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Online Spatio-Temporal Matching in Stochastic and
Dynamic Domains1

Meghna Lowalekar, Pradeep Varakantham, Patrick Jaillet†

School of Information Systems, Singapore Management University
† Department of Electrical Engineering and Computer Science, Massachussets Institute of Technology

meghnal.2015@phdis.smu.edu.sg, pradeepv@smu.edu.sg, jaillet@mit.edu

Abstract

Online spatio-temporal matching of servers/services to customers is a problem that
arises at a large scale in many domains associated with shared transportation (e.g.,
taxis, ride sharing, super shuttles, etc.) and delivery services (e.g., food, equipment,
clothing, home fuel, etc.). A key characteristic of these problems is that the matching
of servers/services to customers in one stage has a direct impact on the matching in the
next stage. For instance, it is efficient for taxis to pick up customers closer to the drop
off point of the customer from the first stage of matching. Traditionally, greedy/myopic
approaches have been adopted to address such large scale online matching problems.
While they provide solutions in a scalable manner, due to their myopic nature, the
quality of matching obtained can be improved significantly (demonstrated in our ex-
perimental results). In this paper, we present a multi-stage stochastic optimization for-
mulation to consider potential future demand scenarios (obtained from past data). We
then provide an enhancement to solve large scale problems more effectively and effi-
ciently online. We also provide the worst-case theoretical bounds on the performance
of different approaches. Finally, we demonstrate the significant improvement provided
by our techniques over myopic approaches and two other multi-stage approaches from
literature (Approximate Dynamic Programming and Hybrid Multi-Stage Stochastic op-
timization formulation) on three real world taxi data sets.

Keywords: Online Matching, Online Linear Programming, Stochastic Optimization,
MDPs

1This paper is an extension of our earlier paper at AAAI 2016 [1]. We have extended the paper in the
following ways: (a) The earlier paper focused on an approach that considers only two stages. We have now
extended it to consider multiple stages; (b) We have added theoretical results on the hardness of offline and
online spatio-temporal matching problems; (c) We have proved a priori bounds for the algorithms in multi-
stage matching problems; (d) We have extended our experimental results to consider our updated approach
and also generated results on synthetic data sets to better understand where our approach works well and
where it does not work well; (e) We have also provided the results on a new dataset (from New York) that is
publicly available and also compare against two other multi-stage approaches from literature (Approximate
Dynamic Programming and Hybrid Multi-Stage Stochastic optimization formulation.)
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1. Introduction

In many spatio-temporal problems associated with shared transportation [2, 3, 4]
which includes taxis, ride sharing, super shuttles, etc., customers have to be assigned
to servers (e.g., taxis, shuttles) in an online fashion to optimize the revenue or quality
of service. Also in case of emergency services [5] such as ambulances, fire trucks, etc.
and delivery services [6, 7] involving pickup and delivery of food, equipment, clothing,
home fuel etc., effective online matching of customers to servers is of great value.

The wide usage of applications such as Uber, Lyft, etc. is a testament to the impor-
tance of doing matching well and in quick time. In these applications, a set of available
taxis are matched to the customers that are looking for taxis. A key observation that is
not exploited in such applications and in most existing literature is that after taking the
matched customer to their destination location, the taxi will be best served in next stage
of assignment to customers typically around the destination location. In this paper, we
are specifically interested in considering such dependence (e.g., assignment for a taxi
in the second stage is dependent on the assignment in the first stage) in matching across
multiple stages. Specifically, we focus on online matching in domains where:
• Customer demand is uncertain and time dependent, with data available about past

customer demand;
• Problems are at a societal scale (with thousands of customers and servers) with a

need to make online decisions; and
• There is a need or an opportunity to optimize revenue or quality of service (e.g., time

to pick up customers or time to delivery);
Given the challenging nature of the problems (stochasticity, dynamism, societal

scale, online, multi-stage), most existing work on relevant problems (described in Sec-
tion 2) has focused on myopic algorithms [8, 9] like greedy and randomized ranking.
While these approaches have good competitive ratios in case of online bipartite match-
ing (single stage), they have obvious inefficiencies in handling multi-stage problems
due to their myopic nature. To address these, there has been research on multi-stage
stochastic models and Approximate Dynamic Programming approaches that consider
expected demand for the future stages. However, these approaches have been limited
to small scale problems and in restricted settings [10, 11, 12, 13, 7, 14, 15].

In this paper, we address the key limitations of previous work by providing the
following contributions:
• We first formalize the offline and online spatio-temporal matching problems. The

offline problem considers that the customer requests at every decision epoch are
known beforehand. The online problem on the other hand considers that only the
current decision epoch customer requests are known and the future decision epoch
requests arrive according to some partially known (through past demand scenarios)
distribution.

• We then provide a two-stage stochastic optimization formulation, which considers
samples of future customer demand (typically obtained from historical data) for find-
ing the assignment of servers to customers. We also provide a multi-stage extension.

• Given the large scale of problems of interest with thousands of servers and cus-
tomers, we provide a decomposition of the above formulation to improve parallelism
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in handling future demand.
• We provide the theoretical results on competitive ratios for myopic and two-stage

algorithms for online spatio-temporal matching problems.
• Apart from considering randomly generated problems, we have also evaluated our

approach on datasets of three major taxi companies. We compare against myopic al-
gorithms (typically employed by standard taxi matching applications) such as greedy
and one-stage bipartite optimal assignment. In addition, we also compare against the
Approximate Dynamic Programming (ADP) approach that has been successfully
applied in many resource allocation problem [11, 12, 13] and Hybrid Multi-Stage
Stochastic optimization (HSS) approach used for the truckload assignment prob-
lem [10]. We show that our multi-stage formulation can be solved in times that are
competitive to these approaches, while providing significantly better solutions.

We provide a detailed description of the related work, along with a background
of existing methods in Section 2. We provide a model and a linear optimization for-
mulation to represent the offline spatio-temporal matching problem in Section 3. We
then describe the online variant along with a linear optimization model in Section 4.
A decomposition method to improve the scalability in solving the optimization model
is also presented in the same section. In Section 5, we describe the key assumptions
and how they can be relaxed. Finally, in Section 6, we provide a detailed experimen-
tal analysis of our methods against existing benchmarks on three real world taxi data
sets and specially created synthetic scenarios. In the appendix, we provide detailed
proofs for all the propositions described in Sections 3 and 4. In the appendix, we also
provide the details of Approximate Dynamic Programming (ADP) and Hybrid Multi-
Stage Stochastic optimization (HSS) approaches used in experimental comparison.

2. Related Work

We now describe the multiple threads of research in online sequential decision
making that are of relevance to this paper. Online algorithms [16] typically consider
requests that are revealed incrementally over time and algorithms have to make deci-
sions based on the requests that are revealed. The key threads of research that are of
relevance are: online matching, online multi vehicle pickup and delivery, online MDPs
and online stochastic optimization algorithms.

2.1. Online Matching

A matching, M in a graph G(V,E) is defined as the set of edges M ⊂ E such
that for every v ∈ V there is at most one edge in M incident on v. In classical online
bipartite matching problem [8], one side of the vertices is known and the other side of
the vertices arrive online. This is formally defined as a graphG(U, V,E) where vertices
in the set U are known and vertices in the set V appear online. The goal is to maximize
the size of the matching M .

A simple generalization of the online bipartite matching is the weighted case where
vertices or edges have weights associated with them and the goal is to maximize the
total weight of the matching. This problem has applications in online advertising em-
ployed by Yahoo, Google etc. Specifically in such applications, the goal is to optimize
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the allocation of a fixed advertising space to incoming advertisers who typically arrive
at different times.

We describe the commonly used approaches for solving online bipartite matching
problems. In the experimental section, we compare our proposed approach with the
following approaches.

1. Greedy: Greedy algorithm matches the incoming vertex with the best available
choice. In case of weighted models, it matches with the maximum weighted
vertex or edge. Greedy algorithm is shown to have a competitive ratio2 of 1

2 [8].
2. Randomized Greedy: The randomized greedy algorithm perturbs the value of

matching by multiplying it by a random number w between 0 and 1. It then
greedily matches the servers to customer by using perturbed value. Goel et.al. [9]
show that the randomized greedy algorithm achieves a ratio of 1- 1

e for the vertex
weighted bipartite matching.

In classical online bipartite matching, vertices appear one by one. In our model, dis-
cussed in the introduction, a group of requests (possibly more than one) arrive simul-
taneously at each decision epoch, therefore we can apply standard bipartite matching
algorithm on the currently available partial graph. We call this One-Stage Algorithm as
it only considers requests available at one stage (the current decision epoch). One-Stage
Optimal finds the maximum weighted bipartite matching between available vertices at
every decision epoch by solving a linear program. Although most work in online bi-
partite matching addresses the problem where one side is fixed [17, 18, 19], results in
[20] show that greedy algorithm achieves a competitive ratio of 1/2 when both sides of
vertices appear online. Recently in Wang et al. [21] an algorithm based on water-filling
algorithm has been proposed which achieves a competitive ratio of 0.526 in case both
sides of vertices appear online.

While there are similarities, there are multiple differences in our work from re-
search in online matching:
• We consider a multi-stage problem, where there are multiple connected rounds of

bipartite matching. Therefore, unlike in online bipartite matching that assigns one
service to only one customer, in this paper, we match one service to multiple cus-
tomers (with one customer at any specific point) over time. A recent work by Dick-
erson et.al. [22] proposes a new model for Online Matching with (offline) Reusable
resources in which resources on one side are reusable, i.e., resources are matched
multiple times over time but their model assumes that each resource has a fixed po-
sition and comes back to its original position before it can be matched again. This
assumption is not valid for the problems of interest in this paper where position of
resource (server) depends on the previous match (assignment).

• In addition, the spatio-temporal aspect of requests (not present in traditional online
matching problems) adds further computational complexity to the matching prob-
lem.

2Competitive ratio of an algorithm is defined as the ratio of the worst case solution obtained by the
algorithm and the optimal solution.
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• Finally, in terms of approaches, unlike work in online matching which has primar-
ily considered myopic approaches, we pursue multi-stage approaches that consider
potential future requests.

2.2. Online Multi Vehicle Pickup and Delivery Problem

Online Multi Vehicle Pickup and Delivery problems typically represent problems
where there are multi-capacity servers that transport multiple goods/loads from their
origins to destinations. When servers are used to move people instead of goods, the
problem is referred to as dial-a-ride problem [23, 24, 25] and when all the origins or
all the destinations are located at a depot, the problem is referred to as vehicle routing
problem [7].

The general representation of the dial-a-ride problems is ideally suited to represent
problems faced by companies such as super shuttle (transports people from an airport
to different locations in the city), uber pooling (transports customers from near by start
locations to near by destination locations). These problems are hard to solve and the
traditional approaches for these problems can solve only very small instances of 96
requests and 8 vehicles [26].

The integer programming formulation, without any spatial or temporal aggrega-
tion [26], is difficult to solve and is not scalable to large scale problems and online de-
cision making even for unit capacity. So in the online setting, the problems are solved
by either using the heuristics [27, 28, 29] or by optimizing at each timestep using
only current set of available requests [6, 30]. Even after considering discretization of
timesteps, exact formulation of this problem involves product of variables. Even af-
ter linearizing the product terms , the formulation (shown in Appendix A) is a mixed
integer program that is not scalable.

Therefore existing work [10, 31, 12] and even our paper considers matching supply
and demand at the level of zones, cities or areas (abstraction of locations) and not at
the level of individual locations. That is to say, all demand and/or supply of a specific
type within an area are deemed equivalent to improve scalability.

There are multiple key differences in assumptions/constraints made in existing
work on truckload assignment problem (and other similar ones) as compared to the
problem of interest in this paper (e.g. taxi matching). These differences in assumptions
are significant as the computational complexity class changes due to these assump-
tions/constraints.
• Zone assignment constraints: In the existing models used for truckload assignment

problem, at any timestep, truck can only be assigned to load in the same zone 3.
This is a strong assumption which makes the formulation a pure network flow prob-
lem that can be solved in polynomial time. The complexity in truckload assignment
comes due to other generalizations (such as returning trucks to their base locations,
each truck serving multiple loads etc.). On the other hand, due to requirement of

3Some works [32] consider in the evaluation (not in the formulation) that the loads (tasks/requests) if
not served will be available at the future timesteps. But, in the cases where waiting time is few minutes, i.e.,
demands are available only for one timestep and disappear if not assigned (for example in taxi case), using
existing formulations, requests can not be served from the neighboring zones
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smaller duration (about 5 minutes) for picking up customers, zones cannot be very
large and a server from a neighboring zone can be assigned to the customer in a zone
(if it is the nearest server). These assumptions/constraints of our problem result in
NP-hardness and thereby increase the complexity.

• Time to compute dispatch strategies: Since truckload tasks typically take any-
where from 1 day to 4 days, the time available to compute a dispatch strategy is in
the order of tens of minutes or even an hour. In the problem of interest of this paper,
decisions on dispatch have to be decided in real time (in less than a minute) and the
number of servers is in the order of thousands and demand is in the order of at least
300-400 customers per minute.

• Representation of current and future assignments in formulation: The differ-
ences in the assumptions/constraints also introduce a key change in the formulations
for modelling the problems. Unlike our approach, the existing work on truckload
(and other similar domains) employ pure network flow formulations (i.e., only as-
signing demand from the same zone as supply) for both current and future time steps,
or only for the future time step [10]. This is the reason for better approximations pro-
vided by our formulation, as shown in the non-trivial improvements in results (on an
average 9%) provided by our approach over Hybrid Multi-Stage Stochastic opti-
mization (HSS) [10] on three different taxi data sets.

• Linear or piecewise linear approximation of value function: Existing work on
the Approximate Dynamic Programming in solving fleet optimization MDPs [31,
12, 32] approximates the future value using the linear or piece-wise linear functions.
While this seems to have provided good results in the truck fleet optimization prob-
lems, it is not a good approximation in the taxi fleet optimization. The value function
approximation considered for fleet management problem is separable over zones but
as in our case servers can be assigned from the nearby regions, the value of having
one extra server in a zone will depend on the number of servers present in the nearby
zones. Experimentally, our approaches provide on an average 9% improvement over
ADP as well.

2.3. Online MDPs

Another relevant thread of research is Online Markov Decision Processes (MDPs).
In the online setting, rewards and transition functions of MDP for future timesteps are
unknown. To learn these unknown reward and transition functions, following two cases
are considered.
• The more popular sub-thread has focused on the cases where the reward and the

transition function are assumed to be stochastically stationary and the instances of
the reward and the transition function are revealed depending on the action. In this
case, Reinforcement Learning [33] has presented numerous techniques for learning
the policies, which are guaranteed to maximize the expected value.

• In the second sub-thread [34, 35, 36] the revealed reward and transition functions are
adversarial to the executed action.

While it is possible to represent our problem as an online MDP, the number of states
and actions are exponential in the number of agents. Since the number of agents is in
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the thousands, it is even difficult to specify the model. For the large scale MDPs, exist-
ing works have used state aggregation [37] and Approximate Dynamic Programming
methods [13] to compute policies. As described in Section 2.2, Approximate Dynamic
Programming methods have been widely applied for the resource allocation problems.
We used linear and piecewise linear value function approximation which are shown to
work well for truckload assignment and fleet management problem [32, 12]. We pro-
vide a comparison with this approach in our experiment section. In summary, following
are the differentiating factors of the work presented in this paper:
• While it is possible to represent our problem as an online MDP, the number of states

and actions are exponential in the number of agents. We provide an experimental
comparison of our model with the Approximate Dynamic Programming approach
which is generally used to solve the large scale MDPs.

• We neither associate adversarial behavior with the nature nor do we assume station-
arity with respect to reward and transition functions. Instead, we assume that the
behavior is similar to what has been observed in the training demand settings.

Given that both Online MDPs and our work are focussed on online sequential decision
making under uncertainty, existing work in online MDPs can benefit by adapting the
following two key ideas mentioned in this paper in order to scale to problems with
multiple agents:
• Exploiting anonymity (lack of identity) and homogeneity of agents to address the

exponential complexity associated with increasing the number of agents.
• Exploiting decomposability across multiple samples of the future state space evolu-

tion.

2.4. Online Stochastic Optimization

Stochastic programming is used to model the optimization problems that involve
uncertainty. These models take advantage of the fact that the probability distributions
which represent the data are known or can be estimated [38]. To represent the future
uncertainty, multiple samples (scenarios) from the known or estimated probability dis-
tribution are considered.

