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Abstract

Researchers have used distributed constraint optimization problems (DCOPs) to model
various multi-agent coordination and resource allocation problems. Very recently, Ottens
et al. proposed a promising new approach to solve DCOPs that is based on confidence
bounds via their Distributed UCT (DUCT) sampling-based algorithm. Unfortunately, its
memory requirement per agent is exponential in the number of agents in the problem,
which prohibits it from scaling up to large problems. Thus, in this article, we introduce
two new sampling-based DCOP algorithms called Sequential Distributed Gibbs (SD-Gibbs)
and Parallel Distributed Gibbs (PD-Gibbs). Both algorithms have memory requirements
per agent that is linear in the number of agents in the problem. Our empirical results show
that our algorithms can find solutions that are better than DUCT, run faster than DUCT,
and solve some large problems that DUCT failed to solve due to memory limitations.

1. Introduction

Distributed Constraint Optimization Problems (DCOPs) are problems where agents need
to coordinate their value assignments to maximize the sum of resulting constraint re-
wards (Modi, Shen, Tambe, & Yokoo, 2005; Petcu & Faltings, 2005a; Fioretto, Pontelli,
& Yeoh, 2018). Researchers have used them to model various multi-agent coordination and
resource allocation problems such as the distributed scheduling of meetings (Maheswaran,
Tambe, Bowring, Pearce, & Varakantham, 2004b; Zivan, Okamoto, & Peled, 2014), the dis-
tributed allocation of targets to sensors in a network (Farinelli, Rogers, Petcu, & Jennings,
2008; Yeoh, Varakantham, & Koenig, 2009), the distributed allocation of resources and coor-
dination of mobile agents in disaster evacuation scenarios (Lass, Kopena, Sultanik, Nguyen,
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Dugan, Modi, & Regli, 2008; Nguyen, Yeoh, & Lau, 2012), the distributed management
of power distribution networks (Kumar, Faltings, & Petcu, 2009), the distributed genera-
tion of coalition structures (Ueda, Iwasaki, & Yokoo, 2010), the distributed coordination
of logistics operations (Léauté & Faltings, 2011), the distributed assignment of frequency
to radio transmitters and receivers (Yeoh & Yokoo, 2012; Fioretto, Le, Yeoh, Pontelli, &
Son, 2014), and the distributed coordination of IoT devices in smart homes (Rust, Picard,
& Ramparany, 2016; Fioretto, Yeoh, & Pontelli, 2017).

The field has matured considerably over the past decade as researchers continue
to develop better and better algorithms (Fioretto et al., 2018). Most of these algo-
rithms fall into one of the following two classes of algorithms: (1) search-based algo-
rithms like ADOPT (Modi et al., 2005) and its variants (Yeoh, Felner, & Koenig, 2010;
Gutierrez, Meseguer, & Yeoh, 2011), AFB (Gershman, Meisels, & Zivan, 2009), and
MGM (Maheswaran, Pearce, & Tambe, 2004a), where the agents enumerate through com-
binations of value assignments in a decentralized manner, and (2) inference-based algo-
rithms like DPOP (Petcu & Faltings, 2005a), max-sum (Farinelli et al., 2008), and Action
GDL (Vinyals, Rodŕıguez-Aguilar, & Cerquides, 2011), where the agents use dynamic pro-
gramming to propagate aggregated information to other agents.

More recently, Ottens, Dimitrakakis, and Faltings (2012, 2017) proposed a promising
new approach to solve DCOPs that is based on confidence bounds. They introduced a new
sampling-based algorithm called Distributed UCT, which is an extension of UCB (Auer,
Cesa-Bianchi, & Fischer, 2002) and UCT (Kocsis & Szepesvári, 2006). While the algorithm
is shown to outperform competing algorithms,1 its memory requirement per agent is expo-
nential in the number of agents in the problem, which prohibits it from scaling up to large
problems.

Thus, in this article, we introduce two new sampling-based DCOP algorithms called
Sequential Distributed Gibbs (SD-Gibbs) and Parallel Distributed Gibbs (PD-Gibbs), which
are distributed extensions of the Gibbs algorithm (Geman & Geman, 1984).2 Both SD-
Gibbs and PD-Gibbs have a linear-space memory requirement – the memory requirement
per agent is linear in the number of agents in the problem. While the Gibbs algorithm
was designed to approximate joint probability distributions in Markov random fields and
solve maximum a posteriori estimation problems, we show how one can map such problems
into DCOPs in order for Gibbs to operate directly on DCOPs. Our empirical results show
that SD-Gibbs and PD-Gibbs can find solutions that are better than DUCT, run faster
than DUCT, and solve some large problems that DUCT failed to solve due to memory
limitations.

The structure of this article is as follows: In Section 2, we provide the background
for DCOPs. In Section 3, we provide a brief overview of the centralized Gibbs algorithm,
which we will extend, and the Distributed UCT (DUCT) algorithm. We then describe the

1. DUCT finds better solutions compared to DSA and MGM when they are all given the same amount
of runtime, and finds solutions for large problems that DPOP failed to solve due to memory limita-
tions (Ottens et al., 2012, 2017).

2. This article extends our previous conference paper (Nguyen, Yeoh, & Lau, 2013), which introduced the
Distributed Gibbs (D-Gibbs) algorithm, in the following manner: (1) It introduces an improved version
of D-Gibbs that uses best-response optimizations; It describes a partial trace on an example DCOP; (3) It
includes more detailed theoretical proofs; and (4) It presents more comprehensive empirical evaluations.
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x1 x2
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xi xj Fij(xi, xj)
0 0 -1
0 1 1
1 0 1
1 1 -2

where i < j

(a) (b) (c)

Figure 1: Example DCOP

two variants of the Distributed Gibbs algorithm in Section 4 and present the experimental
results in Section 5 before concluding in Section 6.

2. Background: DCOP

A distributed constraint optimization problem (DCOP) (Modi et al., 2005; Mailler & Lesser,
2004; Petcu & Faltings, 2005a; Fioretto et al., 2018) is defined by 〈X ,D,F ,A, α〉, where

• X = {x1, . . . , xn} is a set of variables;

• D = {D1, . . . , Dn} is a set of finite domains, where Di is the domain of variable xi;

• F is a set of utility functions, where each utility function Fi : Di×Dj 7→ R specifies the
utility of each combination of values of variables in its scope (i.e., xi1 , . . . , xik);3

• A = {a1, . . . , ap} is a set of agents; and

• α : X → A maps each variable to one agent.

Although the general DCOP definition allows one agent to own multiple variables as well
as the existence of k-ary constraints, with k > 2, we use a restricted definition where each
agent owns exactly one variable and that all utility functions are binary functions, where
their scopes have exactly two variables. We thus use Fij to denote the utility function
between variables xi and xj in the rest of the paper. One can transform a general DCOP to
our restricted DCOP using pre-processing techniques (Yokoo, 2001; Burke & Brown, 2006;
Bacchus, Chen, van Beek, & Walsh, 2002). A solution is a value assignment for a subset of
variables. Its utility is the evaluation of all utility functions on that solution. A solution is
complete iff it is a value assignment for all variables. The goal is to find a utility-maximal
complete solution. Finally, we assume that the messages sent between agents can be delayed
by a finite amount of time but are never lost and they are received in the same order that
they were sent.

A constraint graph visualizes a DCOP instance, where nodes in the graph correspond to
variables in the DCOP and edges connect pairs of variables appearing in the same utility
function. A pseudo-tree arrangement has the same nodes and edges as the constraint graph
and satisfies that (i) there is a subset of edges, called tree edges, that form a rooted tree and
(ii) two variables in a utility function appear in the same branch of that tree. The other

3. Feasible value assignments are assigned non-negative utilities and infeasible value assignments are as-
signed negative utilities.
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Algorithm 1: Gibbs(z1, . . . , zn)

1 for i = 1 to n do
2 z0

i ← Initialize(zi)
3 end
4 for t = 1 to T do
5 for i = 1 to n do

6 zti ← Sample(P (zi | zt1, . . . , zti−1, z
t−1
i+1 , . . . , z

t−1
n ))

7 end

8 end

edges are called backedges. Tree edges connect parent-child nodes, while backedges connect
a node with its pseudo-parents and its pseudo-children. A pseudo-tree arrangement can be
constructed using a distributed DFS algorithm (Hamadi, Bessière, & Quinqueton, 1998).
In this article, we will use Ni to refer to the set of neighbors of variable xi in the constraint
graph, Ci to refer to the set of children of variable xi in the pseudo-tree, Pi to refer to the
parent of variable xi in the pseudo-tree, and PPi to refer to the set of pseudo-parents of
variable xi in the pseudo-tree.

Figure 1(a) shows the constraint graph of a simple example DCOP with four variables
that can each take on value 0 or value 1. Figure 1(b) shows one possible pseudo-tree for
the problem, where variable x1 has one pseudo-child x4 (the dotted line is a backedge).
Figure 1(c) shows the utility function that is identical for all four functions F12, F14, F23,
and F24. For our example DCOP, a utility-maximal complete solution is x1 = x3 = x4 = 0
and x2 = 1, which has a utility of 2.

3. Background: Algorithms

In this section, we provide a brief overview of two relevant sampling-based algorithms – the
centralized Gibbs algorithm and the Distributed UCT (DUCT) algorithm.

3.1 Gibbs

The Gibbs sampling algorithm (Geman & Geman, 1984) is a Markov chain Monte Carlo
algorithm that can be used to approximate joint probability distributions. It generates
a Markov chain of samples, each of which is correlated with previous samples. Suppose
we have a joint probability distribution P (z1, z2, . . . , zn) over n variables, which we would
like to approximate. Algorithm 1 shows the pseudocode of the Gibbs algorithm, where
each variable zti represents the t-th sample of variable zi. The algorithm first initializes z0

i

to any arbitrary value of variable zi (lines 1-3). Then, it iteratively samples zti from the
conditional probability distribution assuming that all the other n−1 variables take on their
previously sampled values, respectively (lines 4-8). This process continues for a fixed number
of iterations or until convergence, that is, the joint probability distribution approximated
by the samples do not change. It is also common practice to ignore a number of samples
at the beginning as it may not accurately represent the desired distribution. Once the
joint probability distribution is found, one can easily identify a complete solution with the
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maximum likelihood. This problem is called the maximum a posteriori (MAP) estimation
problem, which is a common problem in many applications such as image processing (Besag,
1986) and bioinformatics (Yanover, Meltzer, & Weiss, 2006; Sontag, Meltzer, Globerson,
Jaakkola, & Weiss, 2008).

The Gibbs sampling algorithm is desirable as its approximated joint probability distri-
bution (formed using its samples) will converge to the true joint probability distribution at
the limit. While Gibbs cannot be used to solve DCOPs directly, we will later show how one
can map MAP estimation problems to DCOPs, and how to extend Gibbs to solve DCOPs
in a distributed manner.

3.2 Distributed UCT

The Upper Confidence Bound (UCB) (Auer et al., 2002) and UCB Applied to Trees
(UCT) (Kocsis & Szepesvári, 2006) algorithms are two Monte Carlo algorithms that have
been successfully applied to find near optimal policies in large Markov decision processes.
The Distributed UCT (DUCT) algorithm (Ottens et al., 2012, 2017) is a distributed version
of UCT that can be used to find near-optimal cost-minimal complete DCOP solutions. We
now provide a brief introduction to the algorithm and refer readers to the original arti-
cles (Ottens et al., 2012, 2017) for a more detailed treatment. Additionally, it is important
to note that DUCT was designed to solve a minimization problem, where the goal is to
find a cost-minimal complete solution. We thus describe it as such below and explain how
it can be used to solve our maximization problem in the experimental results section.

DUCT first constructs a pseudo-tree, by running a Distributed DFS algorithm (Hamadi
et al., 1998). After the pseudo-tree is constructed, each agent knows its parent, pseudo-
parents, children and pseudo-children. Each agent xi maintains the following for all possible
contexts X and values d ∈ Di:

• Its current value di.

• Its current context Xi, which is initialized to null. It is its assumption on the current
values of its ancestors.

• Its cost yi, which is initialized to ∞. It is the sum of the costs of all cost functions
between itself and its ancestors given that they take on their respective values in its
context and it takes on its current value.

• Its counter τi(X, d), which is initialized to 0. It is the number of times it has sampled
value d under context X.

• Its counter τi(X), which is initialized to 0. It is the number of times it has received
context X from its parent.

• Its cost µ̂i(X, d), which is initialized to∞. It is the smallest cost found when it sampled
d under context X so far up to the current iteration.

• Its cost µ̂i(X), which is initialized to ∞. It is the smallest cost found under context X
so far up to the current iteration.

At the start, the root agent chooses its value and sends it down in a CONTEXT message
to each of its children. When an agent receives a CONTEXT message, it too chooses its
value, appends it to the context in the CONTEXT message, and sends the appended context
down in a CONTEXT message to each of its children. Each agent xi chooses its value di
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using:

di = argmin
d∈Di

Bi(d) (1)

Bi(d) = f(δi(d), µ̂i(Xi, d), τi(Xi, d), Bc) (2)

δi(d) =
∑

〈xj ,dj〉∈Xi

Fij(d, dj) (3)

where its bound Bi(d) is initialized with a heuristic function f that balances exploration
and exploitation as well as using bounds Bc that are reported by the agent’s children.
Additionally, each agent xi increments the number of times it has chosen its current value
di under its current context Xi using:

τi(Xi, di) = τi(Xi, di) + 1 (4)

τi(Xi) = τi(Xi) + 1 (5)

This process continues until leaf agents receive CONTEXT messages and choose their re-
spective values. Then, each leaf agent calculates its cost and sends it up in a COST message
to its parent. When an agent receives a COST message from each of its children, it too
calculates its cost, which includes the costs received from its children, and sends it up to
its parent. Each agent xi calculates its costs yi, µ̂i(Xi, d) and µ̂i(Xi) using:

yi = δi(di) +
∑
xc∈Ci

yc (6)

µ̂i(Xi, di) = min{µ̂i(Xi, di), yi} (7)

µ̂i(Xi) = min{µ̂i(Xi), µ̂i(Xi, di)} (8)

This process continues until the root agent receives a COST message from each of its children
and calculates its own cost. Then, the root agent starts a new iteration, and the process
continues until all the agents terminate. An agent xi terminates if its parent has terminated
and the following condition holds:

max
d∈Di

{
µ̂i(Xi)−

[
µ̂i(Xi, d)−

√
ln 2

∆

τi(Xi, di)

]}
≤ ε (9)

where ∆ and ε are parameters of the algorithm.

4. Distributed Gibbs

While DUCT has been shown to be very promising, its memory requirement per agent is
O(D̂T ), where D̂ = maxxi Di is the largest domain size over all agents and T is the depth of
the pseudo-tree. Each agent needs to store a constant number of variables for all possible
contexts and values,4 and the number of possible contexts is exponential in the number
of ancestors. Therefore, this large memory requirement might prohibit the use of DUCT

4. This list of variables are listed in Section 3.2.
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in large problems, especially if the agents have large domain sizes as well. Therefore, we
now introduce the Sequential Distributed Gibbs (SD-Gibbs) and Parallel Distributed Gibbs
(PD-Gibbs) algorithms, which are distributed extensions of the Gibbs algorithm adapted
to solve DCOPs. Additionally, their memory requirement per agent is linear in the number
of ancestors that the agent has in the pseudo-tree.

4.1 Mapping of MAP Estimation Problems to DCOPs

Recall that the Gibbs algorithm approximates a joint probability distribution over all the
variables in a problem when only marginal distributions are available. Once the joint prob-
ability distribution is found, it finds the maximum a posteriori (MAP) solution. Gibbs can
be used to solve DCOPs if the following two conditions hold: (1) A DCOP, whose solution is
one with the maximum utility, can be mapped to a problem whose solution is one with the
maximum likelihood; and (2) A solution with the maximum utility is also a solution with the
maximum likelihood. Researchers have previously shown that both of these conditions hold
and that a DCOP can be mapped to a MAP estimation problem (Dechter, 2003; Sontag,
Globerson, & Jaakkola, 2010; Kumar, Yeoh, & Zilberstein, 2011). For completeness, we
describe it here again. Consider a MAP estimation problem on a pairwise Markov random
field (MRF).5 An MRF can be visualized by an undirected graph 〈V,E〉 and is formally
defined by:

• A set of random variables X = {xi | ∀i ∈ V }, where each random variable xi is associated
with node i ∈ V . Further, each random variable xi can be assigned a value di from a
finite domain Di.

• A set of potential functions θ = {θij(xi, xj) | ∀(i, j) ∈ E}, where each potential function
θij(xi, xj) is associated with edge (i, j) ∈ E. Let the probability P (xi = di, xj = dj) be
defined as exp(θij(xi = di, xj = dj)). For convenience, we will drop the values in the
probabilities and use P (xi, xj) to mean P (xi=di, xj =dj) from now on.

Therefore, a complete assignment x to all the random variables has the probability:

P (x) =
1

Z

∏
(i,j)∈E

exp[θij(xi, xj)] (10)

=
1

Z
exp

[ ∑
(i,j)∈E

θij(xi, xj)

]
(11)

where Z is the normalization constant. The objective of a MAP estimation problem is
to find the most probable assignment to all the variables under P (x). This objective is
equivalent to finding a complete assignment x that maximizes the function:

F (x) =
∑

(i,j)∈E

θij(xi, xj) (12)

Maximizing the function in Equation 12 is also the objective of a DCOP if each potential
function θij corresponds to utility function Fij . Therefore, if we use the Gibbs algorithm to

5. We are describing pairwise MRFs so that the mapping to binary DCOPs is clearer.
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solve a MAP estimation problem, then the complete solution found for the MAP estimation
problem is also a solution to the corresponding DCOP.

Taking our example DCOP shown in Figure 1 as an example, an optimal complete
solution x∗ of the DCOP is:

x∗ = argmax
x

(F12(x1, x2) + F14(x1, x4) + F23(x2, x3) + F24(x2, x4)) (13)

= (x1 = 0, x2 = 1, x3 = 0, x4 = 0) (14)

which is the same solution of a corresponding MAP estimation problem:

x∗ = argmax
x

P (x) (15)

= argmax
x

1

Z

∏
(i,j)∈E

exp[θij(xi, xj)] (16)

= argmax
x

1

Z
exp

[ ∑
(i,j)∈E

θij(xi, xj)

]
(17)

= argmax
x

∑
(i,j)∈E

θij(xi, xj) (18)

= argmax
x

(F12(x1, x2) + F14(x1, x4) + F23(x2, x3) + F24(x2, x4)) (19)

= (x1 = 0, x2 = 1, x3 = 0, x4 = 0) (20)

4.2 Sequential Distributed Gibbs

We now describe the Sequential Distributed Gibbs (SD-Gibbs) algorithm. Algorithm 2 shows
the pseudo-code, where each agent xi maintains the following:

• Its values di and d̂i, which are both initialized to initial value ValInit(xi). They are the
agent’s value in the current and previous iterations, respectively.

• Its best value d∗i , which is also initialized to initial value ValInit(xi). It is the agent’s
value in the best complete solution found so far. Note that each agent maintains its own
best value only and does not need to know the best values of other agents. The best
complete solution x∗ = (d∗1, . . . , d

∗
n) can then be constructed upon termination.

• Its current context Xi, which is initialized with the tuples of all the neighbors and their
initial values. It is the agent’s assumption on the current values of the agent’s neighbors.

• Its best-response value d̄i, which is also initialized to initial value ValInit(xi). It is the
agent’s value that maximizes its local solution quality (i.e., the sum of utilities over all
its constraints) under the assumption that its neighbors take on values according to its
current context Xi.

• Its current best-response context X̄i, which is also initialized with the tuples of all the
neighbors and their initial values. However, it is the agent’s assumption on the best-
response values, instead of the current values, of the agent’s neighbors.

• Its time index ti, which is initialized to 0. It is the number of iterations the agent has
sampled.
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Algorithm 2: Sequential Distributed Gibbs()

1 Create pseudo-tree
2 Each agent xi calls Initialize()

Procedure Initialize()

3 di ← d̂i ← d∗i ← d̄i ← ValInit(xi)
4 Xi ← X̄i ← {(xj , ValInit(xj)) | xj ∈ Ni}
5 ti ← t∗i ← t̄∗i ← 0
6 ∆i ← ∆̄i ← 0
7 if xi is root then
8 δ ← δ∗ ← δ̄ ← 0
9 Sample()

10 end

• Its time indices t∗i and t̄∗i , which are both initialized to 0. They are the iteration where
the best non-best-response solution and the best best-response solution is found, respec-
tively. Best-response solutions are solutions constructed from the best-response values
d̄i of all agents xi. Non-best-response solutions are the solutions constructed from the
(regular) values di of all agents xi. max{t∗i , t̄∗i } is the iteration where the best complete
solution is found.

• Its delta value ∆i, which is initialized to 0. It is the difference in its local solution quality
between the solution in the current iteration (i.e., the agent taking on value di and all
its neighbors take on values according to its context Xi) and the solution in the previous
iteration (i.e., the agent taking on value d̂i and all its neighbors take on values according
to its context Xi).

• Its delta value ∆̄i, which is initialized to 0. It is the difference in local solution quality
between the best-response solution in the current iteration (i.e., the agent taking on value
d̄i and all its neighbors take on values according to its context X̄i) and the solution in
the previous iteration (i.e., the agent taking on value d̂i and all its neighbors take on
values according to its context X̄i).

Additionally, the root agent maintains the following: The values δ, δ̄, and δ∗, which are
all initialized to 0. It is the shifted utility of the current complete solution, the best-response
solution, and the best complete solution found so far, respectively. They are shifted by the
utility of the initial complete solution, i.e., the solution where all variables xi are assigned
ValInit(xi). For example, if the utility of the initial complete solution is 10 and δ is 5, then
the utility of the current solution is 15.

The algorithm starts by constructing a pseudo-tree (line 1) and having each agent ini-
tialize its variables to their default values (lines 2-8). The root then starts by sampling,
that is, choosing its value di based on the probability:

P (xi | xj ∈ X \ {xi}) = P (xi | xj ∈ Ni)
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Procedure Sample()

11 ti ← ti + 1

12 d̂i ← di
13 di ← Sample based on Equation 21
14 d̄i ← argmaxd′i∈Di

∑
〈xj ,d̄j〉∈X̄i

Fij(d
′
i, d̄j)

15 ∆i ←
∑
〈xj ,dj〉∈Xi

[
Fij(di, dj)− Fij(d̂i, dj)

]
16 ∆̄i ←

∑
〈xj ,d̄j〉∈X̄i

[
Fij(d̄i, d̄j)− Fij(d̂i, d̄j)

]
17 Send VALUE (xi, di, d̄i, t

∗
i , t̄
∗
i ) to each xj ∈ Ni

Procedure When Received VALUE(xs, ds, d̄s, t
∗
s, t̄
∗
s)

18 Update 〈xs, d′s〉 ∈ Xi with (xs, ds)
19 if xs ∈ PPi ∪ {Pi} then
20 Update 〈xs, d′s〉 ∈ X̄i with (xs, d̄s)
21 else
22 Update 〈xs, d′s〉 ∈ X̄i with (xs, ds)
23 end
24 if xs = Pi then
25 if t̄∗s ≥ t∗s and t̄∗s > max{t∗i , t̄∗i } then
26 d∗i ← d̄i
27 t̄∗i ← t̄∗s
28 else if t∗s ≥ t̄∗s and t∗s > max{t∗i , t̄∗i } then
29 d∗i ← di
30 t∗i ← t∗s
31 end
32 Sample()
33 if xi is a leaf then
34 Send BACKTRACK (xi,∆i, ∆̄i) to Pi
35 end

36 end

=
1

Z

∏
〈xj ,dj〉∈Xi

exp[Fij(di, dj)]

=
1

Z
exp

[ ∑
〈xj ,dj〉∈Xi

Fij(di, dj)

]
(21)

where Z is the normalization constant (lines 9 and 13). It then computes its best-response
value d̄i (line 14) and sends its current and best-response values di and d̄i in a VALUE
message to each of its neighbors (line 17).

When an agent receives a VALUE message, it updates the value of the sender in its
current contexts Xi and X̄i (lines 18-23). If the message is from its parent, then it too
samples and sends its current and best-response values in a VALUE message to each of its
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Procedure When Received BACKTRACK(xs,∆s, ∆̄s)

37 ∆i ← ∆i + ∆s

38 ∆̄i ← ∆̄i + ∆̄s

39 if Received BACKTRACK messages from all children in this iteration then
40 Send BACKTRACK (xi,∆i, ∆̄i) to Pi
41 if xi is root then
42 δ̄ ← δ + ∆̄i

43 δ ← δ + ∆i

44 if δ ≥ δ̄ and δ > δ∗ then
45 δ∗ ← δ
46 d∗i ← di
47 t∗i ← ti
48 else if δ̄ ≥ δ and δ̄ > δ∗ then
49 δ∗ ← δ̄
50 d∗i ← d̄i
51 t̄∗i ← ti
52 end
53 Sample()

54 end

55 end

neighbors (line 32). This process continues until all the leaf agents sample. Each leaf agent
then sends a BACKTRACK message to its parent (lines 33-35). When an agent receives a
BACKTRACK message from each child (line 39), it too sends a BACKTRACK message to
its parent (line 40). This process continues until the root agent receives a BACKTRACK
message from each child, which concludes one iteration.

We now describe how the agents identify if they have found a better solution than the
best one found thus far in a decentralized manner without having to know the values of
every other agent in the problem. In order to do so, the agents use delta variables ∆i, ∆̄i,
δ, δ̄, and δ∗, where the upper case delta variables are maintained by each agent and the
lower case delta variables are maintained only by the root agent. The two upper case delta
variables are sent up the pseudo-tree in BACKTRACK messages (line 40).

After sampling, each agent xi calculates the difference in its local solution quality be-
tween the current and previous solutions

∑
〈xj ,dj〉∈Xi

[
Fij(di, dj)−Fij(d̂i, dj)

]
and stores that

value in ∆i (line 15). It is a local difference because it takes into account utility functions
that involve the agent only. Similarly, the agent also calculates the difference between the
current best-response solution and the previous solution

∑
〈xj ,d̄j〉∈X̄i

[
Fij(d̄i, d̄j)−Fij(d̂i, d̄j)

]
and stores that value in ∆̄i (line 16).

When an agent xi receives a BACKTRACK message from its child xs, it adds its child’s
delta variables ∆s and ∆̄s to its own delta variables ∆i and ∆̄i, respectively (lines 37-38).
Thus, ∆i and ∆̄i can be seen as a sum of local differences from the leaf agents in its subtree
all the way up to the current agent. The delta variables ∆i and ∆̄i of the root agent are
thus the differences in the global solution quality (see Lemmas 2 and 3).
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In each iteration, the root agent accumulates the differences in global solution quality ∆i

and stores this accumulated value in delta variable δ (line 43). Since δ is initially initialized
to 0 (line 8), that means that its value is the difference in global solution quality between
the current solution and the first initial complete solution (i.e., each variable xj takes on
value ValInit(xj)). Similarly, the root agent also computes the delta value δ̄, which is the
same as δ except that it uses the best-response solution instead of the current solution in
the current iteration (line 42).

If δ is greater than both δ̄ and the maximum difference δ∗, which means that the current
solution is better than both the best-response solution and the best solution found so far,
then the root agent updates the maximum difference δ∗ to δ and its best value d∗i to its
current value di (lines 44-46). Similarly, if δ̄ is greater than both δ and the maximum
difference δ∗, which means that the best-response solution is better than both the current
solution and the best solution found so far, then the root agent updates the maximum
difference δ∗ to δ̄ and its best value d∗i to its best-response value d̄i (lines 48-50).

After finding a better solution, the root agent needs to inform other agents to update
their respective best values. There are the following two cases:

• Case 1: δ ≥ δ̄. The root agent needs to inform the other agents to update their best
values to their current values. It does so by setting its t∗i index to the current iteration
(line 47) and sends this information down to its children in VALUE messages (line 17).
When an agent xi receives a VALUE message from its parent, it updates its best value
d∗i to its current value di (lines 28-29), sets its t∗i index to the received t∗s index (line 30),
and sends this information down to its children in VALUE messages (line 32 and 17).
This process continues until all agents update their best values.

• Case 2: δ̄ ≥ δ. This case is identical to case 1 except that the agents need to update
their best values to their best-response values. Instead of updating its t∗i index, the
root agent updates its t̄∗i index instead (line 51). When an agent xi receives a VALUE
message from its parent, instead of updating its best value d∗i to its current value, it
updates it to its best-response value d̄i (lines 25-26). Additionally, instead of updating
its t∗i index, it sets its t̄∗i index to the received t̄∗s. All other processes are identical to
case 1.

Therefore, when a better solution is found, all agents in the SD-Gibbs algorithm update
their best values by the end of the next iteration. The algorithm can either terminate after
a given number of iterations or when no better solution is found for a given number of
consecutive iterations.6

4.2.1 Example Partial Trace

We now describe one possible partial trace of SD-Gibbs on our example DCOP with the
pseudo-tree shown in Figure 1. Table 1 shows the trace of the update of all variables of all
agents. References to line numbers are with respect to the pseudocode shown in Algorithm 2
and its subsequent procedures.

6. One can slightly optimize the algorithm by having the agents (1) send their current values in BACK-
TRACK messages instead of VALUE messages to their parents; and (2) send smaller VALUE messages,
which do not contain time indices, to all pseudo-children. We describe the unoptimized version here for
ease of understanding.
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Itera- Iteration 1 Iteration 2
. . .

tion 0 1 2 3 4 5 1 2 3 4 5

X1 〈x2, 0〉 〈x2, 0〉 〈x2, 0〉 〈x2, 1〉 〈x2, 1〉 〈x2, 1〉 〈x2, 1〉 〈x2, 1〉 〈x2, 1〉 〈x2, 1〉 〈x2, 1〉 . . .
〈x4, 0〉 〈x4, 0〉 〈x4, 0〉 〈x4, 0〉 〈x4, 1〉 〈x4, 1〉 〈x4, 1〉 〈x4, 1〉 〈x4, 1〉 〈x4, 1〉 〈x4, 1〉 . . .

X̄1 〈x2, 0〉 〈x2, 0〉 〈x2, 0〉 〈x2, 1〉 〈x2, 1〉 〈x2, 1〉 〈x2, 1〉 〈x2, 1〉 〈x2, 1〉 〈x2, 1〉 〈x2, 1〉 . . .
〈x4, 0〉 〈x4, 0〉 〈x4, 0〉 〈x4, 0〉 〈x4, 0〉 〈x4, 0〉 〈x4, 0〉 〈x4, 0〉 〈x4, 0〉 〈x4, 0〉 〈x4, 0〉 . . .

t1 0 1 1 1 1 1 2 2 2 2 2 . . .

d̂1 0 0 0 0 0 0 0 0 0 0 0 . . .
d1 0 0 0 0 0 0 0 0 0 0 0 . . .
d̄1 0 1 1 1 1 1 0 0 0 0 0 . . .
d∗1 0 0 0 0 0 1 1 1 1 1 0 . . .
∆1 0 0 0 0 0 2 0 0 0 0 3 . . .
∆̄1 0 4 4 4 4 5 0 0 0 0 4 . . .
δ 0 0 0 0 0 2 2 2 2 2 5 . . .
δ̄ 0 0 0 0 0 5 5 5 5 5 6 . . .
t∗1 0 0 0 0 0 0 0 0 0 0 0 . . .
t̄∗1 0 0 0 0 0 1 1 1 1 1 2 . . .

X2 〈x1, 0〉 〈x1, 0〉 〈x1, 0〉 〈x1, 0〉 〈x1, 0〉 〈x1, 0〉 〈x1, 0〉 〈x1, 0〉 〈x1, 0〉 〈x1, 0〉 〈x1, 0〉 . . .
〈x3, 0〉 〈x3, 0〉 〈x3, 0〉 〈x3, 0〉 〈x3, 1〉 〈x3, 1〉 〈x3, 1〉 〈x3, 1〉 〈x3, 1〉 〈x3, 0〉 〈x3, 0〉 . . .
〈x4, 0〉 〈x4, 0〉 〈x4, 0〉 〈x4, 0〉 〈x4, 1〉 〈x4, 1〉 〈x4, 1〉 〈x4, 1〉 〈x4, 1〉 〈x4, 1〉 〈x4, 1〉 . . .

X̄2 〈x1, 0〉 〈x1, 0〉 〈x1, 1〉 〈x1, 1〉 〈x1, 1〉 〈x1, 1〉 〈x1, 1〉 〈x1, 0〉 〈x1, 0〉 〈x1, 0〉 〈x1, 0〉 . . .
〈x3, 0〉 〈x3, 0〉 〈x3, 0〉 〈x3, 0〉 〈x3, 0〉 〈x3, 0〉 〈x3, 0〉 〈x3, 0〉 〈x3, 0〉 〈x3, 0〉 〈x3, 0〉 . . .
〈x4, 0〉 〈x4, 0〉 〈x4, 0〉 〈x4, 0〉 〈x4, 0〉 〈x4, 0〉 〈x4, 0〉 〈x4, 0〉 〈x4, 0〉 〈x4, 0〉 〈x4, 0〉 . . .

t2 0 0 1 1 1 1 1 2 2 2 2 . . .

d̂2 0 0 0 0 0 0 0 1 1 1 1 . . .
d2 0 0 1 1 1 1 1 1 1 1 1 . . .
d̄2 0 0 1 1 1 1 1 1 1 1 1 . . .
d∗2 0 0 0 0 0 0 0 1 1 1 1 . . .
∆2 0 0 6 6 2 2 2 0 0 3 3 . . .
∆̄2 0 0 1 1 1 1 1 0 0 4 4 . . .
t∗2 0 0 0 0 0 0 0 0 0 0 0 . . .
t̄∗2 0 0 0 0 0 0 0 1 1 1 1 . . .

X3 〈x2, 0〉 〈x2, 0〉 〈x2, 0〉 〈x2, 1〉 〈x2, 1〉 〈x2, 1〉 〈x2, 1〉 〈x2, 1〉 〈x2, 1〉 〈x2, 1〉 〈x2, 1〉 . . .
X̄3 〈x2, 0〉 〈x2, 0〉 〈x2, 0〉 〈x2, 1〉 〈x2, 1〉 〈x2, 1〉 〈x2, 1〉 〈x2, 1〉 〈x2, 1〉 〈x2, 1〉 〈x2, 1〉 . . .
t3 0 0 0 1 1 1 1 1 2 2 2 . . .

d̂3 0 0 0 0 0 0 0 0 1 1 1 . . .
d3 0 0 0 1 1 1 1 1 0 0 0 . . .
d̄3 0 0 0 0 0 0 0 0 0 0 0 . . .
d∗3 0 0 0 0 0 0 0 0 0 0 0 . . .
∆3 0 0 0 -3 -3 -3 -3 -3 3 3 3 . . .
∆̄3 0 0 0 0 0 0 0 0 3 3 3 . . .
t∗3 0 0 0 0 0 0 0 0 0 0 0 . . .
t̄∗3 0 0 0 0 0 0 0 0 1 1 1 . . .

X4 〈x1, 0〉 〈x1, 0〉 〈x1, 0〉 〈x1, 0〉 〈x1, 0〉 〈x1, 0〉 〈x1, 0〉 〈x1, 0〉 〈x1, 0〉 〈x1, 0〉 〈x1, 0〉 . . .
〈x2, 0〉 〈x2, 0〉 〈x2, 0〉 〈x2, 1〉 〈x2, 1〉 〈x2, 1〉 〈x2, 1〉 〈x2, 1〉 〈x2, 1〉 〈x2, 1〉 〈x2, 1〉 . . .

X̄4 〈x1, 0〉 〈x1, 0〉 〈x1, 1〉 〈x1, 1〉 〈x1, 1〉 〈x1, 1〉 〈x1, 1〉 〈x1, 0〉 〈x1, 0〉 〈x1, 0〉 〈x1, 0〉 . . .
〈x2, 0〉 〈x2, 0〉 〈x2, 0〉 〈x2, 1〉 〈x2, 1〉 〈x2, 1〉 〈x2, 1〉 〈x2, 1〉 〈x2, 1〉 〈x2, 1〉 〈x2, 1〉 . . .

t4 0 0 0 1 1 1 1 1 2 2 2 . . .

d̂4 0 0 0 0 0 0 0 0 1 1 1 . . .
d4 0 0 0 1 1 1 1 1 1 1 1 . . .
d̄4 0 0 0 0 0 0 0 0 0 0 0 . . .
d∗4 0 0 0 0 0 0 0 0 0 0 0 . . .
∆4 0 0 0 -1 -1 -1 -1 -1 0 0 0 . . .
∆̄4 0 0 0 0 0 0 0 0 1 1 1 . . .
t∗4 0 0 0 0 0 0 0 0 0 0 0 . . .
t̄∗4 0 0 0 0 0 0 0 0 1 1 1 . . .

Table 1: Partial Trace of the SD-Gibbs Variable Updates
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We describe the trace in terms of iterations, where in each iteration (except for the first),
the agents complete a single VALUE phase that propagates information from the root to
the leaf agents and a single BACKTRACK phase that propagates information from the leaf
agents back to the root. Each iteration is then divided into five sequential steps, where in
each step, the agents process incoming messages (if any), perform local computations and
updates based on the information received in the incoming messages, and send outgoing
messages to their neighbors.

Iteration 0: All the agents initially create a pseudo-tree, for example, by running a
Distributed DFS algorithm (Hamadi et al., 1998) (line 1). After the pseudo-tree is con-
structed, each agent xi initializes all its values to ValInit(xi) (line 3), all its contexts to
{(xj , ValInit(xj)) | xj ∈ Ni} (line 4), all its time indices to 0 (line 5), and all its delta
values to 0 (line 6). In this trace, assume that ValInit(xj) = 0 for all agents xj . Then, the
root starts the next iteration.

Iteration 1: As mentioned above, to ease readability, we break down the actions of the
agents in this iteration into five sequential steps:

• Step 1:

• Agent x1: After initializing the initialization phase in Iteration 0, the root agent
calls the Sample procedure (line 9), which updates its previous value d̂1 to its
current value d1 = ValInit(x1) = 0 (line 12) and samples its new value d1 based
on Equation 21 (line 13). Assume that the new sampled value d1 = 0. Thus, the
agent’s value did not change in this iteration. The agent also computes its best-
response value d̄1 = 1 (line 14).

The agent then computes its delta values ∆1 and ∆̄1 (lines 15-16). The value ∆1

is the difference in the utility of the agent between its solution in the previous and
current iterations. Since the context X1 and value d1 of the agent is the same in
both iterations, the difference is ∆1 = 0. The value ∆̄1 is the difference in the
utility of the agent between its best-response solution in the previous and current
iterations. As the agent changed its best-response value from 0 to 1, the difference
is ∆̄1 = [F12(1, 0)− F12(0, 0)] + [F14(1, 0)− F14(0, 0)] = [1− (−1)] + [1− (−1)] = 4.

Finally, the agent sends the following messages (line 17):

– a VALUE message (x1, d1 = 0, d̄1 = 1, t∗1 = 0, t̄∗1 = 0) to its neighbor x2; and

– a VALUE message (x1, d1 = 0, d̄1 = 1, t∗1 = 0, t̄∗1 = 0) to its neighbor x4.

• Agents x2, x3, and x4: The agents are idle in this step.

• Step 2:

• Agents x1 and x3: The agents are idle in this step.

• Agent x2: After receiving a VALUE message from its parent x1, agent x2 updates
the current value of its parent in its context X2 with the received current value
(line 18) and updates the best-response value of its parent in its context X̄2 with the
received best-response value (line 20).

The agent then calls the Sample procedure (line 32), which updates its previous
value d̂2 to its current value d2 = ValInit(x2) = 0 (line 12) and samples its new
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value d2 based on Equation 21 (line 13). Assume that the new sampled value d2 = 1.
Thus, the agent’s value changed in this iteration. The agent also computes its best-
response value d̄2 = 1 (line 14), which is coincidentally the same value as its current
value d2 = 1. Note that the computation of the agent’s current value is based on
context X2 while the computation of the agent’s best-response value is based on
context X̄2, and the value of parent x1 is different in the two contexts – it is d1 = 0
in X2 and d̄1 = 1 in X̄2.

The agent then computes the delta values ∆2 and ∆̄2 (lines 15-16), where ∆2 =
[F12(0, 1)− F12(0, 0)] + [F23(1, 0)− F23(0, 0)] + [F24(1, 0)− F24(0, 0)] = [1− (−1)] +
[1− (−1)] + [1− (−1)] = 6 and ∆̄2 = [F12(1, 1)−F12(1, 0)] + [F23(1, 0)−F23(0, 0)] +
[F24(1, 0)− F24(0, 0)] = [−2− 1] + [1− (−1)] + [1− (−1)] = 1.

Finally, the agent sends the following messages (line 17):

– a VALUE message (x2, d2 = 1, d̄2 = 1, t∗2 = 0, t̄∗2 = 0) to its neighbor x1;

– a VALUE message (x2, d2 = 1, d̄2 = 1, t∗2 = 0, t̄∗2 = 0) to its neighbor x3; and

– a VALUE message (x2, d2 = 1, d̄2 = 1, t∗2 = 0, t̄∗2 = 0) to its neighbor x4.

• Agent x4: After receiving a VALUE message from its pseudo-parent x1, agent x4

updates the current value of its pseudo-parent in its context X4 with the received
current value (line 18) and updates the best-response value of its pseudo-parent in
its context X̄4 with the received best-response value (line 20).

• Step 3:

• Agent x1: After receiving a VALUE message from its child x2, agent x1 updates the
current and best-response values of its child in its contexts X1 and X̄1, respectively
(lines 18 and 22).

• Agent x2: The agent is idle in this step.

• Agent x3: After receiving a VALUE message from its parent x2, agent x3 updates
the current and best-response values of its parent in its contexts X3 and X̄3, respec-
tively (lines 18 and 20).

The agent then calls the Sample procedure (line 32), which updates its previous
value d̂3 to its current value d3 = ValInit(x3) = 0 and samples its new value d3

(lines 12-13). Assume that the new sampled value d3 = 1. The agent also computes
its best-response value d̄3 = 0 (line 14). The agent then computes the delta values
∆3 and ∆̄3 (lines 15-16), where ∆3 = F23(1, 1) − F23(1, 0) = −2 − 1 = −3 and
∆̄3 = F23(1, 0)− F23(1, 0) = 1− 1 = 0.

Finally, the agent sends the following messages (lines 17 and 34):

– a VALUE message (x3, d3 = 1, d̄3 = 0, t∗3 = 0, t̄∗3 = 0) to its neighbor x2; and

– a BACKTRACK message (x3,∆3 = −3, ∆̄3 = 0) to its parent x2.

• Agent x4: After receiving a VALUE message from its parent x2, agent x4 updates
the current and best-response values of its parent in its contexts X4 and X̄4, respec-
tively (lines 18 and 20).

The agent then calls the Sample procedure (line 32), which updates its previous
value d̂4 to its current value d4 = ValInit(x4) = 0 and samples its new value d4
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(lines 12-13). Assume that the new sampled value d4 = 1. The agent also computes
its best-response value d̄4 = 0 (line 14). The agent then computes the delta values
∆4 and ∆̄4 (lines 15-16), where ∆4 = [F14(0, 1)−F14(0, 0)] + [F24(1, 1)−F24(1, 0)] =
[1− (−1)] + [−2− 1] = −1 and ∆̄4 = [F14(1, 0)−F14(1, 0)] + [F24(1, 0)−F24(1, 0)] =
[1− 1] + [1− 1] = 0.

Finally, the agent sends the following messages (lines 17 and 34):

– a VALUE message (x4, d4 = 1, d̄4 = 0, t∗4 = 0, t̄∗4 = 0) to its neighbor x1;

– a VALUE message (x4, d4 = 1, d̄4 = 0, t∗4 = 0, t̄∗4 = 0) to its neighbor x2; and

– a BACKTRACK message (x4,∆4 = −1, ∆̄4 = 0) to its parent x2.

• Step 4:

• Agent x1: After receiving a VALUE message from its pseudo-child x4, agent x1

updates the current and best-response values of its pseudo-child in its contexts X1

and X̄1, respectively (lines 18 and 22).

• Agent x2: After receiving a VALUE message from each of its children x3 and x4,
agent x2 updates the current and best-response values of its children in its contexts
X2 and X̄2, respectively (lines 18 and 22). After receiving a BACKTRACK message
from each of its children x3 and x4, agent x2 updates its delta values ∆2 = ∆2 +∆3 +
∆4 = 6 + (−3) + (−1) = 2 and ∆̄2 = ∆̄2 + ∆̄3 + ∆̄4 = 1 + 0 + 0 = 1 (lines 37-38).7

The agent then sends the following message (line 40):

– a BACKTRACK message (x2,∆2 = 2, ∆̄2 = 1) to its parent x1.

• Agents x3 and x4: The agents are idle in this step.

• Step 5:

• Agent x1: After receiving a BACKTRACK message from its child x2, agent x1

updates its delta values ∆1 = ∆1 + ∆2 = 0 + 2 = 2 and ∆̄1 = ∆̄1 + ∆̄2 = 4 + 1 = 5
(lines 37-38).

As it is the root, it also updates its delta values δ̄ and δ (lines 42-43), which are the
shifted utility8 of the best-response solution and current solution, respectively. The
updated values are δ̄ = δ+ ∆̄1 = 0 + 5 = 5 and δ = δ+ ∆1 = 0 + 2 = 2. As δ̄ > δ, it
means that the best-response solution has a larger utility than the current solution.9

Further, as δ̄ > δ∗, indicating that the best-response solution is better than the best
solution found so far,10 the agent updates δ∗ = δ̄, its best value d∗1 = d̄1 to its best-
response value, and the iteration that it found its best best-response solution t̄∗1 = t1
to the current iteration (lines 48-51). The information that the best solution found

7. These updates are actually performed sequentially as each BACKTRACK message is received, but we
described them as being aggregated together for brevity.

8. They are shifted by the utility of the initial complete solution, i.e., the solution where all variables xi
are assigned ValInit(xi).

9. The (unshifted) utility of the best-response and current solutions is 1 and -2, respectively. They are
shifted by the utility of the initial solution, which is -4, to get the δ̄ and δ values. In other words,
5 = 1− (−4) and 2 = −2− (−4).

10. δ∗ reflects the shifted utility of the best solution found so far.
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so far is the best-response solution found in this iteration will be propagated to the
other agents in the next iteration.

• Agents x2, x3, and x4: The agents are idle in this step.

Iteration 2: In this iteration, all the agents also execute many of the same operations
as in the previous iteration, i.e., they all sample their new values di; compute their best-
response values d̄i; compute their delta values ∆i and ∆̄i based on their current and best-
response values; and update their contextsXi and X̄i based on the current and best-response
values received from their neighbors. Therefore, we will abbreviate the description of these
procedures. Instead, we will focus on how the agents identify that their best solution found
so far is the best-response solution found in the previous iteration.

• Step 1:

• Agent x1: The root agent starts the iteration by sampling its current value d1 = 0;
computes its best-response value d̄1 = 0; and computes its delta values ∆1 = ∆̄1 = 0
(lines 13-16). Finally, the agent sends the following messages (line 17):

– a VALUE message (x1, d1 = 0, d̄1 = 0, t∗1 = 0, t̄∗1 = 1) to its neighbor x2; and

– a VALUE message (x1, d1 = 0, d̄1 = 0, t∗1 = 0, t̄∗1 = 1) to its neighbor x4.

• Agents x2, x3, and x4: The agents are idle in this step.

• Step 2:

• Agents x1 and x3: The agents are idle in this step.

• Agent x2: After receiving a VALUE message from its parent x1, agent x2 updates
its contexts X2 and X̄2 (lines 18 and 20). The agent then checks if either of the
conditions on lines 25 and 28 is true. These conditions indicate whether the root
agent identified that the agents collectively found a better solution. If the condition
on line 25 is true, then it means that the best-response solution found in iteration
t̄∗1 is the best solution found so far. Similarly, if the condition on line 28 is true,
then it means that the current solution found in iteration t∗1 is the best solution
found so far. In this trace, the condition on line 25 is true since 1 = t̄∗1 ≥ t∗1 = 0
and 1 = t̄1 > max{t∗2, t̄∗2} = max{0, 0} = 0. Therefore, the agent updates its best
value d∗2 = d̄2 = 1 to its best-response value in the previous iteration (line 26) and
updates the iteration that it found that value t̄∗2 = t̄∗1 = 1 to the iteration by its
parent (line 27).

The agent then samples its current value d2 = 1; computes its best-response value
d̄2 = 1; and computes its delta values ∆2 = 0 = ∆̄2 = 0 (lines 13-16). Finally, the
agent sends the following messages (line 17):

– a VALUE message (x2, d2 = 1, d̄2 = 1, t∗2 = 0, t̄∗2 = 1) to its neighbor x1;

– a VALUE message (x2, d2 = 1, d̄2 = 1, t∗2 = 0, t̄∗2 = 1) to its neighbor x3; and

– a VALUE message (x2, d2 = 1, d̄2 = 1, t∗2 = 0, t̄∗2 = 1) to its neighbor x4.

• Agent x4: After receiving a VALUE message from its pseudo-parent x1, agent x4

updates its contexts X4 and X̄4 (lines 18 and 20).

721



Nguyen, Yeoh, Lau, & Zivan

• Step 3:

• Agent x1: After receiving a VALUE message from its child x2, agent x1 updates its
contexts X1 and X̄1 (lines 18 and 22).

• Agent x2: The agent is idle in this step.

• Agent x3: After receiving a VALUE message from its parent x2, agent x3 updates
its contexts X3 and X̄3 (lines 18 and 20). And since the condition on line 25 is true
– 1 = t̄∗2 ≥ t∗2 = 0 and 1 = t̄2 > max{t∗3, t̄∗3} = max{0, 0} = 0 – the agent updates its
best value d∗3 = d̄3 = 0 to its best-response value in the previous iteration (line 26)
and updates the iteration that it found that value t̄∗3 = t̄∗2 = 1 to the iteration by its
parent (line 27).

The agent then samples its current value d3 = 0; computes its best-response value
d̄3 = 0; and computes its delta values ∆3 = ∆̄3 = [F23(1, 0)−F23(1, 1)] = 1−(−2) = 3
(lines 13-16). Finally, the agent sends the following messages (lines 17 and 34):

– a VALUE message (x3, d3 = 0, d̄3 = 0, t∗3 = 0, t̄∗3 = 1) to its neighbor x2; and

– a BACKTRACK message (x3,∆3 = 3, ∆̄3 = 3) to its parent x2.

• Agent x4: After receiving a VALUE message from its parent x2, agent x4 updates
its contexts X4 and X̄4 (lines 18 and 20). And since the condition on line 25 is true,
the agent updates its best value d∗4 = d̄4 = 0 to its best-response value in the previous
iteration (line 26) and updates the iteration that it found that value t̄∗4 = t̄∗2 = 1 to
the iteration by its parent (line 27).

The agent then samples its current value d4 = 1; computes its best-response value
d̄4 = 0; and computes its delta values ∆4 = 0 and ∆̄4 = 1 (lines 13-16). Finally, the
agent sends the following messages (lines 17 and 34):

– a VALUE message (x4, d4 = 1, d̄4 = 0, t∗4 = 0, t̄∗4 = 1) to its neighbor x1;

– a VALUE message (x4, d4 = 1, d̄4 = 0, t∗4 = 0, t̄∗4 = 1) to its neighbor x2; and

– a BACKTRACK message (x4,∆4 = 0, ∆̄4 = 1) to its parent x2.

• Steps 4–5: At the end of Step 3, all the agents updated their best values d∗i to
their best-response values in the previous iteration since that is the best solution
found so far. In Steps 4 and 5, the operations of the agents are very similar to
their operations in Steps 4 and 5 of the previous iteration, except that some of the
current, best-response, and delta values may have changed. The key difference is
that the root agent will realize that the best-response solution of this iteration is
better than the best solution found so far (it is actually an optimal solution), and
this information will be propagated to the other agents in the next iteration.

Subsequent Iterations: In the third and subsequent iterations, the operations of the
agents are very similar to their operations in the previous iteration, except that some of
the current, best-response, and delta values may have changed. The agents will continue to
iteratively seek better solutions until their termination condition is reached (e.g., they have
reached a time out or a maximum number of iterations).

4.2.2 Theoretical Properties

Like Gibbs, the SD-Gibbs algorithm also samples the values sequentially and samples them
based on the same equation (Equation 21). The main difference is that Gibbs samples down
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a pseudo-chain (a pseudo-tree without sibling subtrees), while SD-Gibbs samples sibling
subtrees in parallel. However, this difference only speeds up the sampling process and does
not affect the correctness of the algorithm since agents in sibling subtrees are conditionally
independent of each other given the values of their common ancestors. Thus, we will show
several properties that hold for centralized Gibbs and, thus, also hold for SD-Gibbs.

Gibbs can be viewed as a variant of the simulated annealing algorithm with a fixed
temperature. Therefore, our analysis below follows the analysis of the simulated annealing
algorithm (Rajasekaran, 2000).

Lemma 1. A lower bound on the probability for an agent xi choosing its value d∗i in an
optimal solution is p∗i :

p∗i = min
Xi

exp

[ ∑
〈xj ,dj〉∈Xi

Fij(d
∗
i , dj)

]
∑
d′i∈Di

exp

[ ∑
〈xj ,dj〉∈Xi

Fij(d′i, dj)

] (22)

Proof. Given a particular context Xi of an agent xi, the probability of it choosing d∗i is:
exp
[∑

〈xj,dj〉∈Xi
Fij(d∗i ,dj)

]
∑

d′
i
∈Di

exp
[∑

〈xj,dj〉∈Xi
Fij(d′i,dj)

] according to Equation 21. Therefore, the smallest of these

probabilities across all possible contexts must be a lower bound on the probability of the
agent choosing d∗i .

Theorem 1. SD-Gibbs converges within k iterations with at least probability 1− (1− p)k,
where p =

∏n
i=1 p

∗
i and p∗i is as defined in Lemma 1.

Proof. At any sampling step, each agent xi chooses its optimal value d∗i with probability
at least p∗i (Lemma 1). Therefore, the joint probability for all agents to collectively choose
an optimal solution (i.e., they all choose their respective optimal values) from any current
solution is at least p =

∏n
i=1 p

∗
i .

As the probability to choose an optimal solution in each iteration is at least p, the
cumulative probability distribution to choose an optimal solution in k iterations is at least
the cumulative distribution to have one success in k iterations when generating Bernoulli
trials with probability p at each step. Therefore, the cumulative probability distribution of
a geometric distribution with success probability p, which is 1− (1− p)k, is a lower bound
on the cumulative probability distribution of SD-Gibbs to find an optimal solution in k
iterations.

Corollary 1. The probability that SD-Gibbs converges to an optimal solution approaches 1
as its number of iterations approaches infinity.

Lemma 2. In each iteration, after the root agent receives a BACKTRACK message from
each of its children and updates its delta variable ∆i, that updated value is the difference in
solution quality between the current solution and the previous solution.
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Proof. The accumulated value of the root agent’s delta variable includes the evaluation of
Fij(di, dj)−Fij(d̂i, dj) by each agent xi for all utility functions with its neighbors xj , where
dj is the value of xj in context Xi (line 15). Thus, that value is accumulated twice – once by
each agent involved in the utility function. Let the two agents be agents xp and xc, where
agent xp is a parent or pseudo-parent of agent xc. Also, let t be the current iteration and dti
be the value of agent xi in iteration t. Then, the contribution of the two agents combined
is:

Fpc(dp, dc | 〈xc, dc〉 ∈ Xp)− Fpc(d̂p, dc | 〈xc, dc〉 ∈ Xp)

+ Fpc(dp, dc | 〈xp, dp〉 ∈ Xc)− Fpc(dp, d̂c | 〈xp, dp〉 ∈ Xc)

= Fpc(d
t
p, d

t−1
c )− Fpc(dt−1

p , dt−1
c ) + Fpc(d

t
p, d

t
c)− Fpc(dtp, dt−1

c )

= Fpc(d
t
p, d

t
c)− Fpc(dt−1

p , dt−1
c )

which is the difference in utility of that function between the current solution and the
previous solution. The sum of this difference over all utility functions is thus the difference
in solution quality between the current solution and the previous solution.

Lemma 3. In each iteration, after the root agent receives a BACKTRACK message from
each of its children and updates its delta variable ∆̄i, that updated value is the difference in
solution quality between the current best-response solution and the previous solution.

Proof. The accumulated value of the root agent’s delta variable includes the evaluation of
Fij(d̄i, d̄j)−Fij(d̂i, d̄j) by each agent xi for all utility functions with its neighbors xj , where
d̄j is the value of xj in context X̄i (line 16). Thus, that value is accumulated twice – once by
each agent involved in the utility function. Let the two agents be agents xp and xc, where
agent xp is a parent or pseudo-parent of agent xc. Also, let t be the current iteration, dti be
the value of agent xi in iteration t, and d̄ti be the best-response value of agent xi in iteration
t. Then, the contribution of the two agents combined is:

Fpc(d̄p, d̄c | 〈xc, d̄c〉 ∈ X̄p)− Fpc(d̂p, d̄c | 〈xc, d̄c〉 ∈ X̄p)

+ Fpc(d̄p, d̄c | 〈xp, d̄p〉 ∈ X̄c)− Fpc(d̄p, d̂c | 〈xp, d̄p〉 ∈ X̄c)

= Fpc(d̄
t
p, d

t−1
c )− Fpc(dt−1

p , dt−1
c ) + Fpc(d̄

t
p, d̄

t
c)− Fpc(d̄tp, dt−1

c )

= Fpc(d̄
t
p, d̄

t
c)− Fpc(dt−1

p , dt−1
c )

which is the difference in utility of that function between the current best-response solution
and the previous solution. The sum of this difference over all utility functions is thus the
difference in solution quality between the current best-response solution and the previous
solution.

Lemma 4. After the root agent receives a BACKTRACK message from each of its children
and updates its delta variables δ and δ̄, those updated values are the difference in solution
quality between the current complete solution and the initial complete solution (i.e., all
variables xj are assigned ValInit(xj)) and the difference in solution quality between the
current complete best-response solution and the initial complete solution, respectively.
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Proof. We will first prove by induction that the root agent’s δ variable is the difference in
solution quality between the current complete solution and the initial complete solution.

• Iteration 1: ∆i is the difference in the solution quality between the complete solution
in iteration 1 and the initial complete solution of iteration 0 (Lemma 2). Therefore,
since δ = 0 + ∆i (lines 8 and 43), the lemma holds for iteration 1.

• Induction Assumption: Assume that the lemma holds for all iterations up to iteration
k − 1.

• Iteration k: ∆i is the difference in the solution quality between the complete solution
in iteration k and the complete solution in iteration k− 1 (Lemma 2). Additionally, the
δ value prior to the execution of line 43 is the difference in the solution quality between
the complete solution in iteration k − 1 and the initial complete solution of iteration
0 (induction assumption). Therefore, the δ value after the execution of line 43 is the
difference in the solution quality between the complete solution in iteration k and the
initial complete solution of iteration 0.

The proof for the case that the root agent’s δ̄ variable is the difference in solution quality
between the current complete best-response solution and the initial complete solution follows
the same principle.

Theorem 2. Upon termination, SD-Gibbs returns the best solution found.

Proof. There are the following two cases:

• The best solution is a regularly sampled solution: Thus, δ ≥ δ̄ (Lemma 4) and δ > δ∗.
Then, the root agent will update its best value and best time index (lines 46-47) and
sends these values in VALUE messages to its children and pseudo-children (lines 53
and 17). When an agent receives this VALUE message, it too updates its best value and
best time index (lines 28-31) and sends these values in VALUE messages to its children
and pseudo-children. This process propagates down the pseudo-tree until all agents have
updated their best values and best time indices.

• The best solution is a best-response sampled solution. Thus, δ̄ ≥ δ (Lemma 4) and
δ̄ > δ∗. Then, the root agent will update its best value and best time index (lines 50-51)
and sends these values in VALUE messages to its children and pseudo-children (lines 53
and 17). When an agent receives this VALUE message, it too updates its best value and
best time index (lines 25-27) and sends these values in VALUE messages to its children
and pseudo-children. This process propagates down the pseudo-tree until all agents have
updated their best values and best time indices.

SD-Gibbs thus returns the best solution in either of the above two cases.

Theorem 3. Each SD-Gibbs iteration takes a finite amount of time.

Proof. In each iteration, each agent sends exactly one VALUE message to each of its neigh-
bors and sends exactly one BACKTRACK message to its parent. The root agent starts
the VALUE propagation phase by sending the first VALUE message and the leaf agents
start the BACKTRACK propagation phase by sending BACKTRACK messages upon re-
ceiving VALUE messages. Since messages are never lost, the root will eventually receive a
BACKTRACK message from each of its children, which ends the current iteration.
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Theorem 4. The memory complexity of each agent in SD-Gibbs is O(|X |), that is, it is
linear in the number of agents in the problem.

Proof. Each agent xi needs to store a context Xi and a context X̄i, which contain agent-
value pairs of all neighboring agents xj ∈ Ni. Additionally agent xi needs to store the

values di, d̂i, d
∗
i , d̄i; time indices ti, t

∗
i , t̄
∗
i ; and delta variables ∆i, ∆̄i. If it is the root, then

it also needs to store delta variables δ, δ∗, and δ̄. Each of these variables is a single value.
Therefore, its memory complexity is O(|X |).

Theorem 5. The amount of information passed around in the network per iteration by SD-
Gibbs agents is O(|X |2), that is, it is polynomial in the number of agents in the problem.

Proof. Each agent xi needs to send exactly one VALUE message to each neighbor and ex-
actly one BACKTRACK message to its parent in each iteration, and each message contains
a constant number of values (each VALUE message contains 5 values and each BACK-
TRACK message contains 3 values). Thus, the amount of information passed around in the
network per iteration is O(|X |2).

4.3 Parallel Distributed Gibbs

We now describe the Parallel Distributed Gibbs (PD-Gibbs) algorithm. Algorithm 3 shows
the pseudo-code. The main differences between PD-Gibbs and SD-Gibbs, its sequential
counterpart, are the following:

• In SD-Gibbs, the agents along the same branch of the pseudo-tree sample sequentially in
each iteration, while, in PD-Gibbs, multiple agents along the same branch of the pseudo-
tree can sample in parallel in each iteration. However, an agent can only sample if all
its neighbors are not sampling in the same iteration. In order to enforce this restriction,
each agent maintains two additional variables: pi and pmax, where pi is the priority of
that agent in sampling (the smaller the value of pi, the higher its priority to sample)
and pmax = maxxj∈X pj is the largest priority value over all agents in the problem.
The agents initialize pi and pmax through PRIORITY, PMAXUP, and PMAXDOWN
messages, which we will describe in detail later.

• Since agents in PD-Gibbs can sample in parallel, each agent now needs to maintain
its current value dtii , best-response value d̄tii , and delta variables ∆ti

i , ∆̄ti
i , and δti for

multiple past iterations so that it can retrieve its value in a past iteration where the
best solution is found. These variables are thus indexed by the agent’s time index ti
in superscript. Additionally, this removes the need to maintain the previous value and
previous best-response value like in SD-Gibbs.

• Like in SD-Gibbs, each agent in PD-Gibbs also keeps track of its best-response value.
However, unlike in SD-Gibbs, where the best-response value is computed under the
assumption that the other ancestors all take on their respective best-response values,
in PD-Gibbs, the best-response value is computed under the assumption that all the
other agents take on their respective regularly sampled values. Therefore, the best
solution found will always be a best-response solution, unlike in SD-Gibbs, where the
best solution can be a non-best-response solution.
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Algorithm 3: Parallel Distributed Gibbs()

1 Create pseudo-tree
2 Each agent xi calls Initialize()

Procedure Initialize()

3 pmax ← 0
4 Xi ← {〈xj , ValInit(xj)〉 | xj ∈ Ni}
5 ti ← t∗i ← 0

6 dtii ← d̄tii ← d∗i ← ValInit(xi)

7 ∆ti
i ← ∆̄ti

i ← 0
8 if xi is root then
9 δti ← δ∗ ← 0

10 pi ← 0

11 Send PRIORITY (xi, pi, d
ti
i ) to each xj ∈ Ni

12 end

• Finally, when a best solution is found by the root, it propagates BEST messages, which
contains the iteration where the best solution is found. Agents receiving BEST messages
can thus update their best value to their best-response value of the iteration in those
messages.

All the other variables – Xi, t
∗
i , and δ∗ – are identical to those defined in SD-Gibbs.

Like in SD-Gibbs, the algorithm starts by constructing the pseudo-tree (line 1) and
having each agent initialize its variables to their default values (lines 2-9). The root that
then initializes its own priority value pi to 0 (indicating that it has the highest priority among
its neighbors to sample) and sends this value as well as its current value in a PRIORITY
message to each of its neighbors (lines 10-11).

When an agent receives a PRIORITY message, it updates its context with the value of
the neighbor contained in the message (line 13). If the agent has received a PRIORITY
message from each of its parent and pseudo-parents (indicating that each of its neighboring
ancestors have already chosen their priority values), then it too chooses its priority value to
be the smallest value not yet taken by any of its neighboring ancestors (line 15) and sends a
PRIORITY message to each of its neighbors (line 16). This process continues propagating
down the pseudo-tree until it reaches all the leafs, at which point all the agents have chosen
their priority values. This mechanisms ensures that no two neighboring agents have the
same priority value, with preference for agents higher up in the pseudo-tree compared to
agents lower down in the pseudo-tree.

When a leaf agent receives a PRIORITY message from all its parent and pseudo-parents,
it also updates its pmax value to its pi value (lines 3 and 17) and sends this value in
a PMAXUP message to its parent (lines 18-20). When an agent receives a PMAXUP
message, it updates its pmax value to the maximum of its current pmax value and the pmax
value in the message (line 22). If the agent has received a PMAXUP message from each
of its children, it too sends a PMAXUP message containing its updated pmax value to its
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Procedure When Received PRIORITY(xs, ps, ds)

13 Update 〈xs, d′s〉 ∈ Xi with 〈xs, ds〉
14 if Received PRIORITY messages from parent and all pseudo-parents then
15 pi ← smallest non-negative priority value not taken by any xj ∈ Pi ∪ PPi
16 Send PRIORITY (xi, pi, d

ti
i ) to each xj ∈ Ni

17 pmax ← pi
18 if xi is a leaf then
19 Send PMAXUP (pmax) to Pi
20 end

21 end

Procedure When Received PMAXUP(ps)

22 pmax ← max{ps, pmax}
23 if Received PMAXUP messages from all children then
24 if xi is root then
25 Send PMAXDOWN (pmax) to each xj ∈ Ci
26 Sample()

27 else
28 Send PMAXUP (pmax) to Pi
29 end

30 end

parent (line 27-29). This process continues propagating up the pseudo-tree until it reaches
the root, at which point the root’s pmax = maxxj∈X pj value equals is the largest priority
value over all agents in the problem. It thus needs to inform all the other agents of this
value, and it does so by sending its pmax value in a PMAXDOWN message to each of its
children (line 25). When an agent receives a PMAXDOWN message, it updates its pmax
value to the value in the message (line 31) and sends its updated value in a PMAXDOWN
message to each of its children (line 32). This process continues propagating down the
pseudo-tree until it reaches all the leafs and all agents have the correct pmax value. The
agents use this pmax value to synchronize their sampling process so that an agent samples
only if all its neighbors are not sampling in that iteration. We will describe later how the
agents do so.

After an agent sends a PMAXDOWN message to each of its children, it starts the
sampling process (lines 26 and 33). It increments its current iteration (line 34) and checks
if it is its turn to sample (line 35). The condition ((ti − 1) mod pmax) = pi ensures that
in the first iteration (ti = 1), only the agents whose priority values pi equal 0 can sample.
In the second iteration (ti = 2), only the agents whose priority values equal 1 can sample.
This process continues until all the agents whose priority values equal pmax samples, at
which point all the agents have sampled once. The whole process repeats again starting
with the agents whose priority values equal 0 sample. Since no two neighboring agents have
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Procedure When Received PMAXDOWN(ps)

31 pmax ← max{ps, pmax}
32 Send PMAXDOWN (pmax) to each xj ∈ Ci
33 Sample()

Procedure Sample()

34 ti ← ti + 1
35 if ((ti − 1) mod pmax) = pi then

36 dtii ← Sample based on Equation 21

37 d̄tii ← argmaxd′i
∑
〈xj ,dj〉∈Xi

Fij(d
′
i, dj)

38 else

39 dtii ← dti−1
i

40 d̄tii ← dti−1
i

41 end

42 ∆ti
i ←

∑
〈xj ,dj〉∈Xi

[Fij(d
ti
i , dj)− Fij(d

ti−1
i , dj)]

43 ∆̄ti
i ←

∑
〈xj ,dj〉∈Xi

[Fij(d̄
ti
i , dj)− Fij(d

ti−1
i , dj)]

44 Send VALUE (xi, d
ti
i ) to each xj ∈ Ni

the same priority value, this process ensures that no two neighboring agents are sampling
in the same iteration.

If it is not an agent’s turn to sample, then it takes its value in the previous iteration as
its value and its best-response value in the current iteration (lines 38-41). If it is the agent’s
turn to sample, identical to SD-Gibbs, it samples according to Equation 21 (line 35-36).
It then chooses its best-response value under the assumption that all its neighbors take
on their respective value in its current context Xi (line 37). Note that this assumption is
different than that in SD-Gibbs, which assumes that all the ancestors take on their respective
best-response values.

In both cases, the agent also updates its delta values ∆ti
i and ∆̄ti

i (lines 42-43). The
update of ∆ti

i is identical to that in SD-Gibbs but the update of ∆̄ti
i is different than that

in SD-Gibbs. Here, ∆̄ti
i is calculated under the assumption that the neighbors take on their

regularly sampled values in current context Xi. In contrast, this delta value is calculated
under the assumption that the neighbors take on their best-response value in SD-Gibbs.
Finally, similar to SD-Gibbs, the agent sends its current value in a VALUE message to each
of its neighbors (line 44).

When an agent receives a VALUE message, it updates the value of the sender in its
current context Xi (line 45). If it has received a VALUE message from each of its neighbors
in the current iteration, then it too samples (lines 46-47). If it is a leaf agent, then it sends
its time index and its delta values in a BACKTRACK message to its parent (lines 48-50).
When an agent receives a BACKTRACK message, it adds the received delta variables to
its own delta variables (lines 52-53). If it has received a BACKTRACK message from all
its children in a particular iteration t, then it sends the time index t and the delta variables
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Procedure When Received VALUE(xs, ds)

45 Update 〈xs, d′s〉 ∈ Xi with 〈xs, ds〉
46 if Received VALUE messages from all neighbors in this iteration then
47 Sample()
48 if xi is a leaf then

49 Send BACKTRACK (xi, ti,∆
ti
i , ∆̄ti

i ) to Pi
50 end

51 end

Procedure When Received BACKTRACK(xs, t,∆
t
s, ∆̄

t
s)

52 ∆t
i ← ∆t

i + ∆t
s

53 ∆̄t
i ← ∆̄t

i + ∆̄t
s

54 if Received BACKTRACK messages from all children in iteration t then
55 if xi is root then
56 δt ← δt + ∆t

i

57 if δt−1 + ∆̄t
i > δ∗ then

58 δ∗ ← δt−1 + ∆̄t
i

59 t∗i ← t
60 d∗i ← d̄ti
61 Send BEST(t) to each xj ∈ Ci
62 end

63 else
64 Send BACKTRACK (xi, t,∆

t
i, ∆̄

t
i) to Pi

65 end

66 end

of that time index in a BACKTRACK message to its parent (line 62-64). This process
continues propagating up the pseudo-tree until it reaches the root, at which point the root’s
delta variables indicate the differences in the global solution quality (see Lemmas 5 and 6).
It thus updates its delta variable δt (line 56) and if it has found a better solution (line 57),
then it updates the maximum difference δ∗, its best iteration index t∗i , and its best value
d∗i (lines 58-60). Finally, it sends its best iteration index in a BEST message to each of its
children (line 61).

When an agent receives a BEST message, it updates its best iteration index and its
best value and sends a BEST message to each of its children (lines 67-69). This process
continues propagating down the pseudo-tree until all leafs update their best iteration index
and best values, which means that each agent knows its value in the best solution.

4.3.1 Theoretical Properties

Like Gibbs and SD-Gibbs, the PD-Gibbs algorithm also samples based on the same equa-
tion (Equation 21). The main difference is that, in SD-Gibbs, the agents along the same
branch of the pseudo-tree sample sequentially in each iteration, while, in PD-Gibbs, multi-
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Procedure When Received(BEST(t))

67 t∗i ← t
68 d∗i ← d̄ti
69 Send BEST(t) to each xj ∈ Ci

ple agents along the same branch of the pseudo-tree can sample in parallel in each iteration.
The restriction is that no two neighboring PD-Gibbs agents sample in the same iteration.
Therefore, this does not affect the correctness of the algorithm since non-neighboring (sam-
pling) agents are conditionally independent of each other given the values of their neighbor-
ing (non-sampling) agents. Thus, the properties of Gibbs, which apply to SD-Gibbs, also
apply to PD-Gibbs. We now describe the theoretical properties that apply specifically to
PD-Gibbs.

Lemma 5. In each iteration, after the root agent receives a BACKTRACK message from
each of its children in iteration t and updates its delta variable ∆t

i, that updated value is the
difference in solution quality between the solution in iteration t and the solution in iteration
t− 1.

Proof. The accumulated value of the root agent’s delta variable includes the evaluation of
Fij(d

t
i, dj) − Fij(d

t−1
i , dj) by each agent xi for all utility functions with its neighbors xj ,

where dj is the value of xj in context Xi (line 42). Thus, that value is accumulated twice
– once by each agent involved in the utility function. Let the two agents be agents xp and
xc. Then, the contribution of the two agents combined is:

Fpc(d
t
p, dc | 〈xc, dc〉 ∈ Xp)− Fpc(dt−1

p , dc | 〈xc, dc〉 ∈ Xp)

+ Fpc(dp, d
t
c | 〈xp, dp〉 ∈ Xc)− Fpc(dp, dt−1

c | 〈xp, dp〉 ∈ Xc)

= Fpc(d
t
p, d

t−1
c )− Fpc(dt−1

p , dt−1
c ) + Fpc(d

t−1
p , dtc)− Fpc(dt−1

p , dt−1
c )

There are the following three cases:

• Case 1: It is neither xp nor xc’s turn to sample in iteration t (i.e., ((t−1) mod pmax) 6=
pp and ((t−1) mod pmax) 6= pc). Thus, dtp = dt−1

p and dtc = dt−1
c (line 39). Substituting

these equalities in the equation above, we get:

Fpc(d
t
p, d

t−1
c )− Fpc(dt−1

p , dt−1
c ) + Fpc(d

t−1
p , dtc)− Fpc(dt−1

p , dt−1
c )

= Fpc(d
t−1
p , dt−1

c )− Fpc(dt−1
p , dt−1

c ) + Fpc(d
t−1
p , dt−1

c )− Fpc(dt−1
p , dt−1

c )

= 0

which is the correct difference in utility since both agents did not sample new values.

• Case 2: It is xp’s turn to sample in iteration t (i.e., ((t − 1) mod pmax) = pp 6= pc).
Thus, dtc = dt−1

c (line 39). Substituting this equality in the equation above, we get:

Fpc(d
t
p, d

t−1
c )− Fpc(dt−1

p , dt−1
c ) + Fpc(d

t−1
p , dtc)− Fpc(dt−1

p , dt−1
c )

= Fpc(d
t
p, d

t
c)− Fpc(dt−1

p , dt−1
c ) + Fpc(d

t−1
p , dt−1

c )− Fpc(dt−1
p , dt−1

c )

= Fpc(d
t
p, d

t
c)− Fpc(dt−1

p , dt−1
c )
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which is the difference in utility of that function between the current solution and the
previous solution.

• Case 3: It is xc’s turn to sample in iteration t, which is symmetrical to case 2.

The sum of this difference over all utility functions is thus the difference in solution quality
between the current solution and the previous solution.

Lemma 6. In each iteration, after the root agent receives a BACKTRACK message from
each of its children in iteration t and updates its delta variable ∆̄t

i, that updated value is
the difference in solution quality between the best-response solution in iteration t and the
solution in iteration t− 1.

Proof. The accumulated value of the root agent’s delta variable includes the evaluation of
Fij(d̄

t
i, dj)−Fij(dti, dj) by each agent xi for all utility functions with its neighbors xj , where

dj is the value of xj in context Xi (line 43). Thus, that value is accumulated twice – once by
each agent involved in the utility function. Let the two agents be agents xp and xc. Then,
the contribution of the two agents combined is:

Fpc(d̄
t
p, dc | 〈xc, dc〉 ∈ Xp)− Fpc(dt−1

p , dc | 〈xc, dc〉 ∈ Xp)

+ Fpc(dp, d̄
t
c | 〈xp, dp〉 ∈ Xc)− Fpc(dp, dt−1

c | 〈xp, dp〉 ∈ Xc)

= Fpc(d̄
t
p, d

t−1
c )− Fpc(dt−1

p , dt−1
c ) + Fpc(d

t−1
p , d̄tc)− Fpc(dt−1

p , dt−1
c )

There are the following three cases:

• Case 1: It is neither xp nor xc’s turn to sample in iteration t (i.e., ((t−1) mod pmax) 6=
pp and ((t−1) mod pmax) 6= pc). Thus, d̄tp = dt−1

p and d̄tc = dt−1
c (line 40). Substituting

these equalities in the equation above, we get:

Fpc(d̄
t
p, d

t−1
c )− Fpc(dt−1

p , dt−1
c ) + Fpc(d

t−1
p , d̄tc)− Fpc(dt−1

p , dt−1
c )

= Fpc(d
t−1
p , dt−1

c )− Fpc(dt−1
p , dt−1

c ) + Fpc(d
t−1
p , dt−1

c )− Fpc(dt−1
p , dt−1

c )

= 0

which is the correct difference in utility since both agents did not sample new values.

• Case 2: It is xp’s turn to sample in iteration t (i.e., ((t − 1) mod pmax) = pp 6= pc).
Thus, d̄tc = dt−1

c (line 40). Substituting this equality in the equation above, we get:

Fpc(d̄
t
p, d

t−1
c )− Fpc(dt−1

p , dt−1
c ) + Fpc(d

t−1
p , d̄tc)− Fpc(dt−1

p , dt−1
c )

= Fpc(d̄
t
p, d

t
c)− Fpc(dt−1

p , dt−1
c ) + Fpc(d

t−1
p , dt−1

c )− Fpc(dt−1
p , dt−1

c )

= Fpc(d̄
t
p, d

t
c)− Fpc(dt−1

p , dt−1
c )

which is the difference in utility of that function between the current best-response
solution and the previous solution.

• Case 3: It is xc’s turn to sample in iteration t, which is symmetrical to case 2.

The sum of this difference over all utility functions is thus the difference in solution quality
between the current best-response solution and the previous solution.
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Lemma 7. After the root agent receives a BACKTRACK message from each of its children
in iteration t and updates its delta variable δt, that updated value is the difference in solution
quality between the complete solution in iteration t and the initial complete solution, i.e., all
variables xj are assigned ValInit(xj).

Proof. We prove the above lemma by induction.

• Iteration 1: ∆1
i is the difference in the solution quality between the complete solution

in iteration 1 and the initial complete solution of iteration 0 (Lemma 5). Therefore,
since δ1 = 0 + ∆1

i (lines 9 and 56), the lemma holds for iteration 1.

• Induction Assumption: Assume that the lemma holds for all iterations up to iteration
k − 1.

• Iteration k: ∆k
i is the difference in the solution quality between the complete solution

in iteration k and the complete solution in iteration k− 1 (Lemma 5). Additionally, the
δk value prior to the execution of line 56 is the difference in the solution quality between
the complete solution in iteration k − 1 and the initial complete solution of iteration
0 (induction assumption). Therefore, the δk value after the execution of line 56 is the
difference in the solution quality between the complete solution in iteration k and the
initial complete solution of iteration 0.

Thus, the proof concludes.

Lemma 8. After agent xi receives a BACKTRACK message from each of its children in
iteration t and updates its delta variables ∆t

i and ∆̄t
i, then the updated ∆̄t

i is no smaller than
the updated ∆t

i, i.e., the best-response solution is better than the regularly sampled solution.

Proof. We prove the lemma by induction on the level of the agent in the pseudo-tree:

• Leaf agent xi: Leaf agents do not receive BACKTRACK messages. Thus, their delta
values are based only on the computations on lines 42-43. Therefore,

∆̄t
i −∆t

i =
∑

〈xj ,dj〉∈Xi

[Fij(d̄
t
i, dj)− Fij(dt−1

i , dj)]−
∑

〈xj ,dj〉∈Xi

[Fij(d
t
i, dj)− Fij(dt−1

i , dj)]

=
∑

〈xj ,dj〉∈Xi

Fij(d̄
t
i, dj)− Fij(dt−1

i , dj)− Fij(dti, dj) + Fij(d
t−1
i , dj)

=
∑

〈xj ,dj〉∈Xi

Fij(d̄
t
i, dj)− Fij(dti, dj)

≥ 0

• Induction Assumption: Assume that the lemma holds for all agents up to the children
of the root agent.

• Root agent xi: Prior to receiving any BACKTRACK messages and prior to executing
lines 52-53, the condition ∆̄t

i ≥ ∆t
i holds for the same reason as it held for the leaf

agents. After receiving a BACKTRACK message from child xs ∈ Ci and after executing
lines 52-53, the condition still hold since ∆̄t

s ≥ ∆t
s by induction assumption.

Thus, the proof concludes.

Theorem 6. The best complete solution of PD-Gibbs is a best-response complete solution.
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Proof. The theorem trivially holds due to Lemma 8.

Theorem 7. Upon termination, PD-Gibbs returns the best solution found.

Proof. If a better complete solution is found in iteration t, then the solution must be
a best-response complete solution (Theorem 6). Additionally, the difference in solution
quality between the best-response solution in iteration t and the initial complete solution
of iteration 0 (i.e., δt−1 + ∆̄t

i) must be greater than the largest difference thus far (i.e., δ∗).
The root agent will then update its largest difference, its best time index, and its best value
(lines 57-60) and sends these values in BEST messages to its children. When an agent
receives a BEST message, it too updates its best value and best time index (lines 68-69)
and sends these values in BEST messages to its children. This process propagates down the
pseudo-tree until all agents have updated their best values and best time indices.

Theorem 8. Each PD-Gibbs iteration takes a finite amount of time.

Proof. We first prove that the zero-th iteration of each agent takes a finite amount of
time. This iteration starts at the start of the algorithm and ends immediately before
the agent calls the Sample procedure. In this iteration, PRIORITY messages propagate
down the pseudo-tree starting from the root agent to all leaf agents. This is followed
by the propagation of PMAXUP messages up the pseudo-tree, which is followed by the
propagation of PMAXDOWN messages down the pseudo-tree. Since messages are received
in the order that they were sent and are never lost, the propagation of these messages
take a finite amount of time. The root agent calls the Sample procedure immediately
after receiving a PMAXUP message from each of its children and every other agent calls
the Sample procedure immediately after receiving a PMAXDOWN message. Thus, the
zero-th iteration takes a finite amount of time.

We now prove that the subsequent iterations of each agent takes a finite amount of time.
These iterations start when the agent calls the Sample procedure and ends immediately
before the agent calls the procedure again. Therefore, we will now prove that each agent
will eventually call the Sample procedure after a finite amount of time unless it terminates
first. This is equivalent to proving that an agent receives a VALUE message from each of
its neighbors in each iteration in finite amount of time since each agent calls the Sample
procedure only after that condition holds.

Each agent sends a VALUE message to each of its neighbors each time it calls the
Sample procedure. Since all agents will eventually call the procedure for the first time (see
above proof for the zero-th iteration) and all messages are received in the order that they
were sent and are never lost, all agents will eventually receive a VALUE message from their
neighbors in a finite amount of time.

Lemma 9. For each agent xi ∈ X , pi ≤ pmax after all priority value updates.

Proof. For each agent xi, pmax is initialized to 0 (line 3) and updated for the first time
to max{pi, 0} (line 17). Each subsequent update of pmax can only make it larger (lines 22
and 31). Furthermore, pi is not updated after it is initialized (lines 10 or 15). Therefore,
pi ≤ pmax.

Lemma 10. For each agent xi ∈ X , pmax = maxxj∈X pj after all priority value updates.
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Proof. All agents initialize their pmax priority values to their pi priority values (line 17).
Leaf agents send their pmax priority values up to their parent in PMAXUP messages. Upon
receiving these messages, the parent updates their pmax priority values to the maximum
between their current pmax values and the received pmax values. After receiving these
messages from all children, each agent sends its pmax priority values up to its parent.
Therefore, for each agent xi, after it has updated its pmax priority value upon receiving a
PMAXUP message from each of its children, its pmax value is the largest priority value pj
over all agents xj in the subtree rooted at xi. Therefore, the pmax value of the root agent
equals is the largest priority value over all agents in the problem.

The root agent then sends this value down to its children in PMAXDOWN messages.
Upon receiving this message, the child updates its pmax value to the received pmax value
(line 31) and sends this updated value down to its children. This process continues until
it reaches the leaf agents, at which point all agents have updated their pmax values to the
root’s value, which is the largest priority value over all agents in the problem.

Lemma 11. For all agents in the problem, pmax < |X |, that is, it is upper bounded by the
number of agents in the problem.

Proof. We prove the lemma by induction on the height h of the pseudo-tree:

• Base Case [h = 2]: At this height, there are 2 agents in the problem. Let xp be
the parent (also the root) and xc be the child. Agent xp initializes its priorities pmax
and pp to 0 and sends its priority pp to its child (lines 3, 10, and 11). Upon receiving
this message, the child initializes its priority pc and updates its priority pmax to 1 and
sends its priority pmax to its parent (lines 15, 17, and 19). Upon receiving this message,
the parent updates its pmax to 1 and sends it down to its child. Upon receiving this
message, the child updates its priority pmax to 1 as well. Thus, pmax for both agents
equal 1 < |X | = 2.

• Induction Assumption: Assume that the lemma holds for all heights up to height
k − 1.

• Induction Step [h = k]: Let Xk−1 be the set of agents in the pseudo-tree up to height
k − 1. According to the induction assumption and Lemma 9, the priority value pi of
each agent xi ∈ Xk−1 is at most |Xk−1| − 1. Furthermore, we know that the priority of
all agents in the k-th level of the pseudo-tree must be (1) identical, since they are not
constrained with each other, and (2) the smallest non-negative priority value not taken
by any agents parent or pseudo-parent. Therefore, the priority value pi of all agents
xi in the k-th level of the pseudo-tree must be at most |Xk−1| − 1 + 1 = |Xk−1| < |X |.
Consequently, the priority value pmax of all agents are also bounded by the same bound
(Lemma 10).

Thus, the proof concludes.

Theorem 9. The memory complexity of each agent in PD-Gibbs is O(|X |), that is, it is
linear in the number of agents in the problem.

Proof. Each agent xi needs to store context Xi, which contains agent-value pairs of all
neighboring agents xj ∈ Ni. Additionally, agent xi needs to store a vector of values dtii ,
d̄tii and a vector of delta variables ∆ti

i , ∆̄ti
i . If it is the root, it also needs to store a vector
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of delta variables δt−1. The length of these vectors is 2h, where h is the height of the
pseudo-tree, because it can take up to h iterations for the best solution to propagate from
a leaf agent to the root agent and up to h iterations for this solution to propagate down to
the leaf agents after being confirmed by the root agent. Finally, agent xi also needs to store
the best value d∗i ; time indices ti, t

∗
i ; and priority variables pi, pmax. If it is the root, then

it also needs to store delta variable δ∗. Each of these variables is a single value. Therefore,
since h = O(|X |), its total memory complexity is O(|X |).

Theorem 10. The amount of information passed around in the network per iteration by
PD-Gibbs agents is O(|X |3), that is, it is polynomial in the number of agents in the problem.

Proof. In the zero-th iteration, each agent sends exactly one PRIORITY message to each
neighbor, exactly one PMAXUP message to its parent, and exactly one PMAXDOWN mes-
sage to each child. Each message contains a constant number of values (each PRIORITY
message contains 3 values, each PMAXUP message contains 1 value, and each PMAX-
DOWN message contains 1 value). In the subsequent iterations, each agent needs to send
exactly one VALUE message to each neighbor, up to pmax BACKTRACK messages to
its parent, and up to pmax BEST messages to each child in each iteration. Each message
contains a constant number of values (each VALUE message contains 2 values, each BACK-
TRACK message contains 4 values, and each BEST message contains 1 value). Therefore,
since pmax = O(|X |) (Lemma 11), the amount of information passed around in the network
per iteration is O(|X |3).

5. Experimental Results

We now compare both versions of Distributed Gibbs – Sequential Distributed Gibbs (SD-
Gibbs) and Parallel Distributed Gibbs (PD-Gibbs) – to DPOP (Petcu & Faltings, 2005a),
MGM (Maheswaran et al., 2004a), DUCT (Ottens et al., 2012, 2017),11 and “Rand”, a
variant of SD-Gibbs that samples uniformly. In terms of network load, that is, the amount of
information passed around the network, DPOP sends an exponential amount of information
in total while MGM, DUCT, Rand, SD-Gibbs, and PD-Gibbs send a polynomial amount
of information in each iteration.

We use publicly-available implementations of MGM, DUCT, and DPOP, which are all
implemented on the FRODO framework (Léauté, Ottens, & Szymanek, 2009). As DUCT
was designed to solve a minimization problem, the code provided by the authors allows it
to solve maximization problems by pre-processing the input files to flip the signs of the
utilities (e.g., from positive to negative) and adding a positive constant to them so that the
smallest utility is 0. We run our experiments on a quad-core Intel Xeon 2.40 GHz E5620
CPU with 2GB of memory per run.

We measure runtime using the simulated runtime metric (Sultanik, Lass, & Regli, 2007)
and evaluate the algorithms on two types of problems: Problems without hard constraints
and problems with hard constraints. For all problems, we set the DUCT parameters ∆ =
ε = 0.05, similar to the settings used in the original article (Ottens et al., 2012) unless

11. We used DUCT-D in our experiments.

736



Distributed Gibbs: A Linear-Space Sampling-Based DCOP Algorithm

 200

 300

 400

 500

 600

 700

 800

 900

 15  18  21  24  27

S
o

lu
ti
o

n
 Q

u
a

lit
y

(a) No. of Agents |X|

p1 = 0.3, |Di| = 5

SD-Gibbs
PD-Gibbs

MGM
DUCT
DPOP
Rand

10
2

10
3

 15  16  17  18  19

S
im

u
la

te
d

 R
u

n
ti
m

e
 (

m
s
)

(b) No. of Agents |X|

p1 = 0.3, |Di| = 5

DUCT
DPOP

10
2

10
3

 15  18  21  24  27

M
e

m
o

ry
 (

b
y
te

s
)

(c) No. of Agents |X|

p1 = 0.3, |Di| = 5

SD-Gibbs
PD-Gibbs

 450

 500

 550

 600

 650

 700

 750

 5  8  11  14  17  20
S

o
lu

ti
o

n
 Q

u
a

lit
y

(d) Domain Size |Di|

|X| = 25, p1 = 0.3

SD-Gibbs
PD-Gibbs

MGM
DUCT
Rand

 200

 400

 600

 800

 1000

 1200

 1400

 0.2  0.3  0.4  0.5  0.6  0.7  0.8

S
o

lu
ti
o

n
 Q

u
a

lit
y

(e) Density p1

|X| = 25, |Di| = 5

SD-Gibbs
PD-Gibbs

MGM
DUCT
Rand

10
2

10
3

 0.2  0.3  0.4  0.5  0.6  0.7  0.8

M
e

m
o

ry
 (

b
y
te

s
)

(f) Density p1

|X| = 25, |Di| = 5

SD-Gibbs
PD-Gibbs

 280

 290

 300

 310

 320

 330

 340

 350

 360

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

S
o

lu
ti
o

n
 Q

u
a

lit
y

(g) DUCT Parameters ∆ and ε

|X| = 19, p1 = 0.3, |Di| = 5

SD-Gibbs
PD-Gibbs

MGM
DUCT
DPOP
Rand

Figure 2: Results for Graph Coloring Problems without Hard Constraints

mentioned otherwise. We also let MGM and both versions of D-Gibbs run for as long as
DUCT did for fair comparisons.12 Each data point is averaged over 50 instances.

12. Exceptions are when DUCT failed to find a solution due to insufficient memory. For domain size |Di| = 19
and 20 in Figure 2(b), we let the other algorithms run for as long as DUCT did for domain size |Di| = 18.
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5.1 Problems without Hard Constraints

For problems without hard constraints, that is, all solutions in the problem are feasible, we
used graph coloring problems and sensor network problems as examples.

5.1.1 Graph Coloring Problems

We used the random graph coloring problem generator provided in the FRODO frame-
work (Léauté et al., 2009) to generate our problems. We varied the size of the problem by
increasing the number of agents |X | from 18 to 29, the graph density p1

13 from 0.2 to 0.8
and the domain size |Di| of each agent xi from 5 to 20, and we chose the constraint utilities
uniformly from the range (0, 10) at random if the neighboring agents have different values
and 0 if they have the same value. Figure 2 shows our results, where we varied the number
of agents |X | in Figures 2(a), 2(b), and 2(c), the domain size |Di| in Figure 2(d), the density
p1 in Figures 2(e) and 2(f), and the DUCT parameters ∆ and ε in Figure 2(g). DPOP ran
out of memory for problems with 20 agents and above, and DUCT ran out of memory for
problems with domain sizes 19 and 20.

Overall, DPOP found better solutions (when it did not run out of memory) than PD-
Gibbs, which found better solutions than SD-Gibbs. Both versions of D-Gibbs generally
found better solutions than MGM and DUCT. The difference is clearer in Figure 2(d).
PD-Gibbs found better solutions than SD-Gibbs because it was able to explore more of
the search space due to its parallel sampling operations. Interestingly, Rand was quite
competitive – the solutions that it found have qualities that are very similar to those found
by MGM.

Figure 2(b) shows the simulated runtimes of DUCT and DPOP. We omit results from the
other incomplete algorithms as we let them run for as long as DUCT in all our experiments.
DPOP is faster than DUCT when the problems are small, and vice versa when the problems
are large. The reason is because DUCT requires a reasonably large number of samples
to have the necessary confidence to terminate. Thus, when the problems are small, the
necessary computation for all the samples is larger than solving the problem exactly with
DPOP. As the problems become larger, the difference decreases.

As the amount of memory used by SD- and PD-Gibbs grows with the height of their
pseudo-trees, we compare their memory consumption by varying the number of agents in
Figure 2(c) and the density in Figure 2(f). We did not vary the domain size for this
experiment because the domain size does not affect the height of the pseudo-tree. The
results show that both versions of Gibbs require more memory as the number of agents or
the density of the problem increase. The reason is because the height of the pseudo-tree
increases with these two parameters. Additionally, in both cases, SD-Gibbs require at least
five times less memory than PD-Gibbs, showing that while PD-Gibbs is able to find better
solutions, it comes at a cost of increased memory consumption.

Finally, the ∆ and ε values of DUCT correspond to its error tolerance. As those values
decrease, its runtime will increase. Therefore, one can interpret Figure 2(g) as a graph that
plots the quality of solutions found with increasing runtimes, since we let all algorithms
except DPOP run for as long as DUCT. Not surprisingly, DUCT finds better solutions with
increasing runtimes. However, interestingly, the quality of solutions found by SD-Gibbs, PD-

13. Defined as the ratio between the number of constraints and the maximum number of constraints.
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Figure 3: Results for Sensor Network Problems without Hard Constraints

Gibbs, MGM, and Rand remained relatively unchanged despite given more runtime, which
means that they converged to their solutions very early on. On average, both SD- and PD-
Gibbs found better solutions faster (when ∆ = ε = 0.1) than DUCT (when ∆ = ε = 0.01).
However, it is important to note that DUCT provides quality guarantees on its solutions
found while SD- and PD-Gibbs do not.

5.1.2 Sensor Network Problems

We use the same sensor network coordination problem as Nguyen et al. (2012). The sensors
are arranged in a grid and each sensor can move along its 2D plane or stay stationary. Thus,
the values of each sensor correspond to discretized directions of movements of that sensor.
For example, if a sensor has 5 possible values, then it can move in the four cardinal directions
or stay stationary. Additionally, sensors are constrained with all of their neighboring sensors.
We varied the size of the problem by increasing the number of sensors |X | in the grid, where
they are arranged in a square from 3 × 3 (i.e., |X | = 9) to 10 × 10 (i.e., |X | = 100). We
also varied the domain size |Di| of each agent xi from 5 to 19, and we chose the constraint
utilities uniformly from the range [0, 10] at random. Figure 3 shows our results, where we
varied the number of agents |X | in Figures 3(a) and 3(b), the domain size |Di| in Figure 3(c),
and the DUCT parameters ∆ and ε in Figure 3(d). DPOP ran out of memory for problems
with configurations larger than 5× 5. However, we omitted it from Figure 3(a) so that the
figure is more easily readable. DUCT ran out of memory for problems with configurations
larger than 8× 8.

The trends in these graphs are consistent with the trends for the previous graph coloring
problems except that the quality of solutions found by SD- and PD-Gibbs are very similar
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to each other. The reason is because these problems are inherently simpler than the graph
coloring problems due to the grid structure of the sensor network. The fact that both SD-
and PD-Gibbs found solutions with qualities that are very close to optimal (see Figure 3(c))
asserts the simplicity of this class of problems. In these sensor network problems, each agent
is constrained with exactly its four neighboring sensors. Therefore, there is a locality to
these interactions and backedges only constrain two agents that are at most 4 hops away
on the regular edges of the pseudo-tree (i.e., the longest backedge is between an agent and
its great-great-grandparent on the pseudo-tree). In contrast, there is no such structure in
graph coloring problems and backedges may constrain two agents that are |X |−1 hops away
on the regular edges of the pseudo-tree (as in the case if the constraint graph is a loop).

5.2 Problems with Hard Constraints

For problems with hard constraints, that is, some solutions in the problem are infeasible, we
used graph coloring problems and radar coordination problems as examples. Additionally,
as all the algorithms evaluated, except for DPOP, are incomplete algorithms that are not
designed to handle hard constraints, we report two measures that are relevant in these
problems – percentage of feasible solutions found and average number of violated constraints
in solutions found. These two measures combined give readers a sense of how well an
algorithm handles hard constraints in problems. We also omit DPOP from the results since
it always finds feasible solutions with no constraints violated.

5.2.1 Hyper-Parameter Tuning

In the DCOP literature, the utilities of hard constraints are commonly set to −∞ so that
the utility of an infeasible solution is −∞. If we do so, the probability for an agent of
either version of D-Gibbs to take on an infeasible value is e−∞ = 0 (see Equation 21).
While this result may appear to be desirable at first glance, it, unfortunately, creates the
following problem: The solution space of the problem will be segmented into “islands”
of feasible solutions that have non-zero probabilities, and these islands are separated by
infeasible solutions that have zero probabilities. Consequently, it is not possible for agents
to probabilistically jump from one island to another, and the space of possible solutions
explored is restricted to the initial island that the agents started on (i.e., the island that
contains the initial randomly assigned solution).

Therefore, to overcome this limitation, we have to set the utilities of hard constraints
a finite negative value −Uhard. Further, to better distinguish the soft constraints from
the hard ones, we scale the utilities of soft constraints by multiplying them with a scaling
factor C. As these two hyper-parameters will affect the quality of solutions found, we
empirically evaluate both versions of D-Gibbs on a small set of problem instances14 to find
the best-performing hyper-parameters before using them on the larger sets of experiments.
We tabulate the results for SD-Gibbs in Table 2. Results for PD-Gibbs are omitted as they
were very similar. From the hyper-parameters that were swept, we chose to set −Uhard = −1
as the utility of hard constraints and C = 10 as the scaling factor for the utilities of soft
constraints for our experiments below. The reason is that that combination of hyper-

14. We used 50 instances of random graphs with |X | = 19, |Di| = 5 for each agent xi, and p1 = p2 = 0.3.
Utilities for soft constraints were randomly sampled from the range (0, 10).
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(a) Fraction of Feasible Solutions Found

C
−Uhard

-1 -2 -3 -4 -5 -6 -7 -8 -9 -10

1 0.10 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08
2 0.14 0.12 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08
3 0.18 0.14 0.08 0.08 0.06 0.08 0.08 0.08 0.08 0.08
4 0.30 0.20 0.12 0.08 0.08 0.08 0.08 0.08 0.08 0.08
5 0.24 0.28 0.20 0.20 0.08 0.08 0.08 0.08 0.08 0.08
6 0.50 0.34 0.30 0.14 0.20 0.08 0.08 0.08 0.08 0.08
7 0.60 0.54 0.36 0.32 0.26 0.16 0.08 0.08 0.08 0.08
8 0.60 0.54 0.42 0.40 0.24 0.26 0.18 0.08 0.08 0.08
9 0.62 0.60 0.48 0.50 0.38 0.28 0.24 0.12 0.08 0.08
10 0.68 0.58 0.64 0.46 0.52 0.34 0.36 0.14 0.14 0.08

(b) Average Number of Constraint Violations per Instance

C
−Uhard

-1 -2 -3 -4 -5 -6 -7 -8 -9 -10

1 2.56 2.66 2.68 2.62 2.62 2.62 2.62 2.62 2.62 2.62
2 2.36 2.36 2.66 2.62 2.62 2.62 2.62 2.62 2.62 2.62
3 1.76 2.00 2.46 2.62 2.66 2.62 2.62 2.62 2.62 2.62
4 1.34 1.34 1.80 2.38 2.62 2.62 2.64 2.62 2.62 2.62
5 1.58 1.26 1.32 1.64 2.40 2.62 2.62 2.62 2.62 2.62
6 0.88 0.98 1.08 1.60 1.76 2.36 2.62 2.62 2.68 2.62
7 0.70 0.68 0.96 1.04 1.32 1.80 2.44 2.62 2.66 2.62
8 0.70 0.76 0.80 0.94 1.18 1.22 1.60 2.48 2.62 2.62
9 0.74 0.56 0.90 0.64 0.90 1.16 1.20 1.88 2.60 2.62
10 0.52 0.74 0.70 0.76 0.72 1.04 1.12 1.74 1.62 2.38

Table 2: Hyper-Parameter Tuning Results for SD-Gibbs

parameters resulted in the largest fraction of feasible solutions found as well as the smallest
average number of constraint violations.

5.2.2 Graph Coloring Problems

Similar to Section 5.1.1, we used the same random graph coloring problem generator pro-
vided in the FRODO framework (Léauté et al., 2009) to generate our problems. However,
the difference is that each variable now also has a unary constraint that prohibits some value
assignments. The expected fraction of values prohibited is determined by the constraint
tightness p2. In our experiments, we vary this parameter from 0.1 to 0.9. Figure 4 shows
our results, where we set the number of agents |X | to 19, the domain size |Di| of each agent
xi to 5, and the constraint density p1 to 0.3. Utilities for soft constraints were randomly
sampled from the range (0, 10) and utilities for hard constraints were set to −∞, except for
D-Gibbs, where they were set to −Uhard = −1.

As expected, the fraction of feasible solutions found decreases and the average number of
violated constraints increases with increasing constraint tightness. Not surprisingly, DPOP
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Figure 4: Results for Graph Coloring Problems with Hard Constraints
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Figure 5: Results for Radar Coordination Problems with Hard Constraints

found the most number of feasible solutions. Both SD- and PD-Gibbs found slightly fewer
feasible solutions, followed by DUCT, and then by both MGM and Rand.

In general, these dominance trends similarly translated when looking at the average
number of violated constraints. The exception is on problems with small constraint tight-
ness, where both SD- and PD-Gibbs performed worse than DUCT when p2 ≤ 0.2, and also
worse than MGM when p2 = 0.1. At p2 = 0.1, they found solutions with similar number
of violated constraints as Rand. Therefore, DUCT is preferred for solving problems with
small constraint tightness, and either SD- or PD-Gibbs is preferred for solving problems
with large constraint tightness.

5.2.3 Radar Coordination Problems

We use the same radar coordination problem as Fioretto, Yeoh, and Pontelli (2016). The
problem models a set of radars that collect real-time data on the location and importance of
atmospheric phenomena. Each phenomenon is characterized by size and weight (i.e., impor-
tance). Radars have limited sensing ranges, which determine their scanning regions. The
goal is to find a radar configuration that maximizes the utility associated with the scanned
phenomena. The radars are arranged in a grid like in the sensor network problems and they
can scan their four cardinal directions. Phenomena are randomly generated across the grid
until the underlying constraint graph is connected. Each phenomena must be scanned by
at least p radars, where the value of p is randomly sampled from the range [1, 4].
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Figure 5 shows our results, where we varied the size of the problem by increasing the
number of radars |X | in the grid. The radars are arranged in a square from 3×3 (i.e., |X | =
9) to 8 × 8 (i.e., |X | = 64). DPOP successfully found feasible solutions for all radar
coordination problem instances. We thus omitted it from the graphs so that we can better
compare the incomplete algorithms evaluated. In general, the trends in these graphs are
consistent with the trends in the previous graph coloring problems, that is, both SD- and
PD-Gibbs are better than DUCT, which is better than MGM and Rand.

6. Conclusions and Future Work

Researchers have not investigated sampling-based approaches to solve DCOPs until very
recently, where Ottens et al. introduced the Distributed UCT (DUCT) algorithm, which
uses confidence-based bounds. However, one of its limitation is its memory requirement per
agent, which is exponential in the number of agents in the problem. This large requirement
prohibits it from scaling up to large problems. Therefore, in this article, we introduce two
new sampling-based DCOP algorithms called Sequential Distributed Gibbs (SD-Gibbs) and
Parallel D-Gibbs (PD-Gibbs), whose memory requirements per agent is linear in the number
of agents in the problem. It is a distributed extension of Gibbs, which was originally designed
to approximate joint probability distributions in Markov random fields. We experimentally
show that both SD- and PD-Gibbs found better solutions compared to an algorithm that
samples uniformly, as well as competing local search algorithms like MGM in addition
to DUCT. These two sampling-based algorithms thus improve the scalability of DCOP
approaches to scale to larger problems of practical interest. In some cases, PD-Gibbs also
found better solutions compared to SD-Gibbs because it is able to explore more of the
search space due to its parallel sampling operations. However, this comes at a cost of larger
memory requirement and message complexity compared to SD-Gibbs.

Future work includes a better study of the impact of different communication assump-
tions (e.g., introduction of delayed messages, message losses, and out of order messages)
on the various DCOP algorithms presented in this paper. Initial studies by researchers
have found that certain changes (e.g., message delays) can have significant impacts on some
algorithms (Fernàndez, Béjar, Krishnamachari, & Gomes, 2002) but not others (Tabakhi,
Tourani, Natividad, Yeoh, & Misra, 2017). It is uncertain if either version of Gibbs will
always be preferable given network delays and unreliable communication. Thus, a more
thorough investigation is necessary to better understand the dependencies of the various
algorithms on the different communication assumptions.

We would like to also more thoroughly investigate the use of other MAP estimation algo-
rithms to solve DCOPs. Message-passing algorithms like Expectation Maximization (EM)
and Max-Product Linear Programming (MPLP) are ideal candidates for DCOPs given their
use of messages to disseminate information between the different variables/agents (Wain-
wright, Jaakkola, & Willsky, 2002; Globerson & Jaakkola, 2007; Kumar & Zilberstein,
2010). Researchers have very recently adapted EM to solve a DCOP variant with resource
constraints (Ghosh, Kumar, & Varakantham, 2015), and we suspect there are other syner-
gistic opportunities in this intersection of DCOPs and MAP estimation problems.

Finally, we also plan to generalize our algorithms to solve dynamically changing prob-
lems. Such problems can be modeled as dynamic DCOPs, which are sequences of canonical
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DCOPs with changes between subsequent problems (Petcu & Faltings, 2005b). Researchers
have extended search- and inference-based DCOP algorithms to exploit information on how
the problems may change over time when such information is available (Hoang, Fioretto,
Hou, Yokoo, Yeoh, & Zivan, 2016; Hoang, Hou, Fioretto, Yeoh, Zivan, & Yokoo, 2017) as
well as combined them with reinforcement learning and incremental heuristic search ap-
proaches when such information is unavailable (Nguyen, Yeoh, Lau, Zilberstein, & Zhang,
2014; Yeoh, Varakantham, Sun, & Koenig, 2015). It is likely that sampling-based DCOP
algorithms may also be adapted to solve such problems.
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