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Abstract: The indeterministic relations between unobservable events and
observed outcomes in partially identified models can be characterized by
a bipartite graph. Given a probability measure on observed outcomes, the
set of feasible probability measures on unobservable events can be defined
by a set of linear inequality constraints, according to Artstein’s Theorem.
This set of inequalities is called the “core-determining class”. However, the
number of inequalities defined by Artstein’s Theorem is exponentially in-
creasing with the number of unobservable events, and many inequalities
may in fact be redundant. In this paper, we show that the “exact core-
determining class”, i.e., the smallest possible core-determining class, can
be characterized by a set of combinatorial rules of the bipartite graph. We
prove that if the bipartite graph and the measure on observed outcomes
are non-degenerate, the exact core-determining class is unique and it only
depends on the structure of the bipartite graph. We then propose an algo-
rithm that explores the structure of the bipartite graph to construct the
exact core-determining class. We design and implement the model and al-
gorithm in a set of examples to show that our methodology could efficiently
discard the redundant inequalities that are not useful to identify the pa-
rameter of interest. We also demonstrate that, by using the inequalities
corresponding to the exact core-determining class to perform set inference,
the power of test statistics against local alternatives can be improved.

Keywords and phrases: Core-determining Class, Inequality Selection,
Linear Programming, Partially Identified Models, Set Inference.

1. Introduction

Correlations and causalities between “facts” are wide-spread. Suppose we de-
fine hidden facts as “unobservable events” and observable facts as “observed

∗The authors gratefully thank all participants in MIT Econometrics seminar and the session
Machine Learning in Econometrics at the AEA 2017 annual meeting in Chicago for invaluable
comments. We thank Victor Chernozhukov, Alfred Galichon, Adam Rosen, Amedeo Odoni
and Xiaoxia Shi for providing valuable comments.
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outcomes”; in reality, we could observe the outcomes, but not the events that
cause the outcomes. In many situations, relations between events and outcomes
are indeterministic—i.e., a single event may lead to different outcomes, and an
outcome may be the result of several events. It is important to infer informa-
tion about unobservable events by using information about observed outcomes.
One example, from game theory, is to infer individual players’ private informa-
tion (unobservable events), given observations of their strategies, under multiple
Nash equilibria (observed outcomes); another is to infer customers’ hidden char-
acteristics (unobservable events) given their purchase histories and sales data
(observed outcomes).

The relations between unobservable events and observed outcomes can be
characterized by a bipartite graph. Given a bipartite graph and an observed
measure on outcomes, our paper’s key interest is to estimate bounds on the prob-
ability measure on unobservable events. The feasible set of probability measures
on unobservable events is defined by a set of linear inequality constraints. In
practice, the number of inequality constraints needed from a standard method
(e.g., Artstein’s Theorem, which is introduced in Section 2) could grow very
quickly, even exponentially with the number of unobservable events, while some
or even many of them are redundant. However, including many inequalities and
especially many redundant inequalities may impose two difficulties in inference
on the measure on unobservable events: (1) for the inference procedures, such as
those described by Andrews and Shi (2014) and others may lose power; and (2)
these inference procedures are computationally intractable when the number of
unobservable events is too large.

In this paper, we propose an algorithm (an inequality selection procedure)
that may dramatically reduce the number of inequalities that define the feasible
set of probability measures on unobservable events. A subset of all inequalities
described in Artstein’s Theorem that characterizes the identified region is re-
ferred to as the core-determining class by Galichon and Henry (2011). Obviously,
there can be more than one core-determining class. The goal of our algorithm
is to find the smallest possible core-determining class, which we formally define
as the “exact core-determining class”. Such an algorithm for constructing the
exact core-determining class allows us to identify which inequalities are truely
binding. We show that the “exact core-determining class” only depends on the
structure of the bipartite graph, not the probability measure on the observed
outcomes. This result is important because usually the inequalities defined in
Artstein’s Theorem are estimated with noise, which seems to affect inference.
However, our results show that the identity of binding inequalities in the core-
determining class would not be affected by the noise. More specifically, (1) we
show that, the smallest set of irredundant inequalities, denoted as “exact core-
determining class”, can be characterized by a set of combinatorial rules. We
prove that, under certain mild conditions, the exact core-determining class only
depends on the structure of the bipartite graph, not on the observed probability
measure on the outcomes. (2) we then propose an algorithm for constructing
the exact core-determining class.

The closest studies on our topic are by Galichon and Henry (2006, 2011),
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Chesher and Rosen (2012), Andrews and Soares (2010), etc. Specifically, Gali-
chon and Henry (2006, 2011) propose the core-determining class problem, i.e.,
finding the minimum set of inequalities to describe the feasible region of proba-
bility measures on the unobservable events. Chesher and Rosen (2012) provide
an inequality selection algorithm, but may still contain some redundant inequal-
ities in its selected set. Andrews and Soares (2010) propose a moment inequality
selection procedure using criterions such as BIC.

There are many studies on performing inference of partially identified mod-
els. Chernozhukov, Hong and Tamer (2007) propose a general inference proce-
dure with moment inequality constraints. Romano and Shaikh (2010) provide
improvements for CHT (2007). Beresteanu, Molchanov, and Molinari (2011)
use random set theory to perform inference with convex inequality restric-
tions. Andrews and Shi (2014) construct set inference in conditional moment in-
equalities settings. In the many moment inequality environment, Chernozhukov,
Chetverikov and Kato (2014) proposes tests statistics based on fixed critical
value and bootstrap critical value for testing whether one point is in the iden-
tified region or not. Andrews and Shi (2016) proposes tests for identified region
in the setting of many unconditional moment inequalities. Other procedures in-
clude Romano and Shaikh (2010), etc.. For all of these method metioned, the
computation of the test-statistics requires us to use of all moment inequali-
ties, regardless of their redundancy. Though this paper is not about performing
inference on partially identified models, by selecting the set of “irredundant” in-
equalities and then utilizing the selected inequalities for inference, practitioners
could potentially reduce the computational cost when performing these infer-
ence methods. We implement the proposed algorithm and demonstrate its good
performance through two large scale examples. In these examples, we find sub-
stantial reduction of the inequalities and hence, reduction in computational time
when performing inference procedures using the inequalities that correspond
to the “exact core-determining class”. In addition, there are improvements of
power of tests compared to local alternatives, by only using the reduced set of
inequalities. For related empirical studies, see Manski and Tamer (2002); Bajari,
Benkard, and Levin (2007); Bajari, Hong, and Ryan (2010); etc.

There is also a wide literature on detection and elimination of redundant con-
straints. For example, Telgen (1983) develops two methods to identify redundant
constraints and implicit equalities. Caron, McDonald, and Ponic (1989) present
a degenerate extreme point strategy that classifies linear constraints as either
redundant or necessary. Paulraj, Chellappan, and Natesan (2006) propose a
heuristic approach using an intercept matrix to identify redundant constraints.
Since these papers do not look into irredundant constraints in the set of linear
inequalities defined by Artstein’s theorem, none of them focuses on the special
structure of the core-determining class studied in our paper,

The paper is organized as follows: In Section 2, we introduce the definition
of “exact core-determining class” and preview of main results. In Section 3, we
study the relationship between the structure of the bipartite graph and identity
of irredundant inequalities. We prove that the irredundant inequalities that char-
acterize the identified region can be described by a set of combinatorial rules
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and then propose a fast algorithm for computing the exact core-determining
class. In Section 4, we implement the algorithm in a set of examples with large
bipartite graphs and demonstrate its good performance. In Section 5, we eval-
uate the performance of inference procedures using the exact core-determining
class, compared to the performance of the same procedures using the full set of
inequalities. Section 6 concludes.

2. Exact Core-determining Class and Preview of Results

2.1. core-determining Class and Exact core-determining Class

The relations between unobservable events and observed outcomes can be char-
acterized by a bipartite graph G = (U ,Y, ϕ), where U is a finite set of vertices
representing unobservable events, Y is a finite set of vertices representing ob-
served outcomes, and ϕ : 2U 7→ 2Y is a correspondence mapping from U to Y
such that ϕ(u) ⊂ Y is the set of all possible outcomes that could be caused by
the event u ∈ U , and ϕ(A) := ∪u∈Aϕ(u) for any set A ⊂ U . The inverse of ϕ,
denoted as ϕ−1 is defined as ϕ−1 : 2Y 7→ 2U , ϕ−1(B) = {u ∈ U|ϕ(u) ∩ B 6= ∅},
∀B ⊂ Y. Let v be the probability measure on U and µ be the probability mea-
sure on Y. Essentially, we aim to identify the set of feasible probability measures
v on U given an observed measure µ on Y.

For a graph G = (U ,Y, ϕ), we say G is connected if (1) ∀A1, A2 ⊂ U such
that A1 ∩ A2 = ∅ and A1 ∪ A2 = U , it holds that ϕ(A1) ∩ ϕ(A2) 6= ∅, and (2)
theϕ(U) = Y. For any non-empty set A ⊂ U , we say A is self-connected (in the
graph G) if the subgraph (A,ϕ(A), ϕ) is connected.

Definition 1 (Non-Degeneracy ofG and µ). (1) We say thatG is non-degenerate
if G is a connected graph.

(2) We say that µ is non-degenerate if µ(y) > 0 for any y ∈ Y.

The non-degeneracy of the graph G can break down when G have more than
one mutually disconnected branches, in which we call G is degenerate. Later
we will discuss both the situations when G is non-degenerate and when G is
degenerate. The non-degeneracy of µ is a very mild condition and we assume
that it holds through out the paper.

Denote du = |U| and dy = |Y|. The parameter of interest in this paper is
the du × 1 vector v, which is the probability measure that generates the events
u ∈ U . In general, we are unable to obtain a point estimation of v given only the
bipartite graph and the observed measure µ on Y, unless additional information
is provided. Instead, we can obtain a set of inequalities on v given the bipartite
graph G = (U ,Y, ϕ) and the measure µ on Y. More specifically, for any set of
events A ⊂ U , the outcome should fall into the set ϕ(A). Thus, for any A ⊂ U ,
we can obtain an inequality v(A) :=

∑
u∈A v(u) 6 µ(ϕ(A)) :=

∑
y∈ϕ(A) µ(y).

Artstein’s theorem in Artstein (1983) states that all information of v in the
bipartite graph model G = (U ,Y, ϕ), given a probability measure µ on Y, is
characterized by the set of constraints described below.
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Lemma 1 (Artstein’s Theorem). The following set of inequalities and equalities
contains all information on v > 0:

1. For any A ⊂ U ,

v(A) :=
∑
u∈A

v(u) 6 µ(ϕ(A)) (2.1)

where µ(ϕ(A)) :=
∑
y∈ϕ(A) µ(y);

2. ∑
u∈U

v(u) =
∑
y∈Y

µ(y). (2.2)

By Artstein’s Theorem, we can define the identified region Q of the parameter
of interest, v, as follows:

Definition 2 (Identified Region Q). The set of all feasible probability measures
v on U with bipartite graph G = (U ,Y, ϕ) and probability measure µ on Y such
that:

(1) For any A ⊂ U , v(A) 6 µ(ϕ(A));
(2)

∑
u∈U v(u) = 1.

Or equivalently, Q := {v > 0|
∑
u∈U v(u) = 1, v(A) 6 µ(ϕ(A)) for all A ⊂

U , A 6= ∅}.

The number of inequalities defined by Artstein’s Theorem is 2du − 2, which
could be an extremely large number when du is large. In general, many of the
inequalities in Definition 2 are redundant. For any subset A ⊂ U such that A 6= U
and A 6= ∅, we say the inequality v(A) 6 µ(ϕ(A)) is the inequality corresponding
to A. Consider S as a collection of non-empty subsets A ⊂ U , A 6= U . We define
Q(S) := {v > 0|

∑
u∈U v(u) = 1, v(A) 6 µ(ϕ(A)) for all A ∈ S}. If Q(S) = Q

as defined in Definition 2, to identify the region Q, it is suffice to drop all other
inequalities that correspond to subsets of U which are not in S. In other words,
if we are able to find a collection of subsets S such that Q(S) = Q with |S| being
much smaller than 2du − 1, we will be able to describe the identified region Q
with much less number of inequality constraints. Galichon and Henry (2011)
propose the concept of the core-determining class, which fits into the idea of
inequality selection. Below, we define our definition of (“U”) core-determining
class.

Definition 3 ((“U”) Core-determining Class). A subset S ⊂ 2U\{U} is a core-
determining class if {v > 0|v(A) 6 µ(A) for all A ∈ S, v(U) = µ(Y)} is identi-
cal to Q.

In Galichon and Henry (2011), the authors define the core-determining class
in a slightly different way: A class of subsets S ′ of Y is core-determining if {v >
0|v(ϕ−1(B)) > µ(B) for all B ∈ S ′, v(U) = µ(Y)} = Q. In the biparitite graph
G = (U ,Y, ϕ), since the events in A would lead to outcome y ∈ ϕ(A), we have a
constraint v(A) 6 µ(ϕ(A)). However, if we consider a graph G−1 = (Y,U , ϕ−1),
any set of outcomes B implies that the event u must be in the set ϕ−1(B),
and therefore resulting in a constraint v(ϕ−1(B)) > µ(B). The two different
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ways characterize the same information on v, so the identified region Q remains
unchanged regardless of considering G or G−1.

We call the core-determining class defined in Galichon and Henry as “Y core-
determining class” and core-determining class defined in this paper as “U core-
determining class”. Later in Comment 2, we point out that there is a very simple
one-to-one relationship between the smallest “U core-determining class” and the
smallest “Y core-determining class”. In Definition 4, we define the smallest “U
core-determining class” as the “exact core-determining class”. Therefore, for
simplicity, we abbreviate the “U core-determining class” as “core-determining
class” in the rest of this paper.

For any collection of sets S ⊂ 2U\{∅}, we can define Q(S) := {v > 0|v(U) =
µ(Y), v(A) 6 µ(ϕ(A)) for all A ∈ S}.

By Definition 3, for any core-determining class S, it must be that Q(S) =
Q = Q(2U\{∅}), which is the identified region defined by all possible inequalities
described in the Artstein’s Theorem, along with the equality v(U) = 1 = µ(Y).
By Definition 3, any collection of inequalities of the Artstein’s theorem, amid
the equality that v(U) = µ(Y), contain the full information if and only if the
collections of the corresponding subsets is a core-determining class.

In many situations, a core-determining Class could be way smaller than the
full set of non-empty subsets of U . The motivation of finding a Core Determing
Class are two folds: first, the full set of inequalities may be too many to effec-
tively perform estimation and inference procedures in affordable time; second,
as we demonstrate in Section 5, using redundant inequalities may lead to loss of
power when testing whether one point belongs to the identified region Q. There-
fore, it is worth to find the smallest core-determining class, defined as “exact
core-determining class” below, in order to enhance performance of existing set
inference procedures in both computational aspect and statistical aspect.

Definition 4 (Exact Core-determining Class). We say a collection of non-
empty subsets of U , denoted as S, is an exact core-determining class if and only
if S ∈ argminS′⊂2U ,Q(S′)=Q|S ′|, i.e., S is the smallest core-determining class
such that, along with the equality v(U) = µ(Y), they together characterize the
identified region Q described by (2.1) and (2.2).

2.2. Preview of Main Results

There is a list of papers that discuss computing a core-determining class, e.g.,
Galichon and Henry (2009), Chesher and Rosen (2012) , etc.. To our best knowl-
edge, there is no existing results that, in general, characterize the Exact core-
determining Class, nor there exist any algorithms that compute the Exact core-
determining Class.

In this paper, we characterize the property of Exact core-determining Class
using a small set of combinatorial rules. With these rules, one can easily tell
whether a subset of U is exact core-determining or not. With a series of lemmas
and propositions in the Appendix, when the graph G and the measure µ are
non-degenerate, we prove that such characterization is necessary and sufficient.
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To be more specific, we show that the exact core-determining class is unique
and it consists all the subset A ⊂ U such that the following properties hold:

(1) A is self-connected, i.e., ∀A1, A2 ⊂ A such that A1, A2 6= ∅ and A1∪A2 =
A, it holds that ϕ(A1) ∩ ϕ(A2) 6= ∅;

(2) There exists no u ∈ U such that u 6∈ A and ϕ(u) ⊂ ϕ(A).
(3) ϕ(A)c is non-empty and self-connected in graph G−1.
The conditions required for the results above are mild. In practice, the µ

is often considered as non-degenerate; otherwise, we could simple delete the
outcome states that corresponds to 0 probability in Y. Connectedness of G is
important, and it garantees that the exact core-determining class is unique. The
results said, in the core-determining class problem, the identity of redundant
inequality does not depend on the probability measure µ, but depends on the
structure of the graph G only. That means, given a non-degenerate measure
µ̂ as an estimator of a non-degenerate true measure µ0, the set of redundant
inequalities is exactly the same as the set of redundant inequalities given µ0.

When the graph G is not connected, it could be written as a set of disjoint
subgraphs that are connected by themselves. These subgraphs are often referred
as connected branches of G. We can decompose G as Gj = (Uj ,Yj , ϕ), j =
1, 2, ..., k, k > 2, where Gj is connected, Uj , j = 1, 2, ..., k form a partition of U
and Yj = ϕ(Uj), j = 1, 2, ..., k, form a partition of Y. In this case, the exact core-
determining class could be non-unique, as we demonstrate later in Example 3.
We propose a specific way to construct one of the exact core-determining classes:

Denote S∗j as the exact core-determining class in the subgraph Gj , j =

1, 2, ..., k. Then S∗ := ∪kj=1(S∗j ∪ {Uj}) is an exact core-determining class with
resepect to G, i.e., a class of subsets with the minimum possible cardinalty that
is core-determining.

When the graph G is connected, we propose an algorithm that computes the
exact core-determining class using the combinatorial properties above, which
are formally stated in Theorem 2 in Section 3.3. The algorithm is presented in
Algorithm 1. When the graph G is non-connected, we could apply Algorithm
1 on each connected branch Gj , j = 1, 2, ..., k, and then construct an exact
core-determining class accordingly.

2.3. Examples

There exist many economic examples that lead to a partitially identified model
characterized by the inequalities/equality in (2.1) and (2.2). One of the leading
examples is the the two players entry game, as discussed in Galichon and Henry
(2011).

Example 1. [Two Players Entry Game] Suppose there are two firms, firm 1
and firm 2, in a market. The costs for firm 1 and firm 2 are c+ r1 and c+ r2,
respectively, where c is a constant and r1 and r2 are random shocks that are
observable only by the corresponding firm (and hence are unobservable to the
public).
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The two firms face a total demand D = a1−a2p, where a1 and a2 are known
parameters and p is the price of their product. If both firms (players) are in
the market, they will play a Cournot Nash equilibrium. If there is only one firm
(player), this firm will reach a monopolist’s equilibrium. If the costs are so high
for both firms (players) that even a monopolist is unprofitable, there will be no
firm in the market. Therefore, there are 4 possible equilibria: (0, 0), (1, 0), (0, 1),
and (1, 1):

(1) if a1
a2
− c > 2/3r1 − 1/3r2 and a1

a2
− c > 2/3r2 − 1/3r1, the equilibrium is

(1, 1);
(2) if a1

a2
− c < 2/3r1 − 1/3r2 and a1

a2
− c > 2/3r2 − 1/3r1, the equilibrium is

(0, 1);
(3) if a1

a2
− c > 2/3r1 − 1/3r2 and a1

a2
− c < 2/3r2 − 1/3r1, the equilibrium is

(1, 0);
Otherwise, if a1

a2
− c < 2/3r1 − 1/3r2 and a1

a2
− c < 2/3r2 − 1/3r1:

(4) if c+ r1 6 a1
a2

and c+ r2 6 a1
a2

, there are two equilibria: (1, 0) and (0, 1);
(5) if c+ r1 6 a1

a2
and c+ r2 >

a1
a2

, the equilibrium is (1, 0);
(6) if c+ r1 >

a1
a2

and c+ r2 6 a1
a2

, the equilibrium is (0, 1);
(7) if c+ r1 >

a1
a2

and c+ r2 >
a1
a2

, the equilibrium is (0, 0).
Let U = {u1, u2, u3, u4, u7}, where ui is the event representing case (i), with

the exceptions that u2 represents cases (2) and (6), and u3 represents cases (3)
and (5). Let Y := {y1, y2, y3, y4}, where y1 = (1, 1), y2 = (0, 1), y3 = (1, 0),
and y4 = (0, 0). We have du = |U| = 5 and dy = |Y| = 4. The correspondence
mapping ϕ between U and Y is:
ϕ(u1) = {y1}, ϕ(u2) = {y2}, ϕ(u3) = {y3}, ϕ(u4) = {y2, y3}, and ϕ(u7) =

{y4}.
The correspondence mapping for Example 1 is illustrated in Figure 1.

Fig 1. Correspondence Mapping for Example 1.

Given an observed probability measure µ on Y, the bounds of probability mea-
sures v on U are given by the inequalities stated in Artstein’s Theorem. According
to Artstein’s Theorem statement 2.1, there are 25−2 = 30 inequalities. However,
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it is obvious that only the inequalities corresponding to the following 5 subsets
are irredundant: {u1}, {u2}, {u3}, {u2, u3, u4} and {u5}.

In many cases, there exists a parametric model for v, with v(ui) = Fi(θ, Z),
i = 1, 2, ..., du. The function Fi can be a nonlinear transformation of θ and the
observable characteristic Z, and it is usually derived from random errors with a
jointly continuous probability distribution function. The parameter of interest
is θ, not the vi. Therefore, the identifies set of parameters is characterized as:

Θ := {θ|v(A) 6 µY |Z(ϕ(A)), for any A ⊂ U}, , where v(A) =
∑
i∈A Fi(θ, Z),

and µY |Z is the probability measure of Y |Z.
Computationally, it is worth to divide the estimation and inference on Θ into

two steps.
(1) First, find a core-determining class for the inequality system:
v(A) > 0, v(A) 6 µY |Z(ϕ(A)), for all A ⊂ U , and v(U) = µ(Y) = 1,
To the best situation, we can try to find the smallest core-determining class,

which is later defined as the “exact core-determining class” in Definition 4. De-
note this collection of subsets in U as S∗Z . The step (1) can be further simplified
in many applications since S∗Z does depend on Z as shown in Theorem 2.

(2) Perform any estimation or inference procedure on the set of inequalities:∑
ui∈A Fi(θ, Z) 6 µY |Z(ϕ(A)) for any A ∈ S∗Z and Z ∈ Z.

Example 2. [Simultaneous Equation Models for Binary Outcomes] This ex-
ample is previously considered in Chesher and Rosen (2012). The study of
this model can be refered to Heckman (1978), Bresnahan and Reiss (1990,
1991), Tamer (2003) and etc. The model is described by the following equa-
tions: Y1 = 1(Z1β1 + Y2δ2 + U1 > 0), Y2 = 1(Z2β2 + Y1δ1 + U2 > 0), where
Y = (Y1, Y2) ∈ {0, 1}2, (Y,Z) are observables, and U = (U1, U2) is an observ-
able 2-dimension vector in R2. In the previous literature, the vector U is often
assumed to have a multi-dimensional normal distribution with mean zero and
an unknown covariance matrix Σ, with the variance of U1 being restricted to 1,
i.e., Σ11 = 1. The parameter of interest is θ = (β1, β2, δ1, δ2,Σ), where Σ11 = 1
and Σ12 = Σ21.

To formulate the problem into our framework, we can define Y := {y1 :=
(0, 0), y2 := (1, 0), y3 := (0, 1), y4 := (1, 1)}. We can also define a collection of
measurable sets in R2 which may lead to the events in Y. Then, we name these
sets as the set of events, denoted as U . The likelihood of the events in U depends
on the parameter θ.

(a) If δ1 > 0, δ2 > 0, we can define the following 5 events on the space of R2:
u1 := {U |U ∈ (−z1β1 − δ1,−z1β1]× (−z2β2 − δ2,−z2β2]}. In this case, both

(0, 0) and (1, 1) are possible outcomes, so ϕ(u1) = {y1, y4}.
u2 := {U |U1 6 −z1β1 − δ1, U2 6 −z2β2 − δ2}\u1. The only possible outcome

of u2 is (0, 0), so ϕ(u2) = {y1}.
u3 := {U |U1 > −z1β1, U2 6 −z2β2 − δ2}. The only possible outcome of u3 is

(1, 0), so ϕ(u3) = {y2}.
u4 := {U |U1 6 −z1β1 − δ1, U2 > −z2β2}. The only possible outcome of u2 is

(0, 1), so ϕ(u4) = {y3}.
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u5 := {U |U1 > −z1β1 − δ1, U2 > −z2β2 − δ2}\u1. The only possible outcome
of u5 is (1, 1), so ϕ(u5) = {y4}.

The correspondence mapping for Example 2 case (a) is illustrated in Figure
2.

Fig 2. Correspondence Mapping for Example 2 Case (a).

(b) If δ1 < 0, δ2 < 0, we can define the following 5 events on the space of R2:
u1 := {U |U ∈ (−z1β1,−z1β1 − δ1]× (−z2β2 − δ2,−z2β2]}. In this case, both

(0, 1) and (1, 0) are possible outcomes, so ϕ(u1) = {y2, y3}.
u2 := {U |U1 6 −z1β1, U2 6 −z2β2}. The only possible outcome of u2 is

(0, 0), so ϕ(u2) = {y1}.
u3 := {U |U1 > −z1β1, U2 6 −z2β2 − δ2}\u1. The only possible outcome of

u3 is (1, 0), so ϕ(u3) = {y2}.
u4 := {U |U1 6 −z1β1 − δ1, U2 > −z2β2}\u1. The only possible outcome of

u2 is (0, 1), so ϕ(u4) = {y3}.
u5 := {U |U1 > −z1β1 − δ1, U2 > −z2β2 − δ2}. The only possible outcome of

u5 is (1, 1), so ϕ(u5) = {y4}.
The correspondence mapping for Example 2 case (b) is illustrated in Figure

3.
(c) δ1 > 0, δ2 < 0 or δ1 < 0, δ2 > 0.
Without loss of generality, we can assume that δ1 > 0, δ2 < 0. There is

an event u1 := {U |U1 ∈ (−z1β1 − δ1,−z1β1] × (−z2β2,−z2β2 − δ2]} which
leads to no feasible value of (Y1, Y2) ∈ {0, 1}2, i.e., the set of values in {0, 1}2
that corresponds to u1 is ∅. Chesher and Rosen (2012) discusses a few different
strategies to deal with such a situation, which they refer as the “incoherent”
problem.

One of the methodologies is the “anything goes” approach, which is first
considered in Beresteanu, Molchanov, and Molinari (2011). In such approach,
correspondence mapping ϕ is constructed such that ϕ(u1) = Y, i.e., all values
of y ∈ Y are allowed.

We can then define the rest of the events as follows:
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Fig 3. Correspondence Mapping for Example 2 Case (b).

u2 := {U |U1 6 z1β1 − δ1, U2 6 z2β2}. The only possible outcome for u2 is
(0, 0), so ϕ(u2) = {y1}.
u3 := {U |U1 > z1β1, U2 6 z2β2 − δ2}. The only possible outcome for u3 is

(1, 0), so ϕ(u3) = {y2}.
u4 := {U |U1 6 −z1β1 − δ1, U2 > z2β2}. The only possible outcome for u4 is

(0, 1), so ϕ(u4) = {y3}.
u5 := {U |U1 > −z1β1, U2 > z2β2 − δ2}. The only possible outcome for u5 is

(1, 1), so ϕ(u5) = {y4}.
The correspondence mapping for Example 2 case (c) is illustrated in Figure

4.

Fig 4. Correspondence Mapping for Example 2 Case (c).

In cases (a), (b) or (c), we can always find a correspondence mapping ϕ
that represents the relationship between the events and outcomes. Although
the random error U ∈ R2 has a continuous probability density funciton, we can
divide the space R2 into a partition, namely u1, u2, ..., u5, with the probability
of each ui, i = 1, 2, ..., 5, is represented by a function Fi(Z, θ).
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The graph G in the examples above are all connected. In general, when G is
unconnected, the exact core-determining class, e.g., the set of inequalities that
characterizes the identified region with smallest possible cardinality, is non-
unique. We provide an example in Example 3.

Example 3. Consider a bipartite graph G with set U = {u1, u2, u3} and set
Y = {y1, y2, y3}. The correspondence mapping ϕ between U and Y is illustrated
in Figure 5. ϕ(u1) = {y1}, ϕ(u2) = {y2}, and ϕ(u3) = {y2, y3}. Apparently,
G is unconnected. We can easily check S = {{u1}, {u2}, {u2, u3}} is an exact
core-determning class, and S = {{u1}, {u1, u2}, {u2, u3}} is also an exact core-
determing class.

Fig 5. Correspondence Mapping of Example 3.

Large scale examples are provided in Section 4.

2.4. Computation, Inference and Power of Tests

According to Artstein’s Theorem, the identified region Q is described by 2du−2
inequalities—a very large number that exponentially increases with du. The
numerous inequalities lead to both computational difficulties and undesirable
statistical properties; some or even most of the inequalities stated in Artstein’s
Theorem may be redundant.

Galichon and Henry (2011) analyze the monotonic structure of the graph G
and claim that there are at most 2du−2 irredundant inequalities under a special
structure. Chesher and Rosen (2012) provide an algorithm that could get rid of
some, but not necessarily all, redundant inequalities.

One good feature of the exact core-determining class is that the computa-
tional costs when performining inference and other tasks can be significantly
reduced. We propose a combinatorial algorithm in Subsection 3.4 to compute
the exact core-determining class. In Section 4, we demonstrate that the algo-
rithm could perform very effectly inequality selection in the core-determining
class problems. The computational time of finding the exact core-determining
class takes less than 1 second in the large examples in Section 4 and can be
ingored compared to the time cost of any state of art inference procedures.
In Section 5, we demonstrate that, by using the exact core-determining class to
perform inference, one could reduce the time of performing inference procedures
substantially.
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Another interesting property of utilizing the exact core-determining class to
perform set inference is that the power of tests against local alternatives can be
improved. We perform the inference procedure in Andrews and Shi (2014) on
Example 5. The methodologies and results are formally stated in Section 5. We
consider the two test statistics listed in Andrews and Shi (2014), denoted as S1

and S3. These test statistics are calculated using either the set of inequalities
that correspond to the exact core-determining class, or the full set of inequalities
stated in the Artstein’s Theorem. Starting with a randomly selected point on the
boundary of the identified region, we use simulation to obtain the power of tests
on the local alternatives that lies on a radial originating from the selected point.
The results show that the power of tests using the inequalities corresponding to
the exact core-determining class is better than the power of tests using the full
set of inequalities.

A quick view of results are demonstrated in Figure 6. For more detailed
discussion, we refer to Section 5.

3. Characterization of the Exact Core-determining Class

In this section, we present our discovery of the combinatorial structure of the
core-determining class, along with an algorithm to generate the exact core-
determining class, which we will define formally later. In Galichon and Henry
(2011), whether an inequality is redundant is determined by numerical compu-
tation using the probability measure µ. This is also true in Chesher and Rosen
(2012). Our results in this section show that under mild conditions, the measure
µ does not affect the identity of redundant inequalities.

3.1. Characterizing Redundancy of Inequalities

Given the correspondence mapping ϕ of the bipartite graph G = (U ,Y, ϕ),
we can identify some redundant inequalities without any observations of the
outcomes in Y. We list a set of rules that could allow us to conclude that some
of the inequalities are redundant given the others.

Rule 1 For any subset A1 ⊂ U and A2 ⊂ U , if A1 ∩A2 = ∅ and ϕ(A1)∩ϕ(A2) =
∅, then the two inequalities, v(A1) 6 µ(ϕ(A1)) and v(A2) 6 µ(ϕ(A2)),
can generate the inequality v(A1 ∪ A2) = v(A1) + v(A2) 6 µ(ϕ(A1)) +
µ(ϕ(A2)) = µ(ϕ(A1) ∪ ϕ(A2)) = µ(ϕ(A1 ∪ A2)), which is exactly the
inequality corresponding to the subset A = A1 ∪ A2. In other words, the
inequality v(A) 6 µ(A) is redundant given v(A1) 6 µ(ϕ(A1)) and v(A2) 6
µ(ϕ(A2)).

Rule 2 If u /∈ A satisfies ϕ({u}) ⊂ ϕ(A), then the inequality v({u} ∪ A) 6
µ(ϕ({u} ∪A)) will imply a redundant inequality v(A) 6 µ(ϕ(A)).

Rule 3 Suppose ϕ(U) = Y. For any sets A1 ⊂ U and A2 ⊂ U , A1 ∪ A2 = U , we
can define Ac1 := U\A1 and Ac2 := U\A2. Denote A0 := A1 ∩ A2. Then,
A0, A

c
1, A

c
2 form a partition of U . Define B0 := ϕ(A0), B1 := ϕ(A1)\B0,

B2 := ϕ(A2)\B0. If B1 ∩ B2 = ∅, then B0, B1, B2 form a partition of Y.
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The inequalities v(A1) 6 µ(ϕ(A1)), v(A2) 6 µ(ϕ(A2)) and v(U) = µ(Y)
imply that:
v(A1) + v(A2) 6 µ(ϕ(A1)) + µ(ϕ(A2)), i.e.,
v(A0) + v(Ac2) + v(A0) + v(Ac1) 6 µ(B0) + µ(B1) + µ(B0) + µ(B2).
Since v(U) = v(A0) + v(Ac2) + v(Ac1) and µ(Y) = µ(B0) + µ(B1) + µ(B2),
and v(U) = µ(Y), it follows that v(A0) 6 µ(B0) = µ(ϕ(A0)).
That said, if B1 ∩B2 = ∅, then v(A1 ∩A2) 6 µ(ϕ(A1 ∩A2)) is implied by
v(A1) 6 µ(ϕ(A1)), v(A2) 6 µ(ϕ(A2)) and v(U) = µ(Y).

To find the exact core-determining class, the combinatorial rules stated above
are helpful. The key questions are: whether the set of rules in the above are nec-
essary and sufficient? Are there any other rules that would imply redundancy of
inequalities? Would one inequality that is redundant defined by the combinato-
rial rules become irredundant once we remove a certain number of inequalities?
To answer these questions, we utilize another way that rigorously defines redun-
dancy with techniques in linearing programming.

Definition 5 (Set S∗). For any non-empty set A ⊂ U , define V∗A := {v|v ∈
Rdu , v > 0; v(A′) 6 µ(ϕ(A′)), for all A′ ⊂ U , A′ 6= A; v(U) = µ(Y)}. Define
vM
∗

A ∈ argmaxv∈V∗Av(A) as a probability measure on U that is maximizing v(A)
subject to the constraint that v ∈ V∗A.

Define the set S∗ as the collection of all subsets A ⊂ U and A 6= U such that

vM
∗

A (A) > µ(ϕ(A)).

Each element A in S∗ is characterized by linear programming that checks the
redundancy of the inequality that correspond to A with respect to all other in-
equalities/equality in (2.1) and (2.2). For any collection of subsets of U , denoted
as S, we can define Q(S) := {v > 0|v(A) 6 µ(ϕ(A)), for allA ∈ S, and v(U) =
µ(Y)}. The following theorem shows that S∗ defined in Definition 5 is the only
exact core-determining class under the conditions that µ(·) and G are non-
degenerate.

Theorem 1 (Sharpness of S∗). Suppose both G and µ are non-degenerate.
Then,

(1) Q(S∗) = Q.
(2) For any S ⊂ 2U\{∅} that does not contain S∗, Q(S) ) Q, i.e., S is not

exact core-determining; or equivalently, any core-determining class must contain
S∗.

(3) S∗ is the unique exact core-determining class.

Theorem 1 says that for any inequality v(A) 6 µ(ϕ(A)), as long as it is re-
dundant given all other inequalities/equality, we could remove this inequality
without losing any information on the identified region Q. Theorem 1 proves
that S∗ is the smallest possible core-determining class under non-degeneracy
conditions of G and Y. However, it is not conveniet enough for us to apply
Theorem 1 in order to construct the exact core-determining class, since running
2du − 1 linear programming problems can be computational costly when du is
large. We would like to characterize S∗ using combintorial rules like those in
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Rules 1-3 stated in the beginning of this subsection, which could potentially
allow us to obtain exact core-determining class within a short time. The main
results on the combinatorial properties of exact core-determining class are for-
mally stated in Subsection 3.3. Before jumping to the main theoretical results,
we require a set of definitions and lemmas that are presented in Subsection 3.2.

3.2. Intermediate Results

In this subsection, we present a list of results that are important for establishing
our main results in Subsection 3.3.

We start by considering the following collection of subsets Su.

Definition 6 (vMA ). Define VA := {v|v > 0, v ∈ R|U|, and v(A′) 6 µ(ϕ(A′)), for any A′ 6=
A,A′ ⊂ U , A′ 6= ∅}. Define vMA ∈ argmaxv∈VAv(A). Since the true probability
distribution v0 ∈ VA, vMA is always well-defined when |U| > 2.

Definition 7 (Set Su). Su ⊂ 2U is the collection of all non-empty subsets A ⊂ U
such that

vMA (A) > µ(ϕ(A)).

Set Su is defined from a numerical perspective given the observed probability
measure µ. The difference between Su and S∗ is that Su ignores the equality that
v(U) = µ(Y). DefineQ1 := {v > 0|v(A) 6 µ(ϕ(A)) for all non-empty subset A ⊂
U}. Q1 is the identified region when we only consider inequalities in (2.1).
Su is unique and well-defined. Figure 7 show example of subset A ∈ Su and

A /∈ Su.
In Figure 7, the white polygon region represents the set Q̃1 := {v > 0|v(A′) 6

µ(ϕ(A′)) for all A′ 6= A}. When A ∈ Su, by Definition 7, the half space, colored

in purple, {v|v(A) 6 µ(ϕ(A))} should interect Q̃1 and therefore the inequality
v(A) 6 µ(ϕ(A)) is irredundant given all other inequalities in (2.1). When A /∈
Su, the half space {v|v(A) 6 µ(ϕ(A))} contains Q̃1 and therefore the inequality
v(A) 6 µ(ϕ(A)) is redundant given all other inequalities in (2.1).

The definition of Q1 ingores the important equality v(U) = µ(Y), and there-
fore Q1 is not our final target of interest. However, it is essential to identify
irredundant inequalities for Q1 which is defined by 2du − 1 inequalities corre-
sponding to all non-empty subsets of U . Below we present a lemma to formally
show that the inequalities corresponding to the subsets in Su contain all infor-
mation defined by the system of inequalities described in (2.1). At the same
time, dropping any inequality that corresponds to a subset in Su would lead to
loss of information, i.e., the identified region will be strictly larger than Q1 if
any inequality corresponding to a subset in Su is eliminated.

Lemma 2 (Sharpness of Su). Suppose G,µ are non-degenerate. For any collec-
tion of non-empty subsets S ⊂ 2U , define Q1(S) := {v > 0|v(A) 6 µ(ϕ(A)) for all A ∈
S}. Then,

(1) Q1(Su) = Q1.
(2) Q1(S) ) Q1 if S does not contain Su.
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In a system of inequalities (equalities can be allowed as well), we say a subset
of inequalities is sharp, if and only if this subset of inequalities identifies the
same region as the entire system of inequalilities.

Lemma 2 provides a simple way to exactly declare which inequalities can
be eliminated from the system described in (2.1) without losing information
on the identified region defined by all inequalities in (2.1). For each non-empty
subset A ⊂ U , we can solve the following linear programming problem to obtain
the value of vMA , and then check whether A is an element of Su according to
Definition 7. However, it is very computationally costly since there are 2du − 2
elements A in total.

vMA := maximize
v

v(A)

subject to

v(A′) 6 µ(ϕ(A′)),∀A′ 6= A,A′ ⊂ U , A′ 6= ∅
v > 0, v ∈ R|U|

Lemma 2 also shows that any inequality corresponding to a subset A ∈ Su
can not be eliminated without losing information on the identified region Q1.
Also, in the linear programming problem shown above, it is unclear that whether
µ would have an effect on Su. Next, we present a major result which allows us
to construct Su only via the combinatorial structure of the bipartite graph G
under some mild conditions.

Definition 8 (Set S ′u). S ′u ⊂ 2U is the collection of all non-empty subsets A ⊂ U
such that:

(1) A is self-connected, i.e., ∀A1, A2 ⊂ A such that A1, A2 6= ∅ and A1∪A2 =
A, it holds that ϕ(A1) ∩ ϕ(A2) 6= ∅;

(2) There exists no u ∈ U such that u 6∈ A and ϕ(u) ⊂ ϕ(A).

Set S ′u is defined from a combinatorial perspective using the structure of the
bipartite graph G. In the lemma below, we show that the set Su equals to S ′u.

Lemma 3 (Combinatorial Description ofQ1). If both G and µ are non-degenerate,
then the collection of subsets defined in Definitions 7 and 8 are identical, i.e.,
Su = S ′u.

The Lemma 3 says, S ′u, whose corresponding inequalities is sharp amongst
all inequalities in (2.1). By Definition 8, we know that Su covers rules 1-2 stated
in Subsection 3.1.

Comment 1. Under the conditions of Lemma 3, Theorem 5 of Chesher and
Rosen (2012) selects a subset of inequalities that is equivalent to those corre-
sponding to S′u, which is a core-determining class, but not necessarily the exact
core-determining class. Lemma 3 shows that we can find all irredundant inequal-
ities using combinatorial rules when the following constraint is not considered

v(U) :=
∑
u∈U

v(u) >
∑
y∈Y

µ(y) = µ(Y).
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Under the mild regularity conditions in Lemma 7, the set of irredudant in-
equalities defined in Definition 7 can be characterized by the set of combinatorial
rules defined in Defintion 8. It implies that the collection of irredudant inequal-
ities defined in Definition 7 is unique and only depends on the structure of the
Graph G, not the probability measure µ(·) conditional on the assumption that
both G and µ(·) are non-degenerate.

To find the minimum set of irredudant inequalities in the entire system de-
scribed in (2.1) and (2.2), (the exact core-determining class in Definition 4), we
next consider a bipartite graph G−1 with correspondence ϕ−1 mapping from
2Y 7→ 2U , i.e., G−1 := (Y,U , ϕ−1). For any non-degenerate probability measure
ṽ on U , we define Sy as the following:

Definition 9. Assume that µ > 0 is a vector defined on the space Rdy . Sup-
pose there exists a probability measure ṽ > 0 defined on U . Define µMB :=
argmaxµ>0{µ(B)|µ(B′) 6 ṽ(ϕ−1(B′)), for all B′ ⊂ Y, B′ 6= B,B′ 6= ∅}. Such
a ṽ can be the unknown true probability distribution v0 on U .

Definition 10 (Set Sy). Given a non-degenerate probability measure ṽ on U ,
Sy ⊂ 2Y is the collection of all subsets B ⊂ Y such that

µMB (B) > ṽ(ϕ−1(B)).

By Lemma 2, when replacing G with G−1, assuming that ṽ is non-degenerate,
the inequalities corresponding to Sy contain sharp information in the system
of inequalities: {µ > 0|µ(B) 6 ϕ−1(B), for all non-empty B ⊂ Y}. Set Sy
is defined from a numerical perspective using any non-degenerate probability
measure ṽ. Similar to the Definition 7, the set Sy consists the collection of
irredudant inequalities amongst all µ(B) > ṽ(ϕ−1(B)), B ⊂ Y, B 6= ∅.

Definition 11 (Set S ′y). S ′y ⊂ 2Y is the collection of all subsets B ⊂ Y such
that:

(1) B is self-connected, i.e., ∀B1, B2 ⊂ B such that B1, B2 6= ∅ and B1∪B2 =
B, it holds that ϕ−1(B1) ∩ ϕ−1(B2) 6= ∅;

(2) There exists no y ∈ Y such that y 6∈ B and ϕ−1(y) ⊂ ϕ−1(B).

The set of Sy is defined as the “irredundant inequalities” in G−1(Y,U , ϕ−1)
when the equality v(U) = µ(Y) is not taken into consideration. It provide ad-
ditional information on the identity of redundant inequalities compared to Su.
Later in the main Theorem 2, we show that Sy and Su together determines the
exact identity of irredundant inequalities.

Similar to S ′u, the set S ′y is defined from a combinatorial perspective using
the structure of the bipartite graph G.

Lemma 4. Suppose both the graph G−1 and ṽ are non-degenerate. The collec-
tion of subsets defined in Definition 10 and 11 are identical, i.e., Sy = S ′y.

The proof of Lemma 4 can be obtained simply by replacing G and µ with
G−1 and ṽ in Lemma 3. Therefore, we abbreviate this proof.
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Definition 12 (Set S−1y ). The Set S−1y is the collection of A ⊂ U and A 6= U
such that there exists B ⊂ S ′y that A = ϕ−1(B)c.

The reason that we would like to introduce S−1y is that the combinatorial rules
defined in Definition 11 covers Rule 3 stated in Subsection 3.1. The Definitions
of S ′u and S ′y and their properties allow us to obtain the main theoretical results
on exact core-determining class in Subsection 3.3.

3.3. Main Theoretical Results

In the lemma below, we show that, by combining combinatorial rules defined
for Su and Sy, we are able to obtain the exact core-determining class.

Lemma 5. Assume that both G and µ are non-degenerate. Then, the exact
core-determining class S∗ is characterized by the following equation:

S∗ =
(
Su ∩ S−1y

)
\{U}.

The Example 4 demonstrate the importance of considering S−1y in the con-
struction of exact core-determining class. The collection of sets could be sub-
stantially reduced in some cases when intersecting S−1y with Su.

Example 4. Consider a bipartite graph G with set U = {u1, ..., u5} and set
Y = {y1, ..., y4}. ϕ is the correspondence mapping between U and Y such that
ϕ(uj) = {yj} for all 1 6 j 6 4 and ϕ(u5) = {y1, y2, y3, y4}. The correspondence
mapping for Example 4 is illustrated in Figure 8.

In this example, S−1y \{U} = {U1|U1 ⊂ {u1, u2, u3, u4},U1 6= ∅}, which con-
sists of 24 − 2 subsets. Su\{U} = {uj |1 6 j 6 4}. The exact core-determining
class S∗ is {uj |1 6 j 6 4}, which equals to Su ∩ S−1y \{U}.

Since both Su and S−1y are defined via combinatorial rules, we can construct
the exact core-determining class using a combinatorial algorithm. The set U is
automatically ruled out in computing the exact core-determining class because
the equality in (2.2) implies v(U) 6 µ(Y). The exact core-determining class is
also independent of µ if µ and G are both non-degenerate. Also, since Su and
S−1y are uniquely defined, when the assumptions in Theorem 2 holds, any core-
determining class should contain (Su ∩ S−1y )\{U}. Therefore, in such a case,
the exact core-determining class is unique and characterized by the formula
(Su ∩ S−1y )\{U}.

With Lemma 5, we establish our main theorem.

Theorem 2 (Combinatorial Rules For Exact Core-determining). Suppose both
G and µ are non-degenerate. Then a non-empty set A ( U is exact core-
determining, i.e., A ∈ S∗, if and only if:

(1) A is self-connected, i.e., ∀A1, A2 ⊂ A such that A1, A2 6= ∅ and A1∪A2 =
A, it holds that ϕ(A1) ∩ ϕ(A2) 6= ∅;

(2) There exists no u ∈ U such that u 6∈ A and ϕ(u) ⊂ ϕ(A).
(3) ϕ(A)c is self-connected in the graph G−1.
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Comment 2. Given the conditions of Theorem 2, it is easy to obtain a core-
determining class in Galichon and Henry (2011) framework. Define S−1∗ :=
{B|B = ϕ(A)c, A ∈ S∗}.

For any A ∈ S∗, v(A) 6 µ(ϕ(A)) holds if and only if v(ϕ−1(B)) > µ(B),
since v(A) + v(ϕ−1(B)) = v(U) = 1, and µ(ϕ(A)) + µ(B) = µ(Y) = 1. Then,
the identified region Q can also be characterized as Q = {v > 0|v(ϕ−1(B)) >
µ(B), v(U) = µ(Y)}.

Then given v(U) = µ(Y), S−1∗ := {B|B = ϕ(A)c for any A ∈ S∗} is a core-
determining class (and the smallest) in the sense of Definition 7 of Galichon
and Henry (2011).

Theorem 2 offers theoretical garantee that the exact core-determining class
S∗ is unique when both G and µ are non-degenerate, and S∗ can be identified via
combinatorial rules. In practice, the graph G can be unconnected, which violates
the non-degeneracy assumption. In such a case, the exact core-determining class
may be non-unique. We can assume that the connected branches of G include
G1, ..., Gk, with Gj := (Uj ,Yj , ϕ), where ϕ(Uj) = Yj , j = 1, 2, ..., k. These Uj ,
1 6 j 6 k form a partition of U , i.e., ∪16j6kUj = U , and Uj1 ∩ Uj2 = ∅ for any
j1 6= j2, j1, j2 ∈ {1, 2, ..., k}. Similary, Yj , 1 6 j 6 k also form a partition of U .
By defintion, each Gj is connected for j = 1, 2, ..., k. We can define the set S∗j
as the set S∗ described in Theorem 2, with G replaced by Gj , j = 1, 2, ..., k.

Theorem 3. Suppose µ is non-degenerate, and ϕ(U) = Y. Assume that G1, ..., Gk
are the connected branches of G, k > 2, with each Gj = (Uj ,Yj , ϕ), where
U1, ...,Uk form a partition of U and Y1, ...,Yk form a partition of Y. Denote S∗j
as the set S∗ described in Theorem 1 with G being replaced by Gj, j = 1, 2, ..., k.
Then S∗ := ∪kj=1(S∗j ∪ {Uj}) is an exact core-determining class with resepect
to G, i.e., a class of subsets with the minimum possible cardinalty that is core-
determining.

3.4. Algorithm that Computes the Exact core-determining Class

To be able to compute the exact core-determining class, we propose an algorithm
for those graphs G that are connected. When the graph G is unconnected, we
could perform the Algorithm 1 for each connected branch of G and construct
an exact core-determining class according to Theorem 3.

Based on results in Lemma 5, we only need to know how to compute Su, since
the construction of Sy could be performed by applying the same algorithm on
the graph G−1. The Algorithm 1 constructs Su.

The complexity of Algorithm 1 is o(2max(d′u,d
′
y) · d′2u · d′2y ), where

d′u is defined as
d′u := max

A
|A|

s.t.A ⊂ U

ϕ(A) = Y

ϕ(A/u)  Y,∀u ∈ A
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input : Bipartite graph G = (U ,Y, ϕ)
output: Set S′u
Initiation: S′u = {∅}
for i← 0 to |U| − 1 do

Identify additional A′ ∈ S′u as the union of u ∈ U and A ∈ S′u with |A| = i,
foreach A ∈ S′u with |A| = i do

foreach u 6∈ A and (ϕ(u) ∩ ϕ(A) 6= ∅ or ϕ(A) = ∅) do
A′ ← A ∪ {u},
if ϕ(A′) < 1 then

foreach u′ 6∈ A′ do
if ϕ(u′) ⊂ ϕ(A′) then A′ ← A′ ∪ {u′};

end
if A′ 6∈ S′u then S′u ← S′u ∪ {A′};

end

end

end

end
Termination: S′u ← S′u − {∅}

Algorithm 1: Construct Set S ′u

d′y is defined as
d′y := max

B
|B|

s.t.B ⊂ Y
ϕ−1(B) = U

ϕ−1(B/y)  U ,∀y ∈ B
Intuitively, the first foreach loop tries to add one more element which keeps

the sets being self-connected. That said, the property (1) of the Definition 8
holds for all sets that are found by the algorithm. In the second foreach loop,
when an additional element is added to a set A, the algorithm will include all
u′ such that ϕ(u′) is subset of ϕ(A ∪ {u}), which (1) substantially reduce the
search cost (2) garantees that the set found always statisfies property (2) of the
Definition 8 (3) the new set is still self-connected. It is also easy to see that any
set in S ′u must be constructed during the process, since Algorithm 1 scans all
possible subgraphs of G that satisfies the two properties stated in Definition 8.
Under the assumption of non-degeneracy of G and µ, for the bipartite graph
in most practical examples, d′u and d′y will be much smaller than du and dy
respectively, so in practice the algorithm could be very fast.

4. Large Scale Examples on Constructing Exact core-determining
Class

As illustrations of the models and algorithms described in Section 3, we now im-
plement the models and algorithm in two numerical examples. For each example,
we construct the exact core-determining class and demonstrate the performance
of the algorithm.

The first numerical example is an illustrative example described by Galichon
and Henry (2011).
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Example 5. [Two-type Oligopoly Entry Model] Consider a bipartite graph
G = (U ,Y, ϕ) with 9 events in U and 14 outcomes in Y. The corresponding
mapping is illustrated in Figure 9. Graph G = (U ,Y, ϕ) is unconnected in this
example. Specifically, u1 and u9 are unconnected with other u in U , and y1 and
y14 are unconnected with other y in Y. Therefore, we can decompose G to three
bipartite graphs: The first graph, G1, contains a single event u1 and a single
outcome y1, with the correspondence mapping ϕ(u1) = {y1}; the second graph,
G2, contains a single event u9 and a single outcome y14, with the correspondence
mapping ϕ(u9) = {y14}; the third graph, G3, contains 7 events—i.e., u2 to u8—
and 12 outcomes—i.e., y2 to y13—with the correspondence mapping illustrated
in the other parts of Figure 9.

We combine the inequalities generated from the three bipartite graphs G1,
G2, and G3 to obtain the exact core-determining class for the original bi-
partite graph G. Apparently, the first graph, G1, generates a single equality,
v{u1} = µ{y1}, and the second graph, G2, generates another single equality
v{u9} = µ{y14}. If we implement the algorithm described in Section 3 on the
third graph, G3, we can obtain corresponding results (shown in Table 1) within
one second using a normal computer. Specifically, the bipartite graph G3 indi-
cates du = 7 unobservable events and dy = 12 observed outcomes. According to
Artstein’s Theorem, the number of inequalities defining the feasible set of prob-
ability measures on U is 2du − 2 = 29 − 2 = 126. Then, Algorithm 1 generates
a set Su with |Su| = 22, corresponding to 22 inequalities. A similar algorithm
generates a set S−1y with |S−1y | = 30, corresponding to 30 inequalities. Our tar-
get, the exact core-determining class for G3, can be obtained as S∗ = Su ∩ S−1y
with |S∗| = 11, corresponding to 11 irredundant inequalities. Compared to the
inequalities generated for G3, according to Artstein’s Theorem, we can reduce
91.26% of inequalities.

From statement 2.2 in Artstein’s Theorem, we can obtain the equalities
v{u1} = µ{y1}, v{u9} = µ{y14}, and
v{∪26i68{ui}} = µ{∪26j613{yj}} for G1, G2, and G3, respectively. For the
original graph G, because of the existence of the equality v{∪16i69{ui}} =
µ{∪16j614{yj}} from statement 2.2 in Artstein’s Theorem, the three equal-
ities from the three subgraphs can be relaxed as inequalities. Therefore, the
exact core-determining class for G contains 1 inequality from G1, 1 inequal-
ity from G2, and 12 inequalities from G3 (11 inequalities obtained from algo-
rithm and 1 inequality with all elements in G3). The corresponding subsets are:
{u1}, {u2}, {u9},{u5}, {u8}, {u2, u3}, {u7, u8}, {u2, u3, u4, u5}, {u5, u6, u7, u8},
{u2, u3, u4, u5, u6}, {u4, u5, u6, u7, u8}, {u2, u3, u4, u5, u6, u7}, {u3, u4, u5, u6, u7, u8},
and {u2, u3, u4, u5, u6, u7, u8}.

Next, we design a second numerical exeperiment with a larger dimension.
Assuming that many marginal firms are facing a volatile market, let u be a
random variable representing the cost of a firm, and is an unobservable event
for us. The firm is aware of certain private information, denoted by θ ∈ {H,L},
which is also unknown to us. Let y be the action of a firm based on the private
information θ and the cost u—e.g., action y is the price set by the firm. We
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Number of events × Number of outcomes (du × dy) 7× 12
Number of inequalities according to Artstein’s Theorem 27 − 2 = 126
Number of inequalities defined by Su 22

Number of inequalities defined by S−1
y 30

Number of inequalities defined by S∗ = Su ∩ S−1
y 11

Percentage of redundant inequalities 91.26%

Table 1
Results of G3 on Example 5

now consider a simple decision-making problem for the firms. If the objective
of any firm is to maximize its profit π(y, u, θ), it might adopt different actions
(set different prices y) when facing θ = H or θ = L.

Assume that the profit function is

π(y, u,H) = (y − u)(C − y),

and
π(y, u, L) = (y − u)(C/2− y),

where C is a constant.
If the firm considers any price y∗ ∈ {y|π(y, u, θ) > maxy π(y, u, θ) − w, a1 6

y 6 a2} as a robust pricing strategy, where w is a constant and a1, a2 are bounds
on price y, then ϕ(u) := {y|π(y, u, θ) > maxy π(y, u, θ)−w, θ ∈ {H,L}, a1 6 y 6
a2} is the correspondence mapping from the set of costs (unobservable events)
U to the set of prices (observed outcomes) Y.

The prices y set by different firms are public information (observed outcomes).
Since we could obtain the probability measure on the price, we can implement
the models and algorithms described in Section 3 to obtain the distribution
(probability measures) of the costs (unobservable events) of these firms. Specif-
ically, we observe the measure on the set of prices Y. The objective is to find
the feasible set of probability measures on the set of costs U , assuming that y
is i.i.d. across observations.

Example 6. [I.I.D Pricing] In the contexts described above, assuming the set
of costs U = [0, 3], the set of prices Y = [1, 3.5], constant C = 4 and w = 0.01,
then the correspondence mapping ϕ from U to Y is ϕ(u) = [(1.9 + u/2), (2.1 +
u/2) ∧ 3.5] ∪ [(0.9 + u/2 ∨ 1), (1.1 + u/2)].

Assuming the probability measure on prices Y is observed, to estimate the
probability measure on costs U we discretize the continuous set of costs (unob-
servable events) U and prices (observed outcomes) Y. Let du = 15 and dy = 25
be the number of discretized segments of costs and prices, respectively. Then we
define ui = ((i− 1)/5, i/5) and yj = ((j − 1)/10 + 1, j/10 + 1) for i = 1, 2, ..., 15
and j = 1, 2, ..., 25. The correspondence mapping ϕDsc from the discretized set
UDsc = {ui|i = 1, 2, ..., 15} to the discretized set YDsc = {yj |j = 1, 2, ..., 25} is
generated by:

ϕDsc(ui) = {yj |yj ∩ ϕ(ui) 6= ∅}
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Number of events × Number of outcomes (du × dy) 15× 25
Number of inequalities according to Artstein’s Theorem 215 − 2 = 32766
Number of inequalities defined by Su 937

Number of inequalities defined by S−1
y 585

Number of inequalities defined by S∗ = Su ∩ S−1
y 471

Percentage of redundant inequalities 98.56%

Table 2
Results of Example 6

Therefore, ϕDsc(u1) = {y1, y2, y10, y11, y12}, ϕDsc(u15) = {y14, y15, y16, y24, y25},
and for any 2 6 i 6 14, ϕDsc(ui) = {yi−1, yi, yi+1, yi+9, yi+10, yi+11}. Figure 10
illustrates the bipartite graph GDsc = (UDsc,YDsc, ϕDsc) constructed in this
manner for Example 6. Apparently, the graph GDsc is non-degenerate. Without
loss of generality, we also assume that the observed probability measure µ on
YDsc is non-degenerate.

We implement the algorithm described in Section 3 to explore the structure
of the bipartite graph GDsc = (UDsc,YDsc, ϕDsc) for Example 6. We can obtain
corresponding results (shown in Table 2) within one second using a normal
computer. . The bipartite graph GDsc indicates du = 15 unobservable events
and dy = 25 observed outcomes. According to Artstein’s Theorem, the number
of inequalities that define the feasible set of probability measures on UDsc is
2du − 2 = 215 − 2 = 32766. Then, Algorithm 1 generates a set Su with |Su| =
937, corresponding to 937 inequalities. A similar algorithm generates a set S−1y
with |S−1y | = 585, corresponding to 585 inequalities. Our final target, the exact
core-determining class for Example 6, can be obtained as S∗ = Su ∩ S−1y with
|S∗| = 471, corresponding to 471 irredundant inequalities. Compared to the
inequalities generated according to Artstein’s Theorem, we can reduce 98.56%
of inequalities.

5. Impact on Inference Procedures and Power of Tests

We consider the test-statistics described in Andrew and Shi (2014) to eval-
uate the impact of the exact core-determining class on inference procedures
and power of statistical tests. In this section, we use µ̂ to replace µ, where
µ̂(y) = 1

n

∑n
i=1 1(yi = y) and n = sample size.

Take a vector v, the test-statistics accepts the null hypothesis at probability
at least 1 − α that v ∈ Q if and only if T (v) 6 cv(1 − α), where T (v) is the
test-statistics in Andrew and Shi (2014). The cut-off value cv(1 − α) can be
calculated using the full set of inequalities, denoted as cfullv (1 − α), or can be
calculated using just the exact core-determining class S∗ combined with the
equality v(U) = µ(Y), denoted as cS

∗

v (1−α). We implement the following steps
in the inference procedures:

(1) Compute cfullv (1− α) and cS
∗

v (1− α). v can be chosen as a point on the
boundary of region Q.
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(2) Report the time of the inference procedures, and report the time of cal-
culating the core-determining class S∗.

(3) Consider a local alternative v′(t) to v, i.e., v′(t) = v + tṽ/
√
n where ṽ

is a unit measure on U such that v′(t) /∈ Q for ∀t > 0 and ṽ(U = 0), report

the power of test as P full(t) = Pr(T full(v′(t)) > cfullv′(t)(1 − α)) and PS
∗
(t) =

Pr(TS
∗
(v′(t)) > cS

∗

v′(t)(1 − α)). Plot the curve of the P full(t) and PS
∗
(t) for

t ∈ [0, a] where a is a positive number. We should expect the curve of P full(t)
to lay below the curve of PS

∗
.

5.1. Test Statistics

Suppose, in the core-determining class problem, we can observe a i.i.d. sample
of outcomes yk ∈ Y, k = 1, 2, ..., n. Assume that this i.i.d. sample is generated
by a distribution measure µ on Y. The probability measure v is not observable.

We follow the procedures suggested in Andrews and Shi (2014). WLOG.,
suppose both the graph G and µ are non-degenerate, by Artstein’s Theorem,
we have these moment inequalities:
v(A) − µ̂(ϕ(A)) 6 0 for all A ⊂ U , A /∈ {∅,U}, where µ̂(ϕ(A)) = En[1(yi ∈

ϕ(A))] = 1
n

∑n
i=1 1(yi ∈ ϕ(A)),

and an equality v(U) = 1.
The equality has no stochastic error and we will simply assume that it holds

for v. Then, we can rewrite the moment function as:
mk(v|A) := v(A) − 1(yi ∈ ϕ(A)). According to the Artstein’s Theorem,

E[mk(v|A)] 6 0 holds for all A ⊂ U , A 6= ∅,U . The empirical moment inequali-
ties are:
En[mk(v|A)] 6 0.
We can stack themk(v|A) as a vector, denoted asmk(v). The sample variance-

covariance matrix of n
1
2En[mk(v)] is:

Σ̂n(v) = 1
n

∑n
k=1(mk(v)− En[mk(v)])(mk(v)− En[mk(v)])′.

To avoid singularity of Σ̂n(v), Andrews and Shi (2014) suggests to use

Σ̄n(v) = Σ̂n(v) + εDiag(Σ̂n(v)) for some fixed ε > 0.
Also, to avoid singularity of the diagnomal matrix of Σ̄n(v), for the diagnomal

element that equals to 0 in Σ̄n(v), we make it equals to ε.
Andrew and Shi (2014) suggests test-statistics for the scenario where condi-

tional inequalities exist. In our case, the test-statistics collapse into the following
form:

Tn(v) = S(m̂(v), Σ̄n(v)), (5.3)

where S is a function to be picked, and m̂(v) = n
1
2En[mi(v)].

Denote p as the length of m̂(v), i.e., p = 2du−2 when we use all the inequalities
suggested in Artstein’s Theorem, and p = |S∗| when we only use the inequalities
selected in the exact core-determining class S∗.

In Andrews and Shi (2014), three functions S are recommended:
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(1) S1(m̂, Σ̄) =
∑p
j=1[m̂j/σj ]

2
+, where m̂j is the jth element of vector m̂(v)

and σj is the square root of the jth diagonal element of matrix Σ̄, where x+ =
max(0, x).

(2) S2(m̂, Σ̄) = inft∈[0,∞]p(m̂(v)− t)′Σ−1(m̂(v)− t).
(3) S3(m̂, Σ̄) = max16j6p[m̂j/σj ]

2
+.

To make computation simple, we consider the S(·, ·) function stated in (1)
and (3) in the following tests.

5.2. Computing the critical value c(1 − α, v)

Andrews and Shi (2014) suggests to use bootstrap to approximate the (1 −
α) quantile of S(m̂(v), Σ̄n) as cv, also denoted as c(1 − α, v) in this section.
Specifically, the procedure described in the Section 9 of Andrews and Shi (2014)
could be reduced to the following steps in our context:

Step 1: Compute the test stastistics T (v) := S(m̂(v), Σ̄n).

Step 1boot: Bootstrap y1, ..., yn. Assume the bootstrapped sample is y∗,b1 , ..., y∗,bn ,
b = 1, 2, ...,M , where M is the total number of bootstraps.

Compute m̂(v)∗,b and Σ̄∗,bn , which are replacements of m̂(v) and Σ̄n by sub-

stituting y1, ..., yn with y∗,b1 , ..., y∗,bn .

Then, compute m̃∗,b(v) := D̄n(v)
−1
2 (m̂(v)∗,b−m̂(v))+ϕn(v), where D̄n(v) :=

Diag(Σ̄n(v)), and ϕn(v) is defined as:

ϕn,j = Bn1(ζn,j(v) > 1), where ζn := κ−1n D̄
−1/2
n m̂(v) and ζn,j is the jth

entry of ζn. Bn and κn are chosen as two sequences of constants such that:
(1) κn → ∞ (2) Bn/κn → 0, as n → ∞. Andrews and Shi (2014) suggests

using κn = (0.3ln(n))
1
2 and Bn = (0.4ln(n)/lnln(n))

1
2 .

Compute Σ̃∗,bn := D̄n(v)
−1
2 Σ̄∗,bn (v)D̄n(v)

−1
2 .

Compute the test stastistics T ∗,b(v) = S(m̃∗,b(v), Σ̃∗,bn ).
Step 2: Compute the 1− α + η quantile of the statistics T ∗,1(v),...,T ∗,M (v),

denoted as cv(1 − α), where η is an arbitrarily small constant. In practice, we
follow the suggestion from Andrews and Shi (2014) that ε = 0.01 and η = 10−6.

Step 3: Reject the hypothesis that v ∈ Q if T (v) > cv(1− α).
Andrews and Shi (2014) shows that asymptotically, the probability of T (v) >

cv(1− α) is bounded by α from the above.

5.3. Numerical Experiments of Power of Tests Against Local
Alternatives

To investigate the benefit of performing statistical tests on the identified set of
parameters, we consider local alternatives and compare the performance of the
test stastistics proposed in Andrews and Shi (2014), based on both the full set of
inequalities and the inequalities that correspond to the exact core-determining
class. The power test procedure is implemented based on Example 5. To make
things simple, we exclude the two disconnected events u1 and u9 by assuming
µ{y1} = 0 and µ{y14} = 0. Essentially, we explore the non-degenerate subgraph
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G3 with 7 events and 12 outcomes. It takes less than 1 second to compute the
exact core-determing class for the subgraph.

We choose a point v on the boundary of Q by solving a linear optimization
problem on Q. Specifically, we get the optimal solution as v by maximizing
the objective function c′v in Q, where c = {1, 2, 3, 4, 5, 6, 7}. Then, we choose
ṽ = 1/

√
6{−1,−1,−1, 1, 1, 1, 0}, such that ṽ(U) = 0 and v′ = v + tṽ/

√
n /∈ Q

for all t > 0. We assume t is from 0 to 3, sample size n = 1000, boostrap size
M = 500, and α = 0.05. We replicate 1000 instances for each t. To avoid huge
computational requrements of inverse matrix in function S2, we test functions
S1 and S3 in the inference experiment.

In a set of Monte-Carlo experiments, we denote PS
∗

Sj
(t) as the probablity

of T (v + tṽ/
√
n) > cv(1 − α) where T and c are calculated using the set of

inequalities in the exact core-determining class, and the function S = Sj , j =

1, 3. Similarly, P fullSj
(t) as the probablity of T (v + tṽ/

√
n) > cv(1 − α) where

T and c are calculated using the set of inequalities stated in the Artstein’s
Theorem, and the function S = Sj , j = 1, 3. The corresponding results are
illustrated in Table 3 and Figure 6.

In Table 3, we observe that computing the test-statistics using the exact
core-determining class are much faster than using the full set of inequalities.
This result is not surprising because the exact core-determining class contains
much less inequalities compared to the full set of inequalities. In Figure 6, the
red curve represents the power of the statistical test (denoted as TS

∗
(t)) sug-

gested by Andrews and Shi (2014) with moment inequalities corresponding to
the exact core-determining class, while the blue curve represents the power of
the statistical test (denoted as T full(t)) suggested by Andrews and Shi (2014)
using the full set of inequalities.

We can find that, for function S = S1, the power of TS
∗

is much better than
T full for local alternatives v′ = v + t√

n
ṽ; for function S = S3, the power of

TS
∗

is also better than T full, though the discrepancy is much smaller. This is
because that, hueristically, the binding inequalities, i.e., those inequalities that
correspond to the exact core-determining class, are more likely to generate the
value of the S3 function, compared to the unbinding inequalities. Or equivalently,
if the unbinding inequalities are truely uninformative about the identified region,
then with high probability, the maximum of (En[mk(v|A)]/σA)2+ over all non-
empty set A ( U can be very close to the maximum of (En[mk(v|A)]/σA)2+ over
all A in the exact core-determining class.

6. Conclusion

In this paper, we study the indeterministic relations between unobservable
events and observed outcomes. A bipartite graph G = (U ,Y, ϕ) represents the
relations. Given a probability measure on observed outcomes, the set of feasible
probability measures on unobservable events can be defined by a set of linear
inequality constraints, according to Artstein’s Theorem. This set of inequalities
is called the core-determining class.
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S1 S3

t PS
∗

S1
(t) P full

S1
(t) PS

∗
S3

(t) P full
S3

(t)

0.0 0.1% 0.0% 1.4% 0.5%
0.1 0.4% 0.0% 1.7% 0.6%
0.2 0.4% 0.0% 1.5% 1.1%
0.3 0.7% 0.0% 3.2% 1.8%
0.4 1.2% 0.0% 3.4% 2.1%
0.5 2.2% 0.0% 4.5% 3.4%
0.6 3.6% 0.0% 5.9% 4.5%
0.7 5.1% 0.0% 8.6% 6.5%
0.8 8.4% 0.0% 13.7% 11.3%
0.9 12.4% 0.0% 20.2% 15.5%
1.0 20.5% 0.0% 25.7% 20.5%
1.1 25.1% 0.0% 34.3% 30.5%
1.2 34.6% 0.0% 40.6% 36.0%
1.3 45.8% 0.0% 52.7% 48.4%
1.4 50.6% 0.0% 64.7% 60.6%
1.5 64.2% 0.1% 72.9% 68.1%
1.6 72.8% 0.0% 82.0% 78.4%
1.7 80.6% 0.0% 85.5% 82.2%
1.8 86.3% 0.6% 92.4% 90.7%
1.9 92.9% 0.4% 95.3% 94.1%
2.0 95.1% 1.7% 96.9% 96.2%
2.1 97.4% 1.1% 97.9% 97.6%
2.2 98.6% 2.4% 99.2% 99.1%
2.3 98.9% 2.6% 99.6% 99.3%
2.4 99.6% 5.4% 99.5% 99.3%
2.5 99.8% 7.1% 99.9% 99.9%
2.6 100% 10.9% 100% 100%
2.7 100% 20.4% 100% 100%
2.8 100% 23.4% 100% 100%
2.9 100% 29.4% 100% 100%
3.0 100% 39.0% 100% 100%

Avg. Computational Time (min) 97 1147 96 1239

Table 3
Results of Power of Tests for Example 5
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We aim to select the minimum set of irredundant inequalities, which is de-
fined as the exact core-determining class. Specifically, we show that the exact
core-determining class can be characterized by a set of combinatorial rules of
the graph G. We then propose an algorithm that explores the structure of the
bipartite graph to construct the exact core-determining class. We prove that, if
the bipartite graph and the measure on observed outcomes are non-degenerate,
the exact core-determining class does not depend on the observed probability
measure on outcomes, but only on the structure of the bipartite graph.

We design a set of examples to implement the algorithm for the construction
of the exact core-determining class. We demonstrate the good performance of
the algorithm on the reduction of inequalities. We demonstrate in simulation
that, on the one hand, finding the exact core-determining class can reduce the
computational time of performing the inference procedure proposed by Andrews
and Shi (2014). On the other hand, the power of the statistical tests based on the
selected set of inequalities, i.e., the exact core-determining class, are better than
the power of the statistical tests based on the full set of inequalities. That said,
our approach could improve performance of the existing inference procedure,
both computationally and statistically.
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We require a set of supporting lemmas to prove the Theorem 1, 2, 3.

Appendix A: Proof of Lemmas and Auxliary Lemmas

Proof of Lemma 2.
When |U| = 1, there is only one inequality v(U) 6 µ(Y), so this inequality

contains all the information on v. That said, the conclusion of Lemma 2 holds.
Now we assume that |U| > 2.
(1) We prove that Q1(Su) = Q1.
First, for any S ⊂ 2U , because the inequality restrictions that describe Q1(S)

is a subset of those that describe Q1, it must be that Q1(S) ⊃ Q1. Consequently,
Q1(Su) ⊃ Q1.

We need to show thatQ1 ⊃ Q1(Su). It is easy to see thatQ1 := ∩A⊂U,A 6=∅{v >
0|v(A) 6 µ(ϕ(A))} = ∩A⊂U,A6=∅Q1({A}). And for any S,Q1(S) = ∩A∈SQ1({A}).
Each Q1({A}) := {v > 0|v(A) 6 µ(ϕ(A))} is a convex polyhedron.

Denote Ru := 2U\(Su∪{∅}) as the collection of non-empty subsets of U that

are not in Su. Denote Ru as {Ã1, ..., Ãs}, where s := |Ru| = 2du − 1− |Su|, and

each Ãi, i = 1, 2, ..., s, is a non-empty subset of U .
For k = 1, 2, ..., s, consider Sk = Su ∪Rku, where Rku can be any subset of Ru

with |Rku| = s − k. We would like to show that Q1(Sk) = Q1, for any possible
Rku and for all k = 1, 2, ..., s.

When k = 1: For any R1
u with R1

u ⊂ Ru, |R1
u| = s − 1, there must exists a

set Ã ∈ Ru\R1
u. Since |R1

u| = s− 1, Ã is the only non-empty subset of U that is
not in Su ∪R1

u. Therefore,

Q1(S1) = {v > 0|v(A) 6 µ(ϕ(A)), for all non-empty A ⊂ U , A 6= Ã}.
By Definition 7, since Ã /∈ Su, for any v ∈ Q1(S1), it must be that v(Ã) 6

µ(ϕ(Ã)); or equivalently, v ∈ Q1({Ã}). Consequently, Q1(S1) ⊂ Q1({Ã}), and

Q1 = Q1(S1) ∩Q1({Ã}) = Q1(S1).
Now suppose the statement that Q1(Sk) = Q1 holds for k = k0 and for any

Sk0 = Su ∪Rk0u with |Rk0u | = s− k0, where 1 6 k0 6 s− 1. For k = k0 + 1:
Consider Sk0+1 = Su∪Rk0+1

u , where Rk0+1
u is a subset of Ru with cardinality

s − k0 − 1. Since k0 + 1 > 2, there must exists two different sets A1, A2 ∈ Ru,
and A1, A2 /∈ Rk0+1

u .
Therefore, Sk0+1 ∪ {A1} = Su ∪ (Rk0+1

u ∪ {A1}), where (Rk0+1
u ∪ {A1}) has

cardinality s− k0. Thus, Q1(Sk0+1) ∩Q1({A1}) = Q1(Sk0+1 ∪ {A1}) = Q1.
Similarly, Q1(Sk0+1) ∩Q1({A2}) = Q1(Sk0+1 ∪ {A2}) = Q1.
We claim the following proposition must be true.

Proposition 1. Denote W = Q1(Sk0+1)\Q1. Then, W must be empty.

Proof of Proposition 1.
By definition, Q1(Sk0+1) = Q1 ∪W , Q1 ∩W = ∅.
Since Q1 = Q1(Sk0+1) ∩ Q1(A1) = Q(Sk0+1) ∩ Q1(A2), it easy to see that

W ∩Q1({A1}) = (Q1(Sk0+1)\Q1)∩Q1({A1}) = (Q1(Sk0+1)∩Q1(A1))\Q1 = ∅.
Similarly, W ∩Q1({A2}) = ∅. Therefore, W ∩ (Q1({A1}) ∪Q1({A2})) = ∅.
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If W is non-empty, then there exist vW > 0, vW ∈ W . It follows that vW /∈
Q1({A1}), vW /∈ Q1({A2}). By defintion of Q1({A1}) and Q1({A2}), it must be
that vW (A1) > µ(ϕ(A1)) and vW (A2) > µ(ϕ(A2)).

Since µ is non-degenerate, for any non-empty A ⊂ U , the inequality v(A) 6
µ(ϕ(A)) can be re-written as

∑du
i=1 1(ui ∈ A)v(ui) 6 µ(ϕ(A)), where µ(ϕ(A)) =∑

y∈ϕ(A) µ(y) > 0. In these inequalities, the coefficients on the vector (v(u1), ..., v(udu))
are non-negative and bounded from the above. Therefore, for ε > 0 small enough,
there exists an open box Bε := {v|v(u) ∈ (0, 2ε), for any u ∈ U} such that Bε ⊂
Q1. The center of this box is vε = (ε, ε, ..., ε). Since vε ∈ Bε ⊂ Q1, it must be that
vε(A1) < µ(ϕ(A1)), and vε(A2) 6 µ(ϕ(A2)), i.e., vε ∈ Q1({A1}) ∩Q1({A2}).

Consider the segment line L = {v|v = tvε + (1 − t)vW , t ∈ [0, 1]}. Since the
set Q1(Sk0+1) is convex and vW , vε ∈ Q1(Sk0+1), any point on the segment L
must be in Q1(Sk0+1), i.e., L ⊂ Q1(Sk0+1).

Because vW /∈ Q1({A1}) ∪ Q1({A2}), vε ∈ Q1 ⊂ Q1({A1}) ∩ Q1({A2}),
and both Q1({A1}) and Q1({A2}) are closed and convex sets, there must exist
t1 ∈ (0, 1] and t2 ∈ (0, 1] such that vt = tvε + (1 − t)vW ∈ Q1({A1}) if and
only if t ∈ [t1, 1], and v = tvε + (1− t)vW ∈ Q1({A2}) if any only if t > [t2, 1].
WLOG., we can assume that t1 6 t2. For t = t1, we have vt1(A1) = µ(ϕ(A1)),
and for t = t2, we have vt2(A2) = µ(ϕ(A2)).

Therefore, vt1 := t1vε + (1 − t1)vW ∈ Q1({A1}) ∩ Q1(Sk0+1) = Q1. It im-
plies that v ∈ Q2({A2}) since Q1 = Q2({A2}) ∩ Q1(Sk0+1). Thus, t1 > t2.
Consequently, t1 must equal to t2.

Thus, ṽ := vt1 = vt2 ∈ Q1 satisfies that: ṽ(A1) = µ(ϕ(A1)), and ṽ(A2) =
µ(ϕ(A2)).

By construction of Bε, we know that Bε ⊂ Q1 ⊂ Q1(Sk0+1). B̃ε := {v|v =
t1v1 + (1 − t1)vW , for any v1 ∈ Bε} is an open set centered at ṽ. Since any

elements in B̃ε is a linear combination of v1 ∈ Bε ⊂ Q1(Sk0+1) and vW ∈
Q1(Sk0+1) with t1 ∈ (0, 1], by convexity of Q1(Sk0+1), B̃ε ⊂ Q1(Sk0+1).

Since A1 6= A2 and du = |U| > 2, there must exists a unit vector v3 ∈ Rdu
such that v3(A1) = 0 and v3(A2) > 0. Since B̃ε is an open set in Rdu , for

t3 > 0 small enough, v4 = ṽ + t3v3 ∈ B̃ε ⊂ Q1(Sk0+1). It is easy to see that
v4(A1) = ṽ(A1) + t3v3(A1) = µ(ϕ(A1)) and v4(A2) = ṽ(A2) + t3v3(A2) =
µ(ϕ(A2)) + t3v3(A2) > µ(ϕ(A2)). By definition of Q1({A1}) and Q1({A2}),
v4 ∈ Q1(Sk0+1) ∩Q1({A1}) = Q1, but v4 /∈ Q1({A2}).

However, we know that Q1 ⊂ Q1({A2}), so the existence of v4 leads to a
contradiction. Thus, W = ∅.

By Proposition 1, W = ∅, so Q1(Sk0+1) = Q1 ∪W = Q1.
By induction, Q1(Sk) = Q1 holds for all k = 1, 2, ..., s and Sk = Su ∪ Rku,

where Rku can be any possible subset of Ru with cardinality s− k. When k = s,
Rku = ∅. Therefore, Q1(Su) = Q1(Ss) = Q1.

(2) It is obviouse that Q1(S) ⊃ Q1, since Q1(S) is defined by a subset of
constraints that define Q1.

For any S such that it does not contain Su, there must exist A0 ∈ Su such that
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A0 /∈ S. By Definition 7, vMA0
(A0) > µ(ϕ(A0)), which implies that vMA0

/∈ Q1.

By Definition 6, vMA0
∈ Q1(2U\{∅, A0}). Since S ⊂ 2U\{∅, A0}, it holds that

Q1(S) ⊃ Q1(2U\{∅, A0}). Therefore, vMA0
∈ Q1(S), so vMA0

is an element in
Q1(S) but not in Q1, i.e., Q1(S) ) Q1.

Proof of Lemma 3.
By Definition 8, for any A 6∈ S ′u, one of the following two statements must be

true:
(1) ∃A1, A2 ⊂ A,A1, A2 6= ∅, A1 ∪A2 = A such that ϕ(A1) ∩ ϕ(A2) = ∅;
(2) ∃u ∈ U such that u 6∈ A, and ϕ(u) ⊂ ϕ(A).
If (1) is true, by Definition 7, for every A′ 6= A, vMA (A′) 6 µ(ϕ(A′)). There-

fore, vMA (Ai) 6 µ(ϕ(Ai)), i = 1, 2. Then, vMA (A) = vMA (A1 ∪ A2) = vMA (A1) +
vMA (A2) 6 µ(ϕ(A1)) + µ(ϕ(A2)) = µ(ϕ(A1) ∪ ϕ(A2)) = µ(ϕ(A1 ∪ A2)) =
µ(ϕ(A)). By Definition 7, A 6∈ Su.

If (2) is true, then ϕ(A ∪ {u}) = ϕ(A) and it follows that µ(ϕ(A ∪ {u})) =
µ(ϕ(A)). Thus, by Definition 6, vMA (A ∪ {u}) 6 µ(ϕ(A ∪ {u})) = µ(ϕ(A)).
Therefore, vMA (A) 6 vMA (A∪{u}) 6 µ(ϕ(A∪{u})) = µ(ϕ(A)). By Definition 7,
A 6∈ Su.

Consequently, combining the discussions above, we have:

Su ⊂ S ′u. (A.4)

Based on (A.4), to prove the statement of the Lemma that Su = S ′u, we need
to show that S ′u ⊂ Su.

Consider an arbitrary non-empty set A ⊂ U , A 6= U such that A /∈ Su. It is
sufficient to prove that A /∈ S ′u to show S ′u ⊂ Su. We prove the above statement
by contradiction.

By contradiction, we assume that there exists a set A ∈ S ′u\Su. Therefore, A
satisfies the two properties defined in Definition 8.

Denote Su := {Ai|1 6 i 6 r := |Su|}. For every set A ⊂ U , we can define a
vector w(A) ∈ {0, 1}du such that the ith entry of w(A) equals to 1 if and only if
ui ∈ A. Therefore, w : A→ {0, 1}du is a mapping from the 2U to {0, 1}du . Such
w(A) is often refered as the characteristic vector of the set A.

By Lemma 2, the inequalities v(A1) 6 µ(ϕ(A1)), ..., v(Ar) 6 µ(ϕ(Ar)) are ir-
redundant and Q1(Su) := {v|v(Ai) 6 µ(ϕ(Ai))} is the same as Q1 := {v|v(A) 6
µ(ϕ(A)), A ⊂ U , A 6= ∅}.

By Farkas Lemma, there exists a 1× r vector π > 0 such that

(a)

r∑
i=1

πiw(Ai) > w(A), (b)

r∑
i=1

πiµ(ϕ(Ai)) 6 µ(ϕ(A)). (A.5)

Since the vector w(Ai) has some entries which equal to one, at least one πi
must be positive, i ∈ {1, 2, ..., r}. WLOG., assume πi > 0, i = 1, 2, ..., r′, where
1 6 r′ 6 r, and πi = 0 for r′ < i 6 r; We would simply omit the Ai that
corresponds to πi = 0 in the statements above.
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Proposition 2. The vector π > 0 satisfies:

(1) For any y ∈ Y,
∑r′

i=1 1(ϕ−1(y) ∩ Ai 6= ∅) = 1(ϕ−1(y) ∩ A 6= ∅) and for

any u ∈ U ,
∑r′

i=1 1(u ∈ Ai) = 1(u ∈ A).
(2) For any y ∈ Y, either (ϕ−1(y) ∩ Ai) ∩ A = ∅; or (ϕ−1(y) ∩ Ai) ⊂ A,

i = 1, 2, ..., r′.

Proof of Proposition 2. (1) Proof of statement (1).

Since
∑r′

i=1 πiw(Ai) > w(A), it implies that for any u ∈ U ,
∑r′

i=1 πi1(u ∈
Ai) > 1(u ∈ A).

If A ∩ ϕ−1(y) 6= ∅, i.e., y ∈ ϕ(A), pick any u ∈ A ∩ ϕ−1(y), we have:

r′∑
i=1

πi1(Ai∩ϕ−1(y) 6= ∅) >
r′∑
i=1

πi1(u ∈ Ai) > 1(u ∈ A) = 1 = 1(A∩ϕ−1(y) 6= ∅).

(A.6)

If A ∩ ϕ−1(y) = ∅, i.e., y /∈ ϕ(A), then
∑r′

i=1 πi1(Ai ∩ ϕ−1(y) 6= ∅) > 0 =
1(ϕ−1(y) ∩A 6= ∅). Therefore, the inequality (A.6) holds for any y ∈ Y.

By applying inequality (A.6) on every y ∈ Y, we have:

∑
πiµ(ϕ(Ai)) =

∑
y∈Y

µ(y)

r′∑
i=1

πi1(Ai∩ϕ−1(y) 6= ∅) >
∑
y∈Y

µ(y)1(A∩ϕ−1(y) 6= ∅) = µ(ϕ(A)).

(A.7)
By assumption, µ(·) is non-degenerate, i.e., µ(y) > 0 for any y ∈ Y. Com-

bining (A.7) with statement (b) of (A.5), the inequality (A.7) must hold as an

equality, i.e., for any y ∈ Y,
∑r′

i=1 πi1(Ai ∩ ϕ−1(y) 6= ∅) = 1(A ∩ ϕ−1(y) 6= ∅).
Therefore, the first part of Statement (1) is proven.

We claim that the inequality
∑r′

i=1 πiw(Ai) > w(A) in statement (a) of (A.5)
must hold as an equality, i.e.,

r′∑
i=1

πiw(Ai) = w(A). (A.8)

Or equivalently, for any u ∈ U ,
∑r′

i=1 πi1(u ∈ Ai) = 1(u ∈ A).

To prove the equation (A.8), let w̃ =
∑r′

i=1 w(Ai). If, by contradiction, w̃ 6=
w(A), there can only be two cases: (a) there exists u /∈ A, such that u ∈ Ai0 for

some i0 ∈ {1, 2, ..., r′}. (b) there exists u ∈ A, such that
∑r′

i=1 πi1(u ∈ Ai) > 1.
For case (a), by property (2) of Definition 8, ϕ(u) is not a subset of ϕ(A).

Therefore, there exists ỹ such that ỹ ∈ ϕ(u) but y /∈ ϕ(A).
Let us recall inequality (A.7).

∑
πiµ(ϕ(Ai)) =

∑
y∈Y

µ(y)

r′∑
i=1

πi1(Ai ∩ ϕ−1(y) 6= ∅)
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> µ(ỹ)

r′∑
i=1

πi1(Ai ∩ ϕ−1(ỹ) 6= ∅) +
∑

y∈ϕ(A)

µ(y)

r′∑
i=1

πi1(Ai ∩ ϕ−1(y) 6= ∅)

> πi0µ(ỹ) +
∑

y∈ϕ(A)

µ(y)

r′∑
i=1

πi1(Ai ∩ ϕ−1(y) 6= ∅)

> πi0µ(ỹ) +
∑

y∈ϕ(A)

µ(y)1(ϕ−1(y) ∩A 6= ∅)

= πi0µ(ỹ) + µ(ϕ(A)) > µ(ϕ(A)),

which contradicts to (A.5).
For case (b), pick a ỹ ∈ ϕ(u) ⊂ ϕ(A). Again let us recall inequality (A.7).

∑
πiµ(ϕ(Ai)) =

∑
y∈Y

µ(y)

r′∑
i=1

πi1(Ai ∩ ϕ−1(y) 6= ∅)

> µ(ỹ)

r′∑
i=1

πi1(Ai ∩ ϕ−1(y) 6= ∅) +
∑

y∈ϕ(A),y 6=ỹ

µ(y)

r′∑
i=1

πi1(Ai ∩ ϕ−1(y) 6= ∅)

> µ(ỹ)

r′∑
i=1

πi1(u ∈ Ai) +
∑

y∈ϕ(A),y 6=ỹ

µ(y)

r′∑
i=1

πi1(Ai ∩ ϕ−1(y) 6= ∅)

> µ(ỹ) · 1 +
∑

y∈ϕ(A),y 6=ỹ

µ(y)

r′∑
i=1

πi1(Ai ∩ ϕ−1(y) 6= ∅)

> µ(ỹ) +
∑

y∈ϕ(A),y 6=ỹ

µ(y)

= µ(A),

which contradicts to (A.5).

Thus, equation (A.8) must hold. Therefore, for any u ∈ U ,
∑r′

i=1 πi1(u ∈
Ai) = 1(u ∈ A), i.e., the second part of Statement (1) is true.

(2) Proof of Statement (2).
We claim that for any y ∈ Y, either (ϕ−1(y)∩A) ⊂ Ai or (ϕ−1(y)∩A)∩Ai = ∅

for all i. We prove this argument by contradiction.
Assume that there exists a y ∈ Y and 1 6 i1 6 r′ such that (ϕ−1(y) ∩ A) ∩

Ai1 6= ∅, and (ϕ−1(y) ∩A) is not a subset of Ai1 . Therefore, there exists u 6= u′

such that u, u′ ∈ ϕ−1(y), u ∈ A ∩Ai1 , u′ ∈ A but u′ /∈ Ai1 . Thus,∑r′

i=1 πi1(Ai ∩ ϕ−1(y) 6= ∅) = πi1 +
∑
j 6=i1 πj1(Aj ∩ ϕ−1(y) 6= ∅) > πi1 +∑

j 6=i1 πj1(u′ ∈ Aj) = πi1−πi11(u′ ∈ Ai)+
∑r′

j=1 πj1(u′ ∈ Aj) > πi1−0+1(u′ ∈
A) = πi1 + 1 > 1 = 1(A ∩ ϕ−1(y)), which is contradictory with Statement (1)
of this proposition.



 Electronic copy available at: https://ssrn.com/abstract=3154285 

Luo and Wang/Identifying and Computing the Exact Core-determining Class 34

Thus, for any y ∈ Y,

either (ϕ−1(y) ∩A) ⊂ Ai or (ϕ−1(y) ∩A) ∩Ai = ∅, (A.9)

for all i = 1, 2, ..., r′.

By Proposition 2, given the equation (A.8), since πi > 0 for all i = 1, 2, ..., r′,
it must be that Ai ⊂ A for any i = 1, 2, ..., r′.

Therefore, for any y ∈ ϕ(Ai), ϕ
−1(y) ∩ Ai 6= ∅, and ϕ−1(y) ∩ Ai ⊂ A. Then,

since ϕ−1(y)∩A∩Ai 6= ∅, it must be that ϕ−1(y)∩Ai = ϕ−1(y)∩A∩Ai ⊂ Ai.
It implies that ϕ−1(y) ⊂ Ai. Thus, ϕ−1(ϕ(Ai)) = ∪y∈ϕ(Ai)ϕ

−1(y) ⊂ Ai. On the
other hand, ϕ−1(ϕ(Ai)) ⊃ Ai by definition of ϕ and ϕ−1, so

ϕ−1(ϕ(Ai)) = Ai. (A.10)

By assumption, A /∈ Su. Therefore, A 6= Ai for any i = 1, 2, ..., r′. Since
A ∈ S ′u, A is self-connected. By self-connectivity of A, ϕ(A\Ai) ∩ ϕ(Ai) 6= ∅.
Consequently, there must exist u ∈ A\Ai such that ϕ(u) ∩ ϕ(Ai) 6= ∅. Thus,
u ∈ ϕ−1(ϕ(Ai)) but u /∈ Ai, which contradicts to (A.10).

Therefore, there exists no A ∈ S ′u\Su. It implies that S ′u ⊂ Su. Combining
this statement with (A.4), we have Su = S ′u.

Appendix B: Proof of Main Theorems

B.1. Proof of Theorem 1

The following proposition characterize the dimensionality of Q.

Lemma 6. Suppose both G and µ are non-degenerate. Then, Q contains an
open set in a (du − 1) dimensional linear subspace of Rdu .

Proof of Lemma 6.
Consider Q2 := {v > 0|v(A) 6 µ(ϕ(A)), for any A ⊂ U , A 6= U , A 6= ∅}.
Let us enumerate the elements of U as u1, ..., udu , and let us enumerate the

elements of 2U\{∅,U} as A′1, A
′
2, ..., A

′
r, with r := 2du − 2. For any A ⊂ U , we

can define w(A) ∈ {0, 1}du as the characteristic vector of A, i.e., the ith entry
of w(A) equals to 1 if and only ui ∈ A.

We claim that the following proposition must be true.

Proposition 3. Suppose both G and µ are non-degenerate. Then, there exists
a vector v ∈ Q2 such that v(U) > µ(Y).

Proof of Proposition 3.. We prove the statement of this proposition by contra-
diction.

Suppose the statement of Proposition 3 is untrue, i.e., Q2 ⊂ {v > 0|v(U) 6
µ(Y)}.
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By Farkas Lemma, there must exists a vector π ∈ Rr, π > 0 such that:

r∑
i=1

πiw(A′i) > w(U) = (1, 1, ..., 1), (B.11)

and
r∑
i=1

πiµ(ϕ(A′i)) 6 µ(Y). (B.12)

Since w(U) has some entries that equal to one, at least one πi must be positive,
i ∈ {1, 2, ..., r}. WLOG., we can assume that all πi > 0, i = 1, 2, ..., r′, with
1 6 r′ 6 r, and πi = 0 for i > r′; for those πi = 0, we can just drop those
indices i that corresponds to πi = 0.

(B.11) implies that for any u ∈ U ,

r′∑
i=1

πi1(u ∈ A′i) > 1. (B.13)

(B.12) can be re-rewritten as:

∑
y∈Y

µ(y)(

r′∑
i=1

πi1(A′i ∩ ϕ−1(y) 6= ∅)− 1) 6 0. (B.14)

For any y ∈ Y, we can pick a u ∈ ϕ−1(y). It is easy to see that 1(A′i∩ϕ−1(y) 6=
∅) > 1(u ∈ A′i) holds for all i = 1, 2, ..., r′. Therefore, by (B.13),

r′∑
i=1

πi1(A′i ∩ ϕ−1(y) 6= ∅)− 1 >
r′∑
i=1

πi1(u ∈ A′i)− 1 > 0. (B.15)

Plug in (B.15) in the left hand side of (B.14), we have:∑
y∈Y µ(y)(

∑r′

i=1 πi1(A′i∩ϕ−1(y) 6= ∅)−1) > 0. Therefore, (B.14) must hold
as an equality. Since µ is non-degenerate, i.e., µ(y) > 0 for all y ∈ Y, it must be
that:

r′∑
i=1

πi1(A′i ∩ ϕ−1(y) 6= ∅)− 1 = 0. (B.16)

For any y ∈ Y, if there exists A′i0 for some i0 ∈ {1, 2, ..., r′}, such that
ϕ−1(y) ∩ A′i0 6= ∅, but ϕ−1(y) is not a subset of Ai0 , then there must exist
u1, u2 ∈ ϕ−1(y), such that u1 ∈ Ai0 , and u2 /∈ Ai0 .

Therefore,
∑r′

i=1 πi1(A′i ∩ ϕ−1(y) 6= ∅)− 1
= πi0 +

∑
16i6r′,i6=i0 πi1(A′i ∩ ϕ−1(y) 6= ∅)− 1

> πi0 − πi01(u2 ∈ Ai0) +
∑r′

i=1 πi1(u2 ∈ A′i)− 1
> πi0 − 0 + 1− 1 > 0, which contradicts to (B.16). Therefore, for any y ∈ Y

and any i = 1, 2, ..., r′, either

ϕ−1(y) ⊂ A′i or ϕ−1(y) ∩A′i = ∅. (B.17)
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It follows that, for any i = 1, 2, ..., r′, ϕ(A′i)∩ϕ(U\A′i) = ∅, because otherwise
there exists a y such that ϕ−1(y) ∩ A′i 6= ∅ and ϕ−1(y) ∩ (U\A′i) 6= ∅, which
violates (B.17). However, by assumption G is connected, it must be that ϕ(A′i)∩
ϕ(U\A′i) 6= ∅, contradiction!

Therefore, Q2 must not be a subset of {v > 0|v(U) 6 µ(Y)}; or equivalently,
there must exists a v ∈ Q2 such that v(U) > µ(Y).

By Proposition 3, there exists a v3 ∈ Q2, such that v3(U) > µ(Y).
Since µ is non-degenerate, so for any non-empty A ⊂ U , the inequality v(A) 6

µ(ϕ(A)) can be re-written as
∑du
i=1 1(u ∈ A)v(ui) 6 µ(ϕ(A)), where µ(ϕ(A)) >

0. All of these inequalities have non-negative and bounded coefficients on the
vector (v(u1), ..., v(udu)). Therefore, there must exist an ε > 0 small enough
such that the open box Bε := {v|v(u) ∈ (0, 2ε) for all u ∈ U} satisifies that
Bε ⊂ Q2 ∩ {v|v(U) < µ(Y)}. By convexity of Q2, for any t ∈ [0, 1] and vε ∈ Bε,
we have tv3 + (1− t)vε ∈ Q2. Define the set C := {v4|v4 := tv3 + (1− t)vε, vε ∈
Bε, t ∈ (0, 1)}, so C is an open set in Rdu . Since Bε ⊂ {v > 0|v(U) < µ(Y)}, and
v3 /∈ {v > 0|v(U) 6 µ(Y)}, and Bε is an open box in Rdu , then C ∩ {v|v(U) =
µ(Y)} contains an open set in the linear subspace {v|v(U) = µ(Y)}.

SinceQ = Q2∩{v|v(U) = µ(Y)}, andQ2 ⊃ C, it follows thatQ ⊃ (C ∩ {v|v(U) = µ(Y)}).
Therefore, Q contains an open set in a du − 1 dimensional linear subspace of
Rdu .

With Lemma 6 and Proposition 3, we can start to prove Theorem 1.

Proof of Theorem 1.
(1) For all S ⊂ 2U\{∅}, because Q(S) is defined by a subset of inequality

restrictions that define Q, it is easy to see that Q(S) ⊃ Q.
Obviouly, U /∈ S∗, since v(U) 6 µ(Y) is implied by v(U) = µ(Y).f
When du = 1, there is only one inequality v(U) 6 µ(Y), and it is implied by

v(U) = µ(Y). Therefore, S∗ is ∅ and obviously it is the exact core-determining
class.

Now we assume that du = |U| > 2.
Denote Ru := 2U\(S∗ ∪ {∅,U}) as the collection of non-empty subsets of

U that are not in S∗ ∪ {U}. Denote Ru as {A1, ..., As}, where s := |Ru| =
2du − 2− |S∗|, and each Ai is a subset of U , i = 1, 2, ..., s.

Define S∗k := S∗ ∪Rku, where Rku can be any subset of Ru with |Rku| = s− k.
For k = 1, 2, ..., s, we claim that Q(S∗k) = Q, We prove this claim by performing
induction on k.

For k = 1, for any R1
u ⊂ Ru, |R1

u| = s− 1, denote Ã as the only element that
is in Ru but not in R1

u.

Since Ã /∈ S∗, by Definition 5, v(Ã) 6 µ(ϕ(Ã)) for all v ∈ Q(S∗1), where

S∗1 = S∗ ∪ R1
u. It implies that Q(S∗1) ⊂ Q({Ã}). Therefore, Q = Q(S∗1) ∩

Q({Ã}) = Q(S∗1); or equivalently, Q(S∗ ∪ Rku) = Q holds for k = 1 and any
possible Rku.

Now, suppose Q(S∗ ∪ Rku) = Q holds for all possible Rku with k = k0, where
1 6 k0 6 s− 1. For k = k0 + 1:
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Consider S∗(k0+1) = S∗ ∪Rk0+1
u , where Rk0+1

u can be any subset of Ru with
|Rk0+1
u | = s − k0 − 1. Since k0 + 1 > 2, there must exist two different sets

∈ Ru\Rk0+1
u . WLOG., let these two sets be A1 and A2.

It is easy to see that Rk0+1
u ∪{A1} and Rk0+1

u ∪{A2} have cardinality s−k0.
Therefore, Q(S∗(k0+1)) ∩ Q({A1}) = Q(S∗(k0+1) ∪ {A1}) = Q(S∗ ∪ (Rk0+1

u ∪
{A1})) = Q, and Q(S∗(k0+1)) ∩ Q({A2}) := Q(S∗(k0+1) ∪ {A2}) = Q(S∗ ∪
(Rk0+1

u ∪ {A2})) = Q.
Let us decompose Q(S∗(k0+1)) as Q(S∗(k0+1)) = Q ∪W , where Q ∩W = ∅.

Since Q(S∗(k0+1)) ∩ Q({A1}) = Q(S∗(k0+1)) ∩ Q({A2}) = Q, it must be that
W ∩ (Q({A1}) ∪Q({A2})) = ∅.

We claim that the following proposition must be true.

Proposition 4. If W is non-empty, then Q must be embedded in a du − 2
dimensional linear space, i.e., Q is a subset of a du − 2 dimensional linear
space.

Proof of Proposition 4.
Suppose W is non-empty.
Then, there exists vW ∈ W ⊂ Q(S∗(k0+1)). Since vW /∈ Q({A1}), vW /∈

Q({A2}), it must be that vW (A1) > µ(ϕ(A1)) and vW (A2) > µ(ϕ(A2)). Since
Q(S∗(k0+1)) is convex, then for any v ∈ Q and t ∈ [0, 1], vt := tv + (1− t)vW ∈
Q(S∗(k0+1)). Therefore, there must exist unique t1 ∈ (0, 1] and t2 ∈ (0, 1] such
that vt1(A1) = µ(ϕ(A1)) and vt2(A2) = µ(ϕ(A2)).

By definition of t1 and t2, we have: vt1 ∈ Q({A1}) ∩ Q(S∗(k0+1)) = Q, and
vt2 ∈ Q({A2}) ∩ Q(S∗(k0+1)) = Q. Thus, vt1 ∈ Q ⊂ Q({A2}), which implies
that t1 > t2. Similarly, t2 > t1. Therefore, it must be that t1 = t2.

Consequently, for any v ∈ Q, there exists a t = t1 = t2 ∈ (0, 1] such that
vt := tv + (1 − t)vW satisfies: vt(A1) = µ(ϕ(A1)) and vt(A2) = µ(ϕ(A2)).
By convexity of Q(S∗(k0+1)), it must be that vt ∈ Q(S∗(k0+1)), and vt(U) =
tv(U) + (1 − t)vW (U) = tµ(Y) + (1 − t)µ(Y) = µ(Y). The three equations
mentioned above can be viewed as a system of linear equations of the vector
vt = (vt(u), u ∈ U). There can be two cases:

Case (a): A1, A2 is a partition of U , i.e., A1 ∪A2 = U , A1 ∩A2 = ∅. Since t =
t1 = t2, by definition of t1 and t2, vt(A1) = µ(ϕ(A1)) and vt(A2) = µ(ϕ(A2)).
By assumption that G is non-degenerate, we have ϕ(A1) ∩ ϕ(A2) 6= ∅, and
ϕ(A1)∪ϕ(A2) = Y. Therefore, vt(U) = vt(A1)+vt(A2) = µ(ϕ(A1))+µ(ϕ(A2)) =∑
y∈ϕ(A1)

µ(y) +
∑
y∈ϕ(A2)

µ(y) =
∑
y∈Y µ(y) +

∑
y∈ϕ(A1)∩ϕ(A2)

µ(y) > µ(Y).

This is contradictory to vt(U) = µ(ϕ(Y)). Thus, case (a) can not happen.
Case (b): A1, A2 is not a partition of U : the vector vt = (vt(u), u ∈ U)

satisfies three linear equations with independent coefficients: vt ∈ {v′|v′(A1) =
µ(ϕ(A1)), v′(A2) = µ(ϕ(A2)), v′(U) = µ(Y)}.

In this case, U must be larger than 2: if |U| = 2 it must be that A1 = {u1}
and A2 = {u2} or A1 = {u2} and A2 = {u1}. In any situations, A1, A2 form a
partition of U .

Hence, |U| > 3, and vt satifies three linearly independent equations. There-
fore, vt must live in a du − 3 dimensional linear space.
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Since vt := tv + (1 − t)vW , for t′ = 1
t ∈ R, we have v = t′vt + (1 − t′)vW .

Because vW is a fixed point, t′ ∈ R, and vt lives in a du − 3 dimensional linear
space, v must live in a du−2 dimensional linear space. That said Q is embedded
in a du − 2 dimensional linear space.

By Lemma 6, Q contains an open set in a du−1 dimensional linear subspace of
Rdu . If W is non-empty, by Proposition 4, Q is contained in a du−2 dimensional
linear space. We know that an open set in du − 1 dimensional linear space can
not be a subset of a du − 2 dimensional linear space, therefore, W must be
empty!

Thus, Q(S∗(k0+1)) = Q, then the induction is complete.
By induction, let k = s, so Q(S∗) = Q(S∗s) = Q.
(2) For any S that does not contain S∗, there exists a set A 6= ∅ such that

A ∈ S∗\S. It is easy to see that Q(S) ⊃ Q(2U\{∅, A}), because S ⊂ 2U\{∅, A}.
Since A ∈ S∗, by Definition 5, there exists vM

∗

A ∈ Q(2U\{∅, A}) such that
vM
∗

A (A) > µ(ϕ(A)), i.e., vM
∗

A /∈ Q. Therefore, Q(S) ⊃ Q(2U\{∅, A}) ) Q; or
equivalently, for any S such that Q(S) = Q, it must be that S ⊃ S∗.

(3) By statement (2) of Theorem 1, any exact core-determining class must
contain S∗. By statement (1) of Theorem 1, Q(S∗) = Q. Therefore, S∗ is the
only exact core-determining class due to the minimum cardinality property in
Definition 4.

B.2. Proof of Theorem 2

Proof of Lemma 5.
We divide the proof of the theorem into two steps.
• Step 1: we prove that S∗ ⊂ (Su ∩ S−1y )\{U}.
By definition, S∗ corresponds to the set of inequalities that are irredundant

amongst all inequalities v(A) 6 µ(ϕ(A)), A ⊂ U , A 6= ∅, A 6= U , under the
constraint that v(U) = µ(Y) > 0. Obviously, U /∈ S∗ because v(U) 6 µ(Y) is
implied by the equation v(U) = µ(Y).

For any A /∈ Su and A 6= U , by Definition , we know that either (a) there
exists a u ∈ U\A such that ϕ(u) ⊂ A or (b) A is not self-connected.

For case (a), by Definition 5, for every A′ 6= A, vMA (A′) 6 µ(ϕ(A′)). Therefore,
vM
∗

A (A) 6 vM
∗

A (A ∪ {u}) 6 µ(ϕ((A ∪ {u})) = ϕ(A). Thus, A /∈ S∗.
For case (b), since A is not self-connected, there exists two non-empty sets A1

and A2 such that A1∪A2 = A, A1∩A2 = ∅, ϕ(A1)∩ϕ(A2) = ∅, ϕ(A1)∪ϕ(A2) =
A. Again, by Definition 5, we have: vM

∗

A (A1) 6 µ(ϕ(A1)) and vM
∗

A (A2) 6
µ(ϕ(A2)). Therefore, vM

∗

A (A) = vM
∗

A (A1) + vM
∗

A (A2) 6 µ(ϕ(A1)) + µ(ϕ(A2)) =
µ(ϕ(A)). Thus, A /∈ S∗.

Case (a) and (b) together imply that for any A /∈ Su and A 6= U , so it must
be that A /∈ S∗. Consequently,

S∗ ⊂ Su\{U} (B.18)

.
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Now we prove that S∗ ⊂ S−1y ∩ (Su\{U}).
For any set A such that A ∈ Su\{U} and A /∈ S−1(y), we need to show that

A /∈ S∗.
Since such a set A ∈ Su\U , define B = ϕ(A)c := Y\ϕ(A). ϕ(A) must not

equal to Y, because otherwise, by statement (2) of Definition 8, A = U /∈ Su\U .
Therefore, B is non-empty and Bc = ϕ(A). For any u /∈ A, since A ∈ Su, ϕ(u)
must not be a subset of ϕ(A). It implies that ϕ(u) ∩ B 6= ∅, i.e., u ∈ ϕ−1(B).
Thus, Ac ⊂ ϕ−1(B). On the other hand, since B = ϕ(A)c, so ϕ−1(B) ∩ A = ∅,
i.e., ϕ−1(B) ⊂ Ac. Consequently, ϕ−1(B) = Ac.

By assumption, A /∈ S−1y implies that B /∈ Sy, i.e., either (a) there exist
y ∈ Bc such that ϕ−1(y) ⊂ ϕ−1(B) = Ac or (b) B is not self-connected,
i.e., there is a partition B1, B2 of B, B1 ∪ B2 = B, B1 ∩ B2 = ∅ such that
ϕ−1(B1) ∩ ϕ−1(B2) = ∅.

For case (a), since y ∈ Bc := ϕ(A), so ϕ−1(y) ∩ A 6= ∅, which contradicts
with the statement in (a) that ϕ−1(y) ⊂ Ac. Thus, case (a) can not happen.

For case (b), Define A1 := ϕ−1(B1) ∪A, and A2 := ϕ−1(B2) ∪A. Therefore,
ϕ(A1) = B1∪Bc, and ϕ(A2) = B2∪Bc. Notice that ϕ−1(B1)∪ϕ−1(B2)∪A = U
and B1∪B2∪ϕ(A) = Y, we have v(ϕ−1(B1)) +v(ϕ−1(B2)) +v(A) = v(U), and
µ(B1) + µ(B2) + µ(ϕ(A)) = µ(Y).

For any v > 0 such that v(A′) 6 µ(ϕ(A′)) for all A′ 6= A, and v(U) = µ(Y),
it follows that:
v(A) = v(A) +

(
v(A) + v(ϕ−1(B1)) + v(ϕ−1(B2))

)
− v(U)

= v(A1) + v(A2)− v(U)
6 µ(ϕ(A1)) + µ(ϕ(A2))− µ(Y)
= µ(B1) + µ(Bc) + µ(B2) + µ(Bc)− µ(Y)
= µ(Bc) = µ(ϕ(A)). Thus, vM

∗

A 6 µ(ϕ(A)), i.e., A /∈ S∗.
Therefore, for any A ∈ Su\{U}, if A /∈ S−1(y), then A /∈ S∗. It implies that
S∗ ⊂ (Su ∩ S−1(y))\{U}.
• Step 2. We prove that (Su ∩ S−1y )\{U} ⊂ S∗.
We prove this statement by contradiction.
Suppose (Su ∩ S−1y )\{U} is not a subset of S∗.
Suppose there exists a set A such that A ∈ (Su ∩ S−1y )\{U}, but A /∈ S∗. By

Theorem 1, S∗ is core-determining. Denote S∗ = {A1, ..., Ar}, where r = |S∗|.
Let us enumerate the elements of U as u1, ..., udu . Denote w(A) ∈ {0, 1}du as

the characteristic vector of the set A ⊂ U , i.e., the ith entry of w(A) equals to
1 if and only if ui ∈ A.

By Farkas Lemma, there exists πi > 0 and Ai ∈ S∗, 1 6 i 6 r, with r = |S∗|,
and π0 ∈ R, such that:

r∑
i=1

πiw(Ai)− π0w(U) > w(A). (B.19)

r∑
i=1

πiµ(ϕ(Ai))− π0 6 µ(ϕ(A)). (B.20)
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First, there must exist at least one πi, i ∈ {1, 2, ..., r} such that πi > 0;
Otherwise we assume that π0 = 0 for all i = 1, 2, ..., r, since A is non-empty,
there must exist some i such that the ith entry of w(A) equals to one. By (B.19),
it must be that −π0 > 1. By (B.20), we have µ(ϕ(A)) > 1 = µ(Y), but this can
not happen for any A ∈ (Su ∩ S−1y )\{U}, which leads to a contradiction!

WLOG., we assume πi > 0 holds for all i = 1, 2, ..., r′, with 1 6 r′ 6 r, and
πi = 0 for all i > r′; for those i such that πi = 0, we can simply ignore the
component related to Ai in (B.19) and (B.20).

Based on (B.19) and (B.20), we claim that the following proposition must be
true.

Proposition 5. Suppose A ∈ (Su ∩ S−1y )\{U}, but A /∈ S∗. In (B.19) and
(B.20), Suppose πi > 0 holds for i = 1, 2, ..., r′, and πi = 0 for i > r′. Then,

(1) For any y ∈ Y,
∑r′

i=1 πi1(ϕ−1(y) ∩ Ai 6= ∅) − π0 = 1(ϕ−1(y) ∩ A 6= ∅),
and

∑r′

i=1 πiw(Ai)− π0w(U) = w(A).
(2) π0 > 0.
(3) For any i = 1, 2, ..., r′, either Ai ⊃ Ac or Ai ∩Ac = ∅.
(4) For any i = 1, 2, ..., r′, either Ai ⊃ A or Ai ∩A = ∅.
(5) For each i = 1, 2, ..., r′, Ai = A.

Proof of Proposition 5.
(1) Proof of Statement (1).

By inequality (B.19), for any u ∈ U ,
∑r′

i=1 πi1(u ∈ Ai)− π0 > 1(u ∈ A).
For any y ∈ ϕ(A), we can pick a u ∈ A ∩ ϕ−1(y). It is easy to see that for

any Ai, 1(ϕ−1(y) ∩Ai 6= ∅) > 1(u ∈ Ai).
Thus,
(
∑

16i6r′ πi1(Ai ∩ ϕ−1(y)) 6= ∅)− π0 > (
∑

16i6r′ πi1(u ∈ Ai))− π0 > 1(u ∈
A) = 1(ϕ−1(y) ∩A 6= ∅).

For any y /∈ ϕ(A), we can pick a u /∈ A such that u ∈ ϕ−1(y). Again, for any
Ai, 1(ϕ−1(y) ∩Ai 6= ∅) > 1(u ∈ Ai)

Therefore,
(
∑

16i6r′ πi1(Ai ∩ ϕ−1(y)) 6= ∅) − π0 > (
∑

16i6r′ πi1(u ∈ Ai) − π0 > 1(u ∈
A) = 0 = 1(ϕ−1(y) ∩A 6= ∅).

Consequently, for any y ∈ Y, it must be that

(
∑

16i6r′

πi1(Ai ∩ ϕ−1(y)) 6= ∅)− π0 > 1(ϕ−1(y) ∩A 6= ∅) (B.21)

The left side of the inequality (B.20) can be written as:∑
16i6r′ πiµ(ϕ(Ai))− π0

=
∑
y∈Y µ(y)(

∑r′

i=1 πi1(ϕ−1(y) ∩Ai 6= ∅)− π0)
Applying inequality (B.21) to the quantity above, we have:∑
y∈Y µ(y)(

∑r′

i=1 πi1(ϕ−1(y) ∩Ai 6= ∅)− π0)

>
∑
y∈Y µ(y)1(ϕ−1(y) ∩A 6= ∅) = µ(ϕ(A)).
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Therefore, (B.20) must hold as an equality. By assumption that µ is non-
degenerate, µ(y) > 0 for all y ∈ Y. Thus, the equality of (B.20) also implies
that for all y ∈ Y,∑r′

i=1 πi1(ϕ−1(y) ∩ Ai 6= ∅) − π0 = 1(ϕ−1(y) ∩ A 6= ∅). Therefore, the first
part of Statement (1) is proved.

Now we prove the second part of Statement (1).

If
∑r′

i=1 πiw(Ai)−π0w(U) 6= w(A), by (B.19), one of the following situations
must be true:

Case (a): there exists a u /∈ A such that
∑r′

i=1 1(u ∈ Ai)− π0 > 0.

Case (b): there exists a u ∈ A such that
∑r′

i=1 1(u ∈ Ai)− π0 > 1.
For case (a), since A ∈ Su, so ϕ(u) must not be a subset of ϕ(A). Thus, there

exists a y ∈ ϕ(u)\ϕ(A).

Therefore,
∑r′

i=1 πi1(Ai ∩ ϕ−1(y) 6= ∅)− π0
>
∑r′

i=1 πi1(u ∈ Ai)− π0 > 0.
However, by the first part of Statement (1) of this proposition,∑r′

i=1 πi1(Ai ∩ ϕ−1(y) 6= ∅)− π0
= 1(ϕ−1(y) ∩A 6= ∅) = 0, which leads to a contradiction.
For case (b), since u ∈ A, we can find a y ∈ ϕ(u) ⊂ ϕ(A). Therefore,∑r′

i=1 πi1(Ai ∩ ϕ−1(y) 6= ∅)− π0
>
∑r′

i=1 πi1(u ∈ Ai)− π0
> 1 = 1(ϕ−1(y) ∩ A 6= ∅), which leads to a contradiction to the first part of

the Statement (1).

Therefore, it must be that
∑r′

i=1 πiw(Ai)− π0w(U) = w(A).
(2) Proof of Statement (2).
Since A ∈ (Su ∩ S−1y )\{U}, there must exists a u ∈ Ac.
By the second part of statement (1),

∑r′

i=1 πi1(u ∈ Ai)− π0 = 1(u ∈ A) = 0
holds for any u ∈ U . Since πi > 0 for i = 1, 2, ..., r′, it follows that π0 =∑r′

i=1 πi1(u ∈ Ai) > 0.
(3) Proof of Statement (3).
Since A ∈ (Su ∩ S−1y )\{U}, there must exist a non-empty set B ⊂ Y such

that:
1. B satifies the conditions stated in Definition 11.
2. ϕ−1(B) = Ac. It follows that B ⊂ ϕ(A)c.
For any y ∈ ϕ(A)c, ϕ−1(y) ⊂ Ac = ϕ−1(B). By Definition 11, y ∈ B.

Therefore, B = ϕ(A)c.
By Statement (1) of this proposition, for any y ∈ B,

(
∑

16i6r

πi1(Ai ∩ ϕ−1(y) 6= ∅))− π0 = 0. (B.22)

And for all y /∈ B,

(
∑

16i6r

πi1(Ai ∩ ϕ−1(y) 6= ∅))− π0 = 1. (B.23)
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For a y ∈ B and i0 ∈ {1, 2, ..., r′}, if ϕ−1(y) ∩ Ai0 6= ∅, we claim that
ϕ−1(y) ⊂ Ai0 .

By contradiction, we assume that ϕ−1(y) is not a subset of Ai0 . Then, we
can find a u2 ∈ ϕ−1(y)\Ai0 . Because ϕ−1(y) ⊂ ϕ−1(B) = Ac, it follows that
u2 /∈ A.

By equation (B.22),∑r
i=1 πi1(ϕ−1(y) ∩Ai 6= ∅)− π0 = 1(ϕ−1(y) ∩A) = 0.

On the other hand,∑r
i=1 πi1(ϕ−1(y) ∩Ai 6= ∅)− π0

= πi0 − π0 +
∑

16i6r,i 6=i0 πi1(ϕ−1(y) ∩Ai 6= ∅)
> πi0 − π0 +

∑
16i6r,i 6=i0 πi1(u2 ∈ Ai)

= πi0 − πi01(u2 ∈ Ai0) +
∑r
i=1 πi1(u2 ∈ Ai)− π0

= πi0 − 0 + 0 > 0, which leads to a contradiction to (B.22)!
Therefore, for any y ∈ B and i = 1, 2, ..., r′, either ϕ−1(y) ⊂ Ai or ϕ−1(y) ∩

Ai = ∅.
Now, for any Ai, i = 1, 2, ..., r′, we can define Ki

1 := {y ∈ B|ϕ−1(y) ⊂ Ai}
and Ki

2 := {y ∈ B|ϕ−1(y) ∩ Ai = ∅}, so Ki
1 and Ki

2 form a partition of B.
However, if Ki

1 and Ki
2 are both non-empty, then ϕ−1(Ki

1) ∩ ϕ−1(Ki
2) = ∅, i.e.,

B is not self-connected, which is untrue by assumption that B ∈ Sy. Then,
either Ki

1 or Ki
2 must be empty set.

It implies that either

Ai ∩Ac = ∅ or Ai ⊃ Ac (B.24)

, for any i = 1, 2, ..., r′.
(4) Proof of Statement (4).
We prove this statement by contradiction: assume that there exists a i1 ∈

{1, 2, ..., r′} such that Ai1 ∩A 6= ∅ and Ai1 does not contain A.
Since A is self-connected, it must be that ϕ(Ai1 ∩A) ∩ ϕ(A\Ai1) 6= ∅. Thus,

there must exists u1 ∈ Ai1 ∩A and u2 ∈ A\Ai1 such that there exists y ∈ ϕ(A),
y ∈ ϕ(u1) ∩ ϕ(u2).

The left hand side of (B.23) can be written as:
(
∑

16i6r πi1(Ai ∩ ϕ−1(y) 6= ∅))− π0
= πi1 +

∑
16i6r,i 6=i1 πi1(Ai ∩ ϕ−1(y) 6= ∅)− π0

> πi1 +
∑

16i6r,i 6=i1 πi1(u2 ∈ Ai)− π0.
By (B.19) and the assumption that u2 /∈ Ai1 ,∑

16i6r,i 6=i1 πi1(u2 ∈ Ai)− π0
=
∑

16i6r πi1(u2 ∈ Ai)− π0 > 1.

Therefore, (
∑

16i6r πi1(Ai ∩ ϕ−1(y) 6= ∅))− π0 > πi1 + 1 > 1, which contra-
dicts with (B.23).

Thus, such i1 does not exist. It follows that for any Ai, i = 1, 2, ..., r, either
Ai ∩A = ∅ or Ai ⊃ A.

(5) Proof of Statement (5).
By Statement (3) and (4) of this proposition, for i = 1, 2, ..., r′, Ai∩A ∈ {∅, A}

and Ai ∩Ac ∈ {∅, Ac}. Since Ai is neither ∅ or U , it must be that Ai ∈ {A,Ac}.
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To prove the Statement (5) of this proposition, we only need to show that
Ai 6= Ac for all i = 1, 2, ..., r′.

By contradiction, suppose there exists a i0 ∈ {1, 2, ..., r′} such that Ai0 = Ac.
Since G is connected and ϕ(Ai0) ∩ ϕ(A) 6= ∅, there exists y ∈ Y such that
y ∈ ϕ(Ai0) ∩ ϕ(A), and there exists a u ∈ U such that u ∈ ϕ−1(y) ∩A.

Therefore,
∑r′

i=1 πi1(ϕ−1(y) ∩Ai 6= ∅)− π0
= πi0 +

∑
16i6r′,i6=i0 πi1(ϕ−1(y) ∩Ai 6= ∅)− π0

> πi0 +
∑

16i6r′,i6=i0 πi1(u ∈ Ai)− π0
= πi0 − πi01(u ∈ Ai0) +

∑r′

i=1 πi1(u ∈ Ai)− π0
= πi0 − 0 +

∑r′

i=1 πi1(u ∈ Ai)− π0,
By the second part of Statement (1) of this proposition,∑r′

i=1 πi1(u ∈ Ai)− π0 = 1(u ∈ A) = 1.

Thus,
∑r′

i=1 πi1(ϕ−1(y) ∩Ai 6= ∅)− π0
> πi0 − 0 + 1 > 1(ϕ−1(y) ∩ A 6= ∅), which is contradictory to the first part

of Statement (1) of this proposition. Consequently, there exist no Ai0 such that
Ai0 = Ac, i.e., Ai = A for all i = 1, 2, ..., r′.

Statement (5) of Proposition 5 implies that A = A1 ∈ S∗, which obviously
leads to a contradiction to the assumption that A /∈ S∗.

Thus, there does not exist any A such that A ∈ (Su ∩S−1y )\{U} and A /∈ S∗,
i.e., S∗ ⊃ (Su ∩ S−1y )\{U}. Together with (B.18), we have:
S∗ = (Su ∩ S−1y )\{U}.

Proof of Theorem 2.
By Lemma 5, when bothG and µ are non-degenerate, the exact core-determining

class S∗ = (Su ∩ S−1y )\{U}.
Therefore, for any non-empty set A ( U , A ∈ S∗ if and only if A satisfies the

conditions stated in Definition 8 and A ∈ S−1y .
Statement (1) and (2) in Theorem 2 cover the conditions stated in Definition

8. Therefore, we only need to prove that, if A ∈ Su, A 6= U , A ∈ S−1y if and only
if Statement (3) in Theorem 2 holds.

Denote B := ϕ(A)c. Given that A ∈ Su, A 6= U , for any u ∈ Ac, it must be
that ϕ(u) is not a subset of ϕ(A). That said, u ∈ ϕ−1(B). Thus, ϕ−1(B) ⊃ Ac.
On the other hand, since B = ϕ(A)c, it must be that ϕ−1(B) ⊂ Ac. Therefore,
ϕ−1(B) = Ac.

If A ∈ S−1y , it implies that B = ϕ(A)c ∈ Sy. By Definition 11, statement (3)
of Theorem 2 holds.

On the other hand, if statement (3) of Theorem 2 holds, then B = ϕ(A)c is
connected in G−1. For any y ∈ Y\B = ϕ(A), ϕ−1(y)∩A 6= ∅. Therefore, ϕ−1(y)
is not a subset of ϕ−1(B) = Ac. Thus, by Definition 11, B ∈ Sy. Consequently,
A = ϕ−1(B)c ∈ S−1y . Therefore, A ∈ S∗.
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B.3. Proof of Theorem 3

Proof of Theorem 3.
We divide our proof into two steps.
• Step 1: We show that S∗ is a core-determining class, i.e., Q(S∗) := {v >

0|v(A) 6 µ(ϕ(A)), for all A ∈ S∗, v(U) = µ(Y) = 1} = Q, where Q := {v >
0|v(A) 6 µ(ϕ(A)), for all non-empty A ⊂ U , v(U) = µ(Y) = 1}.

First of all, since v and µ are probability measures,
∑k
j=1 v(Uj) = 1 =∑k

j=1 µ(ϕ(Uj)). Since v(Uj) 6 µ(ϕ(Uj)) = µ(Yj) holds for all j = 1, 2, ..., k,
it must be that:
v(Uj) = µ(ϕ(Uj)) = µ(Yj) > 0, j = 1, 2, ..., k.
Therefore, for any v ∈ Q(S∗), we have v(Uj) = µ(Yj) > 0.
By Theorem 1, S∗j is an exact core-determining class of Gj , for any j =

1, 2, ..., k.
Therefore, for any non-empty A ⊂ U and any v ∈ Q(S∗), it must be that

v(A ∩ Uj) 6 µ(ϕ(A ∩ Uj)), for any j = 1, 2, ..., k. These inequalities also hold
when A ∩ Uj = ∅. Because G1, ..., Gk are distinct connected branches, v(A) =∑k
j=1 v(A ∩ Uj), and µ(ϕ(A)) =

∑k
j=1 µ(ϕ(A ∩ Uj)).

Therefore, v(A) =
∑k
j=1 v(A ∩ Uj) 6

∑k
j=1 µ(ϕ(A ∩ Uj)) = µ(ϕ(A)).

Since A can be selected as any arbitrary non-empty subset of U , we have
Q(S∗) = Q.
• Step 2: we show that S∗ is an exact core-determining class, i.e., among all

core-determining classes, S∗ has the smallest possible cardinality.
For a core-determining class S̃, we can denote S̃ as {Ũ1, ..., Ũq, A1, ..., Ar},

such that:
(a) For each l = 1, 2, ..., q, Ũl is a union of some sets in {U1, ...,Uk}.
(b) For each i = 1, 2, ..., r, Ai is not a union of some sets in {U1, ...,Uk};

or equivalently, for each i = 1, 2, ..., r, there exists a j ∈ {1, 2, ..., k} such that
Ai ∩ Uj 6= ∅ and Ai ∩ Uj 6= Uj .

For any subset Ã of U , we can define the characteristic vector w(Ã) as a

vector in {0, 1}du such that the ith entry of w(Ã) equals to 1 if and only if

ui ∈ Ã.
By the proof of Step 1, we know that for any v ∈ Q, v(Uj) = µ(ϕ(Uj)),

j = 1, 2, ..., k. Therefore, v(Ũl) = µ(ϕ(Ũl)) holds for l = 1, 2, ..., q.
We claim that the following proposition must be true.

Proposition 6. (1) For any ξ̃∗1 , ..., ξ̃
∗
q ∈ R, there exist ξ1, ..., ξk ∈ R such that:∑q

l=1 ξ̃
∗
l w(Ũl) =

∑k
j=1 ξjw(Uj),

and∑q
l=1 ξ̃

∗
l µ(ϕ(Ũl)) =

∑k
j=1 ξjµ(ϕ(Uj)).

(2) q must be greater than or equal to k.

Proof of Proposition 6.
(1) Proof of Statement (1).
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Since for any l = 1, 2, ..., q, Ũl is a union of some Ujs. Therefore, w(Ũl) =∑k
j=1 δljw(Uj), and µ(ϕ(Ũl)) =

∑k
j=1 δljµ(ϕ(Uj)), where δlj = 1(Uj ⊂ Ũl),

j = 1, 2, ..., k.
Thus, for any ξ̃∗1 , ..., ξ̃

∗
q ∈ R, define ξj :=

∑q
l=1 δlj ξ̃

∗
l . We have:∑q

l=1 ξ̃
∗
l w(Ũl) =

∑q
l=1

∑k
j=1 δlj ξ̃

∗
l w(Uj) =

∑k
j=1 ξjw(Uj),

and∑q
l=1 ξ̃

∗
l µ(ϕ(Ũl)) =

∑q
l=1

∑k
j=1 δlj ξ̃

∗
l µ(ϕ(Uj)) =

∑k
j=1 ξjµ(ϕ(Uj)).

(2) Proof of Statement (2).
For each j1 = 1, 2, ..., k, we know that v(Uj1) = µ(ϕ(Uj1)) for all v ∈ Q. By

assumption, S̃ is exact core-determining, so Q(S̃) = Q. Therefore, −v(Uj1) 6
−µ(ϕ(Uj1)) is true under the constraints that v(A) 6 µ(ϕ(A)) for all A ∈ S̃ and
v(U) = µ(ϕ(U)).

By Farkas Lemma, there must exist π1, ..., πr > 0 and ξ̃1, ..., ξ̃q ∈ R such that:

r∑
i=1

πiw(Ai) +

q∑
l=1

ξ̃lw(Ũl) > −w(Uj1), (B.25)

and
r∑
i=1

πiµ(ϕ(Ai)) +

q∑
l=1

ξ̃lµ(ϕ(Ũl)) 6 −µ(ϕ(Uj1)). (B.26)

By Statement (1) of this proposition, there exists ξ1, ..., ξk ∈ R such that

r∑
i=1

πiw(Ai) +

k∑
j=1

ξjw(Uj) > −w(Uj1), (B.27)

and
r∑
i=1

πiµ(ϕ(Ai)) +

k∑
j=1

ξjµ(ϕ(Uj)) 6 −µ(ϕ(Uj1)). (B.28)

(B.27) implies that for any u ∈ U ,

r∑
i=1

πi1(u ∈ Ai) +

k∑
j=1

ξj1(u ∈ Uj) > −1(u ∈ Uj1). (B.29)

It is easy to see that for any y ∈ Y, Ã ⊂ U and u ∈ ϕ−1(y), 1(ϕ−1(y) ∩ Ã 6=
∅) > 1(u ∈ Ã).

For y ∈ Yj1 , we can pick a u ∈ ϕ−1(y) ⊂ Uj1 , so by utilizing (B.29), we have:

r∑
i=1

πi1(ϕ−1(y) ∩Ai 6= ∅) +

k∑
j=1

ξj1(ϕ−1(y) ∩ Uj 6= ∅) (B.30)

>
r∑
i=1

πi1(u ∈ Ai)+
k∑
j=1

ξj1(u ∈ Uj) > −1(u ∈ Uj1) = −1 = −1(ϕ−1(y)∩Uj1 6= ∅).
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For any y /∈ Yj1 , there exists a j2 6= j1 such that y ∈ Yj2 . Therefore, ϕ−1(y) ⊂
Uj2 . We can pick a u such that u ∈ ϕ−1(y) and u /∈ Uj1 .

Then, by utilizing (B.29), we have:

r∑
i=1

πi1(ϕ−1(y) ∩Ai 6= ∅) +

k∑
j=1

ξj1(ϕ−1(y) ∩ Uj 6= ∅) (B.31)

r∑
i=1

πi1(u ∈ Ai) +

k∑
j=1

ξj1(u ∈ Uj) > −1(u ∈ Uj1) = 0 = −1(ϕ−1(y) ∩ Uj1 6= ∅).

Therefore,

r∑
i=1

πi1(ϕ−1(y) ∩Ai 6= ∅) +
k∑
j=1

ξj1(ϕ−1(y) ∩ Uj 6= ∅) > −1(ϕ−1(y) ∩ Uj1 6= ∅)

(B.32)
holds for all y ∈ Y.

Now, the left hand side of (B.28) can be written as:∑r
i=1 πiµ(ϕ(Ai)) +

∑k
j=1 ξjµ(ϕ(Uj))

=
∑
y∈Y µ(y)

(∑r
i=1 πi1(ϕ−1(y) ∩Ai 6= ∅) +

∑k
j=1 ξj1(ϕ−1(y) ∩ Uj 6= ∅)

)
.

By applying (B.32) on all y ∈ Y, we have:∑
y∈Y µ(y)

(∑r
i=1 πi1(ϕ−1(y) ∩Ai 6= ∅) +

∑k
j=1 ξj1(ϕ−1(y) ∩ Uj 6= ∅)

)
>
∑
y∈Y −µ(y)1(ϕ−1(y) ∩ Uj1 6= ∅)

= −µ(ϕ(Uj)).
It implies that (B.25), (B.26), (B.27), (B.28) and (B.29) must hold as an

equality. Since µ(y) > 0 for all y ∈ Y, it must be that:∑r
i=1 πi1(ϕ−1(y)∩Ai 6= ∅)+

∑k
j=1 ξj1(ϕ−1(y)∩Uj 6= ∅) = −1(ϕ−1(y)∩Uj1 6=

∅) holds for all y ∈ Y.
We claim that πi must be 0 for all i = 1, 2, ..., r.
By contradiction, if there exists i2 ∈ {1, 2, ..., r} such that πi2 > 0, then there

must exist a j2 ∈ {1, 2, ..., k} such that Ai2 ∩ Uj2 6= ∅, Ai2 ∩ Uj2 6= Uj2 .
Since Gj2 is connected, there must exist a y ∈ Yj2 such that y ∈ ϕ(Ai2 ∩Uj2)

and y ∈ ϕ(Uj2\Ai2). There must exist a u ∈ ϕ−1(y) ∩ (Uj2\Ai2). It is easy to
see that u /∈ Ai2 .

Therefore,
∑r
i=1 πi1(ϕ−1(y) ∩Ai 6= ∅) +

∑k
j=1 ξj1(ϕ−1(y) ∩ Uj 6= ∅)

= πi2 +
∑

16i6r,i 6=i2 πi1(ϕ−1(y) ∩Ai 6= ∅) +
∑k
j=1 ξj1(ϕ−1(y) ∩ Uj 6= ∅)

> πi2 +
∑

16i6r,i 6=i2 πi1(u ∈ Ai) +
∑k
j=1 ξj1(u ∈ Uj)

= πi2 − πi21(u ∈ Ai2) +
∑

16i6r πi1(u ∈ Ai) +
∑k
j=1 ξj1(u ∈ Uj)

=( by (B.29) being an equation) πi2 − 0− 1(u ∈ Uj1)
= πi2 − 1(ϕ−1(y) ∩ Uj1) > −1(ϕ−1(y) ∩ Uj1), which leads to a contradiction

to (B.32). Therefore, πi = 0 for all i = 1, 2, ..., r.

Now, equation (B.25) becomes: for each j1 = 1, 2, ..., k, there exist ξ̃1, ..., ξ̃q ∈
R such that
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l=1 ξ̃lw(Ũl) = −w(Uj1).

Define L := {z|z =
∑q
l=1 ξ̃lw(Ũl), ξ̃1, ..., ξ̃q ∈ R}, then L ⊂ Rdu is a linear

space with dimensionality of at most q.
From the analysis above, we know that −w(Uj1) ∈ L, j1 = 1, 2, ..., k. We also

know that −w(Uj1) are linearly independent for j1 = 1, 2...., k. It implies that
L contains k linearly independent vectors in Rdu . Therefore, q > dim(L) > k.

For any A ∈ S∗\{U1, ...,Uk}, since S∗ = ∪kj=1S∗j , there must exist a j0 ∈
{1, 2, ..., k} such that A ⊂ Uj0 .

Since S̃ is core-determining, by Farkas Lemma, there exist π1, ..., πr > 0 and
ξ̃1, ..., ξ̃q ∈ R such that:∑r

i=1 πiw(Ai) +
∑q
l=1 ξ̃lw(Ũl) > w(A),

and∑r
i=1 πiµ(ϕ(Ai)) +

∑q
l=1 ξ̃lµ(ϕ(Ũl)) 6 ϕ(A).

By Proposition (6), there exist ξ1, ..., ξk ∈ R such that:∑q
l=1 ξ̃lw(Ũl) =

∑k
j=1 ξjw(Uj),

and∑q
l=1 ξ̃lµ(ϕ(Ũl)) =

∑k
j=1 ξjµ(ϕ(Uj)).

Therefore, we have:

r∑
i=1

πiw(Ai) +

k∑
j=1

ξjw(Uj) > w(A), (B.33)

r∑
i=1

πiµ(ϕ(Ai)) +

k∑
j=1

ξjµ(ϕ(Uj)) 6 ϕ(A). (B.34)

There must be at least one πi that is strictly positive. Otherwise let us assume
that all πi = 0, i = 1, 2, ..., r. Since A is a non-empty subset of Uj0 , there must
be some entries in w(A) that equal to one. Such entries correspond to certain

elements in Uj0 . Then, by (B.33), it must be that x̃ij0 > 1 and x̃ij > 0 for all
j 6= j0. Then, by (refeq:coromain2), we have: µ(ϕ(Uj0)) 6

∑r
i=1 πiµ(ϕ(Ai)) +∑k

j=1 ξjµ(ϕ(Uj)) 6 ϕ(A). Since A ∈ S∗j0 , we know that A 6= Uj0 and ϕ(A) 6=
ϕ(Uj0) = Yj0 . Then, ϕ(A) < ϕ(Uj), which leads to a contradiction! Thus, there
must be at least one πi > 0, i ∈ {1, 2, ..., r}.

WLOG., we can assume that πi > 0 holds for all i = 1, 2, ..., r′ with 1 6 r′ 6
r, and πi = 0 for all i > r′; if πi = 0, we can simple drop the corresponding Ai
in the two inequalities stated above.

Proposition 7. (1) For each j ∈ {1, 2, ..., k}, we have:
∑r′

i=1 πiw(Ai ∩ Uj) +

ξjw(Uj) = w(A ∩ Uj) and for any y ∈ Yj,
∑r′

i=1 πi1(ϕ−1(y) ∩ Ai 6= ∅) + ξj =
1(ϕ−1(y) ∩A 6= ∅).

(2) There must exists i ∈ {1, 2, ..., r′} such that Ai ∩ Uj0 = A, and Ai ∩ Uj =
∅ or Uj, for all j 6= j0, j ∈ {1, 2, ..., k}; or equivalently, each Ai is the union of
A and some sets ∈ ({U1,U2, ...,Uk}\{Uj0}).
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Proof of Proposition 7.
(1) Proof of Statement (1).
For every u ∈ U , there exist a j1 ∈ {1, 2, ..., k} such that u ∈ Uj1 .

By inequality (B.33), we have
∑r′

i=1 πi1(u ∈ Ai) + ξj1 > 1(u ∈ A).
Or equivalently,

r′∑
i=1

πi1(u ∈ Ai ∩ Uj1) + ξj1 > 1(u ∈ A ∩ Uj1). (B.35)

For any j = 1, 2, ..., k and y ∈ Yj , it must be that ϕ−1(y) ⊂ Uj .
If y ∈ ϕ(A), we can pick a u such that u ∈ ϕ−1(y) ∩A and u ∈ Uj .
It is easy to see that 1(ϕ−1(y) ∩ (Ai ∩ Uj) 6= ∅) > 1(u ∈ (Ai ∩ Uj)) for any

i = 1, 2, ..., r′.
Therefore,

r′∑
i=1

πi1(ϕ−1(y)∩(Ai∩Uj) 6= ∅)+ξj >
r′∑
i=1

πi1(u ∈ (Ai∩Uj))+ξj > 1(u ∈ A∩Uj) = 1 = 1(ϕ−1(y)∩(A∩Uj) 6= ∅).

(B.36)
If y /∈ ϕ(A), then pick any u ∈ ϕ−1(y), we have:∑r′

i=1 πi1(ϕ−1(y) ∩ (Ai ∩ Uj) 6= ∅) − ξj >
∑r′

i=1 πi1(u ∈ (Ai ∩ Uj)) − ξj >
1(u ∈ A ∩ Uj) = 0 = 1(ϕ−1(y) ∩ (A ∩ Uj) 6= ∅).

Therefore, inequality (B.36) holds for any j = 1, 2, ..., k and y ∈ Yj .
The left hand side of (B.34) can be written as:∑k
j=1

(∑
y∈Uj µ(y)

(∑r′

i=1 πi1(ϕ−1(y) ∩ (Ai ∩ Uj) 6= ∅) + ξj

))
By plugging (B.36) in the above expression, we have:∑k
j=1

(∑
y∈Uj µ(y)

(∑r′

i=1 πi1(ϕ−1(y) ∩ (Ai ∩ Uj) 6= ∅) + ξj

))
>
∑k
j=1

(∑
y∈Uj µ(y)1(ϕ−1(y) ∩ (A ∩ Uj) 6= ∅)

)
= µ(ϕ(A)).
It implies that (B.34) must hold as an equality. Consequently,

For every y ∈ Yj0 ,
r′∑
i=1

πi1(ϕ−1(y) ∩ (Ai ∩ Uj0) 6= ∅) + ξj0 = 1(ϕ−1(y) ∩A 6= ∅),

(B.37)
and

r′∑
i=1

πiw(Ai ∩ Uj0) + ξj0w(Uj0) = w(A). (B.38)

Similarly, for every j 6= j0, it must be that

For every y ∈ Yj ,
r′∑
i=1

πi1(ϕ−1(y) ∩ (Ai ∩ Uj) 6= ∅) + ξj = 0, (B.39)
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and
r′∑
i=1

πiw(Ai ∩ Uj) + ξjw(Uj) = 0, (B.40)

Therefore, Statement (1) is proved.
(2) Proof of Statement (2).
For each j = 1, 2, ..., k, there may exist some i such that Ai ∩ Uj ∈ {∅,Uj}.
If Ai ∩ Uj = ∅, then Ai can be automatically eliminated from the equations

(B.37) - (B.40) for the corresponding j.
If Ai ∩ Uj = Uj , then we can let ξj to obsorbe πi and therefore, Ai is also

eliminated from equations (B.37) - (B.40). We can assume that for each j =

1, 2, ..., k, there exists an integer rj > 0, rj 6 r′ such that S̃j := {Aij1 , ..., Aijrj }
is the collection of those sets in {A1, ..., Ar′} whose intersection with Uj is neither
∅ nor Uj .

Part (A): Now, let us prove that rj = 0 for all j 6= j0.
By contradiction, we assume that rj > 0 for some j ∈ {1, 2, ..., k}, j 6= j0.
Equations (B.39) and (B.40) can be rewritten as: for each y ∈ Yj ,∑rj
m=1 πijm 1(ϕ−1(y) ∩ (Aijm ∩ Uj) 6= ∅) + ξ̃j = 0,

and
rj∑
m=1

πijmw(Aijm ∩ Uj) + ξ̃jw(Uj) = 0, (B.41)

where ξ̃j = ξj +
∑r′

i=1 πi1(Ai ∩ Uj = Uj).
Denote Cijm = Aijm ∩ Uj for m = 1, 2, ..., rj . Then, each Cijm is a subset of

Uj , and Cijm /∈ {∅,Uj}.
Since Gj is connected, there must exist a y ∈ Yj such that y ∈ ϕ(Cij1 ) ∩

ϕ(Uj\Cij1 ). Therefore, there exists u ∈ Uj\Cji1 such that u ∈ ϕ−1(y).

Therefore,
∑rj
m=1 πijm 1(ϕ−1(y) ∩ (Aijm ∩ Uj) 6= ∅) + ξ̃j

= πij1 +
∑rj
m=2 πijm 1(ϕ−1(y) ∩ (Aijm ∩ Uj) 6= ∅) + ξ̃j

> πij1 +
∑rj
m=2 πijm 1(u ∈ (Aijm ∩ Uj)) + ξ̃j

= πij1 − πij1 1(u ∈ (Aij1 ∩ Uj)) +
∑rj
m=1 πijm 1(u ∈ (Aijm ∩ Uj)) + ξ̃j

= πij1 + 0 > 0, which leads to a contradiction to (B.41).
Thus, there is no j 6= j0, such that rj > 0. That said, rj = 0 for all j 6= j0;

or equivalently, Ai ∩ Uj ∈ {∅,Uj} for all i = 1, 2, ..., r and j 6= j0.
Part (B): For j = j0, we would like to prove that for all i = 1, 2, ..., r,

Ai ∩ Uj0 ∈ {A, ∅,Uj0}.
Equations (B.39) and (B.40) can be rewritten as: for each y ∈ Yj0 ,∑rj0
m=1 πijm 1(ϕ−1(y) ∩ (Aijm ∩ Uj0) 6= ∅) + ξ̃j0 = 1(ϕ−1(y) ∩A 6= ∅),

and
rj0∑
m=1

πijmw(Aijm ∩ Uj0) + ξ̃j0w(Uj0) = w(A), (B.42)

where ξ̃j0 = ξj0 +
∑r
i=1 πi1(Ai ∩ Uj0 = Uj0).
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Since w(A) 6= 0 and w(A) is not proportional to w(Uj0), by (B.42), it must
be that rj0 > 0.

Therefore, we can apply the statement (5) of Proposition 5 to Gj0 , i.e., Aijm ∩
Uj0 = A for all m = 1, 2, ..., rj0 . It follows that for all i = 1, 2, ..., r′, A ∩ Uj0 ∈
{∅, A,Uj0}, and there exists at least one i ∈ {1, 2, ..., r′} such that Ai∩Uj0 = A.

For each A ∈ S∗\{U1, ...,Uk}, we know that there must exist a j0 such that
A ⊂ Uj0 .

By Proposition 7, there must exist a i(A) ∈ {1, 2, ..., r} such that Ai(A) ∈ S̃,
Ai(A) ∩ Uj0 = A and Ai(A) ∩ Uj ∈ {∅,Uj} for all j 6= j0.

By construction, Ai(A∗1) 6= Ai(A∗2) for any A∗1, A
∗
2 ∈ S∗\{U1, ...,Uk}, A∗1 6= A∗2;

or equivalently, Ai(A) are all different from each other for all A ∈ S∗\{U1, ...,Uk}.
Let S̃ ′ := {Ai(A)|A ∈ S∗, A /∈ {U1, ...,Uk}}. Then, S̃ ′ ⊂ {A1, ..., Ar}, and

therefore r >
∣∣∣S̃ ′∣∣∣ = |{A|A ∈ S∗, A /∈ {U1, ...,Uk}| = |S∗| − k.

Since |S̃| = r+q > (|S∗|−k)+k = |S∗|, it implies that any core-determining

class S̃ has at least as many elements as S∗.
Therefore, S∗ is an exact core-determining class.
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Fig 6. Power Curve Comparison: Power of Test with Full Set of Inequalities (Blue) vs. Power
of Test with Inequalities Corresponding to the Exact Core-determining Class (Red)
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Fig 7. Example of subset A ∈ Su (left) and A /∈ Su (right) .

Fig 8. Correspondence Mapping of Example 4.
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Fig 9. Correspondence Mapping for Example 5.
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Fig 10. Correspondence Mapping for Example 6.
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