The complexity of these multi-stage stochastic programs increases with increasing
the number of stages and sample scenarios [39]. Online anticipatory algorithms [40,
41, 42, 43] are generally used to solve large scale stochastic integer programs when the
set of feasible decisions at each stage is finite [40]. The assumption is that there exists
an offline deterministic algorithm for the application. Online anticipatory algorithms
relax the non anticipativity constraints in the stochastic program and make decisions
online at a time t in three steps:
• Sample the distribution to obtain a subset of future scenarios.
• Optimize each scenario for each possible decision.
• Select the best decision over all scenarios.
The above algorithm requires evaluating each decision for each possible sample which
is computationally expensive. Hence, in general, the following two approximations are
used.
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• Consensus: Instead of optimizing each sample for each decision, consensus opti-
mizes each sample once. Only decisions which are optimal for a sample receive pos-
itive score, other decisions are given zero score. The decision having highest score
is executed at time t.

• Regrets: Regrets algorithm assumes the availability of an application specific regret
function which gives fast approximation on the regret value of any decision. Now
similar to consensus, regrets algorithm optimizes each sample once but unlike con-
sensus, it assigns score to all decision using the application specific regret function.

Online Anticipatory algorithms have been used in the applications like online ve-
hicle routing, packet scheduling, reservation systems but these applications typically
have a small set of feasible decisions at each stage (50-100 requests) [41, 44, 40].

Unfortunately, in our case, the number of feasible decisions are in millions (tens
of thousands of servers and hundreds/thousands of requests). Furthermore, if we are
to optimize for each sample separately (using the optimization problem presented in
Section 3), we can only handle very few samples within the online time constraints.
Thus, the key differentiating factor of this paper is in providing approaches (relaxation
and Benders Decomposition on top of the linear optimization) that improve scalability
considerably to handle millions of decisions. Though Benders Decomposition is typ-
ically used to solve the large scale stochastic optimization problems [45, 46, 47], the
novelty is to use this for our updated formulation to obtain competitive results.

3. Offline Spatio-Temporal Matching (OSTM)

We first provide an intuitive description of the OSTM problem. We assume that the
time is divided into discrete blocks of duration ∆ minutes. Given a set of customer
requests available at each decision epoch and the initial location of servers (e.g., taxis),
the goal of the OSTM is to find a matching between servers and customer requests
such that the objective function (e.g., revenue, number of requests) of the matching
is optimized. The key constraint is that the requests should be assigned to a server at
the decision epoch at which they become available and the server should start serv-
ing the request on assignment. On serving a customer request the server moves to the
destination location of the customer request. Therefore, the location and availability of
servers at each decision epoch depends on the matching performed at previous decision
epochs. Formally, an OSTM problem is described using the following tuple:〈

Z,D,N , C, T, f, g,M
〉

• Z is the set of all zones. A zone groups all nearby locations into one abstract entity.
For instance, in the context of taxis 4, we represent each zone as an area where the
distance between any two points in that area is 0.5 KM.

• Dt represents the demand or the set of customer requests for servers at decision
epoch t. Each element j ∈ Dt is characterized by a tuple

〈
oj , dj , R

t
j

〉
where oj , dj ∈

4We include more details on zone creation in Section 6.1.1.
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Z denote the origin and destination zone of the requests and Rtj denotes the number
of requests having origin at zone oj and destination at zone dj at decision epoch t. In
the context of taxis, this would correspond to the set of customer requests that travel
between certain starting and ending zones.

• Ni indicates the initial number of servers in zone i ∈ Z .
• C represents the objective (e.g., revenue, number of requests served, negative of wait-

ing time), with Cti,oj ,dj denoting the objective value obtained by matching a server
in zone i to a single customer request with origin and destination zones given by
〈oj , dj〉 at decision epoch t.

• T (z, z′, t) gives the time taken by a server to move from zone z to z′ at decision
epoch t.

• f(z, t) gives the list of zones for servers that can be assigned to a request originating
in zone z at decision epoch t. Depending on the quality of service (QoS) constraints
in the domain, these can be appropriately defined. We can define f as a function re-
turning the set of zones, which can be reached from z within a duration τ at decision
epoch t, i.e., z′ ∈ f(z, t) if and only if T (z′, z, t) ≤ τ . This ensures that waiting
time for any request is less than τ . Such QoS constraints can be employed to derive
f as well as g, that is described next.

• g(z, t) provides the list of originating zones for requests that can be assigned to a
server in zone z at decision epoch t, i.e., z′ ∈ g(z, t) =⇒ z ∈ f(z′, t).

• M is the total number of decision epochs.
Our goal is to identify the assignment of requests to servers so as to maximize the

sum of objective value over M decision epochs. This is subject to considering valid
matching and the number of requests at each decision epoch.

3.1. Optimization Formulation for OSTM Problems
We provide the integer linear optimization formulation for OSTM problems in Ta-

ble 1. Intuitively, the goal of the formulation is to set values for the assignment (of
servers to demand) variables while ensuring the flow of servers between zones and the
corresponding assignment to demand are valid. Depending on whether the Markovian
property for resource allocation is satisfied, the complexity of this formulation can ei-
ther be polynomial time or NP-Hard. We provide a detailed discussion on this aspect in
Section 3.1.1 and an example to describe symbols of the formulation in Section 3.1.2.

The complexity of the formulation is determined by the assumptions on the under-
lying binary constants δt,t

′

ij , 1 ≤ t ≤ t′ ≤ M (refer to Section 3.1.1) and hence these

binary constants are defined first. δt,t
′

ij indicates whether zone i server assigned to a
single request belonging to the element j of Dt at decision epoch t completes its trip
exactly at decision epoch t′. The formal definition is as follows:

δt,t
′

ij =

{
1 if t+ bT (i,oj ,t)+T (oj ,dj ,t)

∆ c+ 1 = t′,

0 otherwise
(1)

The integer variable xtij denotes the number of zone i servers assigned to the el-
ement j ∈ Dt at decision epoch t. The number of servers available in any zone, at
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OSTM(M,Z,D,N , C, f, g, T, δ):

max
M∑
t=1

∑
i∈Z

∑
j∈Dt,

oj∈g(i,t)

Cti,oj ,dj ∗ x
t
ij (2)

s.t.
∑
j∈D1,

oj∈g(i,1)

x
1
ij ≤ Ni ::: ∀i (3)

∑
i∈f(oj,t)

x
t
ij ≤ R

t
j ::: ∀t, j ∈ Dt (4)

∑
j∈Dt,

oj∈g(i,t)

x
t
ij ≤ Ni −

t−1∑
t′=1

∑
j∈Dt

′
,

oj∈g(i,t
′)

x
t′
ij +

t−1∑
t′=1

t∑
t′′=t′+1

∑
j∈Dt

′
,

dj=i

∑
i′∈f(oj,t′)

δ
t′,t′′

i′j ∗ xt
′
i′j ::: ∀i, t > 1

(5)

x
t
ij integer ::: ∀i, j, t (6)

Table 1: OSTM formulation

any decision epoch depends on assignments at previous decision epochs. Constraints
(3) and (5) ensure that at any decision epoch t, the number of servers assigned from
a zone is less than the number of available servers in the zone at decision epoch t.
Constraint (4) ensures that for each element in Dt, the number of requests assigned
to servers is less than the number of available requests between origin and destination
zone pairs corresponding to element j of Dt.

3.1.1. Discussion on δt,t
′

ij

We can observe in equation (1) that the values of binary constants δt,t
′

ij depends on
the total time taken by a zone i server to reach destination zone of element j of Dt.
Therefore, as shown in the Figure 1, we have two cases

Server 1

Server 2

Server 3

Request r Server Availability timestep = 𝑡𝑟

Server 1

Server 2

Server 3

Request r

Server Availability timestep = 𝑡𝑟1

Server Availability timestep = 𝑡𝑟2

Server Availability timestep = 𝑡𝑟3

Figure 1: Cases for server assignment

• The time at which server becomes available again after serving a request is indepen-
dent of the assigned server.
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• The time at which server becomes available again after serving a request is depen-
dent of the assigned server. For example, suppose server A assigned to a request r at
t = 1 becomes available again for assignment at t=4. Now if request r is served by
another server B at t=1, then it is possible that B will still be serving the request r at
t=4 and becomes available again at t = 6. One of the cases where this is possible is
when the time taken by different servers to reach pickup location of request is dif-
ferent. In the above example A reaches pickup location of r at t = 2 and B reaches
pickup location of r at t = 4.

Case 1 is similar to the Markov property defined in the context of resource alloca-
tion problem5 and makes the problem polynomial time solvable as the formulation is
equivalent to a minimum cost network flow problem. Formally stating the above dis-
cussion, for the special case when δt,t

′

ij = δt,t
′

i′j , ∀ j, t, t′, i, i′ (i.e., a request completion
decision epoch is same irrespective of the server assigned to it), we show the reduction
of the OSTM to a min cost flow problem with integer capacities (Proposition 1). As the
min cost flow problem is polynomial time solvable, the OSTM is also polynomial time
solvable for this special case.

Proposition 1. If ∀ j, i, i′, t, t′ δt,t
′

ij = δt,t
′

i′j , then the OSTM is reducible to a min cost
flow problem.

Proof: See Appendix D.1. �

For case 2 (i.e., for at least one setting of j, i, i′, t, t′ if δt,t
′

ij 6= δt,t
′

i′j ), we show that the
OSTM is NP-hard by reducing the well known 3-SAT problem to it (Proposition 2).

Proposition 2. If ∃j, i, i′, t, t′ s.t. δt,t
′

ij 6= δt,t
′

i′j , then the OSTM is NP-hard.

Proof: See Appendix D.2. �

Relaxation of Optimization Formulation As shown in Proposition 1, if special con-
dition on δ values holds, the problem is reducible to min cost flow. Therefore, we will
get the integer optimal solution even if we relax the integrality constraints in the integer
program for the OSTM.

For the general case, we do not have any theoretical guarantees on the linear re-
laxation of the integer program. But in our experiments, we observed that the linear
relaxation of the OSTM integer program is tight and the difference between the opti-
mal value of the integer program and the relaxed linear program is always less than
1%. Therefore, the objective value obtained on solving the relaxation of the OSTM,
provides a tight upper bound on the value of the optimal solution. In addition, a major

5please refer to chapter 13 of the book by Powell [13], which states that attributes of a transition resulting
from a decision acting on a resource with attribute r is independent of r (i.e., the transition is memoryless). In
the context of resource allocation problem, it is mentioned that when system satisfies the Markov property,
then a network formulation is obtained otherwise the formulation is not integral but there is no theoretical
proof provided. We also obtain a similar result and provide theoretical proofs for both cases. In [13] authors
suggest to use aggregation over attributes to restore the Markov property (i.e., network structure) but as we
show in our experimental results, this does not give good results in our case.
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part of the solution has integer values. A simple heuristic of taking the integer part of
the solution satisfying all constraints provides a solution which is nearly 95% of the
optimal integer solution. In Section 4, we also provide a heuristic to extract an integral
solution from the LP relaxation solution.

3.1.2. Example
In this section, we show an example that explains the different parameters and

elements of OSTM model.

Example 1. We consider a 3 zone problem and show request assignment over 3 deci-
sion epochs (i.e., M = 3) in Figure 2. The following table provides a mapping between
formal notation and the visual depiction of the OSTM problem.

Shape Meaning Notation In the Shape
Circle Zone i Zone number
Black Hexagon Initial servers Ni Number of servers associated with the zone

next to the hexagon at the decision epoch 1
Black Diamond Request j Request index for the rectangle below

the diamond
Black Rectangle Demand < oj , dj , R

t
j > <source zone, destination zone, # of

requests from source to destination >
Black Line Assignment xtij Line between zone i and demand j

at decision epoch t indicates the possible
assignment of zone i server to the demand j.

Green Numbers Revenue Cti,oj ,dj Revenue obtained on performing
the assignment indicated by the line
below the number.

Black Dashed Line Binary Constants δt,t
′

ij Dashed line from the line between zone i
and demand j at decision epoch t to the
destination zone dj at the decision epoch t′

indicates that δt,t
′

ij = 1. Absence of the
dashed line indicates δt,t

′

ij = 0.

For ease of explanation, we assume that the travel times between zones are same
at all decision epochs, so we drop index t from the definition of T, f and g. Travel time
between each pair of zone is mentioned at the bottom of the Figure 2. This represents
the set T . The value of τ and ∆ is taken as 5 (min). As mentioned in the model, the
sets f and g are populated based on the travel time and τ values. Therefore, f(2) will
contain all zones which are reachable from 1 in less than 5 minutes,f(2) = 1, 2, 3.
Similarly g(2) contains all zones from which it takes less than 5 minutes to reach zone
2, therefore, g(2) = 1, 2. All other values are populated in the same way.

The server availability at decision epochs 2 and 3 will depend on the assignments at
the decision epoch 1. The server, if assigned, will be available in the destination zone
of the requests at the decision epoch where the dashed line from the corresponding
assignment line ends. Unassigned servers will be available in the same zone at next
decision epoch.

We can also observe from this example, the importance of considering multi-stage
matching. For this, we compare the revenue earned by two kinds of decisions
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1. Single-stage decision, i.e., decisions which do not consider future requests:
In this case, at decision epoch 1 zone 1 server will be assigned to the demand
element 2 and zone 2 server will be assigned to the demand element 1, i.e., x1

12 =
1, x1

21 = 1 and rest all variables as 0. This will give a total revenue of 20+14. As
none of the servers will be available at decision epoch 2, no other requests can
be served.

2. Multi-stage decision, i.e., decisions which consider future requests: In this
case, at decision epoch 1, zone 1 server will be assigned to the demand ele-
ment 1 and zone 2 server will not serve any request, i.e., x1

11 = 1 and rest all
variables for decision epoch 1 are set to 0. At decision epoch 2 both servers will
be available in the zone 2 and can serve both requests, i.e., x2

21 = 1 and x2
22 = 1.

This will give a total revenue of 15+15+10 = 40.

Decision epoch 3Decision epoch 2Decision epoch 1

1

2

1,2,1

1,3,1

3

1

2

3

1

2

3

2,2,1

15

14
18

20

10

2,3,1

15

1

1

0

Travel Time: 1-1 = 0min, 1-2 = 3min, 1-3 = 7 min, 2-1 = 4 min, 2-2 = 0min,  2 – 3 = 4min, 3-1 = 8 min, 3-2 = 6 min, 3-3 = 0min
𝜏 = 5, Δ = 5,

f(1) = {1,2} , f(2) = {1,2,3} , f(3) ={3}       g(1) = {1,2} , g(2) = {1,2}, g(3) = {2,3}

1

2

1

2

13
8

Figure 2: OSTM Example

We have presented the model for the case where the exact demand information is
available for all decision epochs. In the next section, we extend this model to consider
uncertain customer demand which is revealed in an online fashion.

4. Online Spatio-Temporal Matching (OLSTM)

In the OnLine Spatio Temporal Matching (OLSTM) problem, requests for all the
decision epoch are not known in advance, but instead requests for each decision epoch
are only revealed at that decision epoch. The goal is to make matching decisions at
each decision epoch so as to optimize the overall objective. Considering potential future
scenarios can help in making better matching decisions [10, 15, 32]. Therefore, we use
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multiple potential scenarios of demand requests at future decision epochs. One way of
obtaining the potential scenarios is to consider the scenarios observed in the past data.

4.1. Problem

An OLSTM problem is described using the following tuple:〈
Z,D,N , C, ξD, ξS , f, g, T

〉
We only define, the new elements (i.e., the scenario related information) beyond

those defined for the OSTM problem6.
• ξD is the set of customer request samples for the future decision epoch, where ξD,kt ,
t > 1, represents the set of customer requests at t − 1 decision epochs in the future
in sample k. Each element j ∈ ξD,kt is characterized by a tuple

〈
oj , dj , R

t,k
j

〉
where

oj , dj ∈ Z denote the origin and destination zone of requests and Rt,kj denotes the
number of requests having origin at zone oj and destination at zone dj at decision
epoch t for sample k.

• ξS,t is the set of servers that are not available at the current decision epoch but will
become available at decision epoch t 7, where ξS,ti represents the number of servers
that will become available in zone i.

Similar to the binary constants δ defined in OSTM model, we will have binary
constants δt,t

′,k
ij (t > 1), which are set to 1 if zone i server assigned to a single request

belonging to the element j of ξD,kt at decision epoch t completes its trip exactly at
decision epoch t′.

For ease of explanation, we first describe the formulation for a two-stage model,
where we only consider requests at the next decision epoch in making matching deci-
sions at the current decision epoch.

Our goal is to identify the assignment of requests to the servers so as to maximize
the sum of objective values for the current decision epoch and the expected objective
value for the next decision epoch. An integer linear optimization formulation is pro-
vided in the Table 2 for computing the best match at the current decision epoch while
considering multiple samples of potential requests in the next decision epoch. We refer
to this as TSS(). Integer variables x1

ij denote the number of zone i servers assigned to
element j ∈ D1. Similarly, integer variables x2,k

ij denote the number of zone i servers
assigned to the element j ∈ ξD,k2 .

