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Abstract 

This paper focuses on a recent variant of the Orienteering Problem (OP), namely the Capacitated Team OP (CTOP) 
which arises in the logistics industry. In this problem, each node is associated with a demand that needs to be satisfied 
and a score that need to be collected. Given a set of homogeneous fleet of vehicles, the objective is to find a path for 
each vehicle in order to maximize the total collected score, without violating the capacity and time budget. We propose 
an Iterated Local Search (ILS) algorithm for solving the CTOP. Two strategies, either accepting a new solution as 
long as it improves the quality of the solutions or accepting a new solution as long as there is no constraint violation, 
are implemented. For solving difficult instances, we simplify the move operator of local search in order to reduce the 
computational time. Instead of exploring all possible nodes in all paths to be moved, we only focus on nodes in the 
path with the least remaining amount of time. Computational experiments on benchmark instances illustrate that the 
algorithm can generate solutions within 1% and 4% from the current best known solution for small and large instances, 
respectively.  

Keywords 
Orienteering Problem, Iterated Local Search, Capacitated Team Orienteering Problem 

1. Introduction

Orienteering Problem (OP) is an NP-hard routing problem in which the objective is to find a subset of nodes to be 
visited by a vehicle, and in what order, such that the total score collected from the visited nodes is maximized while 
complying to limited the time budget constraint (Vansteenwegen et al. 2011). The OP is first introduced by Tsiligirides 
(1984). According to the latest survey paper on OP by Gunawan et al. (2016), numerous extended variants of OP, each 
with its own unique constraints, have been researched on extensively in the past few years. This work focuses on a 
particular variant of OP called the Capacitated Team Orienteering Problem (CTOP).  

CTOP is highly relevant to real-world problems, especially in the logistics industry. In this variant of OP, each node 
is associated with a demand and a profit. Given a set of homogeneous fleet of vehicles, the main objective is to 
determine a route for each available vehicle that maximizes the total score (profit) while complying to capacity and 
time budget constraints that each vehicle has (Archetti et al. 2009). It is assumed that each node can only be visited 
once by one vehicle. All vehicles start and end at the same node, which is the depot. In the context of the OP, each 
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vehicle also refers to a particular path. Team OP is the extension of the OP by considering multiple vehicles or paths. 
Since the OP has been proven to be NP-hard (Golden et al. 1987), it is unlikely that the CTOP can also be solved 
optimally within polynomial time. Therefore, it is interesting to propose fast algorithms to solve the problem, 
especially when dealing with larger instances.  
 
Archetti et al. (2013a) introduce a branch-and-price algorithm in order to deal with benchmark instances. Several 
unsolved benchmark instances can be optimally solved. Tarantilis et al. (2013) propose a hierarchical bi-level search 
framework, namely a Bi-level Filter-and-Fan method. Experimental results show the efficiency and effectiveness of a 
Bi-level Filter-and-Fan method in solving the benchmark instances. Gunawan et al. (2016) summarize different 
variants of the CTOP, such as the CTOP with Incomplete Service (Archetti et al. 2013b), the Split Delivery CTOP 
(Archetti 2014) and the Split Delivery CTOP with Minimum Delivery Amounts (Wang et al. 2014). 
 
In this paper, we propose an algorithm which is based on the Iterated Local Search (ILS) algorithm for solving the 
CTOP. Iterated Local Search (Luo et al. 2013) is a simple but effective metaheuristic. ILS generates a sequence of 
solutions generated by an embedded heuristic, leading to far better results than if one were to use repeated random 
trials of that heuristic. We consider four basic modules of ILS: generating the initial solution, local search, the 
perturbation strategy and the acceptance criterion. ILS has been used for solving other variants of the OP, such as OP 
with Time Windows (OPTW) (Gunawan et al. 2015), Team OP with Time Windows (TOPTW) (Vansteenwegen et 
al. 2009, Gunawan et al. 2017) and OP with soft Time Windows (OPSTW) (Aghezzaf and Fahim 2016). The proposed 
ILS uses different types of strategies for implementing operators of local search for different types of benchmark 
CTOP instances (Archetti et al. 2009). Benchmark instances can be accessed from http://tarantilis.dmst.aueb.gr/docs/. 
 
There are two sets of benchmark instances, Archetti’s instances (Archetti et al. 2009) and Tarantilis’s instances 
(Tarantilis et al. 2013). For Archetti’s instances, we implement two different strategies when accepting the operators, 
either the operator is able to improve the quality of the solution or it only increases the remaining time budget that can 
be used for other nodes. For Tarantilis’s instances, we simplify the move operator. Instead of exploring all possible 
moves from all nodes, we only consider of moving nodes in the path with the least remaining time budget. The results 
are also compared with the current best known solutions (Tarantilis et al. 2013). Computational experiments illustrate 
the efficiency and effectiveness of the proposed approach. The paper is organized as follows. Section 2 presents the 
CTOP mathematical model. In Section 3, we describe the proposed ILS algorithm. Section 4 is devoted to the 
experimental results and analysis. Finally, Section 5 concludes and provides some ideas for future works. 
 
2. The Capacitated Team Orienteering Problem 
 
The latest CTOP model was presented by Tarantilis et al. (2012). We modify the model by replacing the non-linear 
subtour elimination constraints. Let 𝐺𝐺 =  (𝑁𝑁,𝐴𝐴) be an undirected graph with the set A of arcs and the set N of nodes. 
N = {0, 1, …, |N|} where 0 denotes the depot. 𝑁𝑁𝑐𝑐   represents a set of nodes that can be served, i.e. node 1 to n or 
𝑁𝑁𝑐𝑐 = 𝑁𝑁\{0}.  
 
Parameters of the model: 
𝑑𝑑𝑖𝑖 : known demand for node 𝑖𝑖,   𝑖𝑖 ∈  𝑁𝑁\{0}  
𝑝𝑝𝑖𝑖: profit associated with node 𝑖𝑖 
𝑐𝑐𝑖𝑖𝑖𝑖 : traveling cost incurred for traveling from node 𝑖𝑖 to 𝑗𝑗 
𝐾𝐾:  a number of vehicles used to serve the nodes 
𝑄𝑄𝑘𝑘:  capacity of vehicle 𝑘𝑘 
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 :  maximum allowable operation time budget of a vehicle 
𝑡𝑡𝑖𝑖𝑖𝑖 ∶  time needed to travel from node 𝑖𝑖 to 𝑗𝑗  
𝑠𝑠𝑖𝑖 ∶   service time needed on node 𝑖𝑖 
 
Decision variables of the model: 
𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘 : �1 if vehicle 𝑘𝑘 travels from node 𝑖𝑖 to 𝑗𝑗

 0 otherwise
  

 
𝑦𝑦𝑖𝑖𝑘𝑘 : �1 if node 𝑖𝑖 is served by vehicle 𝑘𝑘

0 otherwise
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𝑢𝑢𝑖𝑖𝑘𝑘  the position of visited node 𝑖𝑖 by vehicle 𝑘𝑘 in the path  
 
The mathematical programming model: 
 

max � �𝑝𝑝𝑖𝑖𝑦𝑦𝑖𝑖𝑘𝑘

𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝑁𝑁𝑐𝑐

  (1) 

              
𝑠𝑠. 𝑡𝑡.   
� � 𝑥𝑥0𝑖𝑖𝑘𝑘 = 

𝑖𝑖∈𝑁𝑁𝑐𝑐

� � 𝑥𝑥𝑖𝑖0𝑘𝑘 = 
𝑖𝑖∈𝑁𝑁𝑐𝑐

 
𝑘𝑘∈𝐾𝐾

𝐾𝐾 
𝑘𝑘∈𝐾𝐾

  (2) 

 
�𝑦𝑦𝑖𝑖𝑘𝑘

𝑘𝑘∈𝐾𝐾

≤ 1 ∀𝑖𝑖 ∈ 𝑁𝑁𝑐𝑐 (3) 

 
� 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘

𝑖𝑖∈𝑁𝑁𝑐𝑐

= � 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘

𝑖𝑖∈𝑁𝑁𝑐𝑐

= 𝑦𝑦𝑖𝑖𝑘𝑘 
 

∀𝑖𝑖 ∈ 𝑁𝑁𝑐𝑐 ,∀𝑘𝑘 ∈ 𝐾𝐾 
 
(4) 

 
��𝑐𝑐𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘 +

𝑖𝑖∈𝑁𝑁

� 𝑠𝑠𝑖𝑖𝑦𝑦𝑖𝑖𝑘𝑘

𝑖𝑖∈𝑁𝑁𝑐𝑐

≤ 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖∈𝑁𝑁

 
 

∀𝑘𝑘 ∈ 𝐾𝐾 
 
(5) 

 
� 𝑑𝑑𝑖𝑖𝑦𝑦𝑖𝑖𝑘𝑘 ≤ 𝑄𝑄𝑘𝑘
𝑖𝑖∈𝑁𝑁𝑐𝑐

 ∀𝑘𝑘 ∈ 𝐾𝐾 (6) 

 
1 ≤ 𝑢𝑢𝑖𝑖𝑘𝑘  ≤ 𝑁𝑁 − 1 

 
∀𝑖𝑖 ∈ 𝑁𝑁,∀𝑘𝑘 ∈  𝐾𝐾 

 
(7) 

 
𝑢𝑢𝑖𝑖𝑘𝑘−𝑢𝑢𝑖𝑖𝑘𝑘 + 1 ≤ (𝑁𝑁 − 2)�1 −  𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘 � 

 
∀𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁,∀𝑘𝑘 ∈  𝐾𝐾 

 
(8) 

 
𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘  ∈  {0, 1} 

 
∀𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁,∀𝑘𝑘 ∈ 𝐾𝐾 

 
(9) 

 
𝑦𝑦𝑖𝑖𝑘𝑘  ∈  {0, 1} 

 
∀𝑖𝑖 ∈ 𝑁𝑁,∀𝑘𝑘 ∈ 𝐾𝐾 

 
(10) 

 
The Objective function (1) maximizes the collected profit. Constraints (2) ensure that K vehicles leave and enter the 
depot. Constraints (3) ensure that all nodes are served by at most 1 vehicle, this prevents split-delivery cases. 
Constraint (4) ensures the route connectivity, e.g. same vehicle enters and leaves a given node. Constraints (5) limits 
that operation of a certain vehicle k is within time budget. Constraints (6) ensures that demand of nodes in a trip by 
certain vehicle k does not exceed its capacity. Constraints (7) and (8) are sub-tour elimination constraints. Constraints 
(9) and (10) impose binary restrictions on variables 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘   and 𝑦𝑦𝑖𝑖𝑘𝑘.  
 
3. Iterated Local Search 
 
This section provides the description of our proposed algorithm, Iterated Local Search (ILS). We first introduce a 
construction heuristic for generating an initial solution. The initial solution is further improved by ILS. 
 
3.1 Construction Heuristic 
 
The initial solution is generated by an insertion heuristic which is adopted from the work of Luo et al. (2013). 
Basically, nodes are sorted based on a certain valuation, and one by one will be inserted into the available 
paths/vehicles until no further insertion is feasible. In this paper, we define and rank nodes based on two different 
criteria: equations 11 and 12 for Archetti’s and Tarantilis’s instances, respectively.  
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                                                                 𝑟𝑟𝑟𝑟𝑡𝑡𝑖𝑖𝑟𝑟𝑖𝑖 = 𝑝𝑝𝑖𝑖
𝑑𝑑𝑖𝑖

      (11) 
 
                                                                 𝑟𝑟𝑟𝑟𝑡𝑡𝑖𝑖𝑟𝑟𝑖𝑖 = (𝑝𝑝𝑖𝑖)2

𝑐𝑐𝑖𝑖0+𝑠𝑠𝑖𝑖 
     (12) 

 
3.2 Iterated Local Search (ILS) 
 
In order to improve the initial solution S0, we implement a metaheuristic based on Iterated Local Search (ILS). Let 
S* be the best found solution so far at a particular iteration. For the first iteration of ILS, S* equals to S0.  
 
The main idea of ILS is to explore the solution space by generating and evaluating the neighbors of S0. LOCALSEARCH1 
is applied in order to generate the best neighborhood. Here, we run different operators consecutively. More details 
will be explained below. The first improving neighbor replaces S0. If a stagnation condition is met, a perturbation 
strategy on S0 is then applied. The idea of this strategy is taken from the one proposed by Vansteenwegen et al. (2009). 
We implement two different LOCALSEARCH: LOCALSEARCH1 and LOCALSEARCH2. First, LOCALSEARCH1 is applied 
to S0 as many times as possible, limited by the parameter LOWERLIMIT, followed by applying LOCALSEARCH2 for 
(MAXITER - LOWERLIMIT) times. The outline of the ILS algorithm is presented in Algorithm 1 (Figure 1 - left side). 
There are two different benchmark instances, namely Archetti’s instances and Tarantilis’s instances. Note that this 
algorithm is applied to Archetti’s instances. We propose another algorithm which is used to solve Tarantilis’s 
instances, as shown in Algorithm 2 (Figure 1- right side). More details about both instances will be explained in 
Section 4.1. 
 

                         
Figure 1. Algorithm 1 and Algorithm 2 

 
Both LOCALSEARCH1 and LOCALSEARCH2 use a set of operators which are run consecutively, as listed in Table 1. 
SWAP1 examines all possible combinations of selecting two different nodes within one vehicle with the least remaining 
time budget. It is only executed only if it is able to increase the remaining time budget and there is no constraint 
violation. SWAP2 is similar to SWAP1 with the difference of selecting two vehicles. In 2-OPT, we select one vehicle 
with the lowest remaining time budget. All possible combinations of selecting two different nodes are enumerated and 
the sequence of scheduled nodes is reversed as long as there is no constraint violation and it is able to increase the 
remaining time budget of the selected vehicle, as shown in Figure 2. 
 
MOVE is started by selected the first scheduled node from the first vehicle. We examine all possible insertion of other 
nodes from other vehicles. As long as it is able to increase the total remaining time budget of both vehicles, the 
movement is accepted. Figure 3 illustrates an example of MOVE. The last two operators, INSERT and REPLACE, focus 
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on increasing the objective function value – the total collected score. INSERT is done by considering unscheduled 
nodes that can be inserted to any vehicle. Unscheduled nodes are sorted in descending order of their ratios (Equation 
(1)). The insertion is accepted to the position that gives us the least additional total travel time. REPLACE is started by 
selecting a vehicle with the highest remaining time budget, followed by selecting one unscheduled node with the 
highest score. The selected node will replace a node with a lower score.  
 

Table 1. LOCALSEARCH operations 
 

Operations Descriptions 
SWAP1 Exchange two nodes within one vehicle 
SWAP2 Exchange two nodes between two vehicles 
2-OPT Reverse the sequence of certain nodes within one vehicle 
MOVE Move one node from one vehicle to another vehicle 
INSERT Insert nodes into a vehicle 
REPLACE Replace one scheduled node with one unscheduled node 

 

 
Figure 2. 2-OPT 

 

 
Figure 3. MOVE 

 
The main difference between both LOCALSEARCH1 and LOCALSEARCH2 lies on applying SWAP2 and INSERT. In 
LOCALSEARCH2, both will be accepted if they do not violate the constraints and able to improve the quality of 
solutions, e.g. increase the remaining time budget or increase the total score. In LOCALSEARCH1, as long as there is 
no constraint violation, both operators can be accepted. In other words, LOCALSEARCH1 is a relaxed version of 
LOCALSEARCH2. 
 
We use SHAKE as the perturbation strategy. All nodes in all routes (except the depot or node 0) are considered as one 
sequence. We remove one or more nodes, based on two parameters: POS and LENGTH. POS determines the position 
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of the first node to be removed while LENGTH determines how many consecutive nodes to be removed. At each 
iteration, POS is increased by the value of LENGTH, while LENGTH itself is increased by one. If LENGTH reaches a 
certain value which is a predefined value, it will be set to one. If the value of POS is more than the number of nodes, 
the value is deducted by the number of nodes in the sequence. 
 
Algorithm 2 is proposed for solving Tarantilis’s instances. In general, the main idea is the same with the one of 
Algorithm 1. Here, we apply another version of LOCALSEARCH, namely LOCALSEARCH3. The idea is to simplify 
MOVE operator since it takes a large computational time. In LOCALSEARCH1 and LOCALSEARCH2, it attempts to move 
every single node to every single other possible feasible position. For Tarantilis’s instances, we only move nodes in 
the vehicle with the least remaining time budget to other possible positions in other vehicles.  
 
Acceptance criterion is important to find a good balance between diversification and intensification. Although some 
ILS operators are different for solving both benchmark instances, same acceptance criterion is applied to them. We 
implement the idea of ”random walk” acceptance criterion that ensures a good balance between diversification and 
intensification of the search. In this method, search would continue from the current found solution until a certain 
number of non-improving solution MAXNOIMPROV is reached, hence leading to more diversification. After that, only 
solutions that are better than the best found solution are kept, hence leading to intensification. 
 
4. Computational Experiments 
 
In Section 4.1, we first explain how we setup the experiments. We also present the benchmark CTOP instances and 
their best known solutions for comparison purpose. In Section 3.2, we describe the parameter values used and present 
the results obtained. 
 
4.1 Computational Setup and Benchmark Instances 
 
The algorithm is coded in C++ and all experiments are executed on an Intel Core i7-4790 3.60 GHz processor CPU 
with 32 GB of RAM running on Microsoft Windows operating system. Two sets of benchmark instances, Archetti’s 
instances (Archetti et al. 2009) and Tarantilis’s instances (Tarantilis et al. 2013), are used.  
 
As shown in Table 2, Archetti’s instances are further categorized into three subsets. The first subset contains the 
instances generated from the Capacitated VRP instances (Christofides et al. 1979) that allow all customers or nodes 
to be served. The second subset modifies vehicle sizes, capacity and route duration limits. The third subset alters the 
vehicle size. Tarantilis’s instances (as shown in Table 3), which are adopted from the large scale Period VRP instances 
of Pirkwieser and Raidl (Pirkwieser et al. 2010), are divided into three subsets with similar characteristics. Benchmark 
CTOP instances are summarized in Table 2.  
 

Table 2. Archetti’s Instances 
 

Subset Number of instances Number of nodes Number of vehicles Time budget 
1 10 51 – 200 10 – 20 160 – 1040 
2 90 51 – 200 2 – 4 50 – 100 
3 30 51 – 200 2 – 4 140 – 200 

 
Table 3. Tarantilis’s Instances 

 
Subset Number of instances Number of nodes Number of vehicles Time budget 

1 10 337 – 577 14 – 24 660 – 720 
2 90 337 – 577 6 – 8 100 – 400 
3 30 337 – 577 6 – 8 660 – 720 
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4.2 Computational Results 
 
The parameter values are defined as follows: MAXITER = 1000, LOWERLIMIT = 250 and MAXNOIMPROV = 10. Tables 
1 summarizes results obtained by ILS for both sets of instances. Each instance is run five times. The gap values are 
calculated by comparing our results with the best known solutions. Table 4 summarizes the results of Archetti’s 
instances. It does not improve any current best known solution, partly because most of the solutions are proven to be 
optimal. The gap values are calculated by comparing our results with the best known solutions. The gap values are 
less than 0.50 %. In Subset 1 of Archetti et al. instances, both can obtain the best known solutions except for one 
instance. For Subset 2 with 90 instances, ILS(R1) obtains 70 best known solutions, while ILS(R2) obtains 80 best 
known solutions, though at the expense of computation time. Finally, ILS can get 24 best known solutions for Subset 
3. For the Archetti et al. instances, we conclude that the performance of ILS is thus promising. 
 

Table 4. Archetti’s Instances results 
 

Instances Average Objective Function Value Gap (%) Average CPU time (seconds) 
Best Known ILS Best Known ILS 

Subset 1 1814.20 1814.00 0.01 0.22 0.17 
Subset 2 295.21 294.22 0.30 19.52 15.39 
Subset 3 728.40 728.40 0.00 3.59 3.11 

 
For Tarantilis et al. instances, ILS also performs well at the expense of computation time. But the results are still worse 
than those of best known solutions, with the gap values being up to 3.09%. However, ILS is able to improve one best 
known solution of instance 14 of Subset 2, from 509 to 602. Our ILS has some limitations especially pertaining to the 
large computation time.  
 

Table 5. Tarantilis’s Instances results 
 

Instances Average Objective Function Value Gap (%) Average CPU time (seconds) 
Best Known ILS Best Known ILS 

Subset 1 5647.20 5643.50 0.06 63.26 62.11 
Subset 2 1268.87 1229.63 3.09 3061.30 3102.69 
Subset 3 3032.50 2985.77 1.54 10978.65 10711.66 

 
 
5. Conclusions 
 
In this paper, we focus on solving the Capacitated Team Orienteering Problem (CTOP). The CTOP is a variant of the 
TOP where each node is associated with a demand and a score. The main objective is to determine a path for each 
available vehicle in order to maximize the total score, without violating the capacity and time budget of each vehicle. 
Iterated Local Search (ILS) metaheuristic is proposed in order to solve the benchmark instances of CTOP.  
 
The proposed ILS uses different types of strategies for implementing operators of local search for different types of 
benchmark CTOP instances. For Archetti’s instances, we implement two different strategies when accepting the 
operators, either the operator is able to improve the quality of the solution or it only increases the remaining time 
budget that can be used for other nodes. For Tarantilis’s instances, the move operator is modified. Instead of exploring 
all possible moves from all nodes, we only consider of moving nodes in the path with the least remaining time budget. 
 
The performance of the proposed algorithm was promising. It is able to generate solutions within 1% from the current 
best known solution for small instances, and within 4% for large instances, giving an average of 2.20% for all 
instances. Since the chosen acceptance criterion has a critical influence on the performance of the proposed algorithm, 
a possible improvement of the algorithm could involve also considering worst solutions during the search which is 
used in Simulated Annealing. Some possible extensions of local search operators would be explore as future works. 
Since the OP and its variants, such as the Arc Orienteering Problem and the Team OP with Soft Time Windows, have 
attracted more attention in recent years, the proposed algorithm can be potentially tailored to solve them as well. 
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