
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

4-2019 

DeepReview: Automatic code review using deep multi-instance DeepReview: Automatic code review using deep multi-instance 

learning learning 

Hengyi LI 
Nanjing University 

Shuting SHI 
Nanjing University 

Ferdian THUNG 
Singapore Management University, ferdiant.2013@phdis.smu.edu.sg 

Xuan HUO 
Nanjing University 

Bowen XU 
Singapore Management University, bowenxu.2017@phdis.smu.edu.sg 

See next page for additional authors Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Software Engineering Commons 

Citation Citation 
LI, Hengyi; SHI, Shuting; THUNG, Ferdian; HUO, Xuan; XU, Bowen; LI, Ming; and LO, David. DeepReview: 
Automatic code review using deep multi-instance learning. (2019). Advances in knowledge discovery and 
data mining: 23rd Pacific-Asia Conference, PAKDD 2019, Macau, China, April 14-17: Proceedings. 11440, 
318-330. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4346 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4346&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4346&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Author Author 
Hengyi LI, Shuting SHI, Ferdian THUNG, Xuan HUO, Bowen XU, Ming LI, and David LO 

This conference proceeding article is available at Institutional Knowledge at Singapore Management University: 
https://ink.library.smu.edu.sg/sis_research/4346 

https://ink.library.smu.edu.sg/sis_research/4346


DeepReview: Automatic Code Review
Using Deep Multi-instance Learning

Heng-Yi Li1, Shu-Ting Shi1, Ferdian Thung2, Xuan Huo1, Bowen Xu2,
Ming Li1(B), and David Lo2

1 National Key Laboratory for Novel Software Technology, Nanjing University,
Nanjing 210023, China

{lihy,shist,huox,lim}@lamda.nju.edu.cn
2 School of Information Systems, Singapore Management University,

Singapore, Singapore
{ferdiant.2013,bowenxu.2017}@phdis.smu.edu.sg, davidlo@smu.edu.sg

Abstract. Code review, an inspection of code changes in order to iden-
tify and fix defects before integration, is essential in Software Qual-
ity Assurance (SQA). Code review is a time-consuming task since the
reviewers need to understand, analysis and provide comments manu-
ally. To alleviate the burden of reviewers, automatic code review is
needed. However, this task has not been well studied before. To bridge
this research gap, in this paper, we formalize automatic code review
as a multi-instance learning task that each change consisting of mul-
tiple hunks is regarded as a bag, and each hunk is described as an
instance. We propose a novel deep learning model named DeepReview
based on Convolutional Neural Network (CNN), which is an end-to-end
model that learns feature representation to predict whether one change is
approved or rejected. Experimental results on open source projects show
that DeepReview is effective in automatic code review tasks. In terms of
F1 score and AUC, DeepReview outperforms the performance of tradi-
tional single-instance based model TFIDF-SVM and the state-of-the-art
deep feature based model Deeper.

Keywords: Software mining · Machine learning ·
Multi-instance learning · Automatic code review

1 Introduction

Software Quality Assurance (SQA) is essential in software development. Soft-
ware code review [16] is an important inspection of code changes written by
an independent third-party developer in order to identify and fix defects before
integration. Effective code review can largely improve the software quality.

However, code review is a very time-consuming task that the reviewer needs
to spend much time to understand, analyze and provide comments for the code
review request. Additionally, with the rapid growth of software, the number of

c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 318–330, 2019.
https://doi.org/10.1007/978-3-030-16145-3_25



DeepReview: Automatic Code Review Using Deep Multi-instance Learning 319

(Rejected) changed hunk

(Approved) changed hunk

Fig. 1. An example of rejected change JdbcRepository.java of review request 26657
from Apache. This change contains four hunks and only one hunk is rejected.

review requests are growing, which leads to a heavier burden on code review-
ers. Therefore, automatic code review is important to alleviate the burden of
reviewers.

Recently, some studies have been proposed to improve the effectiveness of
code review [1,16]. Thongtanunam et al. [16] revealed that 4%–30% of reviews
have code-reviewer assignment problems. They proposed a code reviewer rec-
ommendation approach named REVFINDER to solve it by leveraging the file
location information. Ebert et al. [1] proposed to identify the factors that confuse
reviewers and understand how confusion impacts the efficiency of code reviewers.
However, the task of automatic code review has not been well studied previously.

Considering the above issues, an automated approach is needed, which is
able to help reviewers to review the code submitted by developers. Usually, a
review request submitted by developers contains some changes of source code
in the form of diff files and textual descriptions indicating the intention of
the change. Notice that each change may contain multiple change hunks and
each hunk corresponds to a set of continuous lines of code. For example, Fig. 1
shows the change in the file JdbcRepository.java of review request 26657 from
Apache project. This change contains four hunks. One of the most common ways
to analyze this change is to combine all hunks together and generate a unified
feature to represent the change. However, this method may lead to two problems.
First, the hunks appearing in each change may be discontinuous and unrelated
to one another. Directly combining the hunks together may generate mislead-
ing feature representations, leading to a poor prediction performance. Second,
when the change is rejected, not every hunk in the change is rejected. Some hunks
have no issues and can be approved by reviewers. So the approved hunks and the
rejected hunks should not be processed together for feature extraction. There-
fore, separately generating features from each individual hunk in automatic code



320 H.-Y. Li et al.

review is needed. If the label (referring to approved or rejected) of each hunk is
available, we can directly build classification models on hunk data. However, in
code review tasks, the label of each hunk is hard to be obtained while the label
of each change can be extracted. A question arises here, can we build a model
to generate hunk-level feature representations for automatic code review based
on change-level labels?

To solve this problem, we formulate the automatic code review as a binary
classification task in the multi-instance learning setting. Instead of regard-
ing each change as an individual instance following traditional machine learn-
ing method, multi-instance learning method regards each change as a bag of
instances while each hunk of the change is described as an instance. The basic
assumption in multi-instance learning is that if one instance is positive then
the bag is also positive, which is consistent with code review task whereas if
one hunk is rejected then the change is also rejected. In our paper, we propose a
deep learning model named DeepReview based on Convolutional Neural Network
(CNN) via multi-instance learning, which is able to automatically learn seman-
tic features from each hunk and predict if one change is approved or rejected.
Additionally, in order to obtain the features that capture the difference of code
changes, DeepReview firstly recovers the code before change (old source code)
and after change (new source code) according to the diff markers. These snip-
pers are then fed in to the deep model to generate feature presentation, based
on which the label of each change is predicted. We conduct experiments on large
datasets collected from open source Apache projects for evaluation. The results
in terms of widely-used metrics AUC and F1 score indicate that DeepReview
is effective in automatic code review and outperforms previous state-of-the-art
feature representation methods previously used for related software engineering
tasks.

The contributions of our work are several folds:

– We are the first to study automatic code review task as multi-instance learn-
ing task. One change always contains multiple hunks, where each hunk is
described as an instance and the change can be represented by a set of
instances. Experiment results on five large datasets show that the proposed
multi-instance model is effective in automatic code review tasks.

– We propose a novel deep learning model named DeepReview based on Convo-
lutional Neural Network (CNN), which learns semantic feature representation
from source code change and change descriptions, to predict if one change is
approved or rejected.

2 The DeepReview Approach

In this section, we introduce the details of applying DeepReview for automatic
code review. The goal of this task is to predict if one code change of review
request submitted by developers is approved or rejected. The general process of
automatic code review based on machine learning model is illustrated in Fig. 2.



DeepReview: Automatic Code Review Using Deep Multi-instance Learning 321

Prediction: 
Rejected or Approved

Code review archives Different changes Instances Classifier

(1) Collecting and
processing data.

(2) Extracting
features to generate 
training instances

(3) Building a
prediction model

(4) Predicting new change

New change submission

+
-
-

Fig. 2. The general automatic code review process based on machine learning model.

The automatic code review prediction process mainly contains several parts:

– Collecting data from code review systems and processing data.
– Generating feature representations of the input data.
– Training a classifier based on the generated features and labels.
– Predicting if a new change is approved or rejected.

In the following subsections, we first introduce the general framework of
DeepReview in Subsect. 2.1, and the data processing is reported in Subsect. 2.2.
The core parts of DeepReview is elaborated in Subsects. 2.3 and 2.4.

2.1 The Framework of DeepReview

We introduce some notations of our framework. Let Co = {co1, c
o
2, . . . , c

o
N} and

Cn = {cn1 , cn2 , . . . , cnN} denotes the collection of old code and new code. Let D =
{d1, d2, . . . , dN} denotes the collection of change descriptions, where N is the
number of changes. In this paper, we formalize the code review as a learning task,
which attempts to learn a prediction function f : X �→ Y. xi ∈ X = (coi , c

n
i , di)

denotes each change, where coi and cni denotes the i-th old code (before changed)
and new code (after changed) respectively. Here coi = {ho

i1, h
o
i2, . . . , h

o
im} and

coi = {hn
i1, h

n
i2, . . . , h

n
im} contains multiple hunks and m is the number of hunks.

di denotes the text description of i-th change. yi ∈ Y = {1, 0} indicates whether
the change is approved or rejected.

We instantiate the code review prediction model by constructing a multi-
instance learning based deep neural network named DeepReview. The general
framework of DeepReview is illustrated in Fig. 3. The DeepReview model con-
tains three parts: input layers, instance feature generation layers and multi-
instance based prediction layers.

In the DeepReview model, each hunk of source code change is regarded as an
instance. In the input layers, the source code and text description of each instance
is encoded as feature vectors and then are fed into the neural network for pro-
cessing. The details of data processing in the input layers will be discussed in
Subsect. 2.2. Then the encoded data of each instance is fed into instance feature
generation layers. In these layers, DeepReview utilizes different convolutional
neural networks (CNN) to extract features from the source code input and the
textual description input. The convolutional neural networks for programming



322 H.-Y. Li et al.

code
changes

CNN for program-
ming language

Fully-connected layers for feature fusion

…

…... ...

old source code
text description…

…... ...

new source code

encoding

CNN for program-
ming language

CNN for natural 
language

encoding encoding

Input layer

Instance feature 
generation layer

Multi-instance based 
prediction layer

Fully-connected layers for prediction

Output

Fig. 3. The general framework of DeepReview for automatic code review prediction.
The DeepReview model contains three parts: input layer, instance feature generation
layer, multi-instance based prediction layer.

language processing (called PCNN) is carefully designed respecting to the char-
acteristics of source code, which is similar to the network structure in [4]. The
convolutional neural networks for textual description processing (called NCNN)
is a standard way in [6]. Then the generated middle-level features of old code,
new code and textual descriptions of each instance are fused to learn a unified
feature representation via fully-connected networks mapping. Finally, after gen-
erating unified feature representations, the DeepReview model make a prediction
for each change via the multi-instance learning way in the multi-instance based
prediction layers.

2.2 Data Processing

The datasets used for automatic code review is the changed source code sub-
mitted by developers, which always appears in form of diffs and contains both
source code and diff markers (e.g., + stands for adding a line, - stands for
deleting a line). The main features in code changes are the difference between
the code before changed and after changed. So in data preprocessing shown in



DeepReview: Automatic Code Review Using Deep Multi-instance Learning 323

.
NCNN

.
PCNN 

.
PCNN

.
PCNN

.
PCNN

Instance Feature Generation Layers

Weight
Sharing

Input Layers

Description

hunk1

hink1

hink2

prediction

M
ax pooling layers

Old code New code 

Multi-instance Based
Prediction Layers

hunk2

hunk1

hunk2

Weight
Sharing

Weight
Sharing

Fusion layers

Fusion layers

Fusion layers

Fusion layers

Fig. 4. Automatic code review by DeepReview. When a change is processed for pre-
diction, three parts of the change (old code, new code and text descriptions) are firstly
encoded as feature vectors to feed into deep model. Then three parts of convolutional
neural networks are followed to extracte semantic features for source code and text
description separately. After that a fully-connected network is used to get fusion fea-
ture for hunks. Finally, another fully-connected network and a max-pooling layer is
connected to generate a prediction indicating approved or rejected of the change.

the left part of Fig. 4, we extract both old code (before changed) and new code
(after changed) from diffs as input. We also use the change descriptions since
they contain the goal of this change and are helpful to improve the prediction
performance.

After splitting diff files into old code, new code and text description, a
pre-trained word2vec [10] technique is used to encode every token as vector rep-
resentations (e.g., a 300 dimension vector), which has been shown effective in
processing textual data and widely used in text processing tasks [6,10]. In a simi-
lar way, we split descriptions as words and encode them as vector representations
too. All these vector representations are sent into the deep neural network to
learn the semantic features.

2.3 Instance Feature Generation Layer

DeepReview takes old source code (before change) and new source code (after
change) along with the text descriptions as inputs. Noticing that the source
code and text descriptions are with different structures. Therefore we use PCNN
network for code and NCNN network for text to extract feature, respectively.

As aforementioned, each change will contain multiple hunks and different
hunks are individual instance, therefore the instance features should be extracted
separately by the same neural network. In other words, the weight of PCNN is
shared for all code hunks. In this way, we can get unbiased feature representations
for each hunk with both old code and new code.



324 H.-Y. Li et al.

Suppose one change contains m modified hunks. Let (zoi1, z
o
i2, . . . , z

o
im)

denotes the middle-level vectors of old source code coi , (zni1, z
n
i2, . . . , z

n
im) denotes

the middle-level vectors of new source code cni and zti denotes the middle-level
vectors of text description di. In the instance feature generation layers, DeepRe-
view first concatenates this three part for each instance as following:

zhij = zoij � znij � zti (1)

where � is the concatenating operation and the generated zhij represents the
features of the j-th hunk of the i-th change (referring to one instance).

To capture the difference between new code and old code as well as the
relation between code change and change description, this concatenated features
are then fed into fully-connected networks for feature fusion.

2.4 Multi-instance Based Prediction Layer

In the prediction layers, we first make a prediction for each hunk (also called
instance) using fully-connected networks following a sigmoid layer based on the
generated hunk representations. Similarly, all the fully-connected networks are
shared weights to each hunk so that the generated prediction does not have bias.
The output prediction of each hunk pi = (pi1, pi2, . . . , pim) is generated.

In the multi-instance setting, if any instance is positive (rejected), the bag is
also positive (rejected). So the maximum value of predictions for hunks is used
for predicting the label of each change. Then, a max-pooling layer is employed
to get the final prediction for the change, that is p̂i = max{p}.

Specifically, the parameters of the convolutional neural networks layers can
be denoted as Θ = {θ1, θ2, . . . , θl} and the parameters of the fully-connected
networks layers can be denoted as W = {w1,w2, . . . ,w3}. Therefore, the loss
function implied in DeepReview is:

L(Θ,W ) = −
N∑

i=1

(cayi log p̂i + cr(1 − yi) log(1 − p̂i)) + λΩ(f) (2)

where L is a cross-entropy loss, Ω(f) is the regularization term which imposes
regularization (e.g., L2 regularization) on the weights of model, and λ is the
trade-off parameter balancing these two terms. ca denotes the cost of incorrectly
predicting a rejected change as approved and cr denote the cost of incorrectly
predicting a approved change as rejected. This objective function can be effec-
tively optimized by SGD (Stochastic gradient descent) algorithm.

3 Experiments

To evaluate the effectiveness of DeepReview, we conduct experiments on thou-
sands of code reviews from open source software projects and compare with
several state-of-the-art code review methods.



DeepReview: Automatic Code Review Using Deep Multi-instance Learning 325

3.1 Experiment Settings

The datasets used in our experiment are from Apache1 Code Review Board,
which are also analyzed by prior studies on code reviews [13,14]. We down-
loaded all reviews on October 2017 and selected only code reviews in which the
reviewers highlighted the line numbers that they have issues with, totally 1,011
code reviews. We further extracted five repositories with the largest number of
involved files in the collected code reviews – the different datasets and their
statistics are shown in Table 1. For each repository, we have more than 1,000
involved files and at least 3,500 hunks.

Table 1. Statistics of our data sets.

Datasets #changes #hunks #rejected

cloudstack-git 1,682 6,171 128

aurora 1,161 6,762 168

drill-git 1,015 3,575 43

accumulo 1,011 5,798 152

hbase-git 1,009 6,702 140

As indicated by Table 1, the number of rejected hunks is only a small part of
all hunks and the datasets are very imbalanced. Therefore, we use F1 to evalu-
ate the performance; F1 has been widely used in imbalanced learning settings.
Additionally, we record the AUC, which is a non-parametric method to evaluate
model performance and is unaffected by class imbalance. The evaluation met-
rics used in our experiments were adopted to evaluate many approaches that
automate various software engineering tasks [4,5,9,12,17].

We compare the proposed model DeepReview with following baseline meth-
ods and some of its variants:

– TFIDF-LR [2], which uses Term Frequency-Inverse Document Frequency
(TFIDF) feature to represent source code changes and Logistic Regression
(LR) for classification.

– TFIDF-SVM, which uses TFIDF features to represent source code changes
and Support Vector Machine (SVM) for classification.

– Deeper [20], one of the state-of-the-art deep learning models on software engi-
neering, which extracts deep features from changes with DBN models and
then apply Logistic Regression (LR) for classification.

– Deeper-SVM, a slight variant of Deeper, which uses DBN model for feature
extraction and then apply Support Vector Machine for classification.

– DeepReview-SingleInstance, one variant of DeepReview, which does not con-
sider the multi-instance setting and concatenate the all hunks together as one
instance for input.

1 https://reviews.apache.org/r/.



326 H.-Y. Li et al.

– DeepReview-diff, one variant of DeepReview, which does not separate the
code change and taking diff marks and diff code as input.

The settings of DeepReview and its variants are introduced here: in the con-
volution layers, we use activation function σ(x) = max(x, 0). Also, we set the
size of convolution windows as 2 and 3 with 100 feature maps each.

3.2 Experiment Results

For each dataset, 10-fold cross validation is repeated 5 times and we report the
average value of all compared methods in order to reduce the evaluation bias. We
also apply the statistic test to evaluate the significance of DeepReview. Pairwise
t-test at 95% confidence level is conducted.

We firstly compare our proposed model DeepReview with several traditional
non-multi instance models. One of the most common methods is to employ
Vector Space Model (VSM) to represent the changes. In addition, we compare
DeepReview with latest deep learning based models Deeper [20] on software
engineering, which applies Deep Believe Network for semantic feature extraction.
The results are shown in Tables 2 and 3. The highest results of each repository is
highlighted in bold. The compared methods that are significantly inferior than
our approach will be marked with “◦” and significantly better than our approach
be marked with “•”.

Table 2. The performance comparison in terms of F1 on all methods.

Datasets TFIDF-LR TFIDF-SVM Deeper Deeper-SVM DeepReview

accumulo 0.219◦ 0.231◦ 0.208◦ 0.199◦ 0.444

aurora 0.202◦ 0.214◦ 0.352◦ 0.298◦ 0.436

cloudstack-git 0.252◦ 0.276◦ 0.392◦ 0.257◦ 0.497

drill-git 0.213◦ 0.235◦ 0.277◦ 0.226◦ 0.414

hbase-git 0.235◦ 0.257◦ 0.182◦ 0.142◦ 0.463

Avg. 0.224◦ 0.243◦ 0.282◦ 0.224◦ 0.451

Table 3. The performance comparison in terms of AUC on all methods.

Datasets TFIDF-LR TFIDF-SVM Deeper Deeper-SVM DeepReview

accumulo 0.635◦ 0.678◦ 0.697◦ 0.705◦ 0.746

aurora 0.577◦ 0.629◦ 0.687◦ 0.566◦ 0.758

cloudstack-git 0.755◦ 0.827◦ 0.825◦ 0.637◦ 0.870

drill-git 0.676◦ 0.725◦ 0.639◦ 0.571◦ 0.761

hbase-git 0.685◦ 0.751 0.597◦ 0.547◦ 0.758

Avg. 0.666◦ 0.722◦ 0.689◦ 0.605◦ 0.779



DeepReview: Automatic Code Review Using Deep Multi-instance Learning 327

0.300
0.320
0.340
0.360
0.380
0.400
0.420
0.440
0.460
0.480
0.500

accumulo aurora cloudstack-git drill-git hbase-git

DeepReview-SingleInstance DeepReview

(a) F1.

0.600

0.650

0.700

0.750

0.800

0.850

0.900

accumulo aurora cloudstack-git drill-git hbase-git

DeepReview-SingleInstance DeepReview

(b) AUC

Fig. 5. F1 and AUC of the compared methods on five datasets.

0.300

0.350

0.400

0.450

0.500

accumulo aurora cloudstack-git drill-git hbase-git

DeepReview-diff DeepReview

(a) F1.

0.600

0.650

0.700

0.750

0.800

0.850

0.900

accumulo aurora cloudstack-git drill-git hbase-git

DeepReview-diff DeepReview

(b) AUC.

Fig. 6. F1 and AUC of the compared methods on five datasets.

As indicated in Tables 2 and 3, DeepReview achieves the best performance on
all datasets in terms of F1 score. On average, DeepReview can lead to AUC value
0.779, which is significant better than the value achieves by TFIDF-LR (0.666),
TFIDF-SVM (0.722). When compared with Deeper and its variant Deeper-SVM,
it can be easily find that DeepReview achieves the best F1 score and AUC value.
On average, the superiority of DeepReview to other deep feature based methods
is statistically significant. In conclusion, the proposed DeepReview is effective in
automatic code review prediction, which indicates that DeepReview can learn
better features than traditional hand-crafted features or previous deep learning
based features.

To evaluate the effectiveness of applying multi-instance learning strategy
for code review, we compare our model to traditional single-instance learning
model, named DeepReview-SingleInstance. Figure 5a and b show the perfor-
mance comparison of DeepReview and a variant DeepReview-SingleInstance.
It can be observed that DeepReview achieves higher AUC value and F1 score
than DeepReview-SingleInstance on all datasets, indicating that multi-instance
learning approach is effective in code review task.

To evaluate the effectiveness of applying both source code before and after
changes to model the difference features of change, we compare another vari-
ant of DeepReview, named DeepReview-diff. We use the same network structure
to extract the features of code in diffs and fuse it with the features of corre-



328 H.-Y. Li et al.

sponding change description as the final representations. Figure 6a and b show
the performance comparison of DeepReview and its variant DeepReview-diff.
Compared to DeepReview-diff, it is clear that DeepReview outperforms it by
improving 4.2% in terms of F1 score and 4.7% in terms of AUC on average.

4 Related Work

Many empirical studies aim to help researchers and practitioners to understand
code review practice from different perspectives [7,13,15]. To characterize and
understand the differences between a diverse set of software projects, Rigby et
al. [13] found that many characteristics of code review have independently con-
verged to similar values which indicates general principles of code review, e.g.,
reviewers prefer discussion and fixing code over reporting defects, the number
of involved developers can vary. Kononenko et al. [7] investigated a set of fac-
tors that might affect the quality of code review based on a large open-source
project Mozilla, and focused on the relationship between human factors (e.g.,
personal characteristics of developers, team participation and involvement) and
code review quality. Tao et al. [15] investigated the reasons behind 300 rejected
Eclipse and Mozilla patches by surveying 246 developers. They concluded that
the poor quality of the solution, the large size of the involvement of unnecessary
changes, the ambiguous documentation of a patch and inefficient communica-
tion. Moreover, Thongtanunam et al. [16] revealed that 4%–30% of reviews have
code-reviewer assignment problem. Thus, they proposed a code-reviewer recom-
mendation approach REVFINDER to solve the problem by leveraging the file
location information. The intuition is that files that are located in similar file
paths would be managed and reviewed by experienced code-reviewers. Zanjani
et al. [21] also studied on code reviewer recommendation problem and they pro-
posed an approach cHRev by leveraging the specific information in previously
completed reviews (i.e., quantification of review comments and their recency).

Recently, deep learning has been applied in software engineering. For exam-
ple, Yang et al. applied Deep Belief Network (DBN) to learn higher-level features
from a set of basic features extracted from commits (e.g., lines of code added,
lines of code deleted, etc.) to predict buggy commits [20]. Xu et al. applied word
embedding and convolutional neural network (CNN) to predict semantic links
between knowledge units in Stack Overflow (i.e., questions and answers) to help
developers better navigate and search the popular knowledge base [19]. Lee et al.
applied word embedding and CNN to identify developers that should be assigned
to fix a bug report [8]. Mou et al. [11] applied tree based CNN on abstract syntax
tree to detect code snippets of certain patterns. Huo et al. [3,4] applied learned
unified semantic feature based on bug reports in natural language and source
code in programming language for bug localization tasks. Wei et al. [18] proposed
deep feature learning framework AST-based LSTM network for functional clone
detection, which exploits the lexical and syntactical information.



DeepReview: Automatic Code Review Using Deep Multi-instance Learning 329

5 Conclusion

In this paper, we are the first to formulate code review as a multi-instance learn-
ing task. We propose a novel deep learning model named DeepReview for auto-
matic code review, which takes raw data of a changed code containing multiple
hunks along with the textual descriptions as inputs and predicts if one change
is approved or rejected. Experimental results on five open source datasets show
that DeepReview is effective and outperforms the state-of-the-art models previ-
ously proposed for other automated software engineering tasks.

Acknowledgment. This research was supported by National Key Research and
Development Program (2017YFB1001903) and NSFC (61751306).

References

1. Ebert, F., Castor, F., Novielli, N., Serebrenik, A.: Confusion detection in code
reviews. In: ICSME, pp. 549–553 (2017)

2. Gay, G., Haiduc, S., Marcus, A., Menzies, T.: On the use of relevance feedback in
IR-based concept location. In: ICSM, pp. 351–360 (2009)

3. Huo, X., Li, M.: Enhancing the unified features to locate buggy files by exploiting
the sequential nature of source code. In: IJCAI, pp. 1909–1915 (2017)

4. Huo, X., Li, M., Zhou, Z.H.: Learning unified features from natural and program-
ming languages for locating buggy source code. In: IJCAI, pp. 1606–1612 (2016)

5. Jiang, T., Tan, L., Kim, S.: Personalized defect prediction. In: ASE, pp. 279–289
(2013)

6. Kim, Y.: Convolutional neural networks for sentence classification. In: EMNLP,
pp. 1746–1751 (2014)

7. Kononenko, O., Baysal, O., Guerrouj, L., Cao, Y., Godfrey, M.W.: Investigating
code review quality: do people and participation matter? In: ICSME, pp. 111–120
(2015)

8. Lee, S., Heo, M., Lee, C., Kim, M., Jeong, G.: Applying deep learning based auto-
matic bug triager to industrial projects. In: ESEC/FSE, pp. 926–931 (2017)

9. Menzies, T., Greenwald, J., Frank, A.: Data mining static code attributes to learn
defect predictors. IEEE TSE 33(1), 2–13 (2007)

10. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed represen-
tations of words and phrases and their compositionality. In: NIPS, pp. 3111–3119
(2013)

11. Mou, L., Li, G., Zhang, L., Wang, T., Jin, Z.: Convolutional neural networks over
tree structures for programming language processing. In: AAAI, pp. 1287–1293
(2016)

12. Nam, J., Pan, S.J., Kim, S.: Transfer defect learning. In: ICSE, pp. 382–391 (2013)
13. Rigby, P.C., Bird, C.: Convergent contemporary software peer review practices. In:

FSE, pp. 202–212 (2013)
14. Rigby, P.C., German, D.M., Storey, M.A.: Open source software peer review prac-

tices: a case study of the apache server. In: ICSE, pp. 541–550 (2008)
15. Tao, Y., Han, D., Kim, S.: Writing acceptable patches: an empirical study of open

source project patches. In: ICSME, pp. 271–280 (2014)



330 H.-Y. Li et al.

16. Thongtanunam, P., Tantithamthavorn, C., Kula, R.G., Yoshida, N., Iida, H., Mat-
sumoto, K.I.: Who should review my code? A file location-based code-reviewer rec-
ommendation approach for modern code review. In: SANER, pp. 141–150 (2015)

17. Wang, S., Liu, T., Tan, L.: Automatically learning semantic features for defect
prediction. In: ICSE, pp. 297–308 (2016)

18. Wei, H.H., Li, M.: Supervised deep features for software functional clone detection
by exploiting lexical and syntactical information in source code. In: IJCAI, pp.
3034–3040 (2017)

19. Xu, B., Ye, D., Xing, Z., Xia, X., Chen, G., Li, S.: Predicting semantically linkable
knowledge in developer online forums via convolutional neural network. In: ASE,
pp. 51–62 (2016)

20. Yang, X., Lo, D., Xia, X., Zhang, Y., Sun, J.: Deep learning for just-in-time defect
prediction. In: QRS, pp. 17–26 (2015)

21. Zanjani, M.B., Kagdi, H., Bird, C.: Automatically recommending peer reviewers
in modern code review. IEEE TSE 42(6), 530–543 (2016)


	DeepReview: Automatic code review using deep multi-instance learning
	Citation
	Author

	tmp.1559206055.pdf.WFwt4