While the first component of the objective value corresponds to the current decision
epoch, the second component computes the expected value associated with the future
requests (provided in ξD). Constraints (8) and (10) ensure that at any decision epoch,
the number of assigned servers from the zone i is less than the number of available

6For ease of notation, in the formulation, we use decision epoch 1 to denote the current decision epoch.
Therefore, decision epoch t corresponds to the current decision epoch + (t - 1).

7This could be due to assignments made at previous decision epochs where servers are assigned to re-
quests which take multiple decision epochs to complete.
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TSS(Z,D,N , C, ξD, ξS , f, g, T, δ):

max
∑
i∈Z

∑
j∈D1,

oj∈g(i,1)

C1i,oj ,dj ∗ x
1
ij +

1

|ξD|
∑

k≤|ξD|

∑
i∈Z

∑
j∈ξD,k2 ,

oj∈g(i,2)

C2i,oj ,dj ∗ x
2,k
ij (7)

s.t.
∑
j∈D1

oj∈g(i,1)

x
1
ij ≤ Ni ::: ∀i ∈ Z (8)

∑
i∈f(oj,1)

x
1
ij ≤ R

1
j ::: ∀j ∈ D1 (9)

∑
j∈ξD,k2 ,

oj∈g(i,2)

x
2,k
ij ≤ Ni −

∑
j∈D1

x
1
ij + ξ

S,2
i +

∑
j∈D1,dj=i

∑
i′∈f(oj,1)

δ
1,2

i′j ∗ x
1
i′j ::: ∀i ∈ Z, k ≤ |ξD| (10)

∑
i∈f(oj,2)

x
2,k
ij ≤ R

2,k
j ::: ∀k ≤ |ξD|, j ∈ ξD,k2 (11)

x
1
ij integer ::: ∀i ∈ Z, j ∈ D1 (12)

x
2,k
ij integer ::: ∀i ∈ Z, ∀k ≤ |ξD|, j ∈ ξD,k2 (13)

Table 2: TSS optimization formulation

servers. In Constraint (10) the number of servers available at decision epoch “2” in zone
i is calculated by considering the remaining servers in zone i after doing assignments
for decision epoch “1”. Constraints (9) and (11) ensure that at any decision epoch,
between any zone pair, the number of requests assigned to servers is less than the
number of available requests between the origin and destination zone pair. For a single
sample, the above integer program is equivalent to an OSTM integer program with
M=2. Therefore, as shown in Proposition 1, if δ1,2

i′j = δ1,2
ij ∀i, i′, j, the relaxation of

TSS, for a single sample, will have an integer optimal solution.
For a general case with multiple samples, we show in Proposition 3 that TSS is NP-
hard.

Proposition 3. Solving TSS for more than one sample is an NP-hard problem irre-
spective of δ values.

Proof: See Appendix D.3. �

Relaxation of the TSS Optimization Formulation
For a general case with multiple samples, the linear relaxation of the TSS integer

program can yield fractional solutions. But in our experiments on synthetic domains
and two real world datasets, we observe that the linear relaxation of TSS is tight and
the difference between the optimal value of the integer program and the relaxed linear
program is always less than 1%. We also observe that most of the time, the solution is
integral and even if the solution is not integral, major part of the solution has integer
values. Therefore, our approach is to solve the relaxed version of the problem and in
case the solution is not integral, we round it to an integer solution as described below.
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While converting a fractional solution to an integer, only the parts of the solution
that are fractional are modified. From the fractional part, variables x1

ij are rounded in
such a way that the number of servers assigned from each zone at the first decision
epoch remain close to the fractional optimal solution. This ensures that the servers
which were left unassigned by the TSS, remain unassigned and the assignments at
the second stage are least affected. We denote Fi as d

∑
j x

1
ij −

∑
jbx1

ijce, i.e., the
sum of fractional assigned servers from zone i rounded up to the nearest integer. We
denote Gj as d

∑
i x

1
ij −

∑
ibx1

ijce, i.e., the number of fractionally assigned requests
rounded up to the nearest integer. We further divide the set Gj into two parts with the
set G1j containing requests which complete on or before decision epoch 2 and the set
G2j containing remaining requests. We greedily assign the servers available in Fi,∀i
to the requests available in the set Gj ,∀ j in two rounds. In the first round, we only
consider the requests in the set G1j , i.e., we give priority to the requests which can be
completed by decision epoch 2. If after first round ∃i, Fi > 0, we greedily assign them
to the requests in G2j .

4.1.1. Example
In this section, we show an example that explains the different parameters and

elements of the OLSTM model.

Sample 2

Sample 1
Decision epoch 3Decision epoch 2

Decision epoch 1

1

2

3

1

2

3

1

2

3

2,2,1

15
7

14

2,3,1

15

1

1

0

Travel Time: 1-1 = 0min, 1-2 = 3min, 1-3 = 7 min, 2-1 = 4 min, 2-2 = 0min,  2 – 3 = 4min, 3-1 = 8 min, 3-2 = 6 min, 3-3 = 0min
𝜏 = 5, Δ = 5,

f(1) = {1,2} , f(2) = {1,2,3} , f(3) ={3}       g(1) = {1,2} , g(2) = {1,2}, g(3) = {2,3}
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Decision epoch 3Decision epoch 2
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1,1,1
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0
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Figure 3: OLSTM Example
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Example 2. Similar to OSTM, we consider a 3 zone problem as shown in the Figure 3.
The following table provides a mapping between the formal notation and the visual
depiction of the OLSTM problem. We only define the new elements as compared to the
OSTM example.

Shape Meaning Notation In the Shape
Colored Hexagon Servers ξS,ti Servers which become available in the zone next

to the colored hexagon at decision epoch t due to the
completion of previously assigned requests. The value
will be same for all the samples.

Colored Rectangle Sampled Demand < oj , dj , R
t,k
j > <source zone, destination zone, # of

requests from the source to the destination in the sample>
Colored Diamond Sampled Request j Request index for the colored rectangle below

the colored diamond
Colored Line Assignment in xt,kij Line between zone i and demand element j

samples in sample k at decision epoch t indicates possible
assignment of the zone i server to the demand element j in
sample k.

Colored Dashed Line Binary Constants δt,t
′,k

ij Colored Dashed line from the line between zone i
for sample and the demand element j in the sample k at decision epoch

t to the destination zone dj at decision epoch t′

indicates that δt,t
′,k

ij = 1. Absence of the

dashed line indicates δt,t
′,k

ij = 0.

For decision epoch 1, the assignment decisions are independent of samples, but server
which will become available after serving the request, will be available for all samples.
Therefore, in the graphical representation, we represent it by creating copies of first
stage δ constants for each sample and represent them with colored dash lines even for
first decision epoch. All these copies will have identical values. In the formulation, this
is shown by having δ1,t′

ij and x1
ij in constraint (10).

The value of τ and ∆ is taken as 5. Travel time T and sets f and g are populated as
explained in the OSTM example.

We can also observe from this example, that the optimal decision for individual
samples will not remain optimal when all the samples are considered together. We
show the decisions and revenue computation in following three cases:

1. Only sample 1 is considered: If only sample 1 is considered, it will be beneficial
to move both servers to zone 2 at decision epoch 2. Therefore, the optimal deci-
sion will be, x1

12 = 1, x1
24 = 1, x2,1

21 = 1, x2,1
22 = 1 and rest all variables as 0.

This will give a total revenue of 15+14+15+14=58.
2. Only sample 2 is considered: Similar to above case, if only sample 2 is consid-

ered, the optimal decision will be x1
11 = 1, x1

23 = 1, x2,1
11 = 1, x2,1

11 = 1 and rest
all variables as 0. This will give a total revenue of 15+14+15+14=58.

3. Both samples are considered: On the other hand if both samples are considered,
the optimal decision will be x1

12 = 1, x1
21 = 1, x2,1

ij = 1, x2,1
ij = 1 and rest all

variables as 0. This will give a total revenue of 14+14+ ((15+12)+(15+12))
2 = 55.

In this case, individual sample’s optimal decision will give a revenue of 15+14+
((15+14)+(7+12))

2 = 53.
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4.2. Benders Decomposition

Given the scale of the problems of interest in this paper (i.e., thousands of taxis
serving thousands of customers spread across hundreds of zones), we reduce the com-
plexity associated with increasing the number of samples by exploiting the following
observation:

Observation 1. In TSS, once the assignment at the first decision epoch, {x1
ij} is given,

the optimization models for computing the assignment at the second decision epoch,
{x2,k

ij } for each of the samples k, are independent of each other.

We exploit Observation 1 by using the Benders Decomposition [48] method, a master
slave decomposition technique where the Master Problem is responsible for obtaining
the solutions for the “difficult” variables; and the Slave problem(s) is (are) responsible
for finding the solutions to other variables, given a fixed assignment of values to “dif-
ficult” variables (from the master). The Slave problem(s) also generate Benders cuts,
which are added to the master problem and the master problem is solved with these
cuts to obtain an improved solution. This process continues until no more cuts can be
added to the master problem.

Based on Observation 1, {x1
ij} are the difficult variables as they impact the values

assigned to all the other variables. Therefore, the master is responsible for obtaining
the assignments for the {x1

ij} variables and the slave(s) are responsible for obtaining
the assignments to the {x2,k

ij }. For the master (Table 3), in the optimization provided in
TSS, we replace the part of the objective dealing with future variables, {x2,k

ij } by the
recourse function Q({x1

ij}i∈Z,(j∈D1,oj∈g(i,1)), k) which becomes the objective func-
tion in the slave problems. The recourse function Q() needs to be computed for each

Master:

max
∑
i∈Z

∑
j∈D1,

oj∈g(i,1)

C1i,oj ,dj ∗ x
1
ij +

1

|ξD|
∑

k≤|ξD|

Q({x1
ij}i∈Z,(j∈D1,oj∈g(i,1))

, k) (14)

s.t.
∑
j∈D1,

oj∈g(i,1)

x
1
ij ≤ Ni ::: ∀i ∈ Z (15)

∑
i∈f(oj,1)

x
1
ij ≤ R

1
j ::: ∀j ∈ D1 (16)

Table 3: Master Formulation

value of x1
ij . In the slaves (Table 4), we consider the fixed values of x1

ij and to avoid
confusion, we refer to them using the capital letter notation, X1

ij .
The dual8 of the primal slave problems are provided in Table 5, where α variables

8The idea of taking a dual of a linear program is an important concept in linear programming. The linear
program is typically called the ’primal‘ linear program. For each linear program, there is an associated
linear program called its ’dual’. The dual of a linear program is obtained by creating one variable for each
constraint of the primal, and having one constraint for each variable of the primal. The maximization problem
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Slave Q({X1
ij}i∈Z,j∈D1 , k) :

max
∑
i∈Z

∑
j∈ξD,k2 ,

oj∈g(i,2)

C2i,oj ,dj ∗ x
2,k
ij (17)

∑
j∈ξD,k2 ,

oj∈g(i,2)

x
2,k
ij ≤ Ni −

∑
j∈D1,

oj∈g(i,1)

X
1
ij + ξ

S,2
i +

∑
j∈D1,
dj=i

∑
i′∈f(oj,1)

δ
1,2

i′j ∗X
1
i′j ::: ∀i ∈ Z (18)

∑
i∈f(oj,2)

x
2,k
ij ≤ R

2,k
j ::: ∀j ∈ ξD,k2 (19)

Table 4: Slave Formulation

are the dual variables corresponding to the constraints (18) and β variables are the dual
variables corresponding to the constraints (19).

The weak duality theorem [49] states that the solution to a maximization primal
problem is always less than or equal to the solution of the corresponding dual problem.
Therefore, using the concept of weak duality we can say that by taking the dual of
the slave problems, we can find an upper bound on the value of the recourse function
(Q())(objective of primal slave problem), in terms of the master problem variables x1

ij .
These can then be added as optimality cuts to the master problem [47] for generating
better first stage assignments9. Let θk be the approximation of Q() function then the

Dual Slave ({X1
ij}i∈Z,j∈D1 , k)) :

min
∑
i∈Z

α
k
i ∗ (Ni −

∑
j∈D1,

oj∈g(i,1)

X
1
ij + ξ

S,2
i +

∑
j∈D1,
dj=i

∑
i′∈f(oj,1)

δ
1,2

i′j ∗X
1
i′j) +

∑
j∈ξD,k2

β
k
j ∗ R

2,k
j

(20)

s.t. α
k
i + β

k
j − C

2
i,oj ,dj

≥ 0 ::: ∀i ∈ Z, j ∈ ξD,k2 (21)

α
k
i ≥ 0 ::: ∀i ∈ Z (22)

β
k
j ≥ 0 ::: ∀j ∈ ξD,k2 (23)

Table 5: Dual Slave Formulation

is changed to minimization and the roles of the coefficients of the objective function and of the right-hand
sides of the inequalities are switched. In addition, transpose of the matrix of coefficients of the left-hand side
of the inequalities is taken.

That is to say for a primal problem,

max
x

CT x s.t. Ax = B

we have the associated dual given by

max
x

BT y s.t. AT y ≥ C

9As the slave problems are always feasible for any value of the master variables we only need to add
optimality cuts to the master problem.
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master problem with optimality cuts is provided in the Table 6. It should be noted that

Master Formulation with Optimality Cuts:

max
∑
i∈Z

∑
j∈D1,

oj∈g(i,1)

C1i,oj ,dj ∗ x
1
ij +

1

|ξD|
∑

k≤|ξD|

θ
k (24)

s.t. θ
k ≤

∑
i∈Z

α
k
i ∗ (Ni −

∑
j∈D2,

oj∈g(i,1)

x
1
ij + ξ

S,2
i +

∑
j∈D1,
dj=i

∑
i′∈f(oj,1)

δ
1,2

i′j ∗ x
1
i′j) +

∑
j∈ξD,k2

β
k
j ∗ R

2,k
j

(25)∑
j∈D1,

oj∈g(i,1)

x
1
ij ≤ Ni ::: ∀i ∈ Z (26)

∑
i∈f(oj,1)

x
1
ij ≤ R

1
j ::: ∀j ∈ D1 (27)

Table 6: Master Formulation with Optimality Cuts

we are using x1
ij variables in the “master with optimality cuts” and not the fixed values,

X1
ij . In each iteration we solve the master problem and the computed x1

ij variable
values are passed to the dual slave problems. After solving the dual slave problems,
optimality cuts are generated. If the current values of θk(∀k) satisfy the optimality
cut conditions then we have obtained an optimal solution, else cuts are added to the
master problem and the master problem is solved again. As we can see in the “Dual
Slave” linear programs, the slave problems are independent of each other and are only
connected by the choice of the master variables (“difficult” variables). Therefore, once
the master variables are fixed, the slave problems can be solved in a parallel fashion.

4.3. Complexity Analysis

The complexity of a linear program depends on the number of variables and con-
straints in the formulation. The maximum number of variables in the TSS formulation
are |Z|.|D1|+

∑
k |Z|.|ξ

D,k
2 |. This maximum value will be obtained when any request

can be served using server from any zone. But in practice depending on the value of τ ,
f and g function will restrict the number of variables. For τ = 0, request can only be
served using the server present at its origin zone, therefore, the number of variables are
are |D1| +

∑
k |ξ

D,k
2 |. As the value of τ increases, the number of variables increases.

The number of constraints are |Z|+ |D1|+ |ξD|.|Z|+
∑
k ξ

D,k
2 .

Therefore, on increasing the number of zones and the number of samples, both
variables and constraints increase. The size of D1 and ξD,k2 increases with the value of
∆. This is because ∆ is the duration between 2 decision epochs, so when ∆ is small, the
number of requests between two decision epochs will be less. Therefore, on increasing
the value of ∆, the number of variables and constraints both increase.

In addition to τ , the travel time between zones (T ) also affect the number of vari-
ables. For a constant τ , if travel time between zones increases, there will be less zones
from where servers can be used to serve any requests. Hence the number of variables
decrease on increasing travel time keeping the value τ constant.
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4.4. Competitive Ratio

Competitive analysis is typically employed for evaluating the quality of online al-
gorithms. The metric used is called as the competitive ratio [16] and it compares a
solution produced by an online algorithm with the best possible solution. Specifically,
the competitive ratio of an online algorithm is defined as the worst-case ratio between
the objective of the solution found by the algorithm and the objective of an optimal so-
lution, which assumes all uncertain information is known beforehand. For deterministic
input model and maximization problems, an online algorithm is called c−competitive
if for any instance of the problem

ALG(I)

OPT (I)
≥ c ::: ∀I (28)

where ALG(I) is the value of any given online algorithm and OPT (I) is the value of
the offline optimal algorithm for instance I. Equivalently, this can be written as

c = inf
I

ALG(I)

OPT (I)
(29)

In stochastic environments, we calculate empirical competitive ratio, cDµ that is
defined as

cDµ = ED

[ALG(I)

OPT (I)

]
(30)

For stochastic input models where multiple distributions of uncertainty are pro-
vided, we can also calculate expected competitive ratio (Please refer Section 2.2.1 in
[18]). It is computed in expectation over the randomness in the input:

cµ = inf
D
ED

[ALG(I)

OPT (I)

]
(31)

where D is the distribution over instances I from which input is drawn and expected
competitive ratio is the expectation over the ratio achieved by the algorithm and the
optimum for that distribution.

Proposition 4. In OLSTM without sample information and adversarial behavior from
environment10, when maximizing the number of requests satisfied for a fixed number of
servers N , the competitive ratio, c for any deterministic b-stage algorithm (i.e., with
information available up to the bth decision epoch) in a M-decision epoch (M ≥ b)
problem is

c ≤ 1

M − b+ 1

Proof: See Appendix D.4. �

10Environment generates demand that creates worst case performance for algorithms decisions
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Proposition 5. In OLSTM with sample information and stochastic behaviour from en-
vironment according to the samples, when maximizing the number of requests satisfied,
the expected competitive ratio, cµ, of the TSS algorithm is

cµ ≤
3

4 ∗ (M − 1)
+

3

4 ∗M
where M is the number of decision epochs (M ≥ 3).

Proof: See Appendix D.5. �
The expected competitive ratio value is typically overly pessimistic as it measures

the worst case. However, the algorithms can have good average case performance, cDµ
as demonstrated in our experimental results. We will compute this for our formulations
and other one-stage approaches, by comparing the solution values obtained with the M-
stage optimal offline solution. We solve the OSTM integer program defined in Section
3 to compute the M-Stage optimal offline solution.

MSS(Z,D,N , C, ξD, ξS , f, g, T, δ,Q):

max
∑
i∈Z

∑
j∈D1,

oj∈g(i,1)

C1i,oj ,dj ∗ x
1
ij +

1

|ξD|
∑

k≤|ξD|

Q+1∑
t=2

∑
i∈Z

∑
j∈ξD,kt ,

oj∈g(i,t)

Cti,oj ,dj ∗ x
t,k
ij (32)

s.t.
∑
j∈D1

oj∈g(i,1)

x
1
ij ≤ Ni ::: ∀i ∈ Z (33)

∑
i∈f(oj,1)

x
1
ij ≤ R

1
j ::: ∀j ∈ D1 (34)

∑
j∈ξD,kt ,

oj∈g(i,t)

x
t,k
ij ≤ Ni −

∑
j∈D1,

oj∈g(i,1)

x
1
ij −

t−1∑
t′=2

∑
j∈ξD,k

t′
,

oj∈g(i,t
′)

x
t′,k
ij + ξ

S,t
i

+

t∑
t′′=2

∑
j∈D1,
dj=i

∑
i′∈f(oj,1)

δ
1,t′′

i′j ∗ x
1
i′j +

t−1∑
t′=2

t∑
t′′=t′+1

∑
j∈ξD,k

t′
,

dj=i

∑
i′∈f(oj,t′)

δ
t′,t′′,k
i′j ∗ xt

′,k
i′j

::: ∀i ∈ Z, k ≤ |ξD|, ∀t > 1 (35)∑
i∈f(oj,t)

x
t,k
ij ≤ R

t,k
j ::: ∀k ≤ |ξD|, j ∈ ξD,kt , ∀t > 1 (36)

x
1
ij integer ::: ∀i ∈ Z, j ∈ D1 (37)

x
t,k
ij integer ::: ∀i ∈ Z, ∀k ≤ |ξD|, j ∈ ξD,kt , ∀t > 1 (38)

Table 7: MSS

5. Relaxing the Assumptions

In our optimization models for the OSTM and OLSTM, we make a few assump-
tions. In this section, we describe the assumptions and provide the ways of relaxing

22



them:

1. The time is divided into discrete blocks (each with duration ∆) and we consider
only the next decision epoch in TSS. Such an approach is limiting as different re-
quests have different travel time. We relax this assumption by providing a multi-
stage model, which allows for smaller values of ∆ and also considers multiple
discrete blocks at once. More details about the multi-stage model is provided in
the Section 5.1.

2. The server moves from one place to another if and only if it is assigned to a
request. It is fairly trivial to relax this assumption by introducing the notion of
dummy requests. We provide a detailed description in the Section 5.2.

3. Customers are impatient and if they are not assigned a server in one decision
epoch, they will not wait for the next decision epoch for a server to be assigned.
However, we can easily relax this assumption by representing a customer staying
across multiple decision epochs as a customer who leaves and arrives as a new
customer at the next decision epoch.

4. The server will start moving as soon as it is assigned to a request. The time taken
to compute the assignment is ignored. Therefore, a server assigned to a request
at decision epoch t will start moving towards request at the time corresponding
to decision epoch t. This is a reasonable assumption, as we are able to obtain
solutions in less than a minute (as shown in our experiments).

5.1. Multi-Stage Model

In TSS, we only consider the future requests for the next decision epoch. Given
that different requests may have different travel time, we extend the TSS model to
consider the samples for multiple decision epochs to improve the performance for small
∆ values. The extended model is referred to as MSS.

The optimization model for MSS is shown in the Table 7. A parameter Q is added
to the formulation which denotes the look-ahead timesteps, i.e., Q denotes the number
of decision epochs for which future demand samples are considered. The number of
variables and constraints in the formulation increase with the value of Q. Therefore,
the complexity of MSS formulation increases as the value of Q increases.

The variable x1
ij denotes the number of zone i servers assigned to the jth element

of D1 at the current decision epoch. The variable xt,kij , t > 1 denotes the number of
zone i servers assigned to element j of ξD,kt .
Constraints (33) and (35) ensure that at any decision epoch, the number of servers
assigned from zone i is less than the number of available servers. Constraints (34) and
(36) ensure that at any decision epoch, between any zone pair, the number of requests
assigned to servers is less than the number of available requests between the origin and
destination zone pair.

Given the similarity in the formulations, we can again employ Benders Decomposi-
tion to reduce the complexity with increasing the number of samples. Difficult variables
will still be the stage 1 variables, i.e., x1

ij and all other variables, xt,kij (t > 1) would be
the slave variables with a slave for each sample of customer requests.
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MSS(Z,D,N , C, ξD, ξS , f, g, T, δ,Q):

max
∑
i∈Z

( ∑
j∈D1,

oj∈g(i,1)

C1i,oj ,dj ∗ x
1
ij −

∑
j′∈Z

Cost
1
ij′ ∗ u

1
ij′
)

+
1

|ξD|
∑

k≤|ξD|

Q+1∑
t=2

∑
i∈Z

( ∑
j∈ξD,kt ,

oj∈g(i,t)

Cti,oj ,dj ∗ x
t,k
ij −

∑
j′∈Z

Cost
t
ij′ ∗ u

t,k

ij′

)
(39)

s.t.
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x
1
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∑
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1
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1
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1
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t−1∑
t′=2
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,

oj∈g(i,t
′)

x
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∑
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)
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+
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∑
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∑
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δ
1,t′′

i′j ∗ x
1
i′j +

t−1∑
t′=2

t∑
t′′=t′+1

∑
j∈ξD,k

t′
,

dj=i

∑
i′∈f(oj,t′)

δ
t′,t′′,k
i′j ∗ xt

′,k
i′j

+

t∑
t′′=2

∑
j′∈Z

δ
1,t′′
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1
j′i +
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t′=2

t∑
t′′=t′+1

∑
j′∈Z

δ
t′,t′′,k
j′i ∗ ut

′,k
j′i

::: ∀i ∈ Z, k ≤ |ξD|, ∀t > 1 (42)∑
i∈f(oj,t)

x
t,k
ij ≤ R

t,k
j ::: ∀k ≤ |ξD|, j ∈ ξD,kt , ∀t > 1 (43)

x
1
ij , , u

1
ij′ integer ::: ∀i ∈ Z, j ∈ D1

, j
′ ∈ Z (44)

x
t,k
ij , u

t,k

ij′ integer ::: ∀i ∈ Z, ∀k ≤ |ξD|, j ∈ ξD,kt , j
′ ∈ Z, ∀t > 1 (45)

(46)

Table 8: MSS formulation with Dummy requests
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5.2. Dummy Requests
We can remove the assumption that servers will only move when they are assigned

to a request by introducing dummy requests. Dummy requests have zero revenue and
have a destination in a given zone. We introduce u1

ij′ as an integer variable denoting
the number of zone i servers assigned to move to zone j′ at the current decision epoch,
i.e., the number of zone i servers assigned to dummy requests with destination in zone
j′ at the current decision epoch. Similarly, ut,kij′ denote the number of zone i servers
assigned to move to zone j′ in sample k at decision epoch t, t > 1. We modify the
MSS formulation to include these variables. There will be a cost associated with the
movement of server to serve dummy requests which is included in the objective func-
tion. The modified MSS formulation is shown in Table 8 11. Costti,j′ denotes the cost
of moving a server from zone i to zone j′ at decision epoch t.

Section Description Key Content
6.1 Datasets Details on the datasets and different data fields

used from the datasets.
6.2 Experimental Settings Details on the different inputs, parameters

and evaluation settings used.
6.1.1 Zone Creation Describes the process of creating multiple

zones for any dataset.
6.3 Main Results Describes our key results and shows the comparison of

seven algorithms at different times on the three
metrics of revenue, number of requests and run-time.

6.4 Justification for values Justifies the parameters used
of parameter settings in Section 6.3 by comparing the performance of our

algorithms for different parameter values.
6.5 Synthetic Scenarios where MSS and Describes the specially created scenarios where

BD do not Improve Performance our algorithms do not provide good results.

Table 9: Experiment section outline

6. Experiments

In this section, we will compare the performance of seven approaches Multi-Stage
Stochastic optimization (MSS)12 and Benders Decomposition (BD), Greedy (GD) al-
gorithm, Randomized Greedy Algorithm (RGD), One-Stage optimization (OS), Ap-
proximate Dynamic Programming formulation (ADP) and Hybrid Multi-Stage Stochas-
tic optimization approach (HSS) used in [10]. We employ MSS(∆ = x,Q = y) and
BD(∆ = x,Q = y) to refer to our approaches when the time interval ∆ is set to x and
the look ahead duration Q is set to y. We compare different approaches with respect
to (i) Revenue earned by taxis; (ii) Number of requests satisfied; and (iii) Run-time to
compute the assignment.

11We abuse the notation a bit and also use δt,t
′

j′i as a binary constant which is 1 if server starting at decision
epoch t from zone j′ reaches zone i exactly at decision epoch t′

12MSS is a generalization of TSS, so we only focus on MSS. TSS is equivalent to MSS for Q=1
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Table 9 provides the outline for this section. We will show two main results that demon-
strate the significant utility of our approaches:
• MSS and BD consistently outperform myopic (GD, RGD and OS) and multi-stage

approaches (ADP and HSS). While the improvement varies, on an average (across
data sets and other settings) there was a 20% improvement over GD, RGD and OS
and 9% improvement over HSS and ADP.

• BD provides the best trade off between run-time and solution quality. It can solve
the problems in quickly while achieving roughly the same solution quality as MSS.

6.1. Datasets

We conducted our experiments by taking the demand distribution from three real
world datasets of major taxi companies. The first dataset is the publicly available New
York Yellow Taxi Dataset [50], henceforth referred to as NYDataset. The names of the
other two real world datasets can not be revealed due to confidentiality agreements.
They are referred to as Dataset1 and Dataset2. These datasets contain the data of past
customer requests for taxis at different times of the day and for different days of the
week. From these datasets, we take the following fields:
• Pickup and Drop off Location (Latitude and Longitude coordinates): These locations

are mapped to the zones as mentioned in the Section 6.1.1.
• Pickup Time: This time is converted to the appropriate timestep based on the value of

∆. The pickup time hh : mm is mapped to the timestep/decision epoch dhh∗60+mm
∆ e.

For example, for ∆ = 5, 08:04 AM is mapped to the timestep d 8∗60+4
5 e = 97, i.e.,

all the requests between time 08:00 AM and 08:05 AM are mapped to the the time
08:05 AM.

The distance of a trip and the revenue earned from a trip are computed using the under-
lying model typically employed by the taxi companies (an initial base fare + a quantum
that accrues with the distance travelled/time taken). We describe it in the Section 6.2.
Since our approaches perform well on these three real world data sets, we also provide
the specially created scenarios where our approaches may not work as well. The details
of these specially created synthetic scenarios are described in the Section 6.5.

In the next subsection, we describe the zone creation process using the publicly
available NYDataset. The zone creation process is important because we perform match-
ing at the level of zones. The zone level matching ensures scalablility while providing
a good approximation.

6.1.1. Zone Creation
We employ past data of pickups and drop-offs to divide a city into zones. Using

past data helps in providing the right tradeoff between having few zones and the error
introduced due to consideration of zones. There are four key steps to the zone creation
process for all three data sets:
• We divide the entire city area into small grids (0.5 KM x 0.5 KM).
• We consider the minimum number of grids that make up most of the pickups and

drop-offs (> 90%). These are the first set of zones. This will ensure that the error is
negligible for most of the requests.
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Figure 4: Zone Creation

• We then add a minimum number of zones, so that 9% of the remaining pickups and
drop-offs are within 1 KM x 1 KM of a zone.

• We add a minimum number of zones, so that the remaining 1 % of the pickups and
drop-offs are within 2 KM x 2 KM of zone.

Figure 4 provides the spatial configuration of zones in case of New York city. All
the red grids represent zones. Green grids represent the areas that are within 1 KM x
1 KM of a zone and account for 9% of the pickups/drop-offs. Blue grids represent the
areas that are within 2 KM x 2 KM of a zone and account for 1% of past pickups/drop-
offs. We used the trip data for 6 months from Jan 2016-June 2016 (total 136830072
pickups/drop-offs) to create these zones. To assign zone to any new location, we check
the distance of the location from the centers of these created zones and assign the zone
with minimum distance. The percentage values can be changed depending on the need
and dataset, while ensuring that for majority of locations error remains negligible.

6.2. Experimental Settings

There are three different categories of settings that have an impact on the performance
of algorithms:

1. Inputs provided to all algorithms: These include:
• τ : It represents the maximum time within which the taxi should reach the pickup

point. We take the value of τ as 5 minutes, i.e., at any decision epoch a taxi can be
assigned to a request if and only if the time taken by the taxi to reach the request
origin zone is less than or equal to 5 minutes.
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• Revenue model: We employed the following model for experimental evaluation that
is a well accepted standard ([51]). The model calculates revenue as follows:

Cti,oj ,dj = B + R ∗ dist(oj , dj)−P ∗ (dist(i, oj) + dist(oj , dj)) ::: ∀t

where dist(oj , dj) is the distance between the centers of zones oj and dj . For differ-
ent cities, the values of B,R and P are different13

• Travel time between zones: For the experimental results, the time taken to travel
between zones14 is also same irrespective of the time of day and is calculated as

T (z, z′, t) =
dist(z, z′)

vtaxi
::: ∀t

where vtaxi is the speed of taxi which is taken as 40km per hour.
• Number of taxis (N 1

i ): The number of taxis used is dependent on the fleet size of the
taxi company. At the start of the experiment taxis in different zones are distributed
either uniformly if taxi locations are not observed (NYDataset and Dataset 1) or as
observed in the data (Dataset2). Based on the assignment obtained by algorithms
at any decision epoch availability of taxis at the next decision epoch is updated.
In the results section, we vary the number of taxis to show the performance of all
algorithms for different number of taxis.

• Number of zones (|Z|): We described the zone creation process in the Section 6.1.1.
Using our zone creation process we obtained 483 zones for the 2 confidential datasets
and 436 zones for the NYDataset. For a different city and dataset, the number of
zones will be different.

2. Parameters of algorithms: The parameters required by our algorithms (MSS and
BD) are:
• Decision epoch length (∆): This parameter determines how often, the algorithm

should be executed and assignment decisions are made. We identify the right value
of ∆ through experiments as described in results section.

• Look ahead timesteps (Q): The value of Q is taken such that ∆ ∗ (Q + 1) = 30
minutes, i.e., if ∆ is 1, Q is taken as 29 and if ∆ is 15, Q is taken as 1. We choose a
fix value of 30 minutes because more than 90% of the requests complete within 30
minutes with average travel time between 5-10 minutes. So 30 minutes provides a
good look ahead. But this value can be changed depending on the dataset.

• Number of samples (ξD): While computing an assignment at decision epoch t, our
approaches (MSS and BD) and existing multi-stage approaches (HSS and ADP) re-
quire samples of customer requests at decision epochs t + 1, t + 2, .., t + Q from
past data (at the same decision epoch on a weekday/weekend depending on whether
the decision epochs are on a weekday/weekend). We identify the right value for the

13For dataset1, dataset2, we use 3.8, 0.5 and 0.1 for B,R and P respectively. For NYDataset, we use 2.5,
2.5, 0.1 for B,R and P respectively.

14We can update it to more realistic values from data without impacting the overall results.

28



number of samples through experiments as described in results section.
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Figure 5: Comparison of Revenue earned and Number Of Requests served using different algorithms at
each decision epoch. |Z| = 483, |ξD| = 10,N 1

i = 2000 (a) (b) Dataset1 (c) (d) Dataset2

3. Evaluation settings: For each algorithm, once the assignment is computed at each
decision epoch, we evaluate the assignment on the realized requests (which are sam-
ples from the past data that are not considered while computing the assignment). The
objective for all the algorithms is to maximize revenue. To provide the right trade-off
between run-time and solution quality, we considered 3 iterations in BD. The evalua-
tion settings include the following :
• Number of decision epochs (M ): Typically transitions in the taxi demand happen

approximately every 3 hours (morning and evening peak hours, lunch), so we choose
the value of 2.5 hours, i.e., M = 2.5∗60

∆ . However, we did try other values for M
(lower and higher than 2.5 hrs) and the results were similar.

• Number of days and the time of evaluation: We performed experiments with requests
at various times of the day, 8:00 AM, 3:00 PM, 6:00 PM and on different days.
We evaluated the approaches by running them on 45 different days and taking the
average values over 45 days for Dataset1 and Dataset2. For NYDataset, we evaluated
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Figure 6: Comparison of Revenue earned and Number Of Requests served using different algorithms at
each decision epoch. |Z| = 436 , |ξD| = 10,N 1

i = 2000 (a), (b) NYDataset

the approaches on 15 weekdays between 4th April 2016-22nd April 2016.
We conducted experiments with all the combinations of settings and inputs mentioned
in this section. To avoid repeating similar results over and over again, we provide the
representative results.

6.3. Main Results

In this section, we compare the revenue and the number of requests served by all
seven algorithms. We also compare the run-time of all the approaches by using different
number of taxis.

We conducted experiments by considering the demand distributions from all the
datasets. We choose the best configuration for parameters of all algorithms (justifica-
tion provided in the next section). All approaches are executed for ∆ = 5. For our
approaches, we use 10 samples and the look ahead timesteps (Q) as 5. For HSS and
ADP as well, we use the number of samples as 10. For HSS similar to MSS, we use
the look ahead timesteps as 5. For ADP, we use the look ahead timesteps as 10. ADP
algorithm as described in the Appendix C involves solving an optimization problem
for each sample and for each time step in the planning horizon. As opposed to other
multi-stage approaches, ADP algorithm considers one sample at a time, therefore, we
use a higher value of Q for ADP. But it is not possible to run ADP algorithm for more
than 10 time steps for sufficient number of samples in real time. Moreover, we checked
on few instances by using all the M (30) time steps as planning horizon and did not
see any significant improvement in the performance of ADP algorithm. Therefore, we
report the results for ADP algorithm with a fixed value of Q as 10.
We first compare the revenue obtained by all the algorithms at each time step for 2000
taxis starting from 8AM. We have similar results while starting from 3:00 PM and 6:00
PM. Figure 5 and 6 shows the comparison of the total revenue obtained and the total
number of requests served by different algorithms at each decision epoch for all the
datasets. Here are the key observations:
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• For the first decision epoch, the value obtained by the myopic approaches is higher
than MSS and BD. This is because MSS and BD take sub-optimal decisions at the
current decision epoch to obtain high revenue over future decision epochs. After
initial decision epochs, MSS and BD starts outperforming other approaches.

• With respect to the revenue, on NYDataset, MSS and BD provided close to $37 im-
provement per taxi as compared to the myopic approaches and close to $22 improve-
ment per taxi as compared to ADP and HSS. For Dataset2, MSS and BD provided
nearly $41 improvement per taxi as compared to the myopic approaches and $26
improvement as compared to ADP and HSS. Similarly, on Dataset1, we get $8 im-
provement as compared to the myopic approaches and $4 improvement as compared
to ADP and HSS.

• With respect to the number of requests served, on NYDataset, MSS and BD serve
21381 additional requests as compared to the myopic approaches and they serve
9378 additional requests as compared to ADP and HSS. For Dataset2, MSS and BD
serve 24000 additional requests as compared to myopic approaches and it serves
additional 11000 requests as compared to ADP and HSS. Similarly, on Dataset1, we
serve 3000 additional requests as compared to the myopic approaches and 1400 ad-
ditional requests as compared to ADP and HSS. This is a significant result, because
in most cities at rush hours, the number of taxis is almost always lower than the
actual demand available.

• On NYDataset, ADP and HSS have identical results (requests served by HSS is
more but revenue is almost the same). On Dataset2, HSS slightly outperforms ADP
and on Dataset1 ADP outperforms HSS. Dataset1 has higher variance in requests as
compared to the other 2 datasets at 8AM. Therefore, for NYDataset and Dataset2,
ADP gets almost similar samples in each iteration but with Dataset1 it gets different
samples which could be the reason for better performance of ADP on Dataset1.

The reason for MSS and BD providing better results as compared to HSS is that
HSS works with larger regions at future stages, so MSS and BD have better approx-
imation of future as compared to HSS. One of the reasons for ADP not performing
as well as MSS is that the decision epoch at which the request completes depends on
the assigned server (as described in the Section 3) which breaks the markov property.
In addition, as described in Appendix C, possible assignment of the taxis from nearby
regions makes the value function non separable across zones, but ADP approxima-
tion assumes this separation. Due to these reasons, the value function approximation
updated using the dual variables of a relaxed linear program is not accurate.

The value function approximation used for ADP is linear. With piece-wise linear
value function approximation, the time taken to run each optimization increases, so it
is not possible to perform significant number of iterations using piece-wise linear value
function approximation. The results obtained using the piece-wise linear value function
approximation with smaller number of taxis are similar to the linear value function ap-
proximation. Therefore, we use linear value function approximation for reporting the
results.

Peak and Non-Peak Time: To evaluate the sensitivity of performance of algorithms
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with respect to the time of the day, we now compare the competitive ratio of algo-
rithms in the morning (8:00AM), evening (06:00PM) and afternoon (03:00PM) for all
datasets. For NYDataset, as shown in the next section, the distribution of requests re-
mains almost same throughout the day and the number of requests were low only at the
night time. Therefore, for NYDataset, we also compare the competitive ratio at 12AM.
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Figure 7: Comparison of Empirical Competitive Ratio of algorithms during Peak and Non Peak Time, |ξD|
= 10,(a) Dataset1N 1

i = 2000 (b) Dataset2N 1
i = As observed in data (c) NYDatasetN 1

i = 1000

For Dataset1, the average number of requests at each decision epoch is 700 at
08:00AM, 200 at 03:00PM and 350 at 06:00PM. We can observe in the Figure 7 that
at 03:00PM, when there are more taxis as compared to the number of requests, the gap
between the competitive ratio of MSS, BD and myopic approaches is less than 10%
but at 08:00AM and 06:00PM, on an average the gap between the competitive ratio
of MSS,BD and myopic approaches is more than 25%, the gap between MSS,BD and
ADP is nearly 12% and the gap with HSS is nearly 19%.

Similar results are observed on Dataset2. For Dataset2, the number of available
taxis is taken as observed in the data. The average number of requests at each decision
epoch is 2000 at 08:00AM, 1700 at 03:00PM and 1800 at 06:00PM. We can observe
that at 3PM the gap between the competitive ratio of MSS, BD and other approaches is
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less than 1% due to fewer requests and more available taxis (nearly 8000 taxis at 3PM
as compared to 5500 taxis at 08:00AM). At 08:00AM the gap is nearly 10% from all
the approaches.

For NYDataset, the average number of requests at each decision epoch is 1941.8 at
08:00AM, 1726.1 at 03:00PM, 2407.617 at 06:00PM and 712.88 at 12:00AM. Figure
7 shows the comparison of the competitive ratio of algorithms at different times. In
NYdataset, we did not observe the competitive ratio of myopic algorithm improve with
fixed number of taxis at different time but the competitive ratio of ADP improves at
12:00AM. This improvement is more likely due to variance in the samples provided.
As shown in the Section 6.4, NYDataset has low mean and high variance in the num-
ber of requests at night time. The gap between the competitive ratio of MSS, BD and
myopic approaches is more than 40% at all times. The maximum gap between MSS,
BD and ADP is 40% and minimum gap is 20%. The maximum gap between MSS, BD
and HSS is 12% and minimum gap is 7%.

Number Of Taxis: Finally, we also compare all the algorithms by experimenting with
different number of taxis (Figures 8 and 9). We observe that as the number of taxis
increase, the gap between MSS, BD and other approaches decreases. This is because
when more taxis are available, taxis will be free even after executing assignments at
the current decision epoch, so future demands can be met irrespective of the current
assignment. Furthermore, when there are significantly more taxis than the demand,
sophisticated matching approaches are not required.

We also compare the run-time of algorithms with different number of taxis. Figure
10 shows the run-time of MSS and BD with different number of taxis. We observed
that when the number of taxis are much less or taxis are available in excess, run-time
of MSS is lower as compared to the case when the number of taxis is comparable to
the available requests. For Dataset1, MSS has maximum run-time at 2000 taxis and
for the other 2 datasets it has maximum run-time for 5000 taxis. Though run-time
of MSS changes with the number of taxis, run-time of BD(P) remains almost same
irrespective of the number of taxis 15. Moreover we conducted our experiments on
academic systems, on commercial servers this will take much less time.

6.4. Justification for Values of Parameter Settings

In this section, we show the reason for using the ∆ value as 5 and the number of
samples as 10 in the previous section.
Decision epoch length (∆): We identify the appropriate value of ∆ which provides the
right trade-off between solution quality and run-time. The solution quality increases
with decreasing the value of ∆. This is because a server is assigned to only one request

15 Since, the reported run-time for BD is based on sequential solving of slaves, the actual run-time when
slaves are run in parallel on multiple cores is lower. We show the expected time which will be taken by BD,
if slaves are solved in parallel (denoted by BD(P) in the figure). We calculated this time by considering the
time taken to solve slaves in parallel as the maximum time taken by any slave in each iteration.
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Figure 8: Comparison of the revenue earned and the number of requests served using different algorithms.
NYDataset: In (a) and (b) |Z| = 436,|ξD| = 10
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Figure 9: Comparison of the revenue earned and the number of requests served using different algorithms.
(a), (b) Dataset1 and (c), (d) Dataset2. In (a), (b), (c) and (d) |Z| = 483,|ξD| = 10
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Figure 10: Run time comparison of our algorithms for different number of taxis(a) |Z| = 483,|ξD| = 10
Dataset1 (b) |Z| = 483,|ξD| = 10 Dataset2 (c) |Z| = 436,|ξD| = 10 NYDataset
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Figure 11: Revenue and the run-time comparison of the Offline algorithm on different datasets for different
decision epoch length.
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in each decision epoch (Section 5). Therefore, for large ∆ values, even if a server can
serve more than one request in ∆ duration, it will be serving only one request. To
observe the change in solution quality on decreasing the value of ∆, we compare the
objective value of OSTM over 2.5 hours for different value of ∆ on both datasets.

Figure 11 shows the comparison of total revenue earned and run-time of OSTM for
different ∆ values (in minutes) on all the datasets 16.

As mentioned in the Section 6.2, the value of Q is taken such that ∆ ∗ (Q+ 1) = 30
minutes, i.e., if ∆ is 1, Q is taken as 29 and if ∆ is 15, Q is taken as 1.

Figure 11a shows the total revenue obtained on executing OSTM. We observe that
on all the datasets, there is a major increase in revenue on decreasing the value of ∆
from 15 to 10 and 10 to 5. But the increase in revenue on decreasing the value of ∆
from 5 to 3 and 3 to 1 is comparatively less. Figure 11b shows the maximum time
taken to compute a single assignment with 1 sample of future demand. We observe
that the time taken to compute an assignment, drastically increases on decreasing the
value of ∆ from 3 to 1. This is due to the large increase in the number of constraints
in the optimization formulation. Even for ∆ = 3, the time taken to compute a single
assignment with one sample is 100 seconds on Dataset2.

As the time taken is high for ∆ < 5 and quality of solution at ∆ = 5 is comparable
to the solution quality at ∆ = 1, we take the value of ∆ as 5 for our experiments.

Number of samples (|ξD|): Our next set of experiments measure the performance of
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Figure 12: Mean and Deviation in the number of requests available at each hour for NYDataset

our approaches with respect to change in the number of samples. Figure 12a shows the
mean and deviation in the number of requests available at each hour over 15 week-
days in NYDataset. From the figure, we can observe that there is a high variance in
the number of requests at night between 10:00PM to 02:00AM, but during the day,

16The average number of requests in Dataset 2 and NYDataset is more than twice the average number of
requests in Dataset1 (nearly 60000 requests in Dataset2 and NYDataset as compared to 30000 requests in
Dataset1). Therefore, there is a significant difference between total revenue earned and time taken to compute
an assignment.
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the variance is low. Therefore, during the day, even with a single sample, we can ob-
tain good quality results. Due to this reason, to observe the effect of using different
number of samples for NYDataset, we provide the results at 12:00AM (as there is low
mean and high variance at 12:00AM). On the other hand, Dataset1 has high variance
in the number of requests in the morning at 8:00AM on weekday (minimum: 6000,
maximum: 60000 over 2.5 hours). Therefore, for Dataset1, we provide the results at
08:00AM. The average number of requests at each decision epoch is 700 for Dataset1
and 712.88 for NYDataset. The total number of taxis is set to 1000 for NYDataset and
2000 for Dataset1.
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Figure 13: Comparison of empirical competitive ratio of algorithms for different number of samples.
(a)Dataset 1: |Z| = 483,

∑
i∈Z N 1

i = 2000, (b) NYDataset : |Z| = 436,
∑
i∈Z N 1

i = 1000
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Figure 14: Comparison of run time of algorithms for different number of samples.(a)Dataset 1: |Z| = 483,∑
i∈Z N 1

i = 2000, (b) NYDataset : |Z| = 436,
∑
i∈Z N 1

i = 1000

Figure 13 provides the results for the average value of empirical competitive ratio
for Dataset1 and NYDataset. In Figure 13a and 13b, X-axis denotes the number of
samples considered while computing the assignment and Y-axis denotes the empirical
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competitive ratio (from Section 4.4). The key observations are as follows:
(1) The most significant result is that MSS and BD are able to achieve more than 88% of

the optimal revenue with 10 samples on Dataset1 and more than 95% on NYDataset.
Even though both datasets have high variance in the number of requests, Dataset1
has higher variance. Moreover, Dataset1 has more requests within the same pair of
zones which makes a single zone more prominent than the others. So in case of
Dataset1, the important zones for different samples are different and can be com-
pletely different from the test day. On the other hand, requests are more distributed
in NYDataset, therefore, NYDataset has higher empirical competitive ratio as com-
pared to the Dataset1.

(2) Even with 1 sample, on an average MSS and BD obtain 8̃4% of the optimal revenue
on the Dataset1 and more than 85% of the optimal revenue on NYDataset.

(3) With respect to the revenue, on Dataset1, on an average, MSS provides 1.5% addi-
tional improvement over BD, while on NYDataset, with higher number of samples,
MSS provides 1% improvement over BD.

(4) BD provides the right trade-off between run-time and solution quality. While MSS
provides high quality solutions (especially for Dataset1), it can take significantly
more time (up to 1500 seconds when making online decisions).

(5) BD(P) on an average takes 24 seconds with 10 samples to compute an assignment
for Dataset1 and 8̃3 seconds with 10 Samples for NYDataset.

On the other hand, there is very low variance over the requests on different days in
Dataset2 (minimum:56000 ,maximum:60000 over 2.5 hours). Therefore, the empiri-
cal competitive ratio is more than 95% even on taking only one sample and does not
improve much on adding more samples. The run-time results on Dataset2 are similar
to NYDataset. NYDataset and Dataset2 take more time to compute an assignment as
compared to Dataset1 because as discussed before Dataset1 has more requests between
same zone pairs while requests are more distributed in other 2 datasets. Therefore, the
number of zone pairs which have requests between them is much lower for Dataset1.
Due to this, the overall size of linear program is larger for other two datasets resulting
in higher run-time.

1 5 8 10 13 15

Number Of Samples

0

1000

2000

3000

4000

R
u

n
T

im
e

 (
in

 s
e

co
n

d
s)

MSS(∆ = 5, Q=5)
BD(∆ = 5, Q=5)
BD(P)(∆ = 5, Q=5)

RunTime Comparison

(a)

Figure 15: (a)Dataset 2: |Z| = 483,
∑
i∈Z N 1

i = 5000
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On all the datasets, MSS and BD provide high value of competitive ratio with very
few samples. One of the major reasons for this is that the samples need not be exactly
similar to the test data to provide a gain in the competitive ratio. As mentioned before,
a taxi can be assigned to a request if it can reach the pickup location of request within 5
(τ ) minutes and the cost of traveling to reach the request pickup location is negligible
as compared to the revenue obtained. Therefore, unless samples are drastically differ-
ent, they will contribute a lot in increasing the competitive ratio.

6.5. Synthetic Scenarios Where MSS and BD Do Not Improve Performance
To better understand the settings where our approaches work well and where it

does not, we also performed experiments on the synthetic datasets. We investigate the
following cases, where our approaches can potentially yield bad results as compared to
the myopic approaches:
1. Requests between zones generated using uniform, binomial and Poisson distribu-
tions: For this setting, we obtained similar results (as on the real world data sets) with
MSS and BD outperforming myopic approaches. On synthetic data sets with uniform
distribution, MSS and BD do not get the advantage of making taxis available in the
locations with more demand (based on samples) as requests are available in all the
zones. The reason behind MSS and BD still outperforming myopic approaches in this
scenario is the revenue model which rewards shorter trips over longer trips.
2. Revenue model with no bias for short trips (over long trips): As myopic approaches
consider the revenue for only the current decision epoch, they will assign taxis to a
trip having long distance. On the other hand, MSS and BD will prefer serving multiple
short distance trips. When we change the revenue model in equation (6.2) such that the
revenue is directly proportional to the distance, MSS and BD do not get the advantage
by serving multiple short distance trips. On synthetic dataset with uniform distribution
of requests and the modified revenue model, all algorithms have comparable value of
the competitive ratio, as shown in Figure 16.
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Figure 16: Revenue model with no bias for short trips: |Z| = 50,
∑
i∈Z N 1

i = 2000,
1
30

∑30
t=1Dt = 2507

3. High proportion of long distance trips with far apart zones: To simulate this sce-
nario, we had to create a specific setting that is hard to replicate in real world data sets.
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We took 5 zones and no request has an origin and destination in the same zone. The
time taken to travel between zones is taken such that the taxis need to be in exactly
the same zone to serve the requests. In the 5 zones considered, we take the minimum
time taken to travel between any pair of zones as 15 minutes and maximum time as 40
minutes. Out of 20 possible (5*4) zone pair combinations, time taken to travel between
6 zone pairs is taken as more than 30 minutes (revenue 12.5), between 6 other zone
pairs as 15 minutes (revenue 7.2), 4 other zone pair as 20 minutes (revenue 8.2) and
between remaining 4 zone pairs as 25 minutes (revenue 10.5). Requests are generated
such that the requests with travel time 15, 20 and 25 minutes are not available at all
decision epochs but the requests having travel time 30 minutes or more are available
at all decision epochs. The value of τ and ∆ is 5 minutes and the value of Q is 5, i.e.,
∆ ∗ (Q+ 1) = 30 minutes.

In these settings, MSS and BD can perform arbitrarily bad as compared to the
myopic approaches. The intuition is that MSS and BD can keep on taking sub-optimal
decision at the current decision epoch with an expectation of getting higher revenue
at the next decision epochs but on reaching the next decision epoch it again takes a
sub-optimal decision.

The competitive ratio of MSS and BD in this setting is constantly less than the
myopic approaches even after providing multiple samples as shown in Figure 17. The
reason is as MSS and BD are only looking at the next 30 minutes, they decide to first
serve a request with 15 minute travel time followed by a request having travel time
30 minutes or more. But on reaching the next decision epoch it ignores the request of
higher travel time even if there are no requests with 15-minute travel time available.
MSS and BD find it a better option to be idle for a couple of decision epochs in order
to wait for a 15 minute request so that it can serve that and follow it with a request
having travel time more than 30 minutes. This keeps on happening till the last decision
epoch. As a result, MSS and BD remain idle, waiting for a short trip and the myopic
approaches keep on serving the requests, resulting in higher revenue for them.
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Figure 17: High proportion of long distance trips with far apart zones: |Z| = 5,
∑
i∈Z N 1
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7. Conclusion

In this paper, we have presented a multi-stage stochastic formulation for online
assignment of servers to customers and a Benders Decomposition of the formulation
to deal with large numbers of future scenarios. We provide crucial theoretical results
that indicate the complexity of the problem and the worst case performance obtained
by greedy and multi-stage approaches. In addition, we have compared the assignment
computed by our algorithms against multiple existing myopic and multi-stage algo-
rithms (including an approach for solving MDPs online). We found that our algorithms
are able to provide a significant gain in performance over all the current best approaches
on three different taxi data sets. We also created synthetic scenarios and demonstrated
certain revenue models and zone configurations (which typically do not occur in real
taxi domains) where our approaches do not provide improvements.

In the future, we would like to extend this work to support queuing of requests and
multi-capacity servers to address the general pickup and delivery problems with time
windows. We are also exploring how anonymity and homogeneity (key ideas that are
exploited in this paper) can be used to improve the performance of online MMDPs.
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Appendix A. Two-Stage Formulation of Assignment Problem

In this section, we provide the two-stage formulation for the pure assignment prob-
lem in the Table A.10. In this formulation, the locations are not grouped in the zones
and each server and request is considered individually. Time is discretized into timesteps
of duration ∆. We provide the formulation for the offline problem. The formulation
does not provide a solution within 5 minutes even for 20 servers.

We use V to denote the set of servers and Wt to denote the set of requests at
timestep t. The setWt corresponds to the elementDt in our OSTM model as both rep-
resent the demand. But as each element of the set Dt corresponds to multiple requests
and set Wt corresponds to individual requests, for each element in Dt, there will be
multiple elements in the setWt.

xtvw denotes that the server v is assigned to the request w at time t. btvw denotes
the waiting time of the request w when it is served using server v at timestep t. atv
is the binary variable which is set to 1 if the server v is available at timestep t. Ctvw
provides the net revenue obtained on assigning the server v to the request w at time
t. The revenue for the timestep t + 1 depends on the updated location of the server
as shown in the constraint A.8. Constraint (A.2) ensures that the server is assigned to
atmost one request at each timestep and constraint (A.3) ensures that the request is
assigned to atmost one server. Constraint (A.4) ensures that the waiting time of any
request is less than τ . Constraint (A.5) computes the waiting time of request depending
on the updated position of server. Constraint (A.7) checks the availability time of server
depending on its updated position.

Tvw(v, w, t) denotes the time taken to travel from server’s initial location at t to the
pick up location of request w at timestep t. Tww(w′, t, w, t+ 1) denotes the time taken
to travel from the drop location of request w′ at t to the pickup location of request w at
t+ 1. Tw(w, t) denotes the travel time of request w at timestep t.

Similarly cvw(v, w, t) denotes the cost to travel from server’s initial location at t
to the pick up location of the request w at timestep t. cww(w′, t, w, t + 1) denotes the
cost to travel from the drop location of the request w′ at t to the pickup location of the
request w at t+ 1. rev(w, t) denotes the revenue of request w at time t.

Extending this formulation to multiple timesteps further increases the complexity.
Linearizing the product of bt+1

vw and xt+1
vw we can write, (M is a large constant)

45

http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
https://www.lta.gov.sg/content/ltaweb/en/public-transport/taxis/fares-and-payment-methods.html
https://www.lta.gov.sg/content/ltaweb/en/public-transport/taxis/fares-and-payment-methods.html
https://www.lta.gov.sg/content/ltaweb/en/public-transport/taxis/fares-and-payment-methods.html


max
∑
v

∑
w

2∑
t=1

C
t
vw ∗ x

t
vw (A.1)

∑
v

x
t
vw ≤ 1 ::: ∀w, t (A.2)

∑
w

x
t
vw ≤ 1 ::: ∀v, t (A.3)

∑
v

b
t
vw ∗ x

t
vw ≤ τ ::: ∀w, t (A.4)

b
t+1
vw = (1−

∑
w′

x
t
vw′ )[Tvw(v, w, t+ 1)] + (x

t
vw′ )[Tww(w

′
, t, w, t+ 1)] ::: ∀v, w (A.5)

x
t
vw ≤ a

t
v ::: ∀v, w, t (A.6)

a
t+1
v = 1 if

∑
w

x
t
vw[t+ Tvw(v, w, t)] + Tw(w, t)] + (1−

∑
w

x
t
vw) ∗ atv <= t+ 1 ::: ∀v

(A.7)

C
t+1
vw = (1−

∑
w′

x
t
vw′ )[rev(w, t+ 1)− cvw(v, w, t+ 1)]
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Table A.10: Two-Stage formulation for assignment problem

zt+1
vw = bt+1

vw ∗ xt+1
vw (A.9)

zt+1
vw ≤M ∗ xt+1

vw (A.10)

zt+1
vw ≤ bt+1

vw (A.11)

zt+1
vw ≤ bt+1

vw − (1− xt+1
vw ) ∗M) (A.12)

Similarly, we need to linearize the product of Ct+1
vw and xt+1

vw and the constraint (A.7).

Appendix B. Hybrid Multi-Stage Stochastic Optimization (HSS)

In this section, we provide the details and the formulation of the model used by
Powell et.al. [10]. This formulation solves the assignment problem at first stage and a
pure network flow approximation at the future stages. As for the truckload problem,
the typical value of time step is one day, therefore, even after having an assignment
problem at first stage, this formulation will be a pure network for the truckload assign-
ment using a single sample of future demand. As described in Sections 2.2 and 3, in
our case, due to smaller timesteps and specifically as the completion timestep of the
customer request depends on the server assigned, this formulation will not be a pure
network. But using this formulation for our case, allows us to measure the impact of
using more accurate information for future demands. As opposed to the formulation
and experimental evaluation in [10], we use multiple samples of future demand for
this approach.

Table B.11 presents the Hybrid Multi-Stage Stochastic optimization formulation
for our problem. As HSS considers pure assignment problem at the current timestep,
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we use V to denote the set of servers and W to denote the set of requests at current
timestep. The setW in this model and D1 in our model both represent current demand
but as each element of D1 corresponds to multiple requests and as the set W corre-
sponds to individual requests, for each element in D1, there will be multiple elements
in the set W . xvw denotes that a server v is assigned to the request w. We set xvw to
0 if the server v can not reach the pickup zone of the request w within τ minutes. u1

v

denotes that the server v is held at its initial zone. zt,koj ,dj denotes the number of servers

moving from the zone oj to the zone dj at time t in the sample k. yt,ki denotes the
number of servers held at the zone i at timestep t in sample k. We abuse the notation a
bit and also use δt,t

′

ij as a binary constant which is 1 if the server starting at the decision
epoch t from the zone i reaches zone j exactly at the decision epoch t′. We use ov to
denote the initial zone of server v and ow and dw to denote the origin and destination
zones of the request j.

HSS(V,Z,W, C, ξD, ξS , f, g, T, δ,Q):
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∑
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∑
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0 ≤ x1
vw ≤ 1 ::: ∀v ∈ V, w ∈ W (B.7)

0 ≤ u1
v ≤ 1 ::: ∀v ∈ V (B.8)

z
t,k
oj,dj

integer ::: ∀k ≤ |ξD|, j ∈ ξD,kt , ∀t > 1 (B.9)

y
t,k
i integer ::: ∀i ∈ Z, ∀k ≤ |ξD|, ∀t > 1 (B.10)

Table B.11: HSS

Constraint (B.2) ensures that either the server is assigned to atmost one request or it
is held at its initial position. Constraint (B.3) ensures that a request is assigned to atmost
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one server. Constraint (B.4) ensures that for any sample at any timestep, the number
of servers moving between zones is equal to the number of available requests between
those pair of zones. Constraint (B.5)-(B.6) ensure that the number of servers held at any
zone at any decision epoch is the difference between the number of available servers in
the zone and the number of assigned servers from the zone.

As at the future stages, servers get assigned to requests if and only if they are
present in the same zone, we use zones of large size (2KM) for HSS formulation at
future stages as opposed to 0.5KM for our formulation. We did some experiments with
0.5KM zones as well but results were worse than the results obtained with 2KM zone
size.

Appendix C. Approximate Dynamic Programming (ADP)

In this section, we provide the Approximate Dynamic Programming formulation
for our problem of matching servers with the customer demand. The modeling is sim-
ilar to the stochastic dynamic resource allocation formulation presented by Godfrey
et.al. [32] for multi-timestep travel time. The modeling uses the language of dynamic
resource management where the servers are resources and the customers are tasks. We
now describe the different dimensions of the model We define resources (servers) using
the following vector

At = the total number of servers that we know about at time t.
Att′ = the total number of servers that we know about at time t but will become

available at time t′, with Aitt′ denoting the number of servers in the zone i 17.
Dt = the customer demand at time t where each element j of Dt has attributes

origin zone (oj), destination zone (dj) and the number of requests between the origin
and destination zone denoted by Rj . As exact demand is known only for the current
time step, Dt = φ, t > 1.

Let ξDt represent the new demand arriving in time step t, where ξD,kt representing
the kth sample or scenario.

Dt,+ = total customer demand at time t including the new customer demand that
first become available in time step t. Therefore, while solving for sample k, Dt,+ in-
cludes ξD,kt .

Therefore, the system state is given by

St = (At, Dt,+)

xtij are the decision variables denoting the number of servers assigned to the de-
mand element j at time t. We use Q to denote the planning timesteps or look ahead
timesteps. yti are the intermediate variables denoting the number of servers in the zone
i at time t.

Therefore, the dynamic programming recursion is given by

17We can relate this with the variables in OLSTM definition , if t represent current time step thenAitt′ =
Ni + ξS,t

′

i

48



Vt(St) = E
[

maxxt,yt gt(xt, yt) + Vt+1(St+1)|St
]

where gt(xt, yt) denotes the
single step reward/objective function value

We then drop the expectation and solve for a single sample at a time. Vt(St, ξ
D,k
t ) =[

maxxt(ξD,kt ),yt(ξ
D,k
t ) gt(xt(ξ

D,k
t ), yt(ξ

D,k
t ) + Vt+1(St+1(ξD,kt )

]
Appendix C.1. Value Function Approximation

The value function defined above is replaced by a suitable approximation. In gen-
eral, the value function approximation is defined in terms of resources and it works well
when the tasks should be served as soon as possible and in case the tasks are not served
they will not be available at the next time step. This holds true for our case where if
the demand is unserved, it is removed from the system. Therefore, the value function
approximation can be written as

Vt(At, ξ
D,k
t ) =

[
maxxt(ξD,kt ),yt(ξ

D,k
t ) gt(xt(ξ

D,k
t ), yt(ξ

D,k
t ) + Vt+1(At+1(ξD,kt )

]
The problem is solved by executing a forward pass through time, determining the set
of decisions for a single sample at a time. As we are solving for a single sample at a
time, we can drop the samples symbol from the value function.

Godfrey et.al. [32] proposed a separable approximation, for the multi-timestep
travel time, of the form

Vt(At) =
∑
i∈Z

∑Q
t′=1

[
Vt,t+t′(At,t+t′)

]
As the travel times span multiple timesteps, some servers are next available for as-

signment at time t + 1, some at time t + 2 and so on. The function Vt,t+t′(At,t+t′)
estimates the expected value of only those servers which are next available for assign-
ment at time t + t′. After taking the sum over all possible travel times and all zones,
we get the estimated future contribution of all the servers.

Here, we would like to highlight that in our case, as the servers can be assigned
from nearby zones, the value function may not remain separable across zones
as the value of having a extra resource in zone i will depend on the number of
resources in nearby zones.

But it is still possible to assume the separation and apply these approximations
for our problem. Linear and piecewise linear value function approximations are typi-
cally used to solve these problems as the subproblem has network structure but as we
show in the following subsections, in our case the linear and piecewise value function
approximation do not have a network subproblem.

Appendix C.1.1. Linear Value Function Approximation
Linear value function approximation generally works well when value of function

is linear in terms of the number of resources or the number of resources in each state can
be either 0 or 1. But even when this is not the case, sometimes linear approximations
can work reasonably well. Vt(At) =

∑
i∈Z

∑Q
t′=1

[
Vi,t,t+t′(Ai,t,t+t′)

]
where each

of Vi,t,t+t′(Ai,t,t+t′) is given by vki,t,t+t′ ∗ Ai,t,t+t′ where vki,t,t+t′ is the slope of the
approximation at kth iteration.

The formulation which is solved at each time step for each sample is provided in
the Table C.12.
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i∈Z

∑
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i = Ait′t +Aitt −

∑
j

xtij +
∑
m

∑
j,dj=i

xtmj ∗ δ
t,t′

mj ::: ∀i, t′ > t (C.4)

yt
′

i = Ait′t +
∑
m

∑
j,dj=i

xtmj ∗ δ
t,t′

mj ::: ∀i, t′ > t+ 1 (C.5)

xtij integer ::: ∀i, j (C.6)

yt
′

i′ integer ::: ∀i′, t′ > t (C.7)

Table C.12: Formulation using the Linear value function approximation

As we can see, the formulation does not have a network structure due to the pres-
ence of binary constants δ in equations (C.4) and (C.5), i.e., the Markov property is
broken.

Updating the value function
The slopes are updated in each forward simulation using the standard update equa-

tion as follows

V ki,t,t+t′ = (1− αk−1) ∗ V k−1
i,t,t+t′ + αk−1 ∗ πi,t,t+t′

where πi,t,t+t′ are the dual variable corresponding to equations C.4 and C.5. We use
the dual values obtained after solving the linear relaxation. αk−1 is the step size. We
use the stepsize as 2

4+k as mentioned in [32]. For the multi-timestep travel time we
perform adjustment to dual values using dual next as proposed in [32].

The complete algorithm is presented in the Algorithm 1.

Appendix C.1.2. Piecewise Linear Value Function Approximation
When we need to estimate the value of having a quantity of some resource and

the function is piecewise linear, i.e., the slopes of the function are monotonically in-
creasing or decreasing, piecewise linear value function approximations are used. This
is more suitable approximation for the problem of interest in this paper as the value
of function increases linearly on having more resources but after reaching a threshold
(when the number of servers is sufficient to serve the demand), the value remains con-
stant. Therefore, the slope of value function is monotonic decreasing, i.e., we have a
piecewise linear concave function. Let |N | denote the total number of servers in the
system, then value function approximation is given by
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Algorithm 1: ADPLinear()
1: Initialize: Set V + i, t, t+ t′, ∀t′ = 0, 1, .., Q,∀i,∀t
2: Forward Simulation:
3: for each sample s do
4: for t = 0, 1, .., Q− 1 do
5: Solve the optimization in the Table C.12
6: Store dual vectors πt,t+t′ , ∀t′
7: for t = 0, 1, .., Q− 1 do
8: for t′ = 1, .., Q do
9: Compute adjusted marginal contribution πi,t,t′ using DualNext.

10: Update Vi,t+1,t′ = (1− αn−1) ∗ Vt,n−1i′,t′ + αn−1 ∗ pit,ni′,t′

Vt(At) =
∑
i∈Z

∑Q
t′=1

∑|N |
r=1

[
vri,t,t+t′(Ai,t,t+t′)

]
where each of vri,t,t+t′(Ai,t,t+t′)

is given by v̂ri,t,t+t′ ∗ Ai,t,t+t′ where v̂ri,t,t+t′ is the slope of the piecewise component
r.

The formulation which is solved at each time step for each sample is provided in
the Table C.13. As the slopes (v) are monotonic, it ensures that the right values are
assigned to the y variables.

As we can see, the formulation does not have a network structure due to the pres-
ence of binary constants δ in the equations (C.11) and (C.12), i.e., the Markov property
is broken.

Due to the presence of large number of servers (|N | varies from 1000 to 8000
in our experiments) and the need to execute the formulation multiple times (multiple
timesteps and multiple samples), it is not possible to execute this approximation in
real time. We also tried using the alternate formulation which defines one variable
for each component of the piecewise approximation instead of having the number of
variables equal to the number of servers but as we need the dual values to update the
value function approximation, we need to solve the linear relaxation of the formulation.
The linear relaxation of this modified formulation provides worse result than the linear
approximation presented previously.

Updating the value function
We use the CAVE algorithm used by Godfrey et.al [32] to preserve the concavity

after the update of the value function using the piece wise value function approxima-
tions.

But in our case, as the formulation is not pure network due to the presence of binary
constants δ in constraints (C.11) and (C.12), we need to solve the optimization multiple
times to compute the left and right hand side dual values and this can not be done
within the online time constraints. Similarly re-optimizations are needed to compute
the numerical derivatives. Therefore, we use the dual values for the constraints obtained
after solving the linear relaxation of the optimization problem in the Table C.13.

The complete algorithm is presented in the Algorithm 2.
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Algorithm 2: ADPPiecewise()
1: Initialize: Set v0i,t,t+t′ = 0 and u0

j,t,t+t′ = 0 as the piecewise-linear approximation for
Vi,t,t+t′ , ∀t′ = 0, 1, .., Q,∀i,∀t, where vki,t,t+t′ denotes the slope of the component k and
(uki,t,t+t′ , u

k+1
i,t,t+t′ ) provides the range in which component k is active.

2: Forward Simulation:
3: for sample s do
4: for t = 0, 1, .., Q− 1 do
5: Solve the optimization in the Table C.13
6: Store dual vectors πi,t,t′ , ∀i, t′
7: Update value function using CAVE
8: for t = 0, 1, .., Q− 1 do
9: for t′ = 1, .., Q do

10: Compute the adjusted marginal contribution πi,t,t′ using DualNext.
11: Update Vi,t+1,t′ = UCAV E(Vi,t+1,t′ , πi,t,t′ , Ai,t+1,t′)

Appendix D. Complete Proofs of Propositions

Appendix D.1. Proof of Proposition 1

Proposition 1: If ∀ j, i, i′, t, t′ δt,t
′

ij = δt,t
′

i′j , then the OSTM is reducible to a min cost
flow problem.
Proof: Min cost flow optimization problems are polynomial time solvable, as they con-
sider deterministic unconditional flows. For the case when each request completes at a
fixed decision epoch irrespective of the server assigned to it, we show that the OSTM
problem also has deterministic unconditional flows and hence the optimization model
for OSTM is equivalent to the min cost flow optimization model. We first describe the
network corresponding to the OSTM problem.
Nodes: Nodes of the network represent the server zones and requests. Formally, we
create a node for each element in the set Z at each decision epoch. A node is also
created for each element in Dt,∀t. We also create a source node S and a sink node T .
Therefore, the maximum number of nodes in the network will be (|Z|+ (|Z| ∗ |Z|)) ·
M + 2.
Edges: Intuitively, we have edges to indicate the assignment (server zone to a request)
and movement (origin zone to the destination zone). Specifically, we have the following
edges in the network.
• An edge is created between a node corresponding to the zone i at the decision epoch
t and a node for the element j ofDt if oj ∈ f(i, t). The capacity of the edge is equal
to Rtj and the cost of the edge is −Cti,oj ,dj . The flow on these edges is given by xtij .

• An edge is created between the element j of Dt and the node corresponding to the
zone i at decision epoch t′ (t′ > t), if dj = i and δt,t

′

j = 1 (∀ j, i, i′, t, t′ δt,t
′

ij = δt,t
′

i′j ,

therefore we define δt,t
′

j = δt,t
′

ij ∀i, j, t, t′). The capacity of the edge is Rtj and the
cost is 0. We denote the flow on these edges by ytj .

• An edge is created between the node corresponding to the zone i at decision epoch
t and the node corresponding to the zone i at decision epoch t + 1 to have the flow
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max
∑
i∈Z

∑
j∈Dt

Ctij ∗ xtij +

k=|N |∑
k=0

Q∑
t′=t+1

vki,t+1,t′ ∗ y
t′,k
i (C.8)

∑
i

xtij ≤ Rtj ::: ∀j ∈ Dt,+ (C.9)∑
j

xtij ≤ Aitt ::: ∀i, t (C.10)

∑
k

yt+1,k
i = Ait′t +Aitt −

∑
j

xtij +
∑
m

∑
j,dj=i

xtmj ∗ δ
t,t′

mj ::: ∀i, t′ > t (C.11)

∑
k

yt
′,k
i = Ait′t +

∑
m

∑
j,dj=i

xtmj ∗ δ
t,t′

mj ::: ∀i, t′ > t+ 1 (C.12)

xtij integer ::: ∀i, j (C.13)

yt
′

i′ binary ::: ∀i′, t′ > t (C.14)

Table C.13: Formulation using Piecewise Linear value function approximation

of unassigned servers, i.e., to ensure that the unassigned servers from the zone i at
decision epoch t remain in the same zone at next decision epoch. The capacity of
this edge is equal to

∑
iNi and the cost is 0. The flow on these edges is denoted by

wti .
• From source node S, we create an edge to all the zone nodes at the decision epoch

1. The capacity of edge between the source node S and the zone i node is Ni (the
number of initial servers in zone i) and the cost is 0.

• If the requests present in the element j of Dt,∀t complete at a decision epoch > M ,
then we create an edge between the element j of Dt to the sink T . The capacity of
the edge is Rtj and the cost is 0.

• We also create edges from the zone nodes at decision epoch M (last decision epoch)
to the sink node T . The capacity of the edge is

∑
iNi and the cost is 0.

Given this network, we can view the similarity of the two optimization models in
Table D.14. The transformation uses slack variables (wti) and the intermediate variables
(ytj) to convert the original OSTM constraints into the flow and capacity constraints
present in the min cost flow model. As the min cost flow is polynomial time solvable
and gives integral flow values for the integer capacities, we can solve the OSTM also
in polynomial time to get integer solutions. �

Example 3. The example network with three zones and M=3 is shown in the Figure
D.18. S and T denote the source and sink node. Circular nodes represent the server
zone nodes and rectangular nodes represent the request nodes between zones. Requests
between the zones Z2 and Z3 at decision epoch 1 complete at decision epoch 3. Re-
quests between the zones Z1 and Z3 complete at decision epoch 4 and as M=3, they
are connected to sink node T .N denotes the total number of servers available initially,
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OSTM(Z,D,N , C, f, g, T, δ,M): MinCostFlow: G(V,E):
Objective

min
M∑
t=1

∑
i∈Z

∑
j∈Dt,

oj∈g(i,t)

−1 ∗ Cti,oj ,dj ∗ x
t
ij

+
M∑
t=1

∑
i∈Z

w
t
i ∗ 0 +

M∑
t=1

∑
j∈Dt

y
t
j ∗ 0 (D.1)

min
∑

(u,v)∈E

cuv ∗ fuv (D.2)

Flow Constraints

∑
j∈D1,

oj∈g(i,1)

x
1
ij + w

1
i = Ni ::: ∀i (D.3)

y
t
j −

∑
i∈f(oj,t)

x
t
ij = 0 ::: ∀t, j ∈ Dt (D.4)

∑
j∈Dt,

oj∈g(i,t)

x
t
ij + w

t
i − w

t−1
i

−
t−1∑
t′=1

∑
j∈Dt

′
,

dj=i

δ
t′,t
j ∗ yt

′
j = 0 ::: ∀i, t > 1

(D.5)

− 1 ∗
∑
i∈Z

w
M
i +

M∑
t′=1

∑
j∈Dt

′
,

dj=i

δ
t′,M+1
j ∗ yt

′
j

= −1 ∗
∑
i∈Z

Ni (D.6)

∑
k|(j,k)∈E

fjk −
∑

i|(i,j)∈E

fij = bj ::: ∀j ∈ V

(D.7)

Capacity Constraints

0 ≤ ytj ≤ R
t
j ::: ∀t, j ∈ Dt (D.8)

0 ≤ xtij ≤ R
t
j ::: ∀i, t, j ∈ Dt (D.9)

0 ≤ wti ≤
∑
i∈Z

Ni ::: ∀i, t (D.10)

0 ≤ fij ≤ uij ::: ∀(i, j) ∈ E (D.11)

Table D.14: MinCost Flow and OSTM
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i.e., N = N1 +N2 +N3. Each arc contains 2 values with the first value representing
capacity and the second value representing the cost.
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Figure D.18: Example min cost flow network for OSTM

In general, depending on the server assigned, a request can have a maximum of d τ∆e+
1 different completion decision epochs. Therefore, in the network constructed in the
Proposition 1, we will have edges between the decision epoch t request nodes to the
decision epoch t′, t′+1, .., t′+d τ∆e zone nodes with the flow on these edges conditioned
to be equal to the flow on the edges from the server node to request nodes.

In the example shown in the Figure D.18, suppose if the Z2 server is assigned to
the request between zones Z2 and Z3, then the request completes at decision epoch 3
and if the Z1 server is assigned to the request between zones Z2 and Z3, the request
will complete at decision epoch 4. The modified network is shown in Figure D.19.
Now the node Z2, Z3 at decision epoch 1 will have the capacity R1

23 with the condition
that flow on 2 green edges should be equal and flow on 2 orange edges should be equal.
Proposition 2 shows that in the above case where there are conditional flows, the OSTM
is NP-hard.

Appendix D.2. Proof of Proposition 2

Proposition 2: If ∃j, i, i′, t, t′ s.t. δt,t
′

ij 6= δt,t
′

i′j , then the OSTM is NP-hard.
Proof: To show that the OSTM is NP-hard in general case, we reduce the well known
3-SAT problem to OSTM. We construct an instance of the OSTM for any arbitrary
instance of 3-SAT with L clauses and V variables. We show that we obtain the optimal
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Figure D.19: Modified Example flow network for OSTM

value for the OSTM if and only if there exists an assignment to variables in 3-SAT
formula such that all the clauses in 3-SAT will evaluate to true.

For any arbitrary instance of 3-SAT with L clauses and V variables, we construct
an instance of OSTM as follows:
• We create an OSTM problem instance with 4L+ 1 decision epochs, i.e., M=4L+ 1.

At first decision epoch, we create 2V requests. At remaining 4L decision epochs, we
create one request each.

• We create 2V +1 zones, denoted by Z0 and Zi, Z
′

i , i <= V . So the set of zones
Z = {Z0, Zi, Z

′

i , i <= V }.
• Initially zones Zi have one server each and zones Z0 and Z

′

i have zero servers.
• We create 2V requests at first decision epoch. Each zone Zi is the origin zone of two

requests with one request having destination inZi and one request having destination
in Z

′

i . Requests having origin in Zi at decision epoch 1, can only be assigned server
from the zone Zi. Therefore, D1 = {< Zi, Zi, 1 >,< Zi, Z

′

i , 1 >} and f(Zi, 1) =
{Zi}. All the requests at the first decision epoch have unit revenue.

• If zone i server is assigned to the request between zone pairs < Zi, Zi > then the
variable xi is true else if it is assigned to the request between zone pairs < Zi, Z

′

i >
then xi is false. Requests served at decision epoch 1 determines the value of variables
xi. Therefore, at second decision epoch, server will be available in zone Zi if xi is
true, and will be available in the zone Z

′

i if xi is false.
• If there are L clauses, we create L requests with request corresponding to kth clause
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at decision epoch 4k − 2. Each of these requests have destination in the zone Z0.
The origin zone of these requests is the zone corresponding to the first literal of the
kth clause.
In addition, if the kth clause has literal xi then the zone Zi server can be assigned
to the request at decision epoch 4k − 2 and if the kth clause has literal ¬xi, then
the zone Z

′

i can be assigned to the request. On the other hand, if the kth clause
does not contain literal xi then zone Zi server can not be assigned to the request at
decision epoch 4k−2. In short, request at the decision epoch 4k−2 can be assigned
server only from 3 zones which correspond to the literals present in the kth clause.
Therefore, the request at decision epoch 4k−2 will have atleast one server available
if clause evaluates to true, i.e., if atleast one of the literals has true value.
On assigning a server from the zone corresponding to the first literal, request com-
pletes at decision epoch 4k − 1 earning revenue 1, on assigning a server from the
zone corresponding to second literal, request completes at decision epoch 4k earning
revenue 2 and on assigning a server from the zone corresponding to the third literal,
request completes at decision epoch 4k + 1 earning revenue 3.

• At decision epoch 4k − 1, a request is present between zone Z0 and the zone corre-
sponding to first literal of kth clause with revenue 3. At decision epoch 4k, a request
is present between zoneZ0 and the zone corresponding to second literal of kth clause
with revenue 2. Similarly, at the decision epoch 4k+ 1, a request is present between
zones Z0 and the zone corresponding to the third literal of kth clause with revenue
1.
The requests at decision epoch 4k − 1, 4k and 4k + 1 can be assigned a server only
from zone Z0. The server will be available in zone Z0 only if the request at decision
epoch 4k − 2 is served. As there is only one request available at the decision epoch
4k − 2, maximum one of these three requests can be served. The maximum revenue
which can be earned by serving the requests between decision epochs 4k − 2 to
4k + 1 is 4.
After serving the request at decision epoch 4k−2 and one of the requests at decision
epochs 4k− 1, 4k or 4k+ 1 such that total revenue is 4, the availability of servers in
the zones at decision epoch 4k+2 will be same as decision epoch 4k−2. Therefore,
next clause will be evaluated for the same assignment of variables.

