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April 2, 2018

Abstract

The arrangement of last-mile services is playing an increasingly important role in

making public transport more accessible. We study the use of ridesharing in satisfy-

ing last-mile demands, with the assumption that demands are uncertain and come in

batches. The most important contribution of our paper is a two-level MDP frame-

work that is capable of generating a vehicle-dispatching policy for the aforementioned

service. We introduce state summarization, representative states, and sample-based

cost estimation as major approximation techniques in making our approach scalable.

We show that our approach converges and solution quality improves as sample size

increases. We also apply our approach to a series of case studies derived from a real-

world public transport dataset in Singapore. By examining three distinctive demand

profiles, we show that our approach performs best when the distribution is less uniform

and the planning area is large. We also demonstrate that a parallel implementation

can further improve the performance of our solution approach.
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1 Introduction

The world has seen an unprecedented rate of urbanization over the past few decades. In

2014, 54% of the world population already lived in cities, and by 2050, two-thirds will be

urban. In absolute terms, this amounts to more than 6 billion people globally living in urban

environments. Such a high rate of urbanization has put great pressure on all aspects of urban

planning, in particular, the transportation system. From examples around the globe, we can

see that it is critical to invest in and maintain a public transportation system with sufficient

capacity to avoid extreme congestion and improve the environmental sustainability of a

densely populated city (Cohen 2006).

Although public transportation provides the most efficient way to move a large number

of passengers in a city, commuters usually need to find their own ways to fulfill their last-mile

(LM) travel needs, i.e., moving from alighting stations to their final destinations. Such LM

travels are usually quite short (one or two miles at most); however, if not addressed properly,

some travelers might choose to give up public transport and make use of private cars, further

aggravating urban congestion.

A wide variety of solutions have been proposed to satisfy LM travel needs, for example,

bike sharing, ridesharing, short-distance trams, or feeder buses, each with different strengths

and weaknesses, and not all are applicable in a given physical setting. In this paper, we

are interested in satisfying LM travel demands through ridesharing using non-dedicated

commercial vehicles such as taxis. Such a setup has the benefits of being dynamic, responsive,

and cost-efficient, as vehicles are called in based on demand. Ridesharing has long been

studied and experimented with as one way to make personalized transport more efficient, e.g.,

see the review by Chan and Shaheen (2012). We assume that a sizable fleet of commercial

vehicles (taxis) already exists (which is the case in most Asian cities and some Western

cities), and a significant fraction of these vehicles are operating vacant for the intended

service hours.

An illustrative example of the ride-sharing-based LM service is found in Figure 1, with
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the station as a square in the center and the destinations of LM demands arriving in different

time periods denoted by different shapes. Valid LM demands will be grouped together to be

served by a fixed fleet, with the assumption that a committed vehicle will serve an assigned

passenger group in order and then return immediately to the station after dropping off the

last passenger. We will explain our LM planning framework in more detail in Section 3.

As pointed out in Wang and Odoni (2016), there are many operational challenges that

need to be addressed, including but not limited to: a) demand estimation based on the trav-

eler’s demographic and personal preference and b) supply planning, which involves system

parameters such as fleet size, vehicle dispatching strategy, and desired level of service. The

focus of this paper is the online multi-period vehicle dispatching strategy; i.e., given both

standby and uncertain future demands, we decide which subsets of LM demands to satisfy in

the current period. The online and multi-period aspects of the problem are particularly im-

portant in today’s environment, as travelers are increasingly used to using Internet-enabled

smart devices to request for personalized transport services (see Dailey et al. (1999) and

Calvo et al. (2004) for some early examples). In such a paradigm, travelers would submit

their demands for service shortly before their arrivals, and this leaves a very short time

(typically just a few minutes) to generate the dispatching plan. What complicates the prob-

lem even further is the fact that the problem is multi-period, implying that the generated

dispatching plan should satisfy not only realized demands but also future demands that are

to arrive shortly (e.g., in the next 10 to 20 minutes). With a fixed fleet size, it is often

impossible to serve all demands, and thus the decision about which requests to serve in each

period becomes important.

To address the challenges arising from the online and multi-period requirements, we

separate the request selection problem from the routing problem and use a two-level planning

framework to make real-time clustering and routing decisions. This is commonly employed

in the literature to solve the delivery dispatching problem (see Section 2), of which our

problem is a variant of. The upper-level problem is formulated to focus on selecting the

3



requests to be served in a given period from the set of known requests. The selected requests

are then clustered and routed in the lower-level problem. The upper-level problem, which

is the focus of this work, is formulated as a Markov decision process (MDP). As with most

real-world applications of MDP, our formulation suffers from the high-dimensional state

space that makes exact solution intractable. On top of that, it also suffers from a large

action space. In this paper, we propose a value-iteration-based approximation algorithm to

address this problem. The main idea of our approach is to select a set of representative

states such that any state that is not in the set is close to one that is. This closeness

is measured using a domain-specific distance metric. The upper bound on this distance

becomes the approximation parameter of the algorithm. Value iteration is then performed

on this set instead of on the whole space, and the resulting policy is used as the solution

to the original MDP. Beside this main idea, we employ two other approximation methods

that are well-known in the literature, namely, state space discretization and sample average

approximation (see Kearns et al. (2002) for example). Although we consider the routing

element explicitly, where we employ the Savings algorithm of Clarke and Wright (1964), the

lower-level problem is not the focus of this work.

In summary, we make the following major contributions:

• On the model development, we propose a two-level planning framework to satisfy LM

demands by making real-time clustering and routing decisions. By having two planning

levels, we are able to separate the request selection problem1, which is computationally

expensive, from the routing problem. Compared to existing approaches in the litera-

ture, our approach is different in that we incorporate realistic routing as opposed to

function-based approximation in evaluating dispatching policies. This addition is im-

portant as most LM demands are short-distance and inaccurate estimations on routing

choices could have significant impact on policy evaluations.

• On the algorithm development, the upper-level planning problem is modeled as a MDP

1Depending on the context, we sometimes also call this problem the vehicle dispatch problem.
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and solved by a value-iteration-based approximation algorithm. As the MDP in its

original form is intractable, we employ the following three techniques to speed up the

solution process: a) representative states, b) state space discretization, and c) sample

average approximation. Through computational experiments, we show that we are

now able to solve previously intractable problems.

2 Literature Review

The two areas of work that are closely related to ours are on the delivery dispatching problem

(DDP) and the dynamic vehicle routing problem (VRP). In the following, we provide a survey

of both areas as well as the works on dealing with large-scale Markov decision processes

(MDPs).

In DDP (Minkoff 1993), we are given a set of customers who are distributed geographi-

cally. Each customer consumes a certain amount of goods in each period, where the amount

consumed is stochastic. And each customer may also hold up to a certain amount of in-

ventory (unconsumed goods). In each period, given the inventory levels, the planner has

to decide the amount of goods to be dispatched from a central distribution point to each

customer, taking into consideration the transportation cost, the inventory-holding cost, and

the unfulfilled consumption cost. Deliveries are assumed to be completed in one time period.

One promising approach in solving DDP is to model it as an MDP and solve it using various

approximate dynamic programming (ADP) techniques. For example, in recent works by

van Heeswijk et al. (2015) and Rivera and Mes (2015), DDP variants with finite horizon,

arbitrary completion times, and delivery time windows are studied. Compared to this line

of work, our formulation can be seen as an extension, as we explicitly consider the vehicle

routing element, instead of using close-form approximations. A similar effort has been made

by van Heeswijk et al. (2017) to explicitly incorporate the routing problem in the DDP for-

mulation. Compared to this latest work, our formulation is different in that we adopt infinite
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planning horizon and utilize an ADP approach that does not depend on the basis function.

MDPs are discrete-time stochastic processes used to model sequential decision-making

in environments where outcomes are determined by both the decision-maker and random

elements. Most methods for finding optimal policies in MDPs rely on the computation of

value functions, defined on all possible states. The number of states in a typical application

of an MDP, however, is computationally unmanageable. Much research has therefore fo-

cused on approximation methods for overcoming this curse of dimensionality. The two most

common methods are the use of basis functions and state aggregation. In the basis function

approximation approach, the value function is expressed as a linear combination of some

selected basis functions. The coefficients of these functions are then tuned using methods

such as simulated system trajectories or linear programming, to yield good approximations.

In the state aggregation approach, the state space is aggregated into successively coarser

representations, and the value function is approximated at different levels of aggregation.

The choices of basis functions and the aggregated state space are non-trivial and very much

dependent on problem-specific structures.

In terms of generality, there are two main directions of research. The first one seeks to

find a general solution framework for most problem types. The methods include automatic

state aggregation (Bertsekas and Castanon 1989, Givan et al. 2003, Ferns et al. 2004, Jong

and Stone 2005, Virin et al. 2007) and automatic basis function construction (Keller et al.

2006). The second one seeks to solve specific problems by exploiting problem structures. In

the specific area of transportation, efforts have been made to find good basis functions for

different, related problems such as ambulance redeployment (Maxwell et al. 2010), inventory

routing (Adelman 2004), and dynamic fleet management (Topaloglu and Powell 2006). Ex-

amples of the use of state aggregation include George et al. (2008), Simão et al. (2009), and

Ulmer et al. (2018). The approach presented in this paper can be considered as a variant of

the state aggregation method as applied to the dynamic ride-sharing problem.

In the routing literature, the ride-sharing problem is usually formulated as a variant of
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the dial-a-ride problem (DARP), which is itself a generalization of several problems, such as

VRP with time windows (Solomon 1987) and fleet size and mix VRP (Liu and Shen 1999).

In DARP, each request consists of a pickup location, a destination, and time windows for

both pickup and drop-off times. The planner is then required to design the routes for a set

of identical vehicles, starting from the same depot to serve the requests, subject to a set of

constraints, such that the total route cost is minimized. A comprehensive survey on DARP

can be found in Cordeau and Laporte (2007). And, a ride-sharing variant of the problem can

be found in Baldacci et al. (2004). In the dynamic version, the planner has to sequentially

construct and execute plans as requests are revealed over time. The better plans are those

robust enough to accommodate new requests without incurring too much computational

time or additional route cost. One of the well-known methods to tackle this problem is

the family of rollout algorithms (Bertsekas et al. 1997). Rollout algorithms typically start

with a base policy and try to improve it by performing a one-step policy iteration, where

future scenarios are “played out” to evaluate the future cost of a given action. The policy is

updated if a better action is found for a given state. Examples of the use of rollout algorithms

in stochastic vehicle routing include Secomandi (2001), Novoa and Storer (2009), Goodson

et al. (2013), and Ulmer et al. (2015). For an overview of the challenges in dealing with the

dynamic VRP, see Agatz et al. (2012), Berbeglia et al. (2010), and Pillac et al. (2013).

In relation to our work, the lower-level problem can be viewed as a special case of DARP,

where all requests have the same pickup location, i.e., the hub, and their pickup windows

correspond to the passenger’s arrival times at the hub. Although solving the problem opti-

mally is difficult for large-size instances, good heuristics exist for the problem, which include

the Savings algorithm of Clarke and Wright (1964) and its variants and insertion heuristics

(Vigo 1996, Salhi and Nagy 1999, Campbell and Savelsbergh 2004).
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3 Two-Level Planning Framework

In this section, we describe the two-level planning framework. The idea is to divide the

planning process into two levels: the policy-based upper level and the lower level that handles

the actual routing. At the upper level, a policy is used to decide, at each period, the set

of requests to be served. We formulate this request selection problem as an infinite-horizon

MDP. The main advantage of this formulation is the ability to compute the upper-level

policies offline. This is important because, given the context of our application, a costly

finite-horizon look ahead in real time would not be feasible. However, the infinite-horizon

formulation does bear the limitation of not able to handle time-dependent arrivals. To handle

potentially time-dependent arrivals, we can either expand the state space (to be introduced

next) to include time-related information (e.g., day of the week and moment of the day); or

for practicality, solve the stationary policy for each (day of the week, moment of the day)

tuple.

At the lower level, given the set of selected requests and the state of the vehicles, a

routing plan is to be constructed. This is formulated as a variant of the DARP, where all

requests start at the same location and some vehicles may not be available immediately. We

follow closely the formulation given in Cordeau and Laporte (2007).

In Section 3.1, we describe the problem using a small example, and in Section 3.2, we

give the MDP formulation of the upper-level problem. For completeness, we provide the

exact formulation of the deterministic version of the problem in the Appendix.

3.1 Motivating Example

Figure 1 illustrates the planning process for a small, motivating example of our problem. At

the beginning of the first period, as shown in Figure 1a, eight requests are received and logged

into the system. The square indicates the hub, and the circles indicate the destinations of

the requests. There are two vehicles, each with a capacity of two. The goal is to construct
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(a) Requests that arrive at
the beginning of period 1.

(b) Routing plan con-
structed for period 1.

(c) Arrival of new requests
at the beginning of period 2.

(d) Routing plan con-
structed for period 2.

Figure 1: An illustration of the planning process with a small example.

a routing plan given the available information. An example of the routing plan is shown

in Figure 1b. The solid lines show the route of the first vehicle, and the dashed lines show

the route of the second vehicle. As indicated by the dashed lines, a vehicle might make

multiple trips to/from the hub. Notice that this plan is incomplete in that two requests are

left unscheduled. Due to the limited number of vehicles and the short time period, it is often

impossible to serve all existing requests and have all the vehicles back at the hub before the

beginning of the next period. Hence, we need to leave some requests unscheduled until the

next period. In this example, the planner decides to leave two requests unscheduled until the

arrival of the next batch of requests. The plan is then executed once it has been constructed.

Figure 1c illustrates the state at the beginning of the second period, where new requests
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are shown as triangles and served requests are shown as filled circles. At this point, the

existing plan has not been executed completely, as one vehicle is still on its way to deliver a

request before heading back to the hub, as indicated by the dashed lines. The other vehicle

is back at the hub. The planner is now required to construct a new routing plan, taking into

account the new requests and the state of the vehicles. In theory, it might be advantageous

to modify the existing plan. The vehicle on the road, for example, can be asked to return

to the hub to pick up another request before delivering the passenger on board. In practice,

however, such a modification may not be acceptable to the passenger(s) on board. To avoid

adding unnecessary complications to both modeling and implementation, modifications of

existing plans are not allowed in our paper. The new plan has to be constructed by extending

the existing one. Figure 1d shows an example of the new plan, where three requests are left

unscheduled. Another constraint of the problem is that a request that is not scheduled for

two consecutive periods is dropped from the system, incurring a penalty cost. (The demand

at the top-right corner in Figure 1d is one such dropped demand and is marked by a cross.)

This constraint ensures that passengers will be informed in a timely fashion if arranging a

shared ride is not feasible.

The example above illustrates the challenges in solving the multi-period ride-sharing

problem in the last-mile context. Since requests are not known in advance but realized

incrementally from one period to the next, the actual routing plan has to be constructed in

real time, partially and sequentially at each period as requests become known. Note that

since the execution of the constructed plan may span multiple future periods, and since plans

are not allowed to be modified, the decisions as to which requests are to be left unscheduled

in anticipation of future demands are critical–which is the focus of this work. Given the

nature of the problem (being stochastic and with a short planning time), neither classical

static approaches nor reactive methods with expensive look-aheads are suitable.
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3.2 MDP Formulation

An MDP is a tuple 〈S,A, C,P , γ〉, where S is the state space, A(s) is the set of possible

actions in state s ∈ S, C(s, a) is the cost of performing action a ∈ A(s) in the state s ∈ S,

P(s′|s, a) for s, s′ ∈ S and a ∈ A(s) is the probability of transitioning to state s′ if action a

is taken in the state s, and γ ∈ (0, 1) is the discount used to compute present values of future

costs. The solution to an MDP is a policy (state-to-action mapping) π∗ that minimizes the

expected discounted sum of costs over an infinite horizon. This is equivalent to solving the

following set of Bellman’s equations:

V ∗(s) = min
a∈A(s)

{
C(s, a) + γ

∑
s′∈S

P(s′|s, a)V ∗(s′)

}
,

for every s ∈ S, where the vector V ∗(s) is known as the value function. The rest of this

section describes the upper-level planning problem in terms of these components.

State Space. A state of the system consists of the unscheduled requests and the state of

the vehicles. Let L be the set of all possible destinations of a request and K be the set

of vehicles. A state s ∈ S is defined as a vector (`, `′, v) where ` = (`1, `2, . . . ), `i ∈ L,

denotes the destinations of unscheduled requests from this period, `′ = (`′1, `
′
2, . . . ) denotes

the destinations of unscheduled requests from the previous period, and v = (v1, . . . , v|K|)

denotes the state of the vehicles. Since a request is dropped if it is not scheduled within

two periods, it is sufficient to store unscheduled requests for two periods. For each vehicle

k ∈ K, vk is the time when it will be available at the hub. A vehicle might not be available

immediately because the previously constructed plan might still be in execution. Here we

assume that the time between periods, vehicles’ speeds and passenger service times (pickup

and drop-off) are constants, and therefore v can be computed trivially from the existing

plan. Since partially constructed plans are not allowed to be modified in subsequent periods,

it is not necessary, for the purpose of policy computation, to store the plans in the states.
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The plan’s information is implicit in the state of the vehicle.

Action Space and Cost Function. Given the state s = (`, `′, v), an action a ∈ A(s) =

2`∪`
′
is a subset of the unscheduled requests `∪`′ for which the current plan is to be extended.

C(s, a) is the cost of selecting a in the state s and consists of two components. The first

component is the cost associated with dropped requests, given by ∆|`′ − a|, where ∆ is the

penalty for dropping a request and |`′−a| is the number of dropped requests (i.e., all demand

in `′ not served by a). The second component is the aggregated journey time of the selected

requests (which contains both the waiting time and the riding time). To obtain the second

cost component, we need to solve the operational level problem. This is where the decisions

of both levels are connected.

Given selected requests a and vehicle state v (when vehicles will become available), an

instance of the operational problem can be constructed and solved to generate the actual

routing plan. Let Cop(a, v) be the riding time resulting from the actual routing plan, and

let T be the time between two consecutive periods. The complete cost C(s, a) can then be

expressed as

C(s, a) = ∆|`′ − a|+ T |`− a|+ Cop(a, v),

where the term T |`− a| accounts for the waiting time of one time period for all requests not

served in the current period.

From the perspective of computing an optimal policy, the above formulation of the cost

function requires a consistent operational (routing) algorithm; i.e, for the same input, it has

to return the same value. However, this is not a strict requirement, as we can always replace

the term Cop(a, v) with the expectation of the value returned by an inconsistent algorithm.

This is particularly necessary if instances of (a, v) are large and a heuristic algorithm, most

likely with randomization, is required to solve the operational problem within reasonable

time. Computing the exact expectation, however, will likely be intractable, in which case,

methods like sample average approximation can be employed.
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Transition Dynamics. The transition from one state to another can be described in two

steps: the deterministic step and the stochastic step. Consider the state s = (`, `′, v) and

the action taken a ⊆ `∪ `′. The last two elements of a possible next state s′ are determined,

i.e., s′ = (·, ` − a, v′), where ` − a are the requests left unscheduled until the next period,

and v′ is the state of the vehicles obtained after running the operational planner with input

(a, v). Again, here, v′ is deterministically determined because the operational planner used

is consistent. The first component of s′ is stochastic, and it depends on the distributions

associated with the number of arriving requests and their destinations in each period. Let

L(m) be the probability of requests m arriving in any period; the transition probability P

can therefore be expressed as

P((m,m′, u)|(`, `′, v), a) =

 L(m) if m′ = `− a and u = v′,

0 otherwise.

We assume that arrivals are independent from period to period. It is unnecessary, therefore,

to encode the history of arrivals into the state definition to maintain the Markov property.

Optimality Equation. One note regarding the use of the discount factor γ: Although

minimizing the expected undiscounted sum of costs would probably be closer to the objective

of the real-world problem, we choose to solve the discounted version due to the computational

consideration that such formulation would more easily lead to the convergence to a stationary

policy. This is commonly seen in the dynamic programming and the MDP literature, e.g.,

see Singh and Bertsekas (1997) and Maxwell et al. (2010). In other words, the discount

factor can be viewed as an approximation parameter that provides the tradeoff between the

rate of convergence and the accuracy of the model.

13



4 Solution Approach

The complete MDP formulation results in an uncountably infinite state space, since both

v (the times when vehicles return to the hub) and L (the set of potential destinations) are

continuous. It is inevitable, therefore, that we employ approximation methods in computing

the required policy. In this section, we present our approach, which is based on the value

iteration algorithm with the following layers of approximation:

1. Discretization and Summarization of States : The state space is discretized by dividing

the planning region into zones and the planning horizon into intervals. Furthermore,

we do not distinguish between requests that are going to the same zone. Hence, rather

than storing the destination of each request, the number of requests going to each zone

is aggregated and stored as a state variable. The same applies to the vehicles returning

to the hub. Instead of the exact return time of each individual vehicle, we store the

number of vehicles that will be returning in each time interval. This makes the state

space finite and greatly reduces the dimension of the state space. Interestingly, the

byproduct of this is that all states now have equal lengths, which allows us to measure

the distance between two states using standard distance metrics.

2. Representative States : Although the discretized MDP has a much smaller state space,

it is still too large to be solved exactly for even moderate-size instances. We circumvent

this problem by further reducing the state space. Instead of all the states, we keep a

set of “representative” states for which the value iteration is performed. The property

of this set is such that any state in the original state space should be within a certain

distance from the “closest” representative state. The distance between two states is

defined as the maximum difference along a particular state dimension (i.e., the max

norm).

3. Sample Average Approximation (SAA): Unlike the previous two techniques, which aim

at reducing the size of the state space, the SAA approach is used to reduce the com-
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putational efforts required for evaluating the expectation terms in the value function,

in particular, the immediate cost of a discretized state-action pair (by sampling its

possible realizations and solving them using the operational planner) and its future

cost (by sampling possible future states).

Essentially, our approach maps the original MDP into a smaller discretized MDP, solves

the smaller MDP using approximate value iteration, and uses the resulting policy as the

solution to the original MDP. The following subsections describe these approximations in

greater detail.

4.1 State Space Discretization and the SAA Approach

A state s̄ ∈ S̄ in the discretized MDP, 〈S̄, Ā, C̄, P̄ , γ〉, is a vector (y, y′, ν) where y =

(y1, . . . , yN) is the number of existing requests in each zone that arrive in the current pe-

riod, N being the number of zones. y′ = (y′1, . . . , y
′
N) is similar to y but for requests that

arrived in the previous period. The state of vehicles ν = (ν0, νσ, ν∞) describes the number

of vehicles that will be returning in different time intervals. We divide our planning horizon

into three time intervals: ν0 is the number of vehicles that are available immediately, νσ is

the number that are available between time 0 and σ > 0, and ν∞ is the number that are

available after σ. An action ā = (α1, . . . , αN , β1, . . . , βN) in the state s̄ ∈ S̄ is a vector such

that, for z ∈ {0, . . . , N}, 0 ≤ αz ≤ yz and 0 ≤ βz ≤ y′z. It denotes the number of existing

requests from both y and y′ for which the partial plan is to be extended. C̄(s̄, ā), the cost of

selection ā ∈ Ā(s̄) in the state s̄ ∈ S̄, is defined as follows:

C̄(s̄, ā) = ∆
N∑
z=1

(y′z − βz) + T

N∑
z=1

(yz − αz) + E [Cop(a, v)] .

The first and the second components are defined similarly as the corresponding cost compo-

nents in the original MDP. The third component is the expected total travel time of selected

requests. Here, the pair (a, v) refers to the continuous values in the original MDP before dis-
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cretization and summarization. As there is potentially an infinite number of realizations of

(a, v) given (s̄, ā), we would treat (a, v) as random variables and compute the expectation by

sampling uniformly over all possible instantiations of (a, v) given s̄ and ā. The computation

of this expectation is the first instance where we apply the SAA approach.

The second instance of using the SAA approach is in the computation of future values

of state-action pairs. Similar to the cost function, the transition dynamics in the discretized

MDP relies on the instantiation of the states and actions in the original MDP. To obtain

a possible next state from (s̄, ā), we first sample a state s and an action a ∈ A(s) in the

original state space that maps to s̄ and ā. We then sample a possible next state s′ in the

original MDP from (s, a) and map that back to a state s̄′ in the discretized state space. Note

that the mapping from the original to discretized state space is a surjection (many to one),

and therefore, the last step is deterministic. To use the policy computed for the discretized

MDP in the original MDP (where the state space is not discretized), we need a mapping

from a state in the original to the discretized MDP and from an action in the discretized

MDP to the original. The former is straightforward, and for the latter, given the number of

requests to schedule in a zone, we pick uniformly from the existing requests in that zone.

4.2 Representative States

Instead of maintaining all possible states, we keep a set of representative states and try to

approximate the value function on this set. For a state that is not in the set, its value is

treated to be the same as the closest state in the set. Here, we define the distance between

two states as the maximum difference between corresponding components of the states, i.e.,

for two states (y, y′, ν) and (q, q′, ν ′),

Distance((y, y′, ν), (q, q′, ν ′)) = max
m∈{1,...,N}

{|ym − qm|, |y′m − q′m|,

δ|ν0 − ν ′0|, δ|νσ − ν ′σ|, δ|ν∞ − ν ′∞|},
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where δ is the normalizing factor that is set to one in this work. Essentially, what we want

to measure is first, the difference in the distributions of requests with respect to different

zones, and second, the difference in the states of vehicles with respect to their return times.

Since all states have identical length, the maximum difference is one logical choice. Given

the upper bound ε ∈ {1, 2, . . . }, we can then define a representative set θε as a subset of S̄

such that for all s̄ ∈ S̄, there exists s̄′ ∈ θε where Distance(s̄, s̄′) ≤ ε. One such set, which

is used in this work, is the following:

θε =

(y, y′, ν)

∣∣∣∣∣∣∣
ym, y

′
m = τ(2ε+ 1),

∑
m ym ≤M,

∑
m y
′
m ≤M,

ν0, νσ, ν∞ = τ(2ε+ 1), ν0 + νσ + ν∞ ≤ |K|, τ ∈ {0, 1, . . . }

 ,

where each element of a representative state is a multiple of 2ε + 1. θε can be viewed

conceptually as the points in a multidimensional grid. Each state in the space is mapped

to the nearest point in the grid. Note that like the mapping from S to S̄, the mapping

from S̄ to θε is a surjection, where for every state in S̄, there is exactly one state in θε to

which it is the nearest. (We use lexicographic order to break the tie if necessary.) As an

example, consider the case where ε = 1, the maximum number of requests per period is

10, the number of zones is 2, and the number of vehicles is 3, then the set θε is defined by

{(0, 0), (0, 3), (0, 6), (0, 9), (3, 0), (3, 3), (3, 6), (6, 0), (6, 3), (9, 0)}2×{(0, 0, 0), (3, 0, 0), (0, 3, 0),

(0, 0, 3)}. The evaluation of different values of ε and their effects on the performance is

explored in Section 5.

4.3 Approximate Dynamic Programming

The method to compute the policy for the discretized MDP is based on value iteration and

is shown in Algorithms 1 and 2. In the beginning, the set θ of representative states is

initialized with random samples of possible starting states (Algorithm 1:3–7), where Y(·) is

the distribution of arrivals in the discretized MDP, which can be computed trivially from

L(·), the distribution in the original. During the iteration phase, if a state is sampled and
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Algorithm 1 ApproximateValueIteration

1: Parameters: maxStateSample, maxIteration
2: θ ← ∅, V ← ∅, V ′ ← ∅, π ← ∅
3: for i = 0 to maxStateSample do . Initial representative states
4: y ← sample from Y(·), ν ← (|K|, 0, 0), s← (y, ∅, ν)
5: V (s)← 0
6: θ ← θ ∪ {s}
7: end for
8: for i = 1 to maxIteration do . Value update step
9: for all s̄ ∈ θ do

10: for all ā ∈ Ā(s̄) do
11: V ′(s̄|ā)← Evaluate(s̄, ā, θ, V ) . State-action evaluation function
12: end for
13: V ′(s̄)← minā V

′(s̄, ā)
14: πi(s̄)← arg minā V

′(s̄, ā)
15: end for
16: V ← V ′ . Value function update
17: end for
18: return π = (π1, . . . , πmaxIteration) . Generated policies from different iterations

is far from the set, then it is added to the set and its value is initialized to zero (Algo-

rithm 2:12–17). A state s̄′ is far from the set θ if Distance(s̄, s̄′) > ε for all s̄ ∈ θ, with

ε being the approximation parameter. A larger ε will result in a smaller θ, which requires

fewer iterations to reach its stable size but will produce a poorer estimate of the value func-

tion. On the other hand, a smaller ε requires more iterations to stabilize but results in a

better estimate. It is important, therefore, to find the right values that balance both in

different problem settings. As mentioned previously, sample average is used in computing

the expected future costs (Algorithm 2:9,21) and the expected values of discretized state-

action pairs using instantiations of possible pairs in the original MDP (Algorithm 2:2,24).

The call to the function Execute (Algorithm 2:8) denotes the execution of the operational

routing algorithm. One final note here is the exhaustive enumeration of all possible actions

(Algorithm 1:10), which is very costly. Intuitively, we know that certain actions are almost

always dominated by others (a trivial example being the empty selection); we explore the

possibility of using smaller subsets of actions in Section 4.5.
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Algorithm 2 Evaluate ((y, y′, ν), ā, θ, V )

1: Parameters: maxInstanceSample, maxStateSample, ε
2: for i = 1 to maxInstanceSample do . Instances generation
3: `← sample from L(·) w.r.t. y
4: `′ ← sample from L(·) w.r.t. y′

5: v ← sample uniformly w.r.t. ν
6: si ← (`, `′, v) . An instance in the original state space
7: ai ← choose uniformly from ` ∪ `′ w.r.t. ā . A sample action
8: C̄op(si, ai), ν

′ ← Execute(si, ai) . Operational planner execution
9: for j = i to maxStateSample do . Sample next states

10: z ← sample from Y(·)
11: s̄′j ← (z, y − ā, ν ′) . A sample next state
12: if ∃s̄ ∈ θ such that Distance(s̄, s̄′j) ≤ ε then . A representative state exists
13: C̄fut(si, ai|s̄′j)← V (s̄)
14: else . Otherwise sample state is added to the set
15: θ ← θ ∪ {s̄′j}
16: V (s̄′j)← 0
17: C̄fut(si, ai|s̄′j)← 0
18: end if
19: end for
20: C̄(si, ai) = ∆|`′ − ai|+ T |ai − `|+ C̄op(si, ai) . Immediate cost
21: C̄fut(si, ai)← γ

∑
j C̄fut(si, ai|s̄′j)/maxStateSample . Discounted future cost

22: V̄ (si, ai)← C̄(si, ai) + C̄fut(si, ai) . Approximate value of state-action instance
23: end for
24: return

∑
i V̄ (si, ai)/maxInstanceSample . Average value over instances

4.4 Convergence and Runtime Analysis

In this section, we present the analytical results on the convergence and runtime performance

of our approach. We start the analysis by considering exact value iteration updates on the set

of representative states θε (with full enumeration instead of using sampling). Proposition 1

shows that this operation is a contraction. This result relies on the use of the discount factor γ

and the fact that the mapping from actual states to θε is a surjection. As a consequence, when

the value iteration update is applied repeatedly to an arbitrary starting state, it converges

to a fixed point (Corollary 1).

Proposition 1 Let V be the range space of the value function (i.e., the set of all possible

values of V ), where V ∈ V is a value function defined on θε, the set of representative states.
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And, let T be the exact value update operator (as defined in Algorithms 1 and 2 but without

sampling) on V. The operator T on V is a contraction mapping if the mapping ϕ from S to

θε is a surjection and the discount factor γ is less than 1.

Proof. Let U, V ∈ V , and for a representative state s̄ ∈ θε, let

ā∗(U, s̄) ∈ arg min
ā∈Ā(s̄)

{
C̄(s̄, ā) + γ

∑
s′∈S

P (s′|s̄, ā)U(ϕ(s′))

}
,

and ā∗(V, s̄) be similarly defined. Assuming, w.l.o.g., that T V (s̄) > T U(s̄), we have

T V (s̄)− T U(s̄)

= C̄(s̄, ā∗(V, s̄)) + γ
∑
s′∈S

P (s′|s̄, ā∗(V, s̄))V (ϕ(s′))

−

(
C̄(s̄, ā∗(U, s̄)) + γ

∑
s′∈S

P (s′|s̄, ā∗(U, s̄))U(ϕ(s′))

)
(1)

≤ C̄(s̄, ā∗(U, s̄)) + γ
∑
s′∈S

P (s′|s̄, ā∗(U, s̄))V (ϕ(s′))

−

(
C̄(s̄, ā∗(U, s̄)) + γ

∑
s′∈S

P (s′|s̄, ā∗(U, s̄))U(ϕ(s′))

)
(2)

= γ
∑
s′∈S

P (s′|s̄, ā∗(U, s̄)) [V (ϕ(s′))− U(ϕ(s′))]

≤ γ
∑
s′∈S

P (s′|s, a∗(U, s̄))‖V − U‖ (3)

= γ‖V − U‖,

and thus ‖T V − T U‖ = maxs̄∈θε |T V (s̄) − T V (s̄)| ≤ γ‖V − U‖. The definition of the

operator T leads to (1). The inequality (2) is obtained by substituting in a non-optimal

action to the first line, resulting in a higher cost. The action chosen is the same as the one

used in the second line. Step (3) is where the surjection property of ϕ is used. Since both

ϕ(s′) map to the same state in θε, the inequality is obtained by substituting in the maximum

difference. Given that γ < 1, the operator T is a contraction mapping. ut
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Corollary 1 Let T η be η iterations of exact value update. There exists a unique V ∗ ∈ V

such that T V ∗ = V ∗ and limη→∞ T ηV0 = V ∗ for any V0 ∈ V.

Proof. Follows from the fixed point theorem due to T being a contraction mapping. ut

Next, we derive the bound on the error resulting from using the SAA approach. Proposi-

tion 2 gives the error bound for a single step of the algorithm, while Proposition 3 provides

the bound for an arbitrary number of steps η. We start by defining the following auxiliary

variables. Given s̄ ∈ θε and ā ∈ Ā(s̄), we define U∗(s̄, ā) and U(s̄, ā) to be the following:

U∗(s̄, ā) = E [C(s, a)] + γE [V ∗(ϕ(s′))] ,

U(s̄, ā) =
1

λ1

λ1∑
i=1

C(si, ai) + γ
1

λ1λ2

λ1λ2∑
i=1

V ∗(ϕ(s′i)),

where V ∗ ∈ V is as given by Corollary 1, λ1 denotes the number of state-action samples to

be evaluated, and λ2 denotes the number of samples used to approximate future cost. The

notation s in the first definition denotes a possible realization of a state in the original MDP

given s̄, and the expectation is taken uniformly over all possible realizations. The notation

s′ denotes a possible next state given (s̄, ā), and the expectation is first taken uniformly

over all possible realizations of (s̄, ā) in the original MDP and then taken according to the

transition governed by P . The second variable is an empirical mean, which is essentially a

sample average approximation of the first variable, with sample sizes λ1 and λ2 as seen in

Algorithms 1 and 2. For brevity, we denote the first term of both functions as U∗1 (s̄, ā) and

U1(s̄, ā) and the second term as γU∗2 (s̄, ā) and γU2(s̄, ā). These two functions can thus be

rewritten as U∗(s̄, ā) = U∗1 (s̄, ā) + γU∗2 (s̄, ā) and U(s̄, ā) = U1(s̄, ā) + γU2(s̄, ā).

Proposition 2 For any s̄ ∈ θε and ā ∈ Ā(s̄), we have

Pr
(∣∣U∗1 (s̄, ā)− U1(s̄, ā)

∣∣ ≤ σ1

)
≥ 1− 2e−2σ2

1λ1/C2max , and

Pr
(∣∣U∗2 (s̄, ā)− U2(s̄, ā)

∣∣ ≤ σ2

)
≥ 1− 2e−2σ2

2λ1λ2/V2
max ,
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for any positive σ1 and σ2.

Proof. By direct application of the Hoeffding’s inequality (Hoeffding 1963). ut

To derive the stepwise error bound, we first define the following random variable denoting

the progress of the algorithm:

U
η
(s̄, ā) = U

η

1(s̄, ā) + γU
η

2(s̄, ā)

=
1

λ1

λ1∑
i=1

C(si, ai) + γ
1

λ1λ2

λ1λ2∑
i=1

V η−1(ϕ(s′i)).

Proposition 3 Let η be the current iteration of the algorithm. For any s̄ ∈ θε, ā ∈ Ā(s̄)

and positive σ1, σ2 we have:

Pr(
∣∣Uη

(s̄, ā)− U∗(s̄, ā)
∣∣ ≤ errη) ≥ 1− 2ηH,

where errη = γηVmax + γησ2 +
∑η−1

i=1 γ
i(σ1 + σ2) + σ1 and H = e−2σ2

1λ1/C2max + e−2σ2
2λ1λ2/V2

max.

Proof. If |U1(s̄, ā)− U∗1 (s̄, ā)| ≤ σ1 and |U2(s̄, ā)− U∗2 (s̄, ā)| ≤ σ2, then:

∣∣Uη
(s̄, ā)− U∗(s̄, ā)

∣∣
≤
∣∣Uη

(s̄, ā)− U(s̄, ā)
∣∣+ |U(s̄, ā)− U∗(s̄, ā)|

≤ γ
∣∣Uη

2(s̄, ā)− U2(s̄, ā)
∣∣+ |U1(s̄, ā)− U∗1 (s̄, ā)|+ γ |U2(s̄, ā)− U∗2 (s̄, ā)|

≤ γ
∣∣∣Uη−1

(s̄, ā)− U∗(s̄, ā)
∣∣∣+ σ1 + γσ2,

where the last step proceeds from the fact that V η−1(s̄) = minā

{
U
η−1

(s̄, ā)
}

. Let errη

denotes the bound at iteration η, we thus have the following recursive relation:

errη = γerrη−1 + σ1 + γσ2,
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with the base case err0 = Vmax. Solving the recursive equations for a particular η yields

errη = γηVmax + γησ2 +

η−1∑
i=1

γi(σ1 + σ2) + σ1.

In other words,
∣∣Uη

(s̄, ā)− U∗(s̄, ā)
∣∣ ≤ errη is true if both |U1(s̄, ā)− U∗1 (s̄, ā)| ≤ σ1 and

|U2(s̄, ā)− U∗2 (s̄, ā)| ≤ σ2 are satisfied at each iteration. Applying Proposition 2, the prob-

ability that the latter false is bounded by 2e−2σ2
1λ1/C2max and 2e−2σ2

2λ1λ2/V2
max , respectively, for

one iteration. The probability that they are true for all the iterations is therefore at least

1− 2η
(
e−2σ2

1λ1/C2max + e−2σ2
2λ1λ2/V2

max

)
. ut

As a consequence, the following establishes that the algorithm converges in probability

to the fixed point V ∗ of Corollary 1. And finally, the runtime complexity of the algorithm is

proven in Proposition 4.

Corollary 2 The approximate value iteration (Algorithm 1) converges in probability with a

large enough sample size (λ1 and λ2), that is, given the fixed point V ∗ of Corollary 1,

lim
η→∞

Pr
(
‖T ηλ1,λ2V0 − V ∗‖ > σ

)
= 0,

for any V0 ∈ V, σ > 0 and large enough λ1 and λ2.

Proof. Following Proposition 3, at the limit, we have:

lim
η→∞

errη = lim
η→∞

γηVmax + γησ2 +

η−1∑
i=1

γi(σ1 + σ2) + σ1

=
σ1 + σ2

1− γ
+ σ1,

and thus if we choose λ1 and λ2 such that H < 1, for any s̄ ∈ θε and ā ∈ Ā(s̄),

lim
η→∞

Pr

(∣∣Uη
(s̄, ā)− U∗(s̄, ā)

∣∣ ≤ σ1 + σ2

1− γ
+ σ1

)
≥ 1− 2 lim

η→∞
Hη = 1.
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Proposition 4 Let M be the maximum number of requests arriving in a period, N the

number of zones, and K the set of vehicles. The approximate value iteration (Algorithm 1)

runs in O
(
η|K|2(M/ε)4N+2 logM

)
time, where η is the number of iterations and ε > 0 the

approximation factor.

Proof. The exact size of the discretized state space S̄ is the product of the number of non-

negative integer solutions to 0 ≤
∑N

z=1 yz ≤ M , 0 ≤
∑N

z=1 y
′
z ≤ M and ν0 + νσ + ν∞ = |K|,

given by the expression:

|S̄| =
(
|K|2 + 3|K|+ 2

2

)[ M∑
m=0

(
N +m− 1

m

)]2

,

which is asymptotically O
(
|K|2M2N

)
. Given ε > 0, the possible values for each entry of a

state is reduced by the factor 1/(2ε + 1); therefore, the size of the representative set θε is

O
(
|K/ε|2(M/ε)2N

)
. The number of possible actions (selections) given a state is O(M/ε)2N .

And, in each of the η iterations, for every state-action pair, the Savings algorithm is called

a constant number of times, according to the sample size. Since the maximum number of

selected requests is 2M , each call takes O(M2 logM) time using the heap implementation of

the algorithm2. Evaluation of future cost can be done in constant time if the value function

is implemented using indexing directly from the states (since a state is basically an array of

integers). The total time taken, therefore, is the product of these components. ut

Note that the runtime becomes computationally intractable as the number of zones in-

creases, even though it is polynomial in the size of the problem if we keep N small and

constant. From this analysis, we can identify two factors that constitute the runtime bottle-

neck. The first is the number of zones, and the second is the evaluations of all state-action

pairs, both of which contribute significantly to the exponent of M/e. We address the first

2The Savings algorithm of Clark and Wright for VRP, when implemented using a heap, runs in O(n2 log n)
time, where n is the number of destinations. In our case, in each period, the maximum number of selected
requests (destinations) is 2M. Hence, each call to the algorithm takes O(M2 logM) time.
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issue by keeping the number of zones small. As a consequence, however, the way zones are

formed becomes crucial. In this work, this is done using the standard k-means clustering

on past data of last-mile trips (the historical last-mile trips we utilized are extracted from a

real-world public transport dataset in Singapore; more details can be found in Section 5.2).

The details of the clustering method and the properties of the resulting zones are discussed

in the experimental section. As for the second issue, one way to address it is to further

decompose the action space and consider the actions of each vehicle independently. This

decomposition approach is discussed in the next section.

4.5 Action Space Decomposition

Algorithm 3 ApproximateValueIteration-DC

1: Parameters: maxStateSample, maxIteration
2: θ ← ∅, V ← ∅, V ′ ← ∅, π ← ∅
3: for i = 0 to maxStateSample do . Initial representative states
4: y ← sample from Y(·), ν ← (|K|, 0, 0), s← (y, ∅, ν)
5: V (s)← 0
6: θ ← θ ∪ {s}
7: end for
8: for i = 1 to maxIteration do . Value update step
9: for all s̄ ∈ θ do

10: for all vehicle k ∈ K do
11: for all āk ∈ Āk(s̄) do
12: f(āk|s̄)← Evaluate-DC(s̄, āk) . Individual action evaluation
13: end for
14: ā∗k(s̄)← arg mināk f(āk|s̄) . Individual best action
15: end for
16: πi(s̄)← Compose(ā∗1, . . . , ā

∗
|K|) . Constructing joint action

17: V ′(s̄)← Evaluate(s̄, πi(s̄), θ, V )
18: end for
19: V ← V ′ . Value function update
20: end for
21: return π = (π1, . . . , πmaxIteration) . Generated policies from different iterations

The method presented so far works well for problem instances of moderate size (consider-

ing the number of requests in each period, the number of zones, and the number of vehicles),
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Algorithm 4 Evaluate-DC ((y, y′, ν), āk)

1: Parameters: maxInstanceSample
2: for i = 1 to maxInstanceSample do . Instances generation
3: `← sample from L(·) w.r.t. y
4: `′ ← sample from L(·) w.r.t. y′

5: vk ← sample uniformly w.r.t. ν . The available time of vehicle k
6: si ← (`, `′, vk) . An instance in the original state space
7: aik ← choose uniformly from ` ∪ `′ w.r.t. āk . A sample action of vehicle k
8: C̄op(si, a

i
k)← Execute(si, a

i
k) . Operational planner execution

9: C̄(si, aik) = ∆|`′ − aik|+ T |aik − `|+ C̄op(si, a
i
k) . Cost of action

10: end for
11: return

∑
i C̄(si, aik)/maxInstanceSample . Average value over instances

which is adequate given the context of our application. For larger instances, however, the

offline computation of policies can be prohibitively long. For these cases, we propose an

action space decomposition approach, given in Algorithms 3 and 4. Instead of evaluating

every possible joint action in each iteration, we consider each vehicle’s actions independently

(Algorithm 3:10–15). Since vehicles have limited capacities, the size of the individual ac-

tion spaces combined is much smaller than the joint action space. The best action for each

vehicle is evaluated by sampling and solving the operational problem for a single vehicle

(Algorithm 4). They are then combined to form a joint action, by adding the number of

selected requests in each zone for each period, up to the maximum number of available re-

quests (Algorithm 3:16). The value update for the state is then performed using Algorithm 2

with the constructed joint action. The evaluation of this decomposition is given in Section 5.

5 Computational Results

In this section, we present computational results related to the scalability and performance

of our approach. In Section 5.1, using synthetic data, we show how runtime is affected by

the algorithmic parameters. We also describe a parallel implementation of the algorithm

here. In Section 5.2, we present the comparison of our approach against baseline policies

using simulations, where parameters are derived from a real-world public transport dataset
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in Singapore.

5.1 Scalability and Parallelization

The first set of results measure the changes in runtime with respect to the approximation

factor (ε), the number of VRP instances used to approximate the current cost of a selection

(λ1), and the number of samples of next states used to approximate the future cost (λ2).

These results apply to the dynamic version of our approach (where the representative set

are constructed over the iterations). The runtime of the static version is given analytically

in Section 4.4.

The problem setting and assumptions are as follows: The space of all possible destinations

is the 2D Cartesian plane with coordinates ranging from -1 to 1 for both the x- and y-axes.

This space is divided into four zones, which correspond to the four quadrants of the plane.

The coordinate of the hub is (0, 0). Possible numbers of requests in a period are 8, 9, and 10,

with equal probability. The destination of a request is uniformly distributed over the plane

and thus has a 0.25 probability of being in any zone. The distance between two points is the

Euclidean distance. The number of vehicles is two, their capacity four, and their speed one.

The time to pick up and drop off passengers (service time) is set to zero. This is true for all

subsequent experiments. The time period is 5. The results of the experiments are shown in

Figures 2 – 5, where each point in the graphs is the average of 10 instances (each instance is

a randomly generated demand profile).

Figure 2 shows the runtime plotted against the number of iterations for ε, ranging from

1 to 4. Here, we see that the runtime increases significantly as ε decreases. This is due to

the significant increase in the number of representative states to be maintained, as shown in

Figure 3. In practice, it is therefore important to choose a suitable ε that balances between

accuracy and computational time.

Despite the difference in the size of maintained representative states, it is interesting to

note that in all ε cases, our proposed approach explores only a small fraction of the state
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Figure 2: Runtime for different ε.
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Figure 3: Number of representative states at different iterations for different ε.

space: at iteration 20, the fraction of the state space explored is around 0.1%, 0.06%, 0.02%,

and 0.01% respectively for ε values of 1, 2, 3, and 4. This indicates, therefore, that our

approach (and, in general, representative-state-based approximate value iteration) is best

applied to problems where large numbers of states can be grouped together naturally by

some form of similarity measure, which we believe is the case here. Lastly, note that the sets

reach their stable sizes within few iterations, at around iteration 10.

Figure 4 shows the runtime for different values of λ1 (the number of state-action samples
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Figure 5: Runtime for different values of λ2.

to be evaluated). An increase in λ1 means that the number of VRP instances to be solved is

increased for each evaluation of a selection. With the current implementation, given a state,

the algorithm evaluates all possible selections exhaustively, and that is why runtime increases

significantly as λ1 increases. As mentioned previously, this is one of the weaknesses that we

seek to improve in future works. Figure 5 shows the same for λ2 (the number of samples

to approximate future cost), and here the increase is not as significant, and we can afford

to use a larger number of samples. Intuitively, a larger λ2 also causes the set of maintained
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representative states to reach its stable size faster.

One way to address the scalability issue is through parallelization, and fortunately, value

iteration-based algorithms lend themselves nicely to parallelization. Here, we describe briefly

the parallelization of the algorithm using the MPI master-slave architecture.
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Figure 6: Parallel runtime for ε = 1.
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Figure 7: Parallel runtime for ε = 2.

In this implementation, the master maintains the representative states and their values,

while the slaves perform the update step. At the beginning of each iteration, the master

broadcasts the representative states and their current values to all the slaves. Each slave

30



then selects an equal number of states and updates them, computing the next value for each.

At this point, if a sampled next state is far from the current set, its map in the set θε is then

added to a temporary local set. At the end of the iteration, each slave sends the updated

values and the temporary set to the master. The master then consolidates the results,

updating the values of the current set and adding new states if necessary. All processes are

then synchronized before proceeding to the next iteration. We test our implementation on

a Linux HPC cluster with eight Intel Xeon 8-core@3.16GHz and 256GB of RAM with the

following setting. Similar to the previous setup, the problem is defined on a 2×2 Cartesian

plane with the hub at the center. The plane is divided into six zones. The number of vehicles

and their capacity is 4, the time period is 4, and the number of samples is 5 (λ1) × 100

(λ2). We measure the time to complete 10 iterations against the average number of requests

for two different ε. Having m as the average number of requests means that the possible

numbers are m − 1, m, and m + 1 with equal probability. The destination of a request is

uniformly distributed on the plane. Figures 6 and 7 show the results for ε equals 1 and

2, respectively. They show that an increase in the number of processors by two reduces

the runtime by roughly one-third. As shown, with parallelization, we manage to compute

policies for moderate-size problems with small ε. For larger instances, like the ones in the

next section, we have to compensate by increasing the value of ε correspondingly.

Note that due to the use of “Sample Average Approximation”, the value function is

approximated and thus the value iteration might not be monotonic. Therefore, if we want to

identify the best policy obtainable from the approximated value iteration process, we have

to numerically evaluate the policy obtained at the end of each iteration. To avoid these

computational overheads, we simply use the policy obtained in the last iteration. We have

empirically tested this approach, and confirm that, although the process is not monotonic

as expected, the final value is numerically close to the best value.
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5.2 Performance Comparison

To measure the performance of our approach, we perform two sets of experiments. The first

set is designed to establish the gap between the ADP approach and the optimum (estimated

using a lower bound). The second set is designed to evaluate the performance of the ADP

approach on realistically sized problem instances against two baselines.

In the first set, using small synthetic instances, we compare our approach against a

lower bound on the “optimum”. To obtain the exact optimum, one would need to solve our

MDP exactly, which is unfortunately not possible even for very small-scale instances. To

provide a comparison, we derive a lower bound on the optimum instead. The lower bound is

obtained by solving the last-mile ride-sharing problem deterministically, i.e., assuming that

all demands are known a priori. The formulation is described in detail in the Appendix.

The synthetic instances are generated on a 2 × 2 Cartesian plane with the hub at the

center. The number of arrivals in each period is uniformly distributed between 10-15, the

time between two periods is 3, and the number of periods is 5. The traveling time between

two points is set to be the Euclidean distance, and the capacity of vehicles is set to 2. For

the ADP, the zones are the 4 quadrants of the plane. The results are shown in Table 1.

Two different distributions of the destinations are considered. The four numbers in the first

column correspond to the probabilities of a destination being in quadrants 1-4 respectively.

We also vary the number of vehicles, and for each setting (row), 10 demand instances are

generated and the average results are shown.

The lower bound on the optimum for each instance is obtained by solving the determin-

istic MIQCP model proposed in the Appendix. The MIQCP solver (implemented in CPLEX

12.7) is run until 10% optimality gap is obtained. As shown here, the ADP approach per-

forms relatively well with respect to the lower bound, with better performance on more

skewed demand distributions. Also shown here is the average runtime of the deterministic

solver (to reach 10% optimality gap) and the policy computation time for the ADP approach.

We would like to emphasize that although the ADP policy computation time seems long, it
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Table 1: Performance comparison with the optimal solutions.

distribution of
#veh MIQCP

avg
ADP

policy avg
destinations runtime comp time optimality

(0.25, 0.25, 0.25, 0.25) 5 4.12 3.5h 5.15 8.1h 75%
6 3.35 4.2h 4.05 8.5h 79%
7 2.83 5.1h 3.26 9.1h 85%

(0.5, 0.1, 0.3, 0.1) 5 4.11 3.7h 4.93 7.9h 80%
6 3.66 3.9h 4.25 8.2h 84%
7 2.79 5.5h 3.1 9.6h 89%

only needs to be executed once, and the runtime for actually applying the policy in practice

plus solving the associated routing problem is close to instantaneous.

While the first set of the experiments establishes the performance gap between the ADP

approach and the optimum, they are too small. The second set of the experiments is thus

designed to evaluate the performance of the ADP approach on more realistically sized prob-

lem instances. As the MIQCP formulation is not scalable to these instances, we compare

the performance of our ADP approach against two baseline policies: the complete selection

policy and the one-step look-ahead policy. The complete selection policy is designed to serve

as many arriving requests as possible in each period by solving a VRP without consider-

ing future requests. As demands from each period are served completely (fleet capacity is

assumed to be large enough), demands from different periods will not have a chance to be

grouped together. The complete selection policy will be viewed as the comparison baseline.

The one-step look-ahead policy is obtained by looking at both current requests and requests

that might arrive in the next period. The “look ahead” part is achieved by sampling sev-

eral arrival scenarios in the next period, and for each sampled instance, a VRP containing

both current and sampled requests is solved to obtain the policy. A current request will be

selected if for more than 50% of all sampled instances, it is not grouped with any sampled

request. The argument for this is, if in the majority of samples, a request is not grouped (in

the routing decision) with any sampled future request, then it’s less likely for this request to

incur any saving by delaying it the next period.
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We perform these comparisons under the steady-state assumption; i.e., there will be

sufficient vehicles to serve all incoming requests, and the expected waiting/journey time

stays finite. Computationally speaking, this implies that we never drop any request. To

achieve this, when solving the MDP, we set the penalty for dropping a request (∆) to

infinity. When solving for the one-step look-ahead policy, additional constraints are inserted

so that a request will always be selected if it is from the previous period.

The comparison is conducted using simulations at three representative train stations in

Singapore: Boon Lay, Ang Mo Kio, and Marymount, where three distinct demand profiles

are represented. (We will discuss them separately later.) For each station, we derive the

following corresponding statistical distributions. The demand profile for each station is

derived from a real-world public transport dataset, which contains comprehensive tap-in

and tap-out records for all trains and buses across Singapore over one month. A last-mile

trip is detected from the dataset as a bus ride that is preceded by a train ride within a short

amount of time (less than 20 minutes of transit time). Since we cannot observe a passenger’s

real final destination, the alighting bus station is used as the proxy for the destination.

By clustering all these last-mile destinations from a chosen train station using the k-means

approach, the planning zones are determined (with k given as a parameter). The probability

distribution over all possible destinations is computed by normalizing the observed last-mile

demands from a typical work week (five days). These probability distributions are used

for both our algorithms (when demands need to be sampled) and the simulations (for the

evaluation purpose). The evaluation simulations are performed on the real road network,

with the vehicle speed fixed at 45 km/h and the time interval set at 5 minutes. For each

simulation setting, we measure the average journey time (waiting + riding times in minutes)

of passengers for 50 periods. The results are summarized in Figures 8 – 10. The policy

comparison for the Boon Lay station is shown in Figure 8. This station has a high volume

of concentrated last-mile demands. For example, as shown in Figure 8(c), when clustered

into four zones, more than 50% of all destinations are concentrated in a zone close to the
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(a) 2 zones: square (0.87),
circle (0.13)

(b) 3 zones: cross (0.32),
circle (0.13), square (0.55)

(c) 4 zones: plus (0.27),
square (0.54), circle (0.11),

cross (0.08)

* The Boon Lay station is denoted as diamond.

#requests veh cap #veh CS LA
ADP

2 zones 3 zones 4 zones
ε = 2 ε = 3 ε = 2 ε = 3 ε = 2 ε = 3

21 - 27 4 5 21.45 19.91 16.01 16.67 14.82 16.9 14.04 15.09
6 15.12 13.91 11.85 12.21 9.68 11.9 9.12 11.29
7 10.7 9.01 7.92 8.26 6.87 9.46 6.38 7.26

8 2 17.82 16.39 14.95 15.47 12.03 14.72 10.99 13.2
3 15.3 14.57 11.47 12.05 10.44 13.12 9.49 10.45
4 9.71 7.55 8.56 8.81 7.86 6.38 7.85 7.45

avg. improvement (against CS) 11% 21% 18% 31% 20% 35% 28%
ADP-Decomp

2 zones 3 zones 4 zones
ε = 2 ε = 3 ε = 2 ε = 3 ε = 2 ε = 3

42 - 54 4 10 22.6 20.11 18.8 19.15 18.01 18.92 16.9 17.7
avg. improvement (against CS) 11% 17% 15% 20% 16% 25% 22%

* CS: complete selection policy, LA: look-ahead policy

Figure 8: Policy comparison for the Boon Lay station.

station marked by the square icons. The number of possible requests per period is uniformly

distributed from 21 to 27. This range is reasonable, as we expect buses to remain the main

mode of transport and only a small percentage of existing demands to eventually adopt

ridesharing.

The results show that when clustered into four zones and with ε = 2, the ADP policy

manages to outperform the complete selection policy (CS) by around 35% and the one-step

look-ahead policy (LA) by around 26%. Within the ADP policy, a reduction of ε by one

improves its performance by around 10%. This comes at the cost of a longer running time. It
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is important, therefore, to push the number of zones to be as large as possible while keeping

ε as low as possible. Similar performances can be seen for larger instances using ADP with

action space decomposition (ADP-Decomp), albeit with smaller overall improvements. To

test whether the differences in the performance means are statistically significant, we perform

independent t-test for competing approaches and obtain the following relationships:

CS > LA > 2-zone ADP > 3-zone ADP > 4-zone ADP.

Note that all ADP variants are with ε = 2. All relationships are significant with p-values

close to 0.

The second set of results for the Ang Mo Kio station is shown in Figure 9. The demand

volume is similar to that of the Boon Lay station, but the destinations are distributed more

uniformly around the station. We keep all parameter settings the same as before. Similar

to the results for the Boon Lay station, the ADP approach consistently outperforms the two

baseline policies. However, the advantage of the ADP approach is not as significant as in

the Boon Lay case. Intuitively speaking, this demonstrates that the ADP approach is best

suited for instances where demands are distributed less uniformly. (With uniform demand

distribution, it is less useful to look beyond the current period.) As in the case of Boon

Lay station, we also perform independent t-test for competing approaches and obtain the

following relationship:

CS > LA > 3-zone ADP or 4-zone ADP.

The ADP variants are with ε = 2. All relationships are significant with p-values close to

0. For the Ang Mo Kio station, both 3-zone and 4-zone setups would lead to significantly

better performance than LA; however, 4-zone ADP is not always better than 3-zone.

The last set of results for the Marymount station is illustrated in Figure 10. The service

area is significantly smaller, with a much lower demand level. In this case, the ADP approach
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(a) 2 zones: circle (0.41),
square (0.59)

(b) 3 zones: circle (0.32),
cross (0.39), square (0.29)

(c) 4 zones: plus (0.38),
circle (0.32), square (0.28),

cross (0.02)

* The Ang Mo Kio station is denoted as diamond.

#requests veh cap #veh CS LA
ADP

2 zones 3 zones 4 zones
ε = 2 ε = 3 ε = 2 ε = 3 ε = 2 ε = 3

21 - 27 4 5 20.37 17.24 17.64 17.23 14.76 17.95 15.04 16.09
6 13.11 12.27 11.15 11.15 8.97 11.81 8.76 9.21
7 8.9 8.18 8.47 7.28 7.15 8.44 6.96 6.02

8 2 16.81 14.75 14.49 14.71 12.89 13.8 11.57 13.38
3 12.3 10.41 9.87 10.01 9.94 10.42 9.72 10.09
4 8.52 7.28 6.03 8.15 6.08 5.47 5.05 6.6

avg. improvement (against CS) 12% 16% 14% 25% 16% 29% 24%
ADP-Decomp

2 zones 3 zones 4 zones
ε = 2 ε = 3 ε = 2 ε = 3 ε = 2 ε = 3

42 - 54 4 10 22.5 19.71 19.14 19.63 18.05 19.28 17.33 18.56
avg. improvement (against CS) 12% 15% 13% 20% 14% 23% 18%

* CS: complete selection policy, LA: look-ahead policy

Figure 9: Policy comparison for the Ang Mo Kio station.

does not perform as well as in the previous two cases, and at 2 zones and ε = 2, the one-step

look-ahead policy actually outperforms the ADP policy, although not significantly. This is

because the area covered is small and most destinations are concentrated near the station.

As such, most trips are short and can be served immediately without multi-period planning.

To summarize our experience from these experiments, our ADP approach performs best

with large and spatially irregular demand distributions over a large planning area.
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(a) 2 zones: square (0.87),
circle (0.13)

(b) 3 zones: circle (0.16),
square (0.13), cross (0.71)

(c) 4 zones: circle (0.16),
square (0.1), cross (0.51),

plus (0.23)

* The Marymount station is denoted as diamond.

#requests veh cap #veh CS LA
ADP

2 zones 3 zones 4 zones
ε = 1 ε = 2 ε = 1 ε = 2 ε = 1 ε = 2

9 - 15 4 2 16.35 16.29 14.96 15.11 14.98 15.75 13.94 13.99
3 10.2 8.68 9.06 9.56 8.57 8.87 9.99 9.59
4 7.23 7.5 6.8 7.33 6.77 5.82 5.61 7.23

8 1 18.21 16.9 16.94 17.37 16.11 17.41 17.57 17.56
2 9.81 8.7 9.58 9.03 9.54 9.87 9.59 7.75

avg. improvement (against CS) 6% 7% 5% 9% 8% 9% 9%
ADP-Decomp

2 zones 3 zones 4 zones
ε = 2 ε = 3 ε = 2 ε = 3 ε = 2 ε = 3

42 - 54 4 10 17.41 16.06 14.87 15.93 14.3 15.26 13.9 14.53
avg. improvement (against CS) 8% 15% 9% 18% 12% 20% 17%

* CS: complete selection policy, LA: look-ahead policy

Figure 10: Policy comparison for the Marymount station.

6 Conclusions

In this paper, we propose a two-level planning framework for dispatching vehicles for a

ride-sharing-based last-mile service with stochastic multi-period demands. The upper level,

which is modeled as an MDP, focuses on request selections, while the lower level is invoked

when the actual operational costs need to be computed. When used in practice, the pre-

computed selection policy can help the planner decide which requests to serve and when,

while the actual vehicle assignments and routes can be computed in real time using any VRP

algorithm.
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The major methodological contribution of the paper lies in the generation of the upper-

level selection policy. Due to the intractable nature of our problem, we incorporate the state

summarization, representative states, and sample-based cost estimation as major approx-

imation techniques in our solution framework. The level of approximation can be easily

controlled by the degree of discretization (both spatially in the number of zones and tem-

porally in the length of the time period), granularity of the representative states, and the

sample sizes. We show that our approach converges in the limit, and the quality of our

solution, measured by the error bound, improves as the sample size increases.

To demonstrate the value of our approach, we investigate a series of case studies derived

from a real-world public transport dataset in Singapore. By studying three distinctive de-

mand profiles, we show that our approach performs best when the entropy of the demand

distribution is low (i.e., when the distribution is less uniform) and the planning area is large.

For close-to-uniform demand distributions and small planning areas, a naive strategy of

serving as many requests as possible in each period performs reasonably well.
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M. W. Ulmer, D. C. Mattfeld, and F. Köster. Budgeting time for dynamic vehicle routing with

stochastic customer requests. Transportation Science, 52(1):20–37, 2018.

W. van Heeswijk, M. Mes, and M. Schutten. An approximate dynamic programming approach to

urban freight distribution with batch arrivals. In F. Corman, S. Voß, and R. R. Negenborn,

42



editors, Computational Logistics, Lecture Notes in Computer Science, pages 61–75. Springer

International Publishing, 2015.

W. van Heeswijk, M. Mes, and M. Schutten. The delivery dispatching problem with time windows

for urban consolidation centers. Transportation Science, to appear, 2017.

D. Vigo. A heuristic algorithm for the asymmetric capacitated vehicle routing problem. European

Journal of Operational Research, 89(1):108–126, 1996.

Y. Virin, G. Shani, S. E. Shimony, and R. Brafman. Scaling up: solving POMDPs through value

based clustering. In Proceedings of AAAI Twenty-Second Conference on Artificial Intelligence,

pages 1290–1295, 2007.

H. Wang and A. Odoni. Approximating the performance of a “last mile” transportation system.

Transportation Science, 50(2):659–675, 2016.

43


	A state aggregation approach for stochastic multiperiod last-mile ride-sharing problems
	Citation

	tmp.1555049847.pdf.fAjdO

