
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

12-2018

A cloud-based data gathering and processing system for A cloud-based data gathering and processing system for

intelligent demand forecasting intelligent demand forecasting

Colin K. L. TAY
Singapore Management University, colintay.2017@mais.smu.edu.sg

Kyong Jin SHIM
Singapore Management University, kjshim@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Numerical Analysis and Scientific

Computing Commons

Citation Citation
TAY, Colin K. L. and SHIM, Kyong Jin. A cloud-based data gathering and processing system for intelligent
demand forecasting. (2018). 2018 IEEE International Conference on Big Data (Big Data): Seattle, WA,
December 10-13: Proceedings. 5451-5453.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4338

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4338&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4338&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4338&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4338&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

A Cloud-Based Data Gathering and Processing
System for Intelligent Demand Forecasting

Li Chin Ho
School of Information Systems

Singapore Management
University

lichin.ho.2016@mitb.smu.edu.sg

Colin K. L. Tay
School of Information Systems

Singapore Management University
Singapore

colintay.2017@mais.smu.edu.sg

Kyong Jin Shim
School of Information Systems

Singapore Management University
Singapore

kjshim@smu.edu.sg

Li Chin Ho
School of Information Systems

Singapore Management University
lichin.ho.2016@mitb.smu.edu.sg

Abstract—Demand forecasting has been a challenging problem
especially for products with short life cycles such as electronic
goods and fashion items. Additionally, in the presence of limited
past or historical data as well as the need for fast turnaround for
forecast, producing timely and accurate demand forecast can be
extremely challenging. In this study, we describe a cloud-based
data gathering and processing system for intelligent demand
forecasting.

Keywords—demand forecasting, web crawling, cloud-based
data gathering, data engineering

I. INTRODUCTION & DATASET
Today’s modern retail environments are highly dynamic

and fast-paced. Books, fashion items, and electronic goods are
examples of products with short product cycle [1, 2]. Demand
forecasting for such products can be difficult due to limited
historical demand and sales data on which forecasting models
are built. Further, accurate demand forecasting requires not
only the past trends but also data concerning external factors
that a) are known to have influenced demand in the past such
as weather, epidemics, incidents, and other economic
indicators, and b) are predicted to influence future demand (e.g.
new phenomena). In both cases, it is imperative that such
information can be crawled dynamically and efficiently in
order for retailers and also logistics and supply chain solution
providers to strategize their business operations.

In this study, we propose and describe a cloud-based data
gathering and processing system for intelligent demand
forecasting. The proposed system allows for efficient and
dynamic data crawling and information querying. The system
crawls and scrapes external data that supplement historical
demand and sales data towards more accurate demand
forecasting. The system’s architecture allows for scheduled job
executions as well as on-demand data crawling.

II. SYSTEM ARCHITECTURE
The data crawlers, written in Python 3.6, crawl weather

information, known public holidays globally, news articles
(from a pre-defined list of news sites), and Twitter tweets. The
latter two can be configured to crawl news articles and
conversations pertaining to certain industries, sectors, brands,

products, and individuals. The types of external data that can
potentially help improve demand forecasting vary from one
domain to another. For instance, in the past, reports of certain
E. coli outbreak or other epidemics had a significant impact on
consumer demand for certain food products or health
products. The current architecture is highly modular – new
crawler programs can be easily added onto the system by
specifying new data sources, referencing new crawling scripts,
and specifying crawling rules.

Our system leverages Celery Distributed Task Queue
architecture [3]. The Scheduler allows for scheduled data
crawling. Crawled data are stored in Elasticsearch [5] and it
can be queried efficiently via a user interface by the business
user. The current system prototype leverages Cloudera’s
Hadoop distribution. Our system architecture does not restrict
users from using other external tools to interface with the
crawled data for information querying and further data
analyses.

Fig. 1. Architecture of Proposed Cloud-Based Data Gathering and
Processing System.

2018 IEEE International Conference on Big Data (Big Data)

978-1-5386-5035-6/18/$31.00 ©2018 IEEE 5451

https://doi.org/10.1109/BigData.2018.8622546

A. Web Crawler Module
In order to accommodate different types of data crawlers in
the future, our system is designed to handle a heterogenous
group of crawlers running concurrently. We achieve this
through non-locking threads and non-dependence architecture.
We use Celery Distributed Task Queue [3]. Four data crawlers
currently in place in our system are shown in Table I.

TABLE I. DATA CRAWLERS AND DATA SOURCES

1

Data Type Weather

Source Wunderground.com

Metrics
Collected

Daily mean temperature, minimum temperature,
maximum temperature, weather condition (rainy,
sunny, etc.)

Additional
Metrics 7 days weather forecast from the query date

Mandatory
Fields Country, Airport ICAO code, Start and End date

2

Data Type Public Holidays

Source TimeandDate.com
Metrics

Collected
Date, Day of the week, Holiday name, Holiday type,
Country

Additional
Metrics Nil

Mandatory
Fields Country and year of interest

3

Data Type News Articles

Source A pre-defined list of URLs
Metrics

Collected An entire article that matches the keywords

Additional
Metrics Nil

Mandatory
Fields

User-defined URL, keywords, depth and option to
explore within the domain

4

Data Type Social Media (Twitter)

Source Twitter
Metrics

Collected
Tweet ID, User, Created Datetime, Tweet text,
Retweets count, Followers_Count

Additional
Metrics Nil

Mandatory
Fields Twitter username and keywords

All data crawlers can be configured using Basic Mode and

Advanced Mode. The Basic Mode allows the user to schedule
jobs on-demand – either as a one time task or as a recursive
daily job.

Fig. 2. Weather Data Crawler for Airports

Figure 2 shows the web user interface for a Basic Mode
weather data crawler for airports. The user can choose a
particular airport from a pre-defined list of airports, and the
weather data crawler will run, extract and show weather
information on cities around the selected airport. This module
uses Python’s BeautifulSoup package to retrieve historical and
forecast weather information from a public website. The user
can further specify start and end dates, and the crawler will
extract and display weather information around the specified
dates.

Another crawler, Public Holiday data crawler, extract
global public holidays. Figure 3 illustrates various parameters
that the user can specify for the crawler. Noting that public
holidays are typically published annually ahead of time, our
crawler extracts public holiday information by year since the
number of records returned per year is relatively small.

Fig. 3. Public Holiday Data Crawler

News article data crawler utilizes Python’s Newspaper
package. This crawler takes a URL and a set of keywords
specified by the user in the user interface shown in Figure 4,
and it performs a recursive search within the specified domain.
As many news sites and blogs have links to external websites
such as advertisements, we incorporate a safeguarding
mechanism whereby the crawler only retrieves and searches
links belonging to the same domain as the original search
domain. As the crawler extracts relevant webpages, it stores
the search results in Elasticsearch.

Fig. 4. Public Holiday Data Crawler

5452

Lastly, our social media data crawler retrieves relevant
tweets from Twitter via Twitter’s Rest API and Streaming
API. The user can specify trending keywords or hashtags in
the user interface that are relevant to the user’s industry or
sector. The crawler will then retrieve recent tweets mentioning
those keywords or hashtags. Similarly to other crawlers, the
social media crawler can be scheduled to run on a regular
basis or on demand.

B. Scheduler & Task Distributor
The scheduling feature of our system allows the user to

configure crawlers’ execution schedules in advance. We
explored numerous options, ranging from OS commands such
as ‘cron’ or ‘at’ to various development libraries such as
Quartz, APScheduler and Celery. Our system uses both
APScheduler and Celery libraries. APScheduler is capable of
handling simple and complex schedules while Celery can be
used as a task distributor to allocate tasks to crawlers.

Fig. 5. Workflow between EDA, APScheduler, Celery and Crawler

As shown in Figure 5, APScheduler is backed by a
database to persist the schedule information that the user
defines. As such, there can be only one instance of the
APScheduler running at a time to ensure data consistency. Our
system also implements asynchronous tasking between EDA
and APScheduler to prevent thread locking as the number of
concurrent users increases. In the event when a task is to be
scheduled, APScheduler will trigger a message to Celery
where a cluster of crawlers will pick up the task to run and
update the task status respectively thereafter.

Our system implements multiple asynchronous
communication between modules. Celery is one of the most
popular and established as compared to the rest such as RQ or
TaskTiger. We use Celery as it is interoperable with the rest of
the modules in our system and thereby minimizing system
dependencies and most importantly, Celery can coordinate and
distribute tasks across several machines.

C. Search Engine
Given that there is a significant amount of text content that

needs to be stored, efficient search within these huge datasets
with the traditional SQL queries can be challenging. As such,
alternative technologies such as Apache Solr [4] and
Elasticsearch [5] were explored to overcome the traditional
database limitations. Upon further investigation, our system
uses Elasticsearch due to the ease of deployment along with
other modules. We chose Elasticsearch over Solr as the latter
required an additional component (i.e. Zookeeper) to operate
while Elasticsearch required only the standard installer.
Furthermore, clustering can also be achieved easily with

Elasticsearch with the standard installation on various
computers in the same network, having the same cluster name.
Next, Elasticsearch is schema-less meaning it does not require
the definition of the domains (e.g. index, type, field, field
type) in advance. Lastly, the Elasticsearch aggregation
functions can extract interesting analytical insights (i.e. terms,
min, max, avg, sum, cardinality, histogram) from the dataset,
and it will be useful for Exploratory Data Analysis in
alignment with demand forecasting.

D. Storage & Hadoop
Our system supports multiple storage options. The current

prototype houses several MySQL and Microsoft SQL Server
database instances. Nevertheless, the user can potentially use
other databases in the future as the system architecture utilizes
an Object-Relational Mapping (ORM) architecture where the
user can switch to other databases such as Postgres,
GreenPlum, Vertica and Impala without significant changes to
the current system architecture.

We explored three popular commercial distributions of
Hadoop (i.e. Cloudera, HortonWorks, and MapR) and chose
Cloudera in accordance with several other projects in our
organization looking to leverage cloud-based platform for big
data analytics. All of the system modules were deployed onto
a Cloudera Hadoop platform and configured accordingly.

E. Intelligent Demand Forecasting
When it comes to forecasting future demand, historical data

may prove to be insufficient especially in the presence of
volatile market dynamics. The primary objective of this study
is to provide a cloud-based one stop portal for the investigation
of external factors that influence demand volatility. Our cloud-
based data gathering and processing system crawls, scrapes,
and stores external data that can supplement historical demand
and sales data towards more accurate future demand
forecasting. For instance, a series of bad weather days
combined with a planned road construction in a particular
geographic area has been found to be positively correlated with
a sudden surge of demand for particular motor parts.

III. FUTURE DIRECTIONS
We are continuing to add more data sources that can

potentially affect global markets. We plan on gathering more
data pertaining to natural disasters, accidents, crimes, etc. We
plan to continue to find correlation between external factors as
found in the crawled data and past and future demand across
multiple industries and sectors.

REFERENCES
[1] Maaß, Dennis & Spruit, Marco & de Waal, Peter. (2014). Improving

short-term demand forecasting for short-lifecycle consumer products
with data mining techniques. Decision Analytics. 1. 4. 10.1186/2193-
8636-1-4.

[2] Top Challenges in Demand Forecating. (2018 November 11). Retrieved
from https://www.relexsolutions.com/top-challenges-in-demand-
forecasting/

[3] Celery: Distributed Task Queue. http://www.celeryproject.org/
[4] Solr: http://lucene.apache.org/solr/
[5] Elasticsearch: https://www.elastic.co/

5453

	A cloud-based data gathering and processing system for intelligent demand forecasting
	Citation

	A Cloud-Based Data Gathering and Processing System for Intelligent Demand Forecasting