We now show that there is an assignment of values to the variables in the 3-SAT
instance so that the formula evaluates to true if and only if there exists a solution to the
OSTM problem with objective value V + 4L.

The “if” direction: Suppose there exists a solution with the objective value V +4L.
As maximum revenue which can be earned by serving the requests between decision
epochs 4k−2 and 4k+1 is 4 and the maximum revenue earned at first decision epoch is
V , it means that V requests are assigned a server at first decision epoch earning a total
revenue V and one request is served at each of the decision epochs 4k − 2,∀k = 1..L
and one request is served from every three decision epochs 4k − 1, 4k and 4k + 1
earning a total revenue of 4L. The variable xi is set to true if at first decision epoch
zone Zi server is assigned to the request having destination in zone Zi otherwise it is
set to false.

This will be a solution to 3-SAT instance as all the request at decision epoch 4k−2
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are served (i.e., all clauses are true) and as the revenue earned between decision epochs
4k − 2 and 4k + 1 is 4, at decision epoch 4k + 2 the servers availability is same as at
decision epoch 2.

So if there is a solution to the OSTM problem, we can find an assignment for 3-SAT
instance.

The “only if” direction: Suppose there is an assignment of values to the variables
such that the 3-SAT formula evaluates to true. So at decision epoch 1, if xi is true, we
assign Zi server to request having destination in zone Zi otherwise it is assigned to the
request having destination in zone Z

′

i . Therefore, revenue earned at decision epoch 1
will be V . Now, as the 3-SAT formula evaluates to true, at decision epoch 2, we will
have atleast one server available to serve the request. If the first literal of the first clause
is true we assign it to request at decision epoch 2 and serve the request at decision
epoch 3 earning a revenue of 4. If first literal is false but second literal is true, then
we assign it to request at decision epoch 2 and serve the request at decision epoch 4
earning a revenue of 4. If first and second literal are false but the third literal is true
then we assign it to request at decision epoch 2 and serve the request at decision epoch
5 earning a revenue of 4. Therefore we can serve request at decision epoch 2 and one of
the requests at decision epoch 3, 4 or 5 and earn a total revenue of 4. At decision epoch
6 the servers, the availability of servers will be same as at decision epoch 2. As all the
clauses of 3-SAT evaluate to true, the second clause will also be true and at decision
epoch 6 we will have atleast one server available to serve the request. Therefore, for
each clause in 3-SAT, we will serve 2 requests earning a revenue of 4 resulting in
objective value of the OSTM to be V + 4L �.

Example 4. We show the graphical representation in the Figure D.20 for an example
3-SAT clause (x1∨x2∨x3)∧ (x1∨¬x2∨¬x3). Initially, there is one server available
in zone Z1, Z2 and Z3 denoted by flow of 1 from the source S. At each decision epoch,
the circular nodes represent the server zone nodes and rectangular nodes represent the
request nodes with vertex capacity as the number of requests between the zone pairs.
The edge between the server node and the request node at a decision epoch represent
that server can be assigned to the request. The revenue obtained on assigning a server
to the request is marked on the edge. The value of flow on the edge will represent
the number of zone servers assigned to request. At first decision epoch, depending on
the assignment of server to the requests, the value of x1, x2, x3 will be 1 or 0 (true
or false). At second decision epoch, the request node has edges from Z1, Z2 and Z3.
That is the server will be assigned to the request if one of these zones has a server
available. Also as the capacity of node is 1, only one of the servers from these zones
will be assigned a request. If server of Z1 is assigned to the request at decision epoch 2,
the black edges represent the movement of server. After serving the request at decision
epoch 3, the server will become available in the zone Z1 again. Similarly green edges
show the movement of server if server from zone Z2 is assigned and orange edges
show the movement of server, if server from zone Z3 is assigned. Unassigned servers
at decision epoch 2, will remain in the same zones and their movement is represented
through dotted lines in the graph. At decision epoch 6, the server distribution in the
zones will be same as decision epoch 2 as the servers which moved between decision
epoch 2 and 6 came back into the same zone at decision epoch 6.
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Figure D.20: Example clause - (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3)
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Appendix D.3. Proof of Proposition 3

Proposition 3: Solving TSS for more than one sample is an NP-hard problem irrespec-
tive of the δ values.
Proof: To show that solving TSS for more than one sample is NP-hard, we reduce the
3-SAT problem to TSS. We construct an instance of TSS for any arbitrary instance of
3-SAT with L clauses and V variables. We show that we obtain the optimal value of
V +1 for TSS if and only if there exists an assignment of variables such that the 3-SAT
clause evaluates to true.

Each clause of 3-SAT corresponds to one sample in TSS. Each sample has one
request, i.e., if the clause evaluates to true, request in the sample is served by a server
else it will not be served. The first stage requests are created so that they consider
all possible (true/false) values for the variables. Intuitively, the first stage decides the
assignment of variables present in clauses and the second stage evaluates the clauses
for those variable assignments.
The detailed steps are as follows:
• If there are V variables L clauses we create 2V +L zones, denoted by {Zi, Z

′

i , i <=
V } and {Zsk, k = 1, 2, ..., L}.

• Initially zones Zi have one server each and other zones have zero servers.
• We create 2V requests at the first stage. Each zone Zi is the origin zone of two

requests with one request having destination inZi and one request having destination
in Z

′

i . Requests having origin in zone Zi can only be assigned servers from zones
Zi. Therefore, D1 = {< Zi, Zi, 1 >,< Zi, Z

′

i , 1 > i <= V }, f(Zi, 1) = {Zi}.
All the requests have unit revenue.

• If the zone Zi server is assigned to the request having destination in zone Zi then the
variable xi is true else if it is assigned to the request having destination in the zone
Z
′

i then xi is false. Requests served at the first decision epoch determine the value of
variables xi. Therefore, at the second stage, server will be available in the zone Zi if
xi is true, and will be available in zone Z

′

i if xi is false.
• If there are n clauses, we create n requests (one request in each sample). |ξD| = L

and ξD,k2 has one element. Request in kth sample has origin in the zone Zsk and
destination in Z1.ξD,k2 = {< Zsk, Z1, 1 >. All requests have unit revenue.
• If the kth clause has literal xi then zone Zi server can be assigned to the request in

sample k, and if the kth clause has literal ¬xi, then zone Z
′

i can be assigned to the
request in sample k. On the other hand, if the kth clause does not contain literal xi
then zone Zi server can not be assigned to the request in sample k. In short, request
in kth sample can be assigned server only from 3 zones which correspond to literals
present in kth clause.
• Now, the request in sample k will have atleast one server available if clause evaluates

to true, i.e., if one of the literals has true value.
We now show that there is an assignment of values to the variables in the 3-SAT

instance so that the formula evaluates to true if and only if there exists a solution to
TSS with objective value V + 1.
The “if” direction: Suppose there exists a TSS solution with the objective value V +1,
it means that V requests are assigned a server at the first stage and in all the L samples
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requests are assigned a server. The variable xi is set to true if at the first stage zone
Zi server is assigned to the request having destination in zone Zi otherwise it is set to
false. This will be a solution to the 3-SAT instance as requests in all the samples are
served so atleast one of the literals in each clause is set to true. So if there is a solution
to TSS instance, we can find an assignment for 3-SAT instance.
The “only if” direction: Suppose there is an assignment of values to the variables such
that the 3-SAT formula evaluates to true. So if xi is true, we assign Zi server to request
having destination in zone Zi otherwise it is assigned to the request having destination
in zone Z

′

i . Now, in each sample for each request, we will have atleast one server
available so we can serve all the L requests at the second stage. Therefore objective
value of TSS will be V + 1

L · L = V + 1. �

Appendix D.4. Proof of Proposition 4

Proposition 4 In OLSTM without sample information and adversarial behavior from
environment, when maximizing the number of requests satisfied for a fixed number of
servers N , the competitive ratio, c for any deterministic b-stage algorithm (i.e., with
information available up to the bth decision epoch) in a M-decision epoch (M ≥ b)
problem is

c ≤ 1

M − b+ 1

Proof. Before we describe the key elements of the proof, we first provide the key
terms that will be used in this proof:

• ALG denotes the value of the best deterministic b-stage algorithm over M deci-
sion epochs.

• OPT denotes the value obtained by an M-Stage optimal algorithm over M deci-
sion epochs.

• N is the number of servers available.

• Let OPTb denote the value of optimal solution for first b decision epochs (i.e.,
the maximum number of requests which can be served in first b decision epochs).

In order to show the upper bound on competitive ratio, we will consider different
cases on values that can be taken by o. Since we are computing competitive ratio (least
value of ALG(I)

OPT (I) ), we identify the least value of the numerator and the highest value of
the denominator.

(1) OPTb ≥ N , i.e., the number of requests served in the first b decision epochs is
greater than N

As ALG denotes the number of requests served by the best deterministic b-stage
algorithm over M decision epochs. Therefore, at the very least, it can obtain the
optimal solution for b decision epochs and hence:

ALG ≥ OPTb
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Since OPT is the value obtained by an M-stage optimal algorithm, it can potentially
serve N requests for every one of the remaining (M − b) time steps. Therefore,

OPT ≤ (M − b) ∗N +OPTb

Hence, we have:

c ≤
( OPTb
OPTb +N ∗ (M − b)

) =
( 1

1 + (M−b)
OPTb
N

)

The above expression will be minimum when OPTb
N is minimum. As OPTb ≥ N ,

the minimum value of OPTbN is 1. Therefore,

c ≤ 1

M − b+ 1

(2) OPTb < N , i.e., the number of requests served in first b decision epochs is lower
than N

As the number of requests served in first b decision epochs is lower than N , there
will be some servers which did not move from their initial position. So if optimal
algorithm uses these servers to serve requests, deterministic algorithm can also serve
requests using them, As the minimum value of ALG and OPT is OPTb, we take
ALG = OPTb + x and OPT = OPTb + y. Assume the competitive ratio in this
case is better than 1

1+M−b . Therefore,

OPTb + x

OPTb + y
<

1

1 +M − b
(D.12)

=⇒ (OPTb + x) ∗ (M − b) +OPTb + x < OPTb + y (D.13)
=⇒ y > OPTb ∗ (M − b) + x ∗ (M − b+ 1) (D.14)

As the maximum number of requests served in remaining M − b decision epochs
is N ∗ (M − b),

y ≤ N ∗ (M − b) (D.15)

From equation (D.14) and (D.15),

OPTb ∗ (M − b) + x ∗ (M − b+ 1) < N ∗ (M − b)

=⇒ x < (N −OPTb) ∗
M − b

M − b+ 1

=⇒ x < N −OPTb
=⇒ x+OPTb < N
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As the value of ALG in all M decision epochs is less than N , N − (OPTb +
x) servers did not move from their initial position. Therefore, even for the optimal
algorithm, N − (OPTb + x) servers will not be moving. So,

y ≤ (OPTb + x) ∗ (M − b)
=⇒ OPTb + y ≤ (OPTb + x) ∗ (M − b) +OPTb

=⇒ OPTb + y

OPTb + x
≤ (M − b) +

OPTb
OPTb + x

=⇒ OPTb + x

OPTb + y
≥ 1

OPTb
OPTb+x

+ (M − b)

RHS > 1
M−b+1 . But we assumed OPTb+x

OPTb+y
< 1

M−b+1 which is a contradiction. Thus,

c ≤ 1

M − b+ 1
�

We can also extend the above reasoning for the case when objective is to maximize
revenue. If revenue of any request C ∈ {Cmin, Cmax}, then at first b stages, requests
with revenue Cmin are served by both deterministic and optimal algorithm and for the
remaining decision epochs requests with revenue Cmax are served by optimal algo-
rithm. Therefore, the competitive ratio will be Cmin

Cmin+(M−b)∗Cmax .
The competitive ratio is low mainly due to the assumption that server only moves

when it is assigned to a request. Therefore, the adversary can take more advantage by
creating requests in the zones which are not reachable from the server position.

It should be possible to improve the competitive ratio on removing this assumption.
By taking decision to move randomly to another zone if no request is available at the
current stage, we may improve the competitive ratio against an online adversary (i.e.,
the adversary who is not aware of the output of random decision).

Appendix D.5. Proof of Proposition 5
Proposition 5: In OLSTM with sample information and stochastic behaviour from en-
vironment according to the samples, when maximizing the number of requests satisfied,
the expected competitive ratio, cµ, of the TSS algorithm is

cµ ≤
3

4 ∗ (M − 1)
+

3

4 ∗M
where M is the number of decision epochs (M ≥ 3).

Proof: To prove the upper bound on the expected competitive ratio, we construct
a worst case distribution and show the value of expected competitive ratio for that
distribution. The value of expected competitive ratio for any specific distribution is
upper bound on the true value.

We assume that there is a positive probability of having a request at second decision
epoch 18.As the TSS only knows distribution for the next decision epoch, we create an

18If the probability of having a request at second decision epoch is 0, TSS will not have any future infor-
mation available and will be as good as deterministic one-stage algorithm. In case of zero probability, from
Proposition 4, the competitive ratio will be 1

M
.
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instance such that TSS can not serve any requests after first two decision epochs.
We construct a worst case instance with one server and two requests at first two

decision epochs. Initially, the server is located in zone Z1, the two requests are request
1, r1 =< Z1, Z1 > and request 2, r2 =< Z1, Z2 >. Requests originating in zone Z1

can only be served by server in zone Z1. Similarly request originating in zone Z2 can
only be served by server in Z2.

As per the distribution at decision epoch 2, the probability that request has origin
and destination in Z1 is P1 and probability that request has origin and destination in
Z2 is P2 and the probability is zero for all other zone pairs. P1 and P2 are independent
of each other. Also as per the distribution, at subsequent decision epochs, there is zero
probability of a request having origin in zone Z1 and 1 probability of requests having
origin and destination at Z2.

The TSS algorithm will make the first stage assignment based on the expected
number of requests served, i.e., it will maximize 1+ max(P1, P2). If P1 ≥ P2, TSS
will assign the server to request 1 at decision epoch 1 and will serve request at deci-
sion epoch 2 with probability P1. TSS will not be able to serve any more requests at
subsequent decision epoch.

The M-stage optimal algorithm will assign server to request 2 at first decision
epoch. At second decision epoch, the M-stage optimal algorithm will be able to serve
the request if it originates in zone Z2 otherwise it will not. The M-stage algorithm will
be able to serve requests at all subsequent decision epochs19. Therefore, the expected
competitive ratio is given by

cµ ≤ P1 ∗ (1− P2) ∗
2

M − 1
+ P1 ∗ P2 ∗

2

M
+ (1− P1) ∗ P2 ∗

1

M

+ (1− P1) ∗ (1− P2) ∗
1

M − 1
(D.16)

The four terms correspond to four possible cases of drawing 2 requests from the given
distribution. Rearranging the terms, we get

cµ ≤ (1 + P1) ∗
1

M − 1
− P2 ∗ (1 + P1) ∗ (

1

M − 1
− 1

M
) (D.17)

From equation (D.17), as 1
M−1 > 1

M , for a fix value of P1, on increasing the value
of P2 the expected competitive ratio decreases. As P1 ≥ P2, to minimize the expected
value of competitive ratio, we take P2 = P1. Substituting P2 = P1 in equation (D.17),
we get

cµ ≤ (1 + P1) ∗
1

M − 1
− P1 ∗ (1 + P1) ∗

( 1

M − 1
− (

1

M
)
)

The above expression will be minimum when the derivative (with respect to P1) is 0,

19The number of decision epochs (M ) is greater than or equal to 3
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i.e.,

(1) ∗ 1

M − 1
− (1 + 2 ∗ P1) ∗ (

1

M − 1
− 1

M
) = 0

=⇒ 2 ∗ P1 ∗ (
1

M − 1
− 1

M
) =

1

M

=⇒ P1 =
M − 1

2

As 0 ≤ P1 ≤ 1, and M is a positive integer, the possible value of P1 are 0, 0.5
and 1.0. Since, we have a positive probability of having request at second decision
epoch, P1 = 0 is not possible. Therefore, the competitive ratio will be minimum when
P1 = 0.5 or 1. On substituting P1 = P2 = 1.0, in equation (D.17), we get 2

M and on
substituting P1 = P2 = 0.5, in equation (D.17), we get 3

4∗(M−1) + 3
4∗M

As 2
M > 3

4∗(M−1) + 3
4∗M , for M ≥ 3, therefore

cµ ≤
3

4 ∗ (M − 1)
+

3

4 ∗M (D.18)

As there exists an instance for which the expected competitive ratio of TSS can not
be more than 3

4∗(M−1) + 3
4∗M , we can say that 3

4∗(M−1) + 3
4∗M is the upper bound on

the expected competitive ratio of TSS. �
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