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Fine-grained Geolocation of Tweets in Temporal Proximity

WEN-HAW CHONG and EE-PENG LIM, Singapore Management University, Singapore

In fine-grained tweet geolocation, tweets are linked to the specific venues (e.g., restaurants, shops) from

which they were posted. This explicitly recovers the venue context that is essential for applications such as

location-based advertising or user profiling. For this geolocation task, we focus on geolocating tweets that are

contained in tweet sequences. In a tweet sequence, tweets are posted from some latent venue(s) by the same

user and within a short time interval. This scenario arises from two observations: (1) It is quite common that

users post multiple tweets in a short time and (2) most tweets are not geocoded. To more accurately geolocate

a tweet, we propose a model that performs query expansion on the tweet (query) using two novel approaches.

The first approach temporal query expansion considers users’ staying behavior around venues. The second

approach visitation query expansion leverages on user revisiting the same or similar venues in the past. We

combine both query expansion approaches via a novel fusion framework and overlay them on a Hidden

Markov Model to account for sequential information. In our comprehensive experiments across multiple

datasets and metrics, we show our proposed model to be more robust and accurate than other baselines.

CCS Concepts: • Information systems → Data mining; Geographic information systems;
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1 INTRODUCTION

Usage of social media platforms such as Twitter is becoming increasingly popular. This has led to
opportunities to mine user posts to study various behavioral patterns or to support novel appli-
cations. In particular, there are potential benefits for location-sensitive applications such as venue
recommendation, location-based advertising, urban planning, and so on. However, the sparsity of
location information in user posts remains a technical challenge. Studies have shown that as much
as 98% [1, 21] of the tweets posted are not geocoded. This motivates the problem of geolocating
individual tweets whereby one infers the posting location of a tweet, based on some specification
of location granularity. Location granularities can be at the city level [5, 6], grid cell [36, 46, 52],
coordinates [1, 21], or at the finest level down to specific posting venues [4, 8, 9, 27, 30].
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17:2 W.-H. Chong and E.-P. Lim

1.1 Fine-grained Geolocation

In this study, we infer the specific posting venues of tweets such as a shop, restaurant, and so
on. For example, when a user posts a tweet “Just had pasta,” we would like to geolocate it to a
specific restaurant using its content and any auxiliary information. By doing so, we recover the
venue context explicitly, an aspect that is absent when geolocating on a more coarse-grained level.
For example, geolocation to coordinates or grid cells means that the posting location [1, 21] may
be associated with many venues sharing the same coordinates or grid cell, e.g., venues in a high
rise building. Following the problem formulation in References [8, 9, 30], we solve fine-grained
geolocation as a ranking problem. Given a target tweet we rank venues such that high ranked
venues are more likely to be the posting venue.
In the above problem definition, we assume that the tweet to be geolocated is posted from

some venue within a known city, based on the profile of the posting user. For the problem to be
challenging yet meaningful, we do not assume that we have all fine-grained venues within the city.
First, such venues easily number in the hundreds of millions. Second, it is very costly to construct
a knowledge base that covers all possible city venues. Instead we consider venues that have some
minimal presence in social media, defined to be associated with some minimum number of tweets.
Even with this consideration, the number of candidate venues typically range in the thousands.

1.1.1 Geolocation Scenarios. We geolocate tweets contained in parent tweet sequences,1 whereby
tweets in the same sequence are posted close in time by the same user. Sequences can be of any
length larger than one. This scenario is motivated by our observation that it is common for users to
post multiple tweets within a short time interval. For example, of 1,000 randomly sampled tweets
from Singapore, 58.1% of them involves the user posting another tweet within 30 minutes of the
first tweet. Repeating the analysis for Jakarta, such cases constitute 48.9%. Such user behavior can
be due to various reasons such as to push out more content or to overcome the short message
length constraint of individual tweets. In any case, tweet sequences are fairly common. Given a
tweet targeted for geolocation, we can potentially improve geolocation accuracy by exploiting its
parent tweet sequence. To our knowledge, such a problem scenario has not been previously studied
for fine-grained geolocation.
In our geolocation scenario, we assume that no tweets in the parent sequence are associatedwith

any location coordinates or posting venues. This is a prevalent and realistic scenario due to the
scarcity of geocoded tweets. To make the task even more realistic, we also assume that the target
tweet’s user has no observed location history, i.e., has not posted any geocoded tweets. This allows
our geolocation methods to be applicable to tweets from almost any users. Clearly, the geolocation
task also becomes more challenging, since one is not able to exploit the home or activity regions
[8] of the users to refine candidate posting venues.

1.1.2 Problem Definition. We now define our problem formally. Denote w as a tweet targeted
for geolocation. Letw be posted by user u at time t , contained in a sequence NT (w;u) whereby all
other tweets in NT (w;u) are posted by u at not more thanT time away from t . Assuming thatw is
posted from a latent venue v from the set {vi }Vi=1 with V venues, our goal is to rank the V venues
such that v is ranked as near the top as possible. To solve this problem, we shall exploit various
information including those in w, NT (w;u), and so on.

1.1.3 Examples. To illustrate the usefulness of parent tweet sequences, Table 1 displays tweet
pairs, each spanning a short time interval. These tweets are processed tweets originating from
Foursquare (See Section 2.1). Tweets a1 and a2 are posted by one user while b1 and b2 are by

1We use the terms parent sequence, parent tweet sequence and tweet sequence interchangeably.
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Table 1. Sample Pairs of Tweets

a1
(Nanyang Polytechnic, 08:36:20)
“Morning rush to the airport and now I’m in school!”

a2
(Nanyang Polytechnic, 08:37:37)
“Eyebag zzzzz”

b1
(Tampines MRT Station, 09:44:22)
“Keep tripping.”

b2
(Tampines Bus Interchange, 09:48:17)
“Topped up my Ez-link”

Posting venue and time are in brackets. Tweets a1 and a2 are from one user

while b1 and b2 are from another user.

another user. Consider a1 and a2 that are posted from Nanyang Polytechnic, a college venue. The
user provides more information in a1, suggesting that he is in school. Since a1 precedes a2 by only
1 minute, we can use a1’s content to augment a2 to better geolocate the latter. This helps when
a tweet targeted for geolocation has little content or content unrelated to the posting venue. A
similar argument applies for b1 and b2. b2mentioned about topping up of Ez-link, the farecard used
in Singapore’s subway system (MRT2). This allows us to geolocate b1 to some subway station, thus
improving geolocation accuracy. In the discussed examples, a1 and b2 are the more informative
tweets that help to improve geolocation for their neighboring tweets. Certainly it is also possible
for non-informative tweets to negatively affect geolocation accuracy for other tweets. The research
question is then to design robust approaches such that on an overall basis, geolocation accuracy
is improved.

1.2 Analogy to Document Retrieval

Geolocating tweets to specific posting venues is a problem that is analogous to document retrieval.
One can regard a tweet targeted for geolocation as a query and candidate venues as akin to docu-
ments. Ranking the candidate venues for the targeted tweet is then akin to ranking the documents
based on relevance to the query. However for tweet geolocation, there is only one posting venue
per tweet, i.e., one relevant document per query.
While fine-grained geolocation can be casted as document retrieval, there are differences be-

tween documents and venues. Importantly, venues have a natural ordering in the spatial sense
while documents do not. Tweets posted close in time and by the same user are also inadvertently
ordered in space, since the user is likely to be posting from the same or nearby venues. Clearly,
such spatial ordering are useful and can be exploited for better geolocation of tweets.

1.3 Approach

Given that fine-grained tweet geolocation is akin to document retrieval, certain techniques such
as query expansions [3, 42, 53] can be adapted from the retrieval domain. We leverage on this to
propose a probabilistic model that geolocates tweets contained in sequences. Our model does not
rely on the need to explicitly identify informative and uninformative tweets in sequences. Instead,
we treat each target tweet as a query and design query expansion approaches to augment it with
additional words for better geolocation. The additional words are added both from tweets in the
parent sequence, termed as temporal query expansion and from other tweets from the same user,
termed as visitation query expansion. We also relate these query expansion approaches to intuitive

2Mass Rapid Transit.
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17:4 W.-H. Chong and E.-P. Lim

user behavior. Basically temporal query expansion approach accounts for the user tendency to stay
at the same or nearby venues given a short time period, i.e., staying behavior, while visitation query
expansion accounts for revisits to the same or similar venues (evenwithout explicitly observing the
revisits). We combine both query expansion approaches in a novel fusion framework and overlay
them on a Hidden Markov Model.

1.4 Challenges

Fine-grained geolocation is a challenging problem as there are thousands of candidate posting
venues to consider. In addition, tweets are brief in content and highly colloquial. For example, the
tweet “having dinner” may have been posted from any one of the numerous restaurants in the city
or even at a user’s home.
Although we are geolocating tweets contained in sequences, the geolocation scenario remains

challenging as we assume there are no observed posting venues in the parent sequence. To under-
stand this, consider the alternative scenario with observed venues. Then for a targeted tweet, the
observed venues of adjacent tweets can be exploited for reducing the set of candidate venues. This
is because within a short time interval, the user is likely to be posting either at the same venue or
at nearby venues.
Outside of the tweet sequence, we also assume that a targeted tweet’s user do not have any

observed location history. Thus even if he only frequents a few venues, making it likely that the
targeted tweet is posted from either one of these venues, these venues are unobserved and not
easy to exploit in an explicit manner.

1.5 Contributions

Our contributions are as follows:

(1) We formulate the interesting problem of fine-grained geolocation of tweets contained in
parent tweet sequences. To our knowledge, such a geolocation scenario is highly common
but has not been previously investigated.

(2) We conduct empirical analysis to verify the tendency of users to stay at the same or nearby
venues given a short time period, i.e., staying behavior.We also study the tendency of users
to revisit venues. Such user behavior motivates the design of our models.

(3) We propose temporal query expansion, which accounts for the staying behavior of users.
In this expansion approach, the target tweet is augmented with words from other tweets
in its parent tweet sequence.

(4) We propose visitation query expansion, which augments the target tweet with semantically
related words from the user’s other tweets. This accounts for the user’s repeat visits to
the same or similar venues.

(5) We combine both query expansion approaches in a novel fusion framework, which is
then overlaid on a Hidden Markov Model to capture sequential information. Through
extensive experiments, we show that the resulting model is robust and outperforms pure
query expansion approaches and other baselines. Depending on the dataset and metric,
performance improvement ranges from 4+% to 40+% over the naive Bayes baseline.

1.6 Outline of Article

The next section discusses howwe obtain venue-associated tweets for this work. Section 3 presents
empirical analysis that motivates the query expansion components in our model. Section 4 de-
scribes our model while Section 5 presents experiment results, along with detailed analysis and
case studies. We discuss related work in Section 6. Finally, we conclude in Section 7.

ACM Transactions on Information Systems, Vol. 37, No. 2, Article 17. Publication date: January 2019.
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Fig. 1. Illustration of linking process.

2 TWEETS WITH POSTING VENUES

For model building and testing, we need ground truth datasets consisting of tweets with their
posting venues.We use two types of tweets with such associations. The first type is content pushed
to Twitter from location-apps, e.g., Foursquare. The second type is user-authored tweets in Twitter,
which we link to venues using the approach from Reference [9]. Next we describe the processing
steps for the two tweet types and the datasets constructed for this research.

2.1 Shouts

Weuse content pushed from Foursquare, a popular location app. In Foursquare, users can broadcast
their comments to Twitter as they check-in to a venue. Following Foursquare terminology, we refer
to such tweets as shouts. We process and treat shouts as normal tweets with known posting venues.
This setup is a convenient source of ground truth and has been used in prior work [4, 30].

A shout contains the user-authored comment plus an app-generated portion indicating the
check-in venue. We discard the latter portion and use only the comments for geolocation. For
example, consider the sample shout “Passport photo look retarded (@ Immigration & Check-
points Authority w/ 5 others).” Only the user-authored comments (bolded) are used for geolocation
and empirical analysis.

2.2 Pure Tweets

We refer to tweets that are authored by users and non-retweets as pure tweets [8, 9]. Since most
tweets are not geocoded, we assign some of them to venues by associating them with check-ins by
their users in Foursquare around the same time. We first select users who post Foursquare shouts
on Twitter.We then iterate through their pure tweets and link them to the posting venues of check-
ins that occur around the same time. A pure tweet is assumed to be posted from a check-in venue
when the tweet and check-in are performed close in time to each other by the same user. To min-
imize cases where a tweet is linked wrongly to a venue, we use a stringent threshold of 5 minutes
for linking. Also note that this threshold of 5 minutes is used only for dataset construction. It is
neither used to define our sequences nor has any relation to the time interval of sequences.
Figure 1 illustrates the linking process with an example. The user writes pure tweets (w1,w2,w3,

w4) in Twitter as well as checkin to venues (va ,vb ,vc ) in Foursquare. Pure tweets and checkins are
displayed from left to right in chronological order on the timeline. In this example, w1 is nearest
in time to the first checkin involving venue va . If the time difference is less than 5 minutes, then
we assume w1 to have been posted from va . Similarly, w3 is assumed to be posted from vb . In this
example,w2 andw4 are not assigned any venues as they are each posted too far away in time from
the nearest checkin. Their posting venues remain unknown.
Our linking approach requires the pure tweets’ users to have visited the linked venues around

the time they post their pure tweets. This is more stringent than just using geocoded pure tweets

ACM Transactions on Information Systems, Vol. 37, No. 2, Article 17. Publication date: January 2019.



17:6 W.-H. Chong and E.-P. Lim

Table 2. Dataset Statistics

SG-SHT SG-TWT JKT-SHT

Tweets 361,899 90,250 86,343
Users 29,301 6,424 12,119
Venues 65,701 12,616 45,213

Tweets/user 12.35 14.05 7.12
Tweets/venue 5.51 7.15 1.91

with location coordinates and assigning them to the nearest venues. The latter is unsatisfactory in
an urban setting, since many venues may share the same location coordinates, e.g., in a high rise
building.
Terminology. For the rest of this article, “tweets” refer to both pure tweets and shouts. Where

differentiation is required, we use each term explicitly, i.e., pure tweets or shouts.

2.3 Datasets

We collect data for users from Singapore (SG) and Jakarta (JKT). For Singapore, we collected
1,190,522 Foursquare check-ins from the year 2014, of which 361,899 (30.4%) involve shouts, which
we regard as tweets. The check-ins are posted by 29,301 users over 65,701 venues. We use only the
shouts for profiling venues in terms of content. We refer to this dataset as SG-SHT. Based on the
previously discussed process, we also collected 90,250 pure tweets from 6,424 users over 12,616
venues, which we designate as SG-TWT. For Jakarta, the JKT-SHT dataset comprises 177,570
check-ins for the period 2015 to mid-2016, of which 86,343 (48.6%) are shouts. The check-ins are
from 12,119 users over 45,213 venues.
Subsequently, we conduct our experiments over the 3 datasets: SG-SHT, SG-TWT, and

JKT-SHT.3 The dataset statistics are summarized in Table 2. As can be seen, JKT-SHT has the
smallest number of posts per user and venue, on average. Hence information may be sparser,
when compared to the other two datasets.

3 EMPIRICAL ANALYSIS

We conduct several empirical studies to verify our intuitions about user behavior and to motivate
the design of our models.

3.1 Staying Behavior

Staying behavior refers to users’ tendencies to remain at the same venue or traverse only between
nearby venues given a short observed time interval. This is intuitive, since, first, some time is
required for users to conduct activities at venues, e.g., work, school, dining. Second, time is also
required for a user to move from one venue to another. If only a short time have lapsed, then a
user is less likely to have travelled far.
In our first empirical study, we show that staying behavior is an established property. Basically

for a given user, his consecutive shouts posted close in time are likely to have been posted from
venues near each other. To analyze this, we compute the distances between sampled pairs of shouts,
whereby each pair is posted by a common user within 30 minutes. We compare this against a null
model whereby sampled pairs are posted by a common user more than 30 minutes apart.

3Due to platform API changes that affected crawling, the pure tweet dataset for Jakarta is small with only 1335 pure tweets.

Hence, we omit it.

ACM Transactions on Information Systems, Vol. 37, No. 2, Article 17. Publication date: January 2019.
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Fig. 2. CDF for distances between sampled shout pairs. Each pair is posted by a common user. Shout pairs

are differentiated by pairs posted within 30 minutes of each other (≤30 min); and pairs posted more than

30 minutes apart (>30 min). X-axis is distance in meters.

Figure 2 shows the Cumulative Distribution Functions (CDF) for Singapore (SG-SHT) and
Jakarta (JKT-SHT). In each graph, the blue curve represents sample pairs within 30 minutes
(≤30 min) while the red curve is for sample pairs more than 30 minutes (>30 min) apart. Evi-
dently, both graphs display strong evidence of staying behavior. In both cases, the blue curve lies
to the left of the red curve, thus shouts within 30 minutes of each other are more likely to be posted
from nearer venues, compared to the null model. For example in Figure 2(a) for Singapore, more
than 95% of sample pairs with posting time difference ≤30 min are posted at distances of 10,000m
or below. In contrast, a similar distance covers only around 64% of sample pairs with posting time
difference > 30 min. Figure 2(b) shows a similar trend for Jakarta.

3.2 Visitation Behaviour

Besides staying behavior, we can potentially exploit other visitation behavior that users exhibit. In
particular, users may visit the same venue multiple times for recurring activities, e.g., work, or visit
venues around a common area or functionality, e.g., movie theatres. This means the possibility of
augmenting an uninformative target tweet with more informative words from his other tweets.
The following repeat visit scenarios arise:

• Same venue: The user may have tweeted from the target tweet’s venue before and used
more informative words.

• Same spatial region: The same user tweeting from venues near each other may mention
local geographical features. For example, consider a user tweeting about dinner at a certain
quayside restaurant. If he frequently tweets about dinner and the quay from other venues in
the area, then these other tweets can be indicative of the target tweet’s venue due to word
co-occurrence relationships.

• Same function: The target tweet’s venue may belong to a functional group of venues that
the user frequents, e.g., nightclubs. Functionally related words, e.g., “clubbing” can be in-
dicative of the target tweet’s venue.

3.2.1 Repeat Visits to Same Venue. In our first empirical analysis, we measure repeat visits to
the same venue, which is the most straightforward to quantify. We examine shouts and tabulate
the frequencies of repeated visits to venues, on a per user basis. Given user u and venue v , denote

ACM Transactions on Information Systems, Vol. 37, No. 2, Article 17. Publication date: January 2019.
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Table 3. Analysis of Repeat Visit to Same Venues

Singapore Jakarta
No. of tuples 603,198 108,428

tuples with freq=1 465,256 (77.13%) 88,219 (81.36%)
tuples with freq>1 137,942 (22.87%) 20,209 (18.64%)

Fig. 3. CDF for distinct venues per user.

the user-venue tuple as (u,v ). We then iterate through all shouts and tabulate the frequencies of
each tuple. Repeat visits are then user-venue tuples that occur more than once.
Table 3 shows that the proportion of repeat visits is substantial at 22.87% for Singapore (SG-SHT)

and 18.64% for Jakarta (JKT-SHT). Thus, repeat visits to the same venue is an established user
behavior. This and the other visitation behavior imply the presence of more informative words
beyond the target tweet and its parent sequence. With proper query expansion techniques, one
can exploit these words to more accurately geolocate the target tweet.

3.2.2 User Focus on Venues. Alternatively, we can quantify venue revisits by studying if users
are focused on a smaller set of venues than expected. This means comparing the number of dis-
tinct venues visited against some null model where repeat visitation behavior is absent. If a user
repeatedly visits one or more venues, then we expect him to be posting multiple tweets from a
smaller set of distinct venues, when compared against the null model.
For each user u with multiple tweets, we first compute the number of distinct venues that his

tweets are posted from. We then compute the expected number of distinct venues under the null
model as:

• For each tweet from u, sample a venue v based on global venue probability i.e., venue pop-
ularity. Add to venue set Vnull (u).

• Compute the size of Vnull (u). This is the distinct venue count under the null model.

As the null model involves sampling, we conduct 10 runs and take the average expected count
for each user. We conduct this empirical analysis on 22,488 users from SG-SHT and 8419 users
from JKT-SHT who have posted at least twice. For users who have posted only once, the number
of distinct venues is one and not meaningful to study.
Figure 3 plots the CDF of distinct venues visited per user for Singapore (SG-SHT) and Jakarta

(JKT-SHT). In each graph, the blue curve represents the actual count while the red curve is for

ACM Transactions on Information Systems, Vol. 37, No. 2, Article 17. Publication date: January 2019.
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counts from the null model (averaged over 10 runs). For both graphs, the blue curve lies to the left
of the red curve. This indicates that users have repeat visitation behavior and visit fewer distinct
venues than expected under the null model. For example in Figure 3(a) for SG-SHT, close to 100% of
the users post from 200 distinct venues or less in the actual data. In comparison, the null model has a
corresponding proportion of around 90%. For Figure 3(b) for JKT-SHT, the differences between the
actual and null model count is smaller, since JKT-SHT is relatively more sparse in terms of tweets
per user (see Table 2). Nonetheless, the differences are easily perceivable. Around 95% of users
post from 50 distinct venues or less in the actual data. Under the null model, the corresponding
proportion is around 90%. Hence there is evidence that users are revisiting some of the venues in
their travel patterns. Therefore, we hope to achieve better geolocation accuracy by exploiting such
behavior in our models.

4 MODELS

In this section, we first describe the base model, followed by the proposed query expansion and
fusion approaches. We use each model to compute the probabilities of candidate venues given the
tweet content and other information. We then rank venues based on the computed probabilities.
Also note that in subsequent discussions, Temporal neighbors of the target tweet refer to other
tweets in its parent sequence.

4.1 Base Model (Nb)

We use the naive Bayes model from References [26, 27] as the base model for query expansion. It
models theword generative probabilities of a venue by accumulating and smoothingword frequen-
cies over all tweets posted from the venue. The probability of wordw given venue v is computed
as

p (w |v ) = f (w,v ) + α

f (.,v ) +Wα
, (1)

whereW is the vocabulary size, f (w,v ) is the frequency ofwordw at venuev , f (.,v ) =
∑
w f (w,v )

and α is the smoothing parameter that can be tuned or set at 1 for Laplace smoothing.
Given a target tweet w, we can rank venues by:

p (v |w) ∝ p (v )
∏

w ∈w
p (w |v )c (w,w), (2)

where c (w,w) is the frequency of word w in w and p (v ) is the probability of venue v that can be
estimated globally from posting frequencies.

4.2 Temporal Query Expansion (Temporal)

Staying behavior suggests that a user posting multiple tweets within a short time is likely to be
posting from the same or nearby venues. Hence given a target tweet, words from other tweets in
its parent sequence may be informative. Formally, given a tweet w posted by user u, we define its
parent sequence NT (w;u) as tweets from the same user u that are posted not more than T time
away fromw’s posting time.T is known as the parent time window. It can be tuned but is expected
to be small, e.g., 0.5 hour.
We propose temporal query expansion to augment the target tweet with candidate words based

on their occurrence frequencies in the parent sequence and weighted by temporal proximity to
the target tweet. Words occurring closer in time to the target tweet are assigned greater weights
than words occurring further away in time. To model this, we use the exponential kernel [16]. Let
target tweet w be posted by user u at time t , with the set of temporal neighbors from the parent

ACM Transactions on Information Systems, Vol. 37, No. 2, Article 17. Publication date: January 2019.
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sequence NT (w;u), whereby the jth tweet of NT (w;u) is denoted as wj and posted at time tj by
the same user u. The set of temporal neighbors fulfils the condition |t − tj | ≤ T ,∀wj ∈ NT (w;u).
We then weigh each wordw as

δS (w,w;u) = c (w,w) +
∑

wj ∈NT (w;u )

c (w,wj ) exp(−S |t − tj |), (3)

where c (w,wj ) counts occurrences ofw in wj and the kernel parameter S is a tunable time decay
factor. S controls the rate at which word influence diminishes with time difference within the
intervalT . A larger S corresponds to a larger decay rate. Note that word influence is 0 outside the
interval T . Hence even if S=0, there is no decay only within the interval T .

Considering that c (w,w)=c (w,w) exp(−S |t − t |), then Equation (3) can be viewed as a weighted
sum of exponential kernels. It covers three possible cases of word occurrences as follows:

• Wordw occurs only in the target tweet. Equation (3) reduces to δS (w,w;u) = c (w,w).
• Wordw occurs only in the temporal neighbors. c (w,w)=0 and only the right-most term of

Equation (3) is retained.
• Word w is in both the target tweet and temporal neighbors. The weight for w is summed

over its occurrences in both the target tweet and temporal neighbors.

We incorporate δS (w,w;u) into our base model as follows:

p (v |w,NT (w;u)) ∝ p (v )
∏

{w :δS (w,w;u )>0}
p (w |v )δS (w,w;u ), (4)

whereby it suffices to consider the set of words with δS (w,w;u) > 0. Interestingly, Equation (4)
corresponds to a weighted naive Bayes model, which was previously applied for classification
[14, 55]. In the prior work with weighted naive Bayes, the goal was to improve classification ac-
curacy via feature weighting based on distributional differences between classes. Here via tem-
poral query expansion, we have derived a weighted naive Bayes model for tweet geolocation.
Instead of classification accuracy, we shall tune the model with respect to ranking accuracy (see
Section (5)).

4.3 Visitation Query Expansion (Visit)

In visitation query expansion, we expand the target tweet with words from the user’s other tweets
that may be indicative of the posting venue, due to different repeat visit scenarios. We note that
visitation query expansion is applicable for geolocating both tweets with and without temporal
neighbors. Also note that in our considered geolocation scenario, the target tweet’s user have no
location history (see Section 1.1.1). Hence tweets acting as a source of candidate words are neither
geocoded nor associated with any posting venues.
Given target tweet w (i.e., query) from user u, we score candidate words w ′ that appears in u’s

other tweets and wherew ′ � w. The scoring aims to assessw ′’s suitability for augmenting w and
are designed to reflect the relationship strength to the original query wordsw ∈ w. Many scoring
schemes exist and various suitable kernel functions can be used. For simplicity, we adopt a cosine
similarity scheme [11]. This uses the normalized form of the dot product kernel, also referred to
as the cosine kernel.
Let Iu (w ) be a vector of indicator functions for the presence of word w in u’s tweets. For a

candidate wordw ′ wherebyw ′ � w, we compute its average relatedness α (w ′,w;u) to the original
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query words, as the average of cosine kernels:

α (w ′,w;u) =
1

|w|
∑

w ∈w
〈Iu (w ′), Iu (w )〉
‖Iu (w ′)‖‖Iu (w )‖

=
1

|w|
∑

w ∈w
du (w

′,w )√
du (w )du (w ′)

,
(5)

where 0 ≤ α (w ′,w;u) ≤ 1, du (w
′,w ) is the count of u’s tweets with both w ′ and w ; and du (w ) is

the count of u’s tweets with w . Intuitively, words that co-occur more are more related. However
average relatedness is dampened if one or both words are overly common.
Let {w′}u denote the set of non-target tweets of user u. For a target tweet w from u, {w′}u also

includes the temporal neighbors ofw if there are any.We incorporate the word weights α (w ′,w;u)
into our base model as follows:

p (v |w, {w′}u ) ∝ p (v )
∏

w ∈w
p (w |v )c (w,w)

∏

{w ′:w ′�w,
α (w ′, w;u )>0}

p (w ′|v )α (w ′,w;u ) . (6)

Equation (6) highlights that there are two groups of words: words already in the target tweet and
words that are newly added. Each occurrence of a target tweet word has implicit weight of 1,
while newly added words are weighted between 0 and 1 depending on their relatedness to the
target tweet.
Finally, we note that query expansion can be conducted over the global set of tweets, instead of

a user-specific set. This captures different notions rather than revisit behavior, while being more
expensive and less personalized. For example, consider a target tweet with the word “dinner.” Such
a common word occurs in many tweets, leading to a huge set of candidate words for consideration.
Geolocation may also be biased towards popular dinner venues, rather than being personalized to
the target tweet’s user. Nonetheless, for less common words or users with few tweets in their
history, considering the global set of tweets may overcome information sparsity. We defer such
exploration to future work.

4.4 Fusion Framework

In this section, we introduce a fusion framework to combine the above two query expansion ap-
proaches while mitigating the noise effects of any uninformative tweets from the target tweet’s
user.
Our query expansion approaches are based on kernels and fusing them is akin tomultiple kernel

learning [17]. In multiple kernel learning, one combines multiple kernels computed over different
feature sets or capturing different data point similarities, such that the combined kernels perform
better for the end task. Here, we fuse the kernels of temporal and visitation query expansions to
compute a final weight for each word in the expanded target tweet. To capture both staying and
repeat visitation behavior of users, we propose a novel “Max” combination approach. In addition,
we consider simple kernel combination schemes such as linear and product combinations [10]. Our
subsequent experiments show that the “Max” combination approach is more robust, performing
either on par or better than the linear and product combination scheme across all datasets.

4.4.1 Max Combination (Max). Consider augmenting a targeted tweetw fromu with candidate
word w . Temporal query expansion prescribes augmentation using a weight of δS (w,w;u) for w
while visitation query expansion prescribes a weight of α (w,w;u). At geolocation time, it is not
known which candidate weight should be assigned or equivalently, whether staying or repeat vis-
itation behavior is more important. Intuitively, one can adopt a catch-all approach to cover both
behavior types. Considering the union of behaviors, then the candidate weight is either δS (w,w;u)
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or α (w,w;u), whichever weight is of larger value. This leads to the “Max” combination approach,
where we adopt the maximum weight for each word over temporal and visitation query expan-
sion. The intuition is that words are relevant for geolocating the target tweet either due to them
being close in time (i.e., in the parent sequence), or being semantically related to the target tweet.
Equivalently we cover both different behaviors: the user revisits the same or similar venue and/or
stays around the posting venue of the target tweet. Formally, we compute:

p (v |w, {w′}u ) ∝ p (v )
∏

{w :δS (w, w;u )>0 |
α (w, w;u )>0}

p (w |v )max(δS (w,w;u ),α (w,w;u )), (7)

where the product of p (w |v )’s is computed over the union of words with non-zero weights from
temporal query expansion and those from visitation query expansion. Equation (7) also means
words from the target tweet are always assigned weights from temporal query expansion, i.e.,
δS (w,w;u). For such words, δS (w,w;u) ≥ c (w,w) ≥ α (w,w;u). For words not in w, their final
weights depend on which query expansion scheme gives larger weights.

4.4.2 Linear Combination (Linear). The linear scheme defines the weight of a candidate word
w as λδS (w,w;u) + (1 − λ)α (w,w;u), which leads to the following model:

p (v |w, {w′}u ; λ) ∝ p (v )
∏

{w :δS (w, w;u )>0 |
α (w, w;u )>0}

p (w |v )λδS (w,w;u )+(1−λ)α (w,w;u ), (8)

where λ is the linear combination weights. In the linear scheme, each word is assigned a fixed
proportion of importance based on its temporal proximity and relatedness to the target tweet.
Thus, for every target tweet, one assumes a fixed relative importance from revisiting and staying
behavior.

4.4.3 Product Combination (Product). Finally, the product scheme defines the weight of candi-
date wordw as δS (w,w;u) × α (w,w;u). The resulting model is then

p (v |w, {w′}u ) ∝ p (v )
∏

{w :δS (w, w;u )>0 |
α (w, w;u )>0}

p (w |v )δS (w,w;u )×α (w,w;u ) . (9)

In the product scheme, a word has non-zero weight only if it is both semantically related and in
temporal proximity to the target tweet. This assumes a stringent case where both revisiting and

staying behavior must be present.

4.5 Sequential Information (HMM-Max)

Given that we are geolocating tweets contained in parent sequences, sequential information may
help to improve geolocation, e.g., users may follow certain visit sequence in their daily travels. So
far, neither temporal nor visitation query expansion explicitly models sequential information. To
exploit such information, we adapt the sequence modeling approach from Reference [31] based on
Hidden Markov Models (HMM). We model the hidden states in the Markov chain as venues and
emissions as the tweet words. The probability that a tweet is posted from a venue is then com-
puted from marginalizing over the hidden states in the sequence. This is done using the forward-
backward algorithm [43].

Given a HMM model Θ and targeted tweet w, we denote the marginalized venue probability
as p (v |w,NT (w;u),Θ). Figure 4 illustrates an example that computes p (v = A|w2,NT (w2;u),Θ),
the probability that w2 is posted from venue A. For simplicity, the tweet sequence contains only
two tweets w1 and w2, whereby each tweet can be posted from one of two possible venues, A
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Fig. 4. HMM example: Computing the probability that w2 is posted from venue A.

or B. The required probability is computed as p (v = A|w2,NT (w2;u),Θ) ∝p (w2 |A)[p (w1 |A)p (A→
A) + p (w1 |B)p (B → A)], whereby p (B → A) denotes the transition probability from B to A by the
user. Thus one marginalizes over possible posting venues for w2’s temporal neighbors. In this
example, the user may post w1 from A and then remains at A to post w2, or posts w1 at B and
then moves to A to post w2. In our experiments, we estimate the transition probabilities between
venues from observed transitions in the training set. Since it is impossible for users to transit
between venues that are too far apart given a short time interval, the transition matrix is sparse.
This facilitates the computation of marginal probabilities.
We can use p (v |w,NT (w;u),Θ) directly as a baseline to rank venues. However we conjecture

that query expansion contributes orthogonal information that should improve geolocation per-
formance. Thus we stack our “Max”-based model over the HMM-based approach to exploit all
information facets. Specifically, we compute:

p (v |w, {w′}u ) ∝ p (v |w,NT (w;u),Θ)
∏

{w :δS (w, w;u )>0 |
α (w, w;u )>0}

p (w |v )max(δS (w,w;u ),α (w,w;u )) . (10)

Equation (10) is of similar form to Equation (7), except that given target tweet w, we bias its
venue probabilities with p (v |w,NT (w;u),Θ) instead of the global distribution p (v ).

4.5.1 Limiting Cases. Given tweet w from user u targeted for geolocation, different scenarios
can arise. For example, w may or may not have temporal neighbors or share common words with
u’s non-target tweets {w′}u (see Section 4.3). Interestingly, HMM-Max is a highly general model
that can be used for geolocation in various scenarios. It reduces to different models for the follow-
ing scenarios:

• w has temporal neighbors and common words with tweets from {w′}u :
The presence of temporal neighbors enables construction of the Markov chain and tempo-
ral query expansion. The presence of common words enables visitation query expansion.
Hence all aspects of the HMM-Max model applies.

• w has temporal neighbors, but no common words with tweets from {w′}u :
Markov chain construction and temporal query expansion apply, but visitation query ex-
pansion does not apply. HMM-Max reduces to a HMM model stacked with a naive Bayes
model weighted with temporal query expansion, i.e., Equation (10) reduces to

p (v |w, {w′}u ) ∝ p (v |w,NT (w;u),Θ)
∏

{w :δS (w, w;u )>0}
p (w |v )δS (w,w;u ) (11)

• w has no temporal neighbors, but has common words with tweets from {w′}u :
Markov chain construction and temporal query expansion are no longer applicable. In this
scenario, HMM-Max is equivalent to a naive Bayes model weighted only with visitation
query expansion. Equation (10) reduces to Equation (6).
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• w has no temporal neighbors and no common words with tweets from {w′}u :
Both Markov chain construction and query expansion are not applicable. HMM-Max re-
duces to a naive Bayes model as characterized by Equation (2). Hence in the worst case sce-
nario of highly sparse information, performance will be comparable to applying the models
from References [26, 27].

4.6 Computational Complexity

Wefirst examine the computational complexity of query expansion. Given a targeted tweetw from
user u, the complexity of temporal query expansion depends on the length ofw’s parent sequence
and can be written as O ( |NT (w;u) |). For visitation query expansion, the complexity depends on
the number of other tweets from u that contains words from w, denoted as D (w;u). These other
tweets can be retrieved efficiently in O ( |D (w;u) |) time using an inverted index [57], which indexes
tweets based on their constituent words. We then only need to compute weights for candidate
words in the retrieved tweets. This means the number of words for consideration is usually much
smaller than the entire word vocabulary. Depending on the words inw, visitation query expansion
can involve a few or a substantial number of tweets from u’s non-target tweets. In the worst case,
all non-target tweets are involved. In contrast, temporal query expansion usually involves fewer
tweets due to the time interval constraint. Hence typically |D (w;u) |> |NT (w;u) |. In this case, the
complexity in the “Max” fusion framework is dominated by visitation query expansion and can be
written as O ( |D (w;u) |).

For incorporating sequential information, the main computation complexity lies in the forward-
backward algorithm. To geolocate w from user u, the basic algorithm has a complexity of
O ( |NT (w;u) | ×V 2), wherebyV is the number of venues. However in practice, one needs not com-
pute transitions over all possible venue pairs. The transition matrix is highly sparse due to user
mobility patterns and the physical constraint that within a short time interval, it is not possible
to traverse between venue pairs that are too far apart. Thus when computing possible transitions
from a given venue, one only needs to consider observed transitions in the training set with op-
tional probability smoothing for venue pairs that are not too far apart. This reduces the complexity
to O ( |NT (w;u) | × γ ×V 2) where 0 < γ < 1 is the average fraction of venues that each venue can
transit to. Thus complexity is dependent on the transitional characteristics of the dataset.

5 EXPERIMENTS

We explore fine-grained geolocation models that incorporate different query expansion ap-
proaches and fusion schemes.We also implement other baselines for comparison. For each dataset,
we conduct 20 runs that differ by randomly partitioning tweets into three sets: training, tuning and
testing. In each run for each dataset, we first obtain the pool of tweets with temporal neighbors.
From such tweets, we randomly sample 5000 tweets, from which 40% is used as the tuning set and
60% is used as the test set. All other tweets, including those without temporal neighbors, are used
as the training set.
We select posting venues with at least three training tweets as candidate venues. To simulate the

scenario where the temporal neighbors of test tweets have no observed posting venues, we process
the training tweets as follows: If a user has one or more tweets sampled for testing/tuning, then
we hide the posting venues of all his tweets in the training set. Thus, the training set mixes tweets
with unknown posting venues and other tweets whose posting venues are retained. In training,
we estimate the word distributions p (w |v ) using the tweets with observed venues. The training
set is also used as a source of candidate words for query expansion and to estimate the transition
probabilities for HMM-based models.
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We use the tuning set to tune model parameters to optimize Mean Reciprocal Rank (see Sec-
tion (5.1)). For models utilizing temporal query expansion (e.g., Temporal, Max etc.), tuning is
done for the scaling parameter S for the exponential kernel. We use a grid with logarithmic in-
tervals: {0, 0.01, 0.1, 1.0}. For the linear combination scheme, the linear combination weight λ is
jointly tuned as well using a uniform grid from 0.1 to 0.9 at intervals of 0.1.
For the test set, we discard test tweets that are not posted from venues within the training set.

Tweets with only stop words and rare words (with frequency < 3) are also discarded. The number
of test tweets and candidate venues after filtering are reported in the tables in Section 5.2.
We compare the following models:

• KL: This approach [30] derives scores for venues by transforming and combining Kullback-
Leibler divergences between the language models of tweets and venues, with the probabil-
ities that venues generate tweets at different times of the day.

• PTE: PTE [49] or Predictive Text Embedding is a state-of-the-art graph embedding
method for heterogeneous graphs. By treating venues as labels, we can use PTE to learn
continuous vector representation for words, tweets and venues. The graph consists of word
nodes, tweet nodes and venue nodes, connected via the following edge types: word-word,
tweet-word and venue-word. An edge is created between a pair of words that co-occur in
tweet(s). An edge is formed between a tweet and each word in the tweet. Finally, an edge is
defined between a venue and a word if the word appears in some tweet(s) associated with
the venue. For each new test tweet, we compute its representation by averaging over the
representations of its constituent words. We then compute the cosine similarities of the
test tweet to venue representations for ranking venues. We use an embedding dimension
of 200 and 400 million negative samples. This performs better than the default parameters
in Reference [49].

• KDE: This method [22] integrates kernel density smoothing with unigram languagemodels
to geolocate tweets to grid cells. Given a cell c , one computes p (c )

∏
w ∈w p (w |c ) whereby

p (c ) and p (w |c ) are smoothed using Gaussian kernels. To geolocate tweets to venues, we
extend the method by computing p (v |c )p (c )∏w ∈w p (w |c ), where probability of venue v
given cell c , p (v |c ) is estimated by counting tweets posted from venue v , over all tweets
posted within cell c . We use a grid size of 500 m. We tune the kernel parameter on a grid
with logarithmic intervals {0.01, 0.1, 1.0, 10.0}.

• Nb: The base model from Equation (2) with Laplace smoothed word probabilities.
• Temporal: Temporal query expansion as shown in Equation (4).
• Visit: Visitation query expansion as shown in Equation (6).
• Max: The max combination scheme that combines the temporal and visitation query ex-

pansion approaches. See Equation (7)
• Linear: Temporal and visitation query expansion combined via linear combination. See

Equation (8)
• Product: Both query expansion approaches combined via product combination. See

Equation (9)
• HMM: This is the approach from Reference [31] based onHiddenMarkovModels.We adapt

it for our work by modeling venues as the hidden states.
• Max-HMM: The test tweet is first query expanded using “Max,” denote as w̃. We treat

w̃ as an observed tweet within a sequence and compute its marginal venue probabilities
p (v |w̃,NT (w;u),Θ) where Θ is the fitted HMM model. We use the marginal venue proba-
bilities to rank venues.

ACM Transactions on Information Systems, Vol. 37, No. 2, Article 17. Publication date: January 2019.



17:16 W.-H. Chong and E.-P. Lim

• HMM-Max: The HMM model is first applied to compute the marginal venue probabilities,
followed by stacking of the “Max” model, as shown in Equation (10)

There are other fine-grained geolocation methods in the literature that are not considered here,
largely due to additional assumptions about users and social media platforms [4, 8].
We use three parent time window settings:T=1 hour, 0.5 hour, and 0.25 hour to define temporal

neighbors. To recap the purpose of T , if T=1 hour, then any training tweet posted by the user
within 1 hour (e.g., 10 min) of his test tweet is defined as a temporal neighbor. While T can be set
to any interval, using a short interval such as 5 min may generalize to too few test cases while
using a long interval (e.g., days) leads to long Markov chains and increased computation cost.
Also, a long duration is unnecessary for temporary query expansion due to the kernel parameter
S acting as a time decay factor (see Equation (3)).

5.1 Metrics

As we are solving fine-grained geolocation as a ranking problem and geolocating to venues within
a small geographical area (within a city), ranking metrics are more appropriate than geographical
distance metrics. The latter is not able to differentiate between venues that are stacked on top
of each other, e.g., in a high rise building, or adjacent venues with essentially the same location
coordinates.
We use the standard ranking metricMean Reciprocal Rank (MRR) for evaluation. MRR was pre-

viously also used in Reference [8] to evaluate fine-grained geolocation. This metric is appropriate,
since each tweet is posted from only one venue, which is desired to be ranked high. Given a tweet
wi , let the rank of its posting venue be r (wi ), where r (wi ) = 0 for the top rank. OverM test tweets,
MRR is defined as

MRR =
1

M

M∑

i=1

1

r (wi ) + 1
, (12)

which is simply averaging over the reciprocal ranks.
MRR adopts micro-averages that favor popular venues contributing a larger proportion of

tweets. In practical applications e.g., geolocating a stream of tweets, this is a realistic and rea-
sonable evaluation metric. However for further analysis, we introduce themacro-averaged version
ofMRR, known as VMRR, to remove the effects of popular venues. In fact, the relationship between
MRR and VMRR is akin to that between the micro-F and macro-F measures.
We compute VMRR by grouping test tweets by posting venues, followed by averaging the MRRs

of the groups of test tweets from different posting venues. Formally, over V distinct venues:

VMRR =
1

V

V∑

i=1

MRR(vi ), (13)

whereMRR(vi ) is MRR values for test tweets from venuevi . Thus each venue contributes one value
for summation in Equation (13), regardless of the number of test tweets it contributes. VMRR helps
to ascertain if improvements in MRR is biased towards more popular venues or spread over venues
of differing popularities. A robust model should perform well in both MRR and VMRR.

5.2 Results

Tables 4, 5, and 6 display the results for datasets SG-SHT, SG-TWT, and JKT-SHT, respectively.
For each dataset and metric, we use the Wilcoxon signed rank test to assess statistical significance
between models. The best results or group of results are boldfaced. Models are described as on
par or comparable if the signed ranked test does not indicate statistically significant differences at
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Table 4. SG-SHT Results Averaged over 20 Runs

Models
T = 1 hour T = 0.5 hour T = 0.25 hour

MRR VMRR MRR VMRR MRR VMRR

KL
0.03057 0.02170 0.02861 0.02027 0.02710 0.02078
(−56.19%) (2.94%) (−59.62%) (−3.93%) (−62.85%) (−12.47%)

PTE
0.03593 0.02754 0.03402 0.02593 0.03278 0.02660
(−48.51%) (30.65%) (−51.99%) (22.89%) (−55.06%) (12.05%)

KDE
0.05684 0.02037 0.05567 0.01937 0.05568 0.02088

(−18.54%) (−3.37%) (−21.44%) (−8.20%) (−23.66%) (−12.05%)
Nb 0.06978 0.02108 0.07086 0.02110 0.07294 0.02374

Temporal
0.07036 0.02145 0.07220 0.02259 0.07516 0.02550

(0.83%) (1.76%) (1.89%) (7.06%) (3.04%) (7.41%)

Visit
0.07145 0.02113 0.07257 0.02135 0.07469 0.02377

(2.39%) (0.24%) (2.41%) (1.18%) (2.40%) (0.13%)

Max
0.07114 0.02152 0.07314 0.02230 0.07555 0.02524
(1.95%) (2.09%) (3.22%) (5.69%) (3.58%) (6.32%)

Linear
0.07108 0.02123 0.07326 0.02202 0.07552 0.02474
(1.86%) (0.71%) (3.39%) (4.36%) (3.54%) (4.21%)

Product
0.07100 0.02260 0.07243 0.02332 0.07547 0.02682
(1.75%) (7.21%) (2.22%) (10.52%) (3.47%) (12.97%)

HMM
0.07401 0.02380 0.07539 0.02496 0.07848 0.02777
(6.06%) (12.90%) (6.39%) (18.29%) (7.60%) (16.98%)

Max-HMM
0.07420 0.02362 0.07564 0.02484 0.07858 0.02776

(6.33%) (12.05%) (6.75%) (17.73%) (7.73%) (16.93%)

HMM-Max
0.08122 0.03053 0.08110 0.03074 0.08494 0.03453

(16.39%) (44.83%) (14.45%) (45.69%) (16.45%) (45.45%)

Bracketed numbers are percentage improvement over Nb. On average for T = 0.25 hour, M = 1047.9, V = 11344.2

on average.

p-value of 0.05. Across Tables 4 to 6, HMM-Max is consistently the best or among the best models.
For all models, VMRR is also consistently lower than MRR, as expected from the correction of
venue popularity effects. In the following, we further elaborate the results.
Baselines. Tables 4 to 6 show that KL, KDE, and PTE perform substantially worse than Nb

and other models across all datasets and metrics. KL’s poor performance indicates that modeling
each tweet with a smoothed language model is inadequate, probably due to the brevity in content.
This affects the computation of divergence values between the language models of tweets and
venues. KDE out-performs KL but is still inferior to Nb. Although KDE works well for coarse-
grained geolocation [22], word distributions are learnt at a grid cell level and are sub-optimal
for fine-grained geolocation. PTE performs poorly for MRR, but does well for VMRR, although
it is still inferior to HMM-Max. Since more popular venues contribute more to MRR, the results
indicate that PTE’s learnt representations of such venues may need further improvement. It will
be interesting in future work to explore how to vary the distributions of edge samples during PTE
training to achieve this.
HMM [31] out-performs the Nb model for both MRR and VMRR for datasets SG-SHT (Table 4)

and SG-TWT (Table 5). For JKT-SHT (Table 6), it is on par for MRR and performs better for VMRR.
Thus sequential information exploited by HMMprovides useful information, even when one omits
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Table 5. SG-TWT Results Averaged over 20 Runs

Models
T = 1 hour T = 0.5 hour T = 0.25 hour

MRR VMRR MRR VMRR MRR VMRR

KL
0.02837 0.01411 0.02947 0.01543 0.02881 0.01496
(−63.14%) (−14.28%) (−62.30%) (−7.22%) (−62.78%) (−9.77%)

PTE
0.03149 0.01782 0.03336 0.01921 0.03189 0.01878
(−59.08%) (8.26%) (−57.32%) (15.51%) (−58.80%) (13.27%)

KDE
0.05141 0.01607 0.05278 0.01703 0.05181 0.01605

(−33.20%) (−2.37%) (−32.47%) (2.41%) (−33.07%) (−3.20%)
Nb 0.07696 0.01646 0.07816 0.01663 0.07741 0.01658

Temporal
0.08399 0.01873 0.08496 0.01881 0.08390 0.01868

(9.13%) (13.79%) (8.70%) (13.11%) (8.38%) (12.67%)

Visit
0.07851 0.01654 0.07951 0.01669 0.07859 0.01664

(2.01%) (0.49%) (1.73%) (0.36%) (1.52%) (0.36%)

Max
0.08408 0.01845 0.08563 0.01880 0.08429 0.01859
(9.52%) (12.09%) (9.56%) (13.05%) (8.89%) (12.12%)

Linear
0.08383 0.01819 0.08487 0.01827 0.08390 0.01819
(8.93%) (10.51%) (8.59%) (9.87%) (8.38%) (9.71%)

Product
0.07805 0.01723 0.07947 0.01775 0.07856 0.01744
(1.42%) (4.68%) (1.68%) (6.74%) (1.49%) (5.19%)

HMM
0.08429 0.01874 0.08529 0.01890 0.08411 0.01876
(9.25%) (13.85%) (9.12%) (13.65%) (8.66%) (13.15%)

Max-HMM
0.08483 0.01926 0.08541 0.01963 0.08436 0.01886

(10.23%) (17.01%) (9.28%) (18.04%) (8.98%) (13.75%)

HMM-Max
0.08486 0.02020 0.08604 0.02102 0.08446 0.02030

(10.27%) (22.72%) (10.08%) (26.40%) (9.11%) (22.44%)

On average per run, M = 1302.7, V = 1911.15 for T= 0.25 hour.

any query expansion. However as will be subsequently discussed, query expansion will provide
further performance gains.
Query Expansion. The two query expansion approaches “Temporal” and “Visit” outperform or

are on par with the basemodel “Nb” across all three datasets. For SG-SHT (Table 4), “Visit” achieves
small, but statistically significant improvement over “Nb” for MRR for all T settings, while being
on par for VMRR. “Temporal” improves slightly over “Nb,” except for T=1 hour where the MRR
gains are not significant. For SG-TWT (Table 5), query expansion also works well, with “Tem-
poral” achieving much larger gains than “Visit” over the base model. This is consistent across
metrics and T settings. This matches our earlier empirical results in Section 3.1, showing that
consecutive tweets in SG-TWT are likely to be from the same posting venue (since each linked
check-in links to 1.5 pure tweets on average). Finally, for JKT-SHT (Table 6), both query expansion
approaches provide consistently improved or on-par performance over different T settings and
metrics.
Fusion Approaches. Comparing the fusion approaches: “Max,” “Linear,” and “Product” over

different datasets, one sees that “Max” performs consistently well over the different datasets and
is the more robust fusion approach. For MRR on SG-SHT (Table 4), the performance of “Max”
is statistically equivalent with “Linear” and “Product” for all T settings. For VMRR on SG-SHT,
“Product” performs better than other fusion approaches, including the proposed “Max” approach.
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Table 6. JKT-SHT Results Averaged over 20 Runs

Models
T = 1 hour T = 0.5 hour T = 0.25 hour

MRR VMRR MRR VMRR MRR VMRR

KL
0.05735 0.02714 0.05028 0.02474 0.04760 0.02553
(−53.23%) (−21.31%) (−52.98%) (−29.66%) (−51.09%) (−37.66%)

PTE
0.05778 0.03459 0.05265 0.03614 0.04270 0.03473
(−52.88%) (0.29%) (−50.76%) (2.76%) (−56.13%) (−15.19%)

KDE
0.07906 0.02370 0.07133 0.02375 0.06394 0.02973

(−35.53%) (−31.28%) (−33.29%) (−32.47%) (−34.31%) (−27.40%)
Nb 0.12263 0.03449 0.10693 0.03517 0.09733 0.04095

Temporal
0.12482 0.03579 0.10878 0.03671 0.09841 0.04289

(1.79%) (3.77%) (1.73%) (4.38%) (1.11%) (4.74%)

Visit
0.12336 0.03475 0.10850 0.03538 0.09894 0.04091

(0.60%) (0.75%) (1.47%) (0.60%) (1.65%) (-0.10%)

Max
0.12543 0.03598 0.10928 0.03623 0.09984 0.04290
(2.28%) (4.32%) (2.20%) (3.01%) (2.58%) (4.76%)

Linear
0.12445 0.03551 0.10821 0.03582 0.09839 0.04183
(1.48%) (2.96%) (1.20%) (1.85%) (1.09%) (2.15%)

Product
0.12373 0.03524 0.10710 0.03540 0.09711 0.04109
(0.90%) (2.17%) (0.16%) (0.65%) (−0.23%) (0.34%)

HMM
0.12276 0.03705 0.10662 0.03747 0.09734 0.04459
(0.11%) (7.42%) (−0.29%) (6.54%) (0.01%) (8.89%)

Max-HMM
0.12628 0.03961 0.11100 0.04018 0.10087 0.04733

(2.98%) (14.85%) (3.81%) (14.25%) (3.64%) (15.58%)

HMM-Max
0.12825 0.04144 0.11182 0.04160 0.10098 0.04840

(4.58%) (20.15%) (4.57%) (18.28%) (3.75%) (18.19%)

On average per run, M = 204.5, V = 3063.45 for T = 0.25 hour.

By definition, “Product” uses words in the intersection set from both visitation and query expan-
sions, whereas “Max” uses the union set. We observe that in some cases, the union set can be
large, with non-informative words that affects performance. For VMRR, cases with less popular
venues acquire greater importance and there occurs enough such cases in SG-SHT for “Max” to
underperform “Product.” However for MRR in SG-SHT, “Max” is on par with “Product.” The latter
is also inconsistent and performs poorly on other datasets. For SG-TWT (Table 5), “Max” is the
best fusion approach for most combination of metrics andT settings, while “Product” does poorly.
“Linear” is slightly inferior to “Max,” except for the case of MRR with T = 0.25 hour. However
“Linear” achieves this at the expense of more tuning costs. For JKT-SHT (Table 6), “Max” again
outperforms the other two fusion approaches in most cases.
Note that for each dataset, “Max” also achieves performance that is on par or slightly better

than what is achieved alone by query expansion. It appears to be fairly unaffected by the weaker
method. This is obvious from comparing “Max” vs “Temporal” and Visit.” For example on SG-SHT
(Table 4), “Visit” performs better than “Temporal” for MRR while for VMRR, “Temporal” performs
better. With “Max” fusion, we obtain a more robust model, achieving MRR on par with “Visit” and
VMRR on par with “Temporal.” For another dataset SG-TWT, “Temporal” clearly outperforms
“Visit” across all metrics and T settings. In this case, “Max” consistently achieves performance
comparable with “Temporal”. In fact, for MRR with T = 0.5 hour, “Max” also outperforms
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“Temporal” with statistical significance. In short, although both query expansion approaches
were useful, we achieve more consistent and robust gains after applying “Max” combination.
Stacking with HMM.While “Max” performs well, further performance gains can be achieved

by stacking with HMM in an appropriate manner. Across all datasets and metrics, HMM-Max is
consistently the best or among the best performing models. Intuitively, each target tweet’s parent
sequence has useful sequential information and HMM-Max is able to exploit this. Over the base
model, performance gains for VMRR are especially impressive, ranging from around 18% for SG-
TWT and JKT-SHT (Tables 5 and 6) to more than 40% for SG-SHT (Table 4). For MRR, gains range
from 3+% for JKT-SHT to 10+% for SG-SHT and SG-TWT.
HMM-Max mostly outperforms Max-HMM. Although both models incorporate sequential in-

formation, the former turns out to be a better combination approach. Also, exploiting sequential
information without query expansion (i.e., HMM) is not optimal. Although “HMM”mostly outper-
forms “Nb” (except for MRR in JKT-SHT), it is inferior to HMM-Max in most cases. For example, in
SG-SHT (Table 4), HMM loses out by a large margin to HMM-Max over bothmetrics for bothT set-
tings. Such results show that query expansion exploits information that is orthogonal to sequential
information, resulting in more effective geolocation.

5.3 Analysis by Venue Popularity

Given that HMM-Max is the best performing and most robust model, we examine how its accu-
racy varies with venue popularity. Our analysis also serves to improve our understanding of how
geolocation accuracy may be affected by data characteristics. We quantify venue popularity by the
venue probability p (v ), which we compute based on the global proportion of tweets posted from
each venue. For each run, we divide test tweets into 3 equal-sized bins of low, medium and high
popularity based on the probability of their posting venues. MRR is computed for each bin. We
repeat this for 10 runs with the setting of T = 1 hour and compute the average bin-specific MRR.
Figure 5 displays the results for SG-SHT, SG-TWT, and JKT-SHT. The graphs in each row arise
from the same dataset and are arranged from left to right in increasing order of venue popularity.
For comparison, we also illustrate the performance for HMM.
Figure 5 shows that it is easier to geolocate tweets posted from more popular venues than less

popular ones. This trend is consistent across all datasets as well as across both HMM and HMM-
Max models. For example, in Figure 5(c) for SG-SHT tweets from high popularity venues, HMM-
Max achieves an average MRR of 0.22, much higher than 0.0039 in Figure 5(a) for low popularity
venues. For JKT-SHT, the corresponding figures for HMM-Max are 0.35 in Figure 5(i) versus 0.0053
in Figure 5(g) for high and low popularity venues respectively. HMM follows the same trend.
Intuitively, popular venues are associated with more tweets, which helps to build more complete
venue profiles. They may also have distinct or dominant characteristics that attract users and are
mentioned more in tweets, e.g., unique dishes in a popular restaurant. These factors will increase
the geolocation accuracy for tweets posted from such venues.
Relative to HMM, the percentage improvement attained by HMM-Max is larger for less pop-

ular venues. In Figure 5(a) for low popularity venues, HMM-Max’s average MRR of 3.88e-3 is a
92% improvement over HMM’s value of 2.02e-3. For high popularity venues in Figure 5(c), the
corresponding relative improvement is around 5.6%. For other datasets, the same trend persists
although the magnitude of relative improvement differs. For example, for JKT-SHT, HMM-Max’s
relative improvement over HMM is less drastic than SG-SHT for low popularity venues, i.e., 15.9%
in Figure 5(g). However, relative improvement is even smaller for high popularity venues at 3.17%
in Figure 5(i). We also note that for SG-TWT, HMM-Max outperforms HMM for low and medium
popularity venues (ee Figures 5(d) and (e)), but is on par for high popularity venues in Figure 5(f).
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Fig. 5. Average MRR of HMM (blue) and HMM-Max (gray) for test tweets from venues of different popular-

ities. Each row corresponds to a dataset.

We can conclude that the relative improvement provided byHMM-Max declines with increasing
venue popularity. Such a trend may be because tweets from more popular venues are already
geolocated fairly well and it is harder to achieve larger relative improvements. However there is
still significant absolute improvement in MRR, i.e., a difference of 0.0124 in Figure 5(c). Since MRR
is a top-heavy metric, small changes in the ranking positions near the top have large effects. Thus,
HMM-Max still provides meaningful improvements in MRR when one considers absolute rank
improvements of the posting venues. In short, it is reassuring that HMM-Max outperforms or is
on par with HMM’s performance across venues of different popularity.

5.4 Analysis by Distinct Venues per User

In this section, we study the relation between geolocation performance and the number of distinct
venues that each user visit. The latter characteristic varies across users and will directly impact
models that aim to exploit visitation behavior for geolocation. At one end, there are users who
are focused on a small set of venues. At the other extreme, there are highly active users who post
from a large number of venues, possibly due to novelty seeking behaviour [56] or to project an
interesting image of themselves on social media [37].

Note that in our experiments, if a user has one or more tweets selected for testing, we mask
the venues of all his tweets in the training set. This is in line with our discussed scenario in
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Fig. 6. Average MRR of HMM (blue) and HMM-Max (gray) for test tweets from users with different number

of distinct venues in training tweets.

Section 1.1.1. Here, for the purpose of analysis, we unmask the venues of the training tweets for
such users. For each test tweet, we compute the number of distinct venues that its user had visited
over his tweets in the training set. Based on this statistic, we divide test tweets into three equal-
sized bins, corresponding to the cases where the user has low, medium and high number of distinct
venues. We then compute the MRR for each bin. We repeat this procedure for 10 runs with the
setting of T = 1 hour and average the bin-specific MRR across the runs.

Figure 6 plots the average bin-specific MRR for all datasets. Across all 3 datasets, there is a
common trend that geolocation performance drops as the number of distinct venues per user in-
creases. In 6(a) corresponding to the “Low” bin for SG-SHT, HMM-Max achieves average MRR of
0.115. With increasing distinct venues per user, HMM-Max’s MRR drops to 0.0752 in Figure 6(b)
and finally to 0.0576 for the “High” bin in Figure 6(c). HMM follows the same trend. For both
SG-SHT and JKT-SHT, HMM also performs consistently poorer than HMM-Max in each bin. For
SG-TWT, HMM-Max outperforms HMM for the “Low” and “High” bin, while under-performing
the latter on the “Medium” bin. Overall, both models can be regarded as on-par for SG-TWT (See
Table 5, T = 1 hour, MRR metric).
Intuitively, if users are focused on a narrower set of venues, it may be easier to geolocate their

tweets. Each user posts a finite number of tweets and spreading this over fewer venues will gener-
ally mean that information is less sparse. In contrast, if users are visiting a large number or highly
diverse venues, then geolocation becomes more challenging. Our result shows that even in this
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scenario, HMM-Max can better mitigate the effects and is more robust across datasets, compared
to HMM. Interestingly, the better performance arises from simply overlaying a query expansion
process on HMM to exploit both repeat visitation and staying behavior.

5.5 Case Study

As our proposed query expansion and Max combination approaches are more novel than the well
studied HMM, we focus our case studies on the former portion. For ease of analysis, we compare
non-sequential models, i.e., “Temporal,” “Visit,” and “Max.” We first discuss positive cases that
illustrate the usefulness of query expansion and Max combination. We then examine negative
cases, which are grounds for future work.

5.5.1 Positive Cases. There are numerous examples where test tweets are geolocated more ac-
curately from query expansions, as well as with Max combination. For ease of discussion, we use
example cases where the test tweet is augmented with relatively few words, and contained in se-
quences of length two. Table 7 displays geolocation cases from SG-SHT with T = 1 hour. These
are extracted from sample runs of the main experiment in Section 5. Each case consists of a pair
of tweets: a test tweet (bolded) and its temporal neighbor. For each case, the words used for geolo-
cation and associated weights are illustrated for different query expansion methods. Finally, the
last row of each case displays the ranked position that each method attained for the test tweet’s
posting venue.
In Table 7, case A illustrates the usefulness of temporal neighbors and temporal query expan-

sion. The test tweet A2 and its temporal neighbor A1 are posted from “Marina Bay Sands Hotel,”
known to have impressive city views. Hence the word “view” is indicative of the venue. With
the “Temporal” method, a greater weight is placed on the word “view” due to its occurrence in
both A1 and A2. This improves the ranking of the posting venue to position 2, i.e., r (w = A2)=2.
For the “Visit” method, the word set is similar to that of “Temporal.” This is because A2’s words
only co-occur with the words in A1. Consequently “Max” is also restricted to the same word set
as “Temporal” and “Visit.” However, the kernel parameters are now tuned over a tuning set that
considers combined word sets for each tuning tweet. In this case, the tuned kernel learns a time
decay of 0 within interval T (i.e., S = 0 in Equation (3)). This increases the weight of word “view”
such that “Max” matches the performance of “Temporal.”
Case B is another example that highlights the usefulness of temporal information. Tweets B1

and B2 are near duplicates of each other. Bothmentioned amovie being screened at a theatre venue
“Golden Village.” By considering temporal neighbors, the informative word “conjuring” is given
larger weights. Since this is indicative of the movie theatre, geolocation is improved. In contrast,
visitation query expansion based on the method “Visit” is unable to augment the test tweet due to
the lack of co-occurring words. By using “Max” fusion, one retains the geolocation improvement
provided by temporal query expansion.
For case C, both the temporal neighbor C1 and other tweets from the user are useful for ge-

olocating C2. C2 is posted from an airport departure hall. The base model “Nb” ranks its posting
venue at position 121. By exploiting C2’s predecessor C1, “Temporal” improves the ranking to 64.
This is due to the word “flying,” which is indicative of the airport. For the “Visit” method, some im-
provement is achieved as well by adding the word “boarding” to the test tweet. Finally the “Max”
method uses the union of word sets considered by both “Visit” and “Temporal.” This ranks the
posting venue at position of 21, better than “Visit” and “Temporal.”
Finally case D corresponds to the case where the temporal neighbor is not useful as a result

of the tuned parameters not being optimal to this example. Fortunately other tweets from the
user’s history are useful. In D1, the user tweets about going to “ICA,” which is an acronym for
D2’s posting venue “Immigration & Checkpoints Authority.” However, tuning on a separate set of
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Table 7. Sample Geolocation Cases/Tweet Sequences from SG-SHT

Case A

A1
(Marina Bay Sands Hotel, 14:22:29)
“Zimmer bezogen... City-View”

A2
(Marina Bay Sands Hotel, 14:23:23)

“Und Garden/Rennstrecken View...”
Temporal (view, 1.58), (garden, 1.0), (und, 1.0), (city, 0.58)
Visit (view, 1.0), (garden, 1.0), (und, 1.0), (city, 0.33)
Max (view, 2.0), (garden, 1.0), (und, 1.0), (city, 1.0)

r (w = A2) Nb: 4, Temporal: 2, Visit: 6, Max: 2

Case B

B1
(Golden Village, 22:44:14)
“Few minuted to The Conjuring.”

B2
(Golden Village, 22:45:14)

“Few minutes to The Conjuring.”
Temporal (conjuring, 1.55), (minutes, 1.0)
Visit (conjuring, 1.0), (minutes, 1.0)
Max (conjuring, 1.55), (minutes, 1.0)

r (w = B2) Nb: 14, Temporal: 10, Visit: 14, Max: 10

Case C

C1
(Changi International Airport, 15:55:26)

“Flying out”

C2
(Terminal 1 Departure Hall, 15:56:39)
“Upgraded again. Thank you KLM!”

Temporal (upgraded, 1.0), (klm, 1.0), (flying, 0.48)

Visit
(upgraded, 1.0), (klm, 1.0), (au, 0.5), (revoir, 0.5),

(boarding, 0.35), (faith, 0.17), (alexandra, 0.17)

Max
(upgraded, 1.0), (klm, 1.0), (au, 0.5), (revoir, 0.5),
(flying, 0.48), (boarding, 0.35), (faith, 0.17), (alexandra, 0.17)

r (w = C2) Nb: 121, Temporal: 64, Visit: 78, Max: 21

Case D

D1
(Jurong East MRT Interchange, 14:34:36)

“To ICA”

D2
(Immigration & Checkpoints Authority, 15:12:54)

“Change passport!”
Temporal (passport, 1.0), (change, 1.0), (ica, 1.05e-10)
Visit (passport, 1.0), (change, 1.0), (collecting, 0.5)
Max (passport, 1.0), (change, 1.0), (collecting, 0.5), (ica, 1.05e-10)

r (w = D2) Nb: 1 , Temporal: 1, Visit: 0, Max: 0

For ease of discussion, each case consists of a pair of tweets. The test tweet is bolded while its temporal neighbor

is unbolded. In each tweet, modeled words are italicized (after omitting rare and stop-words). For each case, words

and associated weights are sorted and illustrated for different query expansion methods. The last row of each case

displays the ranked position that each method attained for the test tweet’s posting venue.

tweets had resulted in a strong time decay for word weights. Given the substantial time difference
of 38 minutes between D1 and D2, the weight of “ica” is overly small and has negligible effect
on D2’s geolocation. However by visitation query expansion, one is able to augment D2 by the
word “collecting.” This is a word strongly indicative of the posting venue that is a government
building where users frequently tweet about collecting their immigration-related documents. Thus
visitation query expansion improves geolocation by including an additional informativeword. This
improvement is also retained by Max combination.
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Table 8. Sample Geolocation Cases from SG-SHT Where Current Query Expansion

Approaches Do Not Improve Performances

Case E

E1
(ION Orchard, 18:38:14)

“tiredddddd”

E2
(Cineleisure Orchard, 18:39:08)

“Running errand”

Temporal (running, 1.0), (errand, 1.0), (tiredddddd, 0.58)

Visit (running, 1.0), (errand, 1.0)

Max (running, 1.0), (errand, 1.0), (tiredddddd, 0.58)

r (w = E2) Nb: 6, Temporal: 7, Visit: 6, Max: 7

Case F

F1

(Rooftop Infinity Edge Pool, 20:45:06)

“Finally here to see the Infinity Pool and get to

see the awesome night view of the Singapore Skyline”

F2
(Sky on 57, 20:47:38)

“Enjoying the nightview of Singapore Skyline while enjoying light snacks”

Temporal
(singapore, 1.22), (skyline, 1.22), (infinity, 1.0), (awesome, 1.0), (finally, 1.0),

(night, 1.0), (pool, 1.0), (view, 1.0), (enjoying, 0.44), (light, 0.22), (snacks, 0.22)

Visit

(singapore, 1.0), (skyline, 1.0), (infinity, 1.0), (awesome, 1.0), (finally, 1.0),

(night, 1.0), (pool, 1.0), (view, 1.0), (enjoying, 0.44), (light, 0.22), (snacks, 0.22),

(sweet, 0.13),(reached, 0.13), (flight, 0.13), (hours, 0.13)...

Max

(singapore, 1.22), (skyline, 1.22), (infinity, 1.0), (awesome, 1.0), (finally, 1.0),

(night, 1.0), (pool, 1.0), (view, 1.0), (enjoying, 0.44), (light, 0.22), (snacks, 0.22),

(sweet, 0.13),(reached, 0.13), (flight, 0.13), (hours, 0.13)...

r (w = F1) Nb: 11, Temporal: 12, Visit: 14, Max: 16

The usefulness of temporal neighbors and other tweets from the user’s history vary over cases A
to D, resulting in temporal and visitation query expansions providing different extents of improve-
ment over the base model “Nb.” In all cases, Max fusion is able to handle the different scenarios
and match the better performing method. This indicates that using Max fusion is more robust than
either temporal or visitation query expansion alone.

5.5.2 Negative Cases. It is useful to also study cases where both temporal and visitation query
expansions do not improve geolocation. For such cases, it is also difficult for Max combination to
provide any improvements. Table 8 illustrates some examples.

Our experiment results and previous case studies have shown temporal neighbors to be gener-
ally useful. However there exists cases where they have no effect or worsen geolocation accuracy.
For case E in Table 8, both tweets are from adjacent shopping malls. Incidentally, the temporal
neighbor E1 provides no additional useful information to help geolocate test tweet E2. E1’s content
is not indicative of E2’s posting venue. Using the former to augment the latter may then be akin to
adding noise. Specifically with temporal query expansion, E2’s posting venue is ranked at position
7, worse than the position of 6 obtained with the “Nb” base model. In this example, visitation
query expansion does not provide additional informative words as well. Consequently, “Max”
only manages to perform on par with “Temporal.” On further analysis of case E, we observed
the user to exhibit a cyclical visitation pattern, in the sense that he repeatedly visits E2’s posting
venue on evenings. If we augment E2 with words from the user’s other tweets posted at around
evenings, then more informative words such as “shopping” will be added to E2. This equates to
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query expansion based on time of the day to model cyclical patterns. While the idea is intuitive,
one caveat is that users may adhere to or deviate from their usual patterns, such that improving
geolocation accuracy for this case may lead to worse accuracies in other cases. Hence further work
can explore the robust fusion of cyclical models/approaches with the approaches in this article.
Case F in Table 8 covers a non-cyclical scenario. The user visits a rooftop swimming pool for

the first time and posts tweet F1. He also posts F2 from an adjacent dining venue. Unfortunately,
F2’s content did not improve F1’s geolocation. Due to the word “light” in F2, another candidate
venue4 popular for its night lightings were elevated in rank over F1’s posting venue. Visitation
query expansion was not useful as well, resulting in F1 being augmented with dozens of words.
For brevity, we only list the top weighted words in Table 8. As can be seen, the added words in-
cluded “reached,” “flight” and so on, which are more indicative of the airport than F1’s posting
venue. Hence “Visit” performs worse than “Nb.” Consequently, “Max,” which combines the ap-
proach of “Temporal” and “Visit,” also under-performs “Nb.” When temporal neighbors are not
useful, considering a user’s visitation history may have some mitigating effect and still improve
geolocation. However Case F pertains to users with significant deviations from their visitation
history, e.g., tourists or users exploring new venues for the novelty factor [56]. Users may also
evolve in their visitation behavior for more mundane reasons, e.g., change of workplace. For such
cases, the current visitation query expansion approach is likely to be inadequate. In future work,
it will be interesting to explore how novelty seeking and behavior evolution can be modeled and
combined with the current approaches.

6 RELATEDWORK

6.1 Coarse-grained Geolocation

Wefirst review coarse-grained geolocation work that addresses a problem very different from fine-
grained geolocation. The former is well studied and involves the tasks of (1) geolocating individual
tweets or (2) geolocating users to home city/region/coordinates via their tweets.

6.1.1 Tweet Geolocation. The first task geolocates individual tweets to locations of different
granularities such as cities, grid cells/regions or coordinates. Bo Han et al. [20] described geolo-
cation to discrete locations (eg. cities) as akin to multiclass classification, while geolocation to
coordinates is akin to multi-target regression.
For geolocation to cities (or coarse locations), [26] used naive Bayes to model the probability

of words conditional on the cities. Each tweet is regarded as a bag of words and geolocated to
cities with high probability of generating the tweet content. Highly related to this are grid based
approaches [36, 46, 52] that also handles locations in a discrete manner. Wing and Baldridge [52]
discretized space into a uniform grid of square cells, such that each cell can be modeled by a
smoothed distribution of words. They then geolocate test tweets to the cells based either on the
Kullback-Leibler (KL) divergence between word distributions of tweets and cells, or on tweet con-
tent probability under a naive Bayes model. In Reference [36], O’Hare and Murdock adopt uniform
grids as well. They use the naive Bayes language model, along with spatial smoothing to geolocate
Flickr photos, based on the accompanying photo tags. In a recent grid-based approach, [46] pro-
poses to use adaptive grids constructed using a k-d tree, as a better alternative to uniform grids.
Adaptive grids can vary the cell size to adapt to the training set size and geographic dispersion
of the documents. Hence more densely populated areas will be fitted with more numerous and
smaller cells.

4A park venue: Gardens by the Bay
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For geolocating tweets to coordinates, topic models [1, 21] and spatial models [41] have been
proposed. Ahmed [1] proposed the nested Chinese Restaurant Franchise Process. The process de-
rives hierarchical topics such that higher level topics correspond to broad regions whereas lower
level topics correspond to more fine-grained locations. In Reference [21], Hong et al. proposed
a topic model under the Sparse Additive Generative Model framework [13]. The main idea is to
model deviations caused by facets. For example, the probabilities of tweet words are made de-
pendent on location coordinate such that they “deviate” from some background distribution. In
both topic modeling works, topics are dependent on the posting coordinates, hence tweets are
geolocated by inferring their topics. Besides topic models, spatial models are applicable as well. In
Reference [41], Priedhorsky et al. modeled each word as a a Gaussian Mixture Model (GMM). To
geolocate each tweet, the multiple GMMs corresponding to multiple words in a tweet are linearly
combined, with higher weights place on more location-indicative words.
For each test tweet, the above works provide either a coordinate estimation [1, 21, 41] or a

coarse discrete location, e.g., city/grid cell [26, 36, 46, 52]. Clearly, there is much difference from
fine-grained geolocation that aims to infer the posting venue.

6.1.2 User Geolocation. This task infers the home city or region of users by exploiting the con-
tent over multiple tweets posted by each user. The approach in Reference [6] is to model the
distribution of words over space and to use Location-Indicative (LI) words in the tweets to infer
home locations. Such words are frequent at some central spatial point and their usage rapidly de-
clines as one moves away from the central point. Chang et al. [5] defined LI words differently using
GaussianMixture Models (GMM) instead. They identified LI words as those with GMM probability
mass spatially focused on a small area. More approaches to identify LI words are compared in [19],
where Han et al. grouped approaches into statistical methods such as hypothesis testing, informa-
tion theory e.g., word entropy; and heuristics-based approaches such as TF-IDF . They found that
geolocation performance of the various methods is sensitive to the number of top ranked words.
Besides LI words, other information can be exploited for user geolocation. In Reference [25], Jur-
gens geolocated users based only on their social relationships, independent of any tweet content.
Starting with a small number of initial locations from seed users, the approach spatially propa-
gates location assignments through the social network. The assumption is that users are likely to
be near their friends. With the same assumption, Rahimi et al. [44] propagates spatial labels over
friendship networks constructed from user mentions in tweets. They also integrated priors from
content-based geolocation into their network, showing that this joint exploitation of content and
social network information out-performs content-only and network-only approaches.
Different from these mentioned works, we geolocate individual tweets, not users. Also, our

geolocation granularity is to specific posting venues rather than cities or regions.

6.2 Fine-grained Tweet Geolocation

In contrast to coