understand the context of TD
related to multiple files. Understanding the TD context can
help to address the TD. For example, Figure 2 presents a TD-
introducing change and the corresponding TD-removing
change in Hadoop project. Figure 2(a) is the TD-introducing
change, its ID is 1e346aa829519f8a2aa830e76d9856f914861805.
We present two code fragments that are introduced by
this TD-introducing change. This change added the func-
tion verifyAndSetNamespaceInfo() in BPOfferService.java and

added the function sendHeartBeat() in BPServiceActor.java.
For simplification, we use “DoSomething;” to represent
the remaining of the function. We note that the function
sendHeartBeat() contains a SATD comment, namely “TO-
DO: saw an NPE here - maybe if the two BPOS register at
the same time, this one won’t block on the other one?”. Fig-
ure 2(b) is the corresponding TD-removing change, its ID is
b3f28dbb3d1ab6b2f686efdd7bdb064426177f21. We also present
two code fragments that were changed by this TD-removing
change. We notice that this change removed the SATD
comment and changed the function verifyAndSetNamespace-
Info() to “synchronized” to address this TD. From this ex-
ample, if we identified TD at the file-level in BPServiceAc-
tor.java, it might take more effort to understand why this
TD is introduced and which file should be modified to
remove this TD. However, if we identify this TD at the
change-level, we can observe that this TD is introduced
by change 1e346aa829519f8a2aa830e76d9856f914861805. Ad-
ditionally, we can observe the objective of this change is
“Send block report from datanode to both active and standby
namenodes” by retrieving the change log, and we can find
the files that are modified or added in this change, such
as BPOfferService.java and BPServiceActor.java. As shown in
Figure 2(b), the TD is addressed by modifying BPServiceAc-
tor.java, therefore we can find that the context can help to
understand and address TD.

Change-level vs. File-level approach for identifying
TD. Although we state that our proposed change-level
approach can yield many benefits, we do not aim to use
the change-level approach to supersede file-level approach.
Actually, there are two main difference of these two kinds of
approach. First, the development phase when they are em-
ployed is different. The change-level approach is conducted
when the change is submitted. It aims to be a continuous
activity for identifying TD. The file-level approach is usually
conducted at a particular timing, such as before a product
release. It is impractical to frequently use the file-level
approach. Second, the change-level approach is a more fine-
grained approach, it aims to identify changes that introduce

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 15

(a) TD-introducing change (b) TD-removing change

Fig. 2: TD-introducing and TD-removing change example

TD. Moreover, it characterizes TD-introducing changes and
helps to understand the context and address the TD. In
terms of the file-level approach, the main objective is to
identify which files contain TD by detecting all files. These
two kinds of approach can complement each other to im-
prove the software quality.

Combining code metrics/smells and code comments
analysis for identifying TD. From the above-mentioned
research questions, we conclude that our proposed change-
level TD determination model is effective and it can help to
identify TD on change-level. In particular, our model is built
by learning from changes labeled as TD-introducing. When
identifying TD-introducing changes, we analyze source
code comments to identify SATD first, and then label the
change which introduced SATD comments as a SATD-
introducing change. Compared with traditional TD identi-
fying approaches using code metrics or code smells, our ap-
proach is more reliable, since SATDs has been admitted by
developers using comments. However, not all TDs are self-
admitted using comments. Thus, one potential weakness of
our approach is that we may not cover all TD-introducing
changes in our model. Based on this, our approach can be
served as a complementary approach to existing source code
analysis based approaches for identifying TD. We encourage
the investigation on hybrid approach for identifying TD-
introducing changes. A hybrid approach refers to that an
approach combines identifying TD through code metric-
s/smells and comments (i.e., SATD). In this way, it can build
a more comprehensive and accurate determination model.

6 THREATS TO VALIDITY

Threats to internal validity relate to potential errors in our
implementation. First, one potential threat to validity is the
potential errors in change features extraction. To mitigate
the threat, we compute the same features by following
the method in previous studies [23], and adopt the third-
party library, such as ChangeDisttler that has been used
in past studies for change feature extraction [36], [43]. Sec-
ond, one potential threat is that many comments in source
code might be stale. This may impact the accuracy of our
labelling step. To mitigate this issue, we performed some
preprocessing steps (e.g., removing automatically generated
comments and commented source code) and introduced
manual analysis in the labelling step. We also conducted a
study in the ICSME 2014 (in discussion section) to show that
most comments are changed with code [12]. This shows that
staleness is not a major issue. Third, in RQ2, we conclude the
diffusion dimension is the most important dimension. One
potential threat to its validity is the impact of the number of

features. In diffusion dimension, we have 16 features which
have more features than other dimensions. To reduce this
threat, extracting more features in other dimensions and
creating a more balanced division of features are needed
in the future to evaluate the importance of dimensions.

Threats to external validity relate to generalizability of
our results. We have analyzed 100,011 software changes
from 7 different open-source Java software projects. When
applying our approach to projects written by other pro-
gramming languages, some features (e.g., extracted by
ChangeDisttler) and the code comments preprocessing steps
should be carefully adapted. In the future, further investiga-
tion by analyzing even more projects including commercial
projects and projects written by other programming lan-
guages is needed to mitigate this threat.

Threats to construct validity relate to the suitability of
our evaluation. One potential threat is that we use AUC
and cost-effectiveness as the performance measure, and
use Wilcoxon signed-rank test to investigate whether the
improvement of our proposed model over baseline is signif-
icant. One or all of them have been used in past studies [23],
[25], [31], [49], [50]. Thus, we believe we have little threats
to construct validity.

7 RELATED WORK

This paper aims to propose a change-level self-admitted
technical debt determination model. Therefore, we divide
our related work into three parts: technical debt, self-
admitted technical debt and change-level determination.

7.1 Technical Debt
Due to the importance of technical debt, a number of studies
have proposed different techniques for technical debt deter-
mination and management.

Zazworka et al. [8] use code smells for determining tech-
nical debt. In particular, they focus on how design debt (i.e.,
god classes) impacts the product quality. They found that
the technical debt has a negative impact on software quality
(i.e., maintainability and correctness). Thus, they suggests
that technical debt should be identified and managed early.
Fontana et al. [10] also use code smells for detecting design
debt (i.e., god classes, data class and duplicate code). They
perform an empirical study to investigate which design debt
should be paid first. As a result, they found that duplicate
code debt is more critical respect to others.

In their following work, Zazworka et al. [11] use code
smells and issues raised by ASA (Automatic Static Analysis)
tools to detect technical debt. In detail, they select Code-
Vizard [71] and FindBugs [72]. They compare the technical

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 16

debts found by tools and human to investigate the effective-
ness of automatic technical debt determination. As a result,
they found that there is a small overlap between technical
debts reported by tools and human. In addition, they found
that automatic tools are more efficient for detecting defect
debt but cannot help detecting other types of debt. Thus, it is
better to combine the tools with other detection techniques.

Guo et al. [73] perform a case study to explore the effect
of technical debt by tracking a single delayed maintenance
task in a real software project throughout its lifecycle. They
simulate how explicit technical debt management might
have changed project outcomes. Ernst et al. [74] perform a
survey among 1,831 participants to investigate the definition
and tools on technical debt in practice. As a result, they
found that software practitioners agree on the usefulness
of the technical debt metaphor. In terms of the source of
technical debt, they found that architectural choices are the
most important source of technical debt. Additionally, they
found that developer desire standard practices and tools to
manage technical debt. More attention should be paid on
moving technical debt from metaphor to practice.

Li et al. [5] perform a systematic mapping study on tech-
nical debt and its management. They found that some types
of technical debts can be detected by using automatically
code analysis tools. However, some other types of technical
debt cannot be automatically detected. They suggest that
additional detection techniques should be developed for
their documentation and further management.

Our work is motivated by these prior works. The differ-
ence is that our work focuses on determining technical debt
at the change-level.

7.2 Self-Admitted Technical Debt

Recently, Potdar and Shihab [12] first defined the concept of
self-admitted technical debt (SATD). It refers to the technical
debt that is introduced by a developer intentionally and
is documented by developer using source code comments.
They developed 62 patterns that can indicate SATD by
manual inspecting 100k comments. Their 62 patterns are
commonly used in the following studies.

Maldonado and Shihab [13] manually examine 33K code
comments to determine different types of technical debt
patterns, including design debt, defect debt, document debt,
requirement debt and test debt. By performing an empirical
study, they found that the most common type of SATD is
design debt.

Bavota and Russo [15] perform a large-scale empirical
study by presenting a differentiated replication of the work
of Potdar and Shihab [12]. In detail, they investigate the
diffusion and evolution of SATD and its relationship with
software quality across 159 projects. As a result, they found
that SATD is diffused and can survive long time. In addition,
the number of SATD increases over time due to the introduc-
tion of new instances that are not fixed by developers.

Wehaibi et al. [6] examine the relationship between SAT-
D and software quality by conducting an empirical study.
They found that the impact of SATD is not related to defects,
rather making the system more difficult to change in the
future.

Kamei et al. [14] propose to measure the “interest” of
SATD and the how much of the technical debt incurs posi-
tive interest. In detail, they use LOC and Fan-In to measure
interest. As a result, they found that approximately 42-44%
of the SATD incurs positive interest.

Farias et al. [75], [76] propose a contextualized vocabu-
lary model (namely CVM-TD) to identify SATD from source
code comments. This model focuses on using word classes
and code tags to provide a vocabulary, aiming to support the
detection of different types of debt through code comment
analysis.

Maldonado et al. [17] perform an empirical study on the
removal of SATD. They found that the majority of SATD
is removed and the majority of SATD is removed by the
same developer who introduces it. Fixing bugs or adding
new features are the most frequently activities for removing
SATD.

Most recently, different from the previous manual de-
tection of SATD, Maldonado et al. [7] and Huang et al.
[16] propose to automatically determining SATD by using
natural language processing and text mining techniques.
In Maldonado et al.’s work, they classify each comment
into design SATD, requirement SATD and non-SATD by
using natural language processing technique. The results
show that it outperforms the detection method based on
fixed keywords and phrases [12]. In Huang et al.’s work,
they propose a more general SATD determination method,
which consider all kinds of SATD. In detail, they classify
each comment into SATD or non-SATD by using text mining
approach. The results show that it outperforms the natural
language processing method in Maldonado et al.’s work.

Our work is inspired by these prior work that also used
SATD by analyzing source code comments. However, our
work differs from above-mentioned works in that our work
performs the determination on change-level.

7.3 Change-level Determination
Change-level determination refers to determining if a par-
ticular characteristic of a software change, such as defective
change determination and build co-change determination.
Defective change determination aims to determine whether
or not a change is a defect inducing change [23], [31],
[37], [38]. Build co-change determination aims to determine
whether or not a change requires build co-change [41], [42],
[77].

For example, in terms of defective change determination,
Mockus and Weiss [37] assess the risk of software changes
(i.e., the probability that changes are defect inducing) in
5ESS network switch project. Kim et al. [38] classify each
software change as buggy or clean by using the identifiers
in added and deleted source code and textual features in
change logs. Kamei et al. [23] a large-scale empirical study of
change-level quality assurance on a variety of open source
and commercial projects from multiple domains. They first
apply effort-aware evaluation (i.e., considering review effort
for inspecting defective changes) on defective change deter-
mination. Following on their work, Yang et al. [31] propose
to use simple unsupervised models for defective change
prediction. They found that simple unsupervised models
can perform better than supervised models on defective
change prediction.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 17

In terms of build co-change determination model, McIn-
tosh et al. [41] build a classifier that determine whether or
not a software change will be build co-changing. By the fol-
lowing, Xia et al. [42] propose cross-project build co-change
determination model to improve the performance of build
co-change determination in projects in the initial develop-
ment phases. Subsequently, Macho et al. [77] improve the
existing model performance by taking into account detailed
information on source code changes and commit categories.

The similarity between our work and these aforemen-
tioned work is the used change metrics. Many of change
metrics used in our work are inspired by them, such as
diffusion metrics [23], [41], [42], message metrics [38], and
history metrics [23], [31]. The difference between our work
and these aforementioned work is that we aim to determine
whether or not a change introduces TD. To the best of our
knowledge, this is the first work for determining TD at
change-level.

8 CONCLUSION AND FUTURE WORK

In this paper, we propose a change-level self-admitted tech-
nical debt determination model by extracting 25 change fea-
tures that divided into three dimensions, namely diffusion,
history and message. The model can determine whether or
not a software change introduces TD when it is submitted.
To the best of our knowledge, this paper is the first work
to perform change-level TD determination. To evaluate the
effectiveness of our determination model, we perform an
empirical study on 7 open source projects with totally
100,011 software changes.

In summary, the experimental results show that: (1)
Our model achieves a promising and better performance
than the baselines in terms of AUC and cost-effectiveness.
On average across the 7 experimental projects, our mod-
el achieves AUC of 0.82, cost-effectiveness of 0.80, which
significantly improves the baselines in a substantial mar-
gin. (2) “Diffusion” is the most discriminative dimension
among the three dimensions of features for determining
TD-introducing changes. Our model (using all features)
achieves the best performance compared with the three
models considering the average across the 7 projects. (3)
The features “Entropy”, “msg length”, “LA”, “LD”, “FA”,
“ND”, and “MCC” are the important features for determin-
ing TD-introducing change.

In the future, we plan to evaluate our determination
model with more software projects, including both open
source and commercial projects. And we also plan to study
more change features that can impact TD introduction, and
design a better model to improve the performance further.

ACKNOWLEDGMENT

The authors would like to thank the editor and the anony-
mous reviewers for their constructive comments and recom-
mendations to improve this paper. This research was sup-
ported by NSFC Program (No. 61602403 and 61572426) and
China Postdoctoral Science Foundation (No. 2017M621931).

REFERENCES

[1] E. Lim, N. Taksande, and C. Seaman, “A balancing act: what
software practitioners have to say about technical debt,” IEEE
software, vol. 29, no. 6, pp. 22–27, 2012.

[2] W. Cunningham, “The wycash portfolio management system,”
ACM SIGPLAN OOPS Messenger, vol. 4, no. 2, pp. 29–30, 1993.

[3] P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Managing
technical debt in software engineering (dagstuhl seminar 16162),”
in Dagstuhl Reports, vol. 6, no. 4. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2016.

[4] C. Seaman and Y. Guo, “Measuring and monitoring technical
debt,” Advances in Computers, vol. 82, no. 25-46, p. 44, 2011.

[5] Z. Li, P. Avgeriou, and P. Liang, “A systematic mapping study
on technical debt and its management,” Journal of Systems and
Software, vol. 101, pp. 193–220, 2015.

[6] S. Wehaibi, E. Shihab, and L. Guerrouj, “Examining the impact
of self-admitted technical debt on software quality,” in Software
Analysis, Evolution, and Reengineering (SANER), 2016 IEEE 23rd
International Conference on, vol. 1. IEEE, 2016, pp. 179–188.

[7] E. Maldonado, E. Shihab, and N. Tsantalis, “Using natural lan-
guage processing to automatically detect self-admitted technical
debt,” IEEE Transactions on Software Engineering, 2017.

[8] N. Zazworka, M. A. Shaw, F. Shull, and C. Seaman, “Investigating
the impact of design debt on software quality,” in Proceedings of the
2nd Workshop on Managing Technical Debt. ACM, 2011, pp. 17–23.

[9] R. L. Nord, I. Ozkaya, P. Kruchten, and M. Gonzalez-Rojas, “In
search of a metric for managing architectural technical debt,” in
Software Architecture (WICSA) and European Conference on Software
Architecture (ECSA), 2012 Joint Working IEEE/IFIP Conference on.
IEEE, 2012, pp. 91–100.

[10] F. A. Fontana, V. Ferme, and S. Spinelli, “Investigating the impact
of code smells debt on quality code evaluation,” in Managing
Technical Debt (MTD), 2012 Third International Workshop on. IEEE,
2012, pp. 15–22.

[11] N. Zazworka, R. O. Spı́nola, A. Vetro, F. Shull, and C. Seaman, “A
case study on effectively identifying technical debt,” in Proceedings
of the 17th International Conference on Evaluation and Assessment in
Software Engineering. ACM, 2013, pp. 42–47.

[12] A. Potdar and E. Shihab, “An exploratory study on self-admitted
technical debt,” in Software Maintenance and Evolution (ICSME),
2014 IEEE International Conference on. IEEE, 2014, pp. 91–100.

[13] E. d. S. Maldonado and E. Shihab, “Detecting and quantifying dif-
ferent types of self-admitted technical debt,” in Managing Technical
Debt (MTD), 2015 IEEE 7th International Workshop on. IEEE, 2015,
pp. 9–15.

[14] Y. Kamei, E. d. S. Maldonado, E. Shihab, and N. Ubayashi, “Using
analytics to quantify interest of self-admitted technical debt.” in
QuASoQ/TDA@ APSEC, 2016, pp. 68–71.

[15] G. Bavota and B. Russo, “A large-scale empirical study on self-
admitted technical debt,” in Proceedings of the 13th International
Conference on Mining Software Repositories. ACM, 2016, pp. 315–
326.

[16] Q. Huang, E. Shihab, X. Xia, D. Lo, and S. Li, “Identifying self-
admitted technical debt in open source projects using text min-
ing,” Empirical Software Engineering, pp. 1–34, 2017.

[17] E. d. S. Maldonado, R. Abdalkareem, E. Shihab, and A. Serebrenik,
“An empirical study on the removal of self-admitted technical
debt,” in Software Maintenance and Evolution (ICSME), 2017 IEEE
International Conference on. IEEE, 2017, pp. 238–248.

[18] F. A. Fontana, J. Dietrich, B. Walter, A. Yamashita, and M. Zanoni,
“Antipattern and code smell false positives: Preliminary concep-
tualization and classification,” in Software Analysis, Evolution, and
Reengineering (SANER), 2016 IEEE 23rd International Conference on,
vol. 1. IEEE, 2016, pp. 609–613.

[19] N. Tsantalis and A. Chatzigeorgiou, “Identification of extract
method refactoring opportunities for the decomposition of meth-
ods,” Journal of Systems and Software, vol. 84, no. 10, pp. 1757–1782,
2011.

[20] N. Tsantalis, D. Mazinanian, and G. P. Krishnan, “Assessing the
refactorability of software clones,” IEEE Transactions on Software
Engineering, vol. 41, no. 11, pp. 1055–1090, 2015.

[21] J. Graf, “Speeding up context-, object-and field-sensitive sdg gen-
eration,” in Source Code Analysis and Manipulation (SCAM), 2010
10th IEEE Working Conference on. IEEE, 2010, pp. 105–114.

[22] K. Ali and O. Lhoták, “Application-only call graph construction.”
in ECOOP. Springer, 2012, pp. 688–712.

[23] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. S-
inha, and N. Ubayashi, “A large-scale empirical study of just-in-
time quality assurance,” Software Engineering, IEEE Transactions on,
vol. 39, no. 6, pp. 757–773, 2013.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 18

[24] J. Huang and C. X. Ling, “Using auc and accuracy in evaluating
learning algorithms,” IEEE Transactions on knowledge and Data
Engineering, vol. 17, no. 3, pp. 299–310, 2005.

[25] X. Xia, D. Lo, S. J. Pan, N. Nagappan, and X. Wang, “Hydra: Mas-
sively compositional model for cross-project defect prediction,”
IEEE Transactions on software Engineering, vol. 42, no. 10, pp. 977–
998, 2016.

[26] T. Jiang, L. Tan, and S. Kim, “Personalized defect prediction,”
in Proceedings of the 28th IEEE/ACM International Conference on
Automated Software Engineering. IEEE Press, 2013, pp. 279–289.

[27] X. Xia, D. Lo, X. Wang, and X. Yang, “Collective personalized
change classification with multiobjective search,” IEEE Transaction-
s on Reliability, vol. 65, no. 4, pp. 1810–1829, 2016.

[28] X. Yang, D. Lo, X. Xia, and J. Sun, “Tlel: A two-layer ensemble
learning approach for just-in-time defect prediction,” Information
and Software Technology, vol. 87, pp. 206–220, 2017.

[29] X. Yang, D. Lo, X. Xia, Y. Zhang, and J. Sun, “Deep learning for
just-in-time defect prediction,” in Software Quality, Reliability and
Security (QRS), 2015 IEEE International Conference on. IEEE, 2015,
pp. 17–26.

[30] Q. Huang, X. Xia, and D. Lo, “Supervised vs unsupervised models:
A holistic look at effort-aware just-in-time defect prediction,” in
Software Maintenance and Evolution (ICSME), 2017 IEEE Internation-
al Conference on. IEEE, 2017, pp. 159–170.

[31] Y. Yang, Y. Zhou, J. Liu, Y. Zhao, H. Lu, L. Xu, B. Xu, and H. Leung,
“Effort-aware just-in-time defect prediction: simple unsupervised
models could be better than supervised models,” in Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering. ACM, 2016, pp. 157–168.

[32] M. L. Collard, M. J. Decker, and J. I. Maletic, “srcml: An infras-
tructure for the exploration, analysis, and manipulation of source
code: A tool demonstration,” in Software Maintenance (ICSM), 2013
29th IEEE International Conference on. IEEE, 2013, pp. 516–519.

[33] M.-A. Storey, J. Ryall, R. I. Bull, D. Myers, and J. Singer, “Todo
or to bug,” in Software Engineering, 2008. ICSE’08. ACM/IEEE 30th
International Conference on. IEEE, 2008, pp. 251–260.

[34] J. Cohen, “Weighted kappa: Nominal scale agreement provision
for scaled disagreement or partial credit.” Psychological bulletin,
vol. 70, no. 4, p. 213, 1968.

[35] N. Japkowicz and S. Stephen, “The class imbalance problem: A
systematic study,” Intelligent data analysis, vol. 6, no. 5, pp. 429–
449, 2002.

[36] B. Fluri, M. Wuersch, M. PInzger, and H. Gall, “Change distilling:
Tree differencing for fine-grained source code change extraction,”
IEEE Transactions on Software Engineering, vol. 33, no. 11, 2007.

[37] A. Mockus and D. M. Weiss, “Predicting risk of software changes,”
Bell Labs Technical Journal, vol. 5, no. 2, pp. 169–180, 2000.

[38] S. Kim, E. J. Whitehead Jr, and Y. Zhang, “Classifying software
changes: Clean or buggy?” IEEE Transactions on Software Engineer-
ing, vol. 34, no. 2, pp. 181–196, 2008.

[39] C. Rosen, B. Grawi, and E. Shihab, “Commit guru: Analytics
and risk prediction of software commits,” in Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering, ser.
ESEC/FSE 2015. ACM, 2015, pp. 966–969. [Online]. Available:
http://doi.acm.org/10.1145/2786805.2803183

[40] A. E. Hassan, “Predicting faults using the complexity of code
changes,” in Proceedings of the 31st International Conference on
Software Engineering. IEEE Computer Society, 2009, pp. 78–88.

[41] S. McIntosh, B. Adams, M. Nagappan, and A. E. Hassan, “Mining
co-change information to understand when build changes are
necessary,” in Software Maintenance and Evolution (ICSME), 2014
IEEE International Conference on. IEEE, 2014, pp. 241–250.

[42] X. Xia, D. Lo, S. McIntosh, E. Shihab, and A. E. Hassan, “Cross-
project build co-change prediction,” in Software Analysis, Evolution
and Reengineering (SANER), 2015 IEEE 22nd International Conference
on. IEEE, 2015, pp. 311–320.

[43] B. Fluri and H. C. Gall, “Classifying change types for qualifying
change couplings,” in Program Comprehension, 2006. ICPC 2006.
14th IEEE International Conference on. IEEE, 2006, pp. 35–45.

[44] Y. Fu, M. Yan, X. Zhang, L. Xu, D. Yang, and J. D. Kymer,
“Automated classification of software change messages by semi-
supervised latent dirichlet allocation,” Information and Software
Technology, vol. 57, pp. 369–377, 2015.

[45] M. Yan, Y. Fu, X. Zhang, D. Yang, L. Xu, and J. D. Kymer,
“Automatically classifying software changes via discriminative
topic model: Supporting multi-category and cross-project,” Journal
of Systems and Software, vol. 113, pp. 296–308, 2016.

[46] K. Herzig, S. Just, and A. Zeller, “It’s not a bug, it’s a feature: how
misclassification impacts bug prediction,” in Proceedings of the 2013

International Conference on Software Engineering. IEEE Press, 2013,
pp. 392–401.

[47] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “The weka data mining software: an update,” ACM
SIGKDD explorations newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[48] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[49] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking
classification models for software defect prediction: A proposed
framework and novel findings,” IEEE Transactions on Software
Engineering, vol. 34, no. 4, pp. 485–496, 2008.

[50] J. Nam and S. Kim, “Clami: Defect prediction on unlabeled
datasets (t),” in Automated Software Engineering (ASE), 2015 30th
IEEE/ACM International Conference on. IEEE, 2015, pp. 452–463.

[51] A. P. Bradley, “The use of the area under the roc curve in the
evaluation of machine learning algorithms,” Pattern recognition,
vol. 30, no. 7, pp. 1145–1159, 1997.

[52] F. Rahman, D. Posnett, and P. Devanbu, “Recalling the imprecision
of cross-project defect prediction,” in Proceedings of the ACM SIG-
SOFT 20th International Symposium on the Foundations of Software
Engineering. ACM, 2012, p. 61.

[53] M. Yan, Y. Fang, D. Lo, X. Xia, and X. Zhang, “File-level defect
prediction: Unsupervised vs. supervised models,” in Empirical
Software Engineering and Measurement (ESEM), 2017 ACM/IEEE
International Symposium on. IEEE, 2017, pp. 344–353.

[54] X. Xia, E. Shihab, Y. Kamei, D. Lo, and X. Wang, “Predicting
crashing releases of mobile applications,” in Proceedings of the 10th
ACM/IEEE International Symposium on Empirical Software Engineer-
ing and Measurement. ACM, 2016, p. 29.

[55] J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques.
Elsevier, 2011.

[56] A. McCallum, K. Nigam et al., “A comparison of event models for
naive bayes text classification,” in AAAI-98 workshop on learning for
text categorization, vol. 752. Madison, WI, 1998, pp. 41–48.

[57] X. Xia, D. Lo, W. Qiu, X. Wang, and B. Zhou, “Automated con-
figuration bug report prediction using text mining,” in Computer
Software and Applications Conference (COMPSAC), 2014 IEEE 38th
Annual. IEEE, 2014, pp. 107–116.

[58] F. Wilcoxon, “Individual comparisons by ranking methods,” Break-
throughs in Statistics, pp. 196–202, 1992.

[59] H. Abdi, “Bonferroni and šidák corrections for multiple compar-
isons,” Encyclopedia of measurement and statistics, vol. 3, pp. 103–
107, 2007.

[60] N. Cliff, Ordinal methods for behavioral data analysis. Psychology
Press, 2014.

[61] Y. Tian, M. Nagappan, D. Lo, and A. E. Hassan, “What are the
characteristics of high-rated apps? a case study on free android
applications,” in Software Maintenance and Evolution (ICSME), 2015
IEEE International Conference on. IEEE, 2015, pp. 301–310.

[62] Y. Fan, X. Xia, D. Lo, and S. Li, “Early prediction of merged
code changes to prioritize reviewing tasks,” Empirical Software
Engineering, pp. 1–48, 2018.

[63] L. Bao, Z. Xing, X. Xia, D. Lo, and S. Li, “Who will leave the
company?: a large-scale industry study of developer turnover
by mining monthly work report,” in Mining Software Repositories
(MSR), 2017 IEEE/ACM 14th International Conference on. IEEE,
2017, pp. 170–181.

[64] H. Li, W. Shang, Y. Zou, and A. E. Hassan, “Towards just-in-time
suggestions for log changes,” Empirical Software Engineering, pp.
1–35, 2016.

[65] D. H. Wolpert and W. G. Macready, “An efficient method to
estimate bagging’s generalization error,” Machine Learning, vol. 35,
no. 1, pp. 41–55, 1999.

[66] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumo-
to, “An empirical comparison of model validation techniques for
defect prediction models,” IEEE Transactions on Software Engineer-
ing, vol. 43, no. 1, pp. 1–18, 2017.

[67] X. Xia, L. Bao, D. Lo, P. S. Kochhar, A. E. Hassan, and Z. Xing,
“What do developers search for on the web?” Empirical Software
Engineering, pp. 1–37, 2017.

[68] A. J. Scott and M. Knott, “A cluster analysis method for grouping
means in the analysis of variance,” Biometrics, pp. 507–512, 1974.

[69] H. B. Mann and D. R. Whitney, “On a test of whether one of two
random variables is stochastically larger than the other,” The annals
of mathematical statistics, pp. 50–60, 1947.

[70] H. C. Gall, B. Fluri, and M. Pinzger, “Change analysis with evolizer
and changedistiller,” IEEE Software, vol. 26, no. 1, p. 26, 2009.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 19

[71] N. Zazworka and C. Ackermann, “Codevizard: a tool to aid the
analysis of software evolution,” in Proceedings of the 2010 ACM-
IEEE International Symposium on Empirical Software Engineering and
Measurement. ACM, 2010, p. 63.

[72] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” ACM Sigplan
Notices, vol. 39, no. 12, pp. 92–106, 2004.

[73] Y. Guo, C. Seaman, R. Gomes, A. Cavalcanti, G. Tonin, F. Q.
Da Silva, A. L. Santos, and C. Siebra, “Tracking technical debtłan
exploratory case study,” in Software Maintenance (ICSM), 2011 27th
IEEE International Conference on. IEEE, 2011, pp. 528–531.

[74] N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, and I. Gorton,
“Measure it? manage it? ignore it? software practitioners and
technical debt,” in Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering. ACM, 2015, pp. 50–60.

[75] M. A. de Freitas Farias, M. G. de Mendonça Neto, A. B. da Silva,
and R. O. Spı́nola, “A contextualized vocabulary model for iden-
tifying technical debt on code comments,” in Managing Technical
Debt (MTD), 2015 IEEE 7th International Workshop on. IEEE, 2015,
pp. 25–32.

[76] M. A. de Freitas Farias, J. A. M. Santos, A. B. da Silva, M. Kalinows-
ki, M. G. Mendonça, and R. O. Spı́nola, “Investigating the use of
a contextualized vocabulary in the identification of technical debt:
A controlled experiment,” in ICEIS (1), 2016, pp. 369–378.

[77] C. Macho, S. McIntosh, and M. Pinzger, “Predicting build co-
changes with source code change and commit categories,” in
Software Analysis, Evolution, and Reengineering (SANER), 2016 IEEE
23rd International Conference on, vol. 1. IEEE, 2016, pp. 541–551.

1

APPENDIX A
FULL LISTS OF FEATURE IMPORTANCE RESULTS IN
EACH PROJECT

Tables 1 – 7 presents the importance of features in the seven
projects as ranked according to the the Scott-Knott ESD test.

TABLE 1: Importance of features in Hadoop as ranked
according to the Scott-Knott ESD test. The second and third
columns show P-values, Cliff’s Delta for the features. The
features with non-negligible effect sizes are in bold.

Group Features p-value Cliff’s delta
1 NUC <0.001 -0.130
2 Entropy <0.001 0.409 (Medium)
3 EXP >0.05 0.047
4 FA <0.001 0.561 (Large)
5 msg length <0.001 0.184 (Small)
6 HCC <0.001 0.297 (Small)
7 NS <0.01 0.078
8 FD <0.001 0.069
9 language num <0.001 0.195 (Small)
10 FR <0.001 0.052
11 FC <0.01 0.020
12 has feature <0.01 0.007
13 has bug <0.05 -0.017
14 has improve >0.05 -0.002
15 has refactor >0.05 -0.001
16 has document <0.05 -0.017

TABLE 2: Importance of features in Log4j

Group Features p-value Cliff’s delta
1 LA <0.001 0.570 (Large)
2 EXP >0.05 -0.057

3 Entropy >0.05 0.105
msg length <0.001 0.315 (Small)

4 NUC <0.001 -0.265 (Small)
5 LD >0.05 0.028
6 MCC <0.01 0.168 (Small)
7 file type num >0.05 0.008
8 CCC <0.01 0.113
9 HCC <0.01 0.128
10 NS >0.05 0.071
11 language num <0.01 0.169 (Small)

12
has document >0.05 0.018

FC >0.05 -0.012
has refactor <0.05 0.020

13 FR >0.05 -0.040
has bug >0.05 -0.022

14 has feature >0.05 0.007
15 has improve >0.05 -0.014

TABLE 3: Importance of features in Tomcat

Group Features p-value Cliff’s delta
1 LA <0.001 0.585 (Large)
2 EXP >0.05 -0.033
3 NUC <0.001 0.113
4 Entropy <0.001 0.337 (Medium)
5 msg length <0.001 0.273 (Small)
6 LD <0.001 0.313 (Small)
7 LCC <0.001 0.282 (Small)
8 MCC <0.001 0.210 (Small)
9 ND <0.001 0.299 (Small)
10 FA <0.001 0.216 (Small)
11 CCC <0.001 0.150 (Small)
12 HCC <0.001 0.133
13 file type num <0.001 0.125
14 NS <0.001 0.140
15 has bug <0.05 -0.044
16 language num <0.001 0.243 (Small)
17 FD <0.001 0.038
18 has refactor <0.001 0.027
19 FR <0.001 0.025
20 has improve <0.05 0.010
21 has document >0.05 -0.008
22 FC <0.001 0.008
23 has feature >0.05 0.005

TABLE 4: Importance of features in Camel

Group Features p-value Cliff’s delta
1 Entropy <0.001 0.493 (Large)
2 EXP >0.05 -0.027
3 NUC <0.001 0.113
4 msg length <0.001 0.335 (Medium)
5 LCC <0.001 0.457 (Medium)
6 LD <0.001 0.351 (Medium)
7 FA <0.001 0.427 (Medium)
8 MCC <0.001 0.380 (Medium)
9 ND <0.001 0.457 (Medium)
10 CCC <0.001 0.284 (Small)
11 HCC <0.001 0.237 (Small)
12 file type num <0.001 0.257 (Small)
13 NS <0.001 0.171 (Small)

14 language num <0.001 0.243 (Small)
FR <0.001 0.049

15 FD <0.001 0.035
16 has bug <0.001 0.022
17 has document <0.01 0.013
18 has improve <0.001 0.018
19 has refactor <0.001 0.014
20 FC <0.001 0.020
21 has feature <0.01 -0.015

TABLE 5: Importance of features in Gerrit

Group Features p-value Cliff’s delta
1 NUC >0.05 0.034

2 EXP <0.05 -0.122
LA <0.001 0.415 (Medium)

3 msg length <0.001 0.531 (Large)
4 CCC <0.001 0.156 (Small)
5 FR >0.05 -0.011
6 language num <0.05 0.097
7 has bug >0.05 0.029
8 FC >0.05 -0.005
9 has refactor <0.001 0.029
10 has feature <0.01 0.031
11 has improve <0.01 0.023
12 has document <0.05 -0.051

2

TABLE 6: Importance of features in Ant

Group Features p-value Cliff’s delta
1 LA <0.001 0.701 (Large)
2 EXP <0.001 -0.292 (Small)
3 msg length <0.001 0.436 (Medium)
4 Entropy <0.001 0.401 (Medium)
5 NUC <0.001 0.231 (Small)
6 LD <0.001 0.404 (Medium)
7 MCC <0.001 0.428 (Medium)
8 FA <0.001 0.364 (Medium)
9 ND <0.001 0.392 (Medium)
10 HCC <0.001 0.308 (Small)
11 CCC <0.001 0.241 (Small)
12 language num <0.001 0.244 (Small)
13 NS <0.001 0.102
14 has improve <0.001 0.032
15 FR <0.001 0.037
16 has bug >0.05 0.019
17 FD <0.05 0.025

18 has refactor <0.001 0.031
has document >0.05 -0.005

19 has feature <0.001 0.020
20 FC >0.05 0.003

TABLE 7: Importance of features in Jmeter

Group Features p-value Cliff’s delta
1 EXP >0.05 0.026
2 LA <0.001 0.472 (Medium)
3 NUC >0.05 0.025
4 Entropy <0.001 0.158 (Small)
5 LCC <0.001 0.404 (Medium)
6 msg length <0.001 0.124
7 LD <0.001 0.278 (Small)
8 MCC <0.001 0.323 (Small)
9 ND <0.001 0.184 (Small)
10 HCC <0.001 0.188 (Small)
11 CCC <0.001 0.146

12
FA <0.001 0.081

language num <0.001 0.348 (Medium)
NS <0.001 0.172 (Small)

13 has bug >0.05 0.013
14 FD >0.05 -0.005
15 has improve >0.05 0.001
16 has feature >0.05 0.006
17 has document <0.05 -0.013

18 FR >0.05 -0.008
has refactor >0.05 0.002

19 FC >0.05 -0.001

	Automating change-level self-admitted technical debt determination
	Citation
	Author

	SATD-tse-main
	SeperateAppendice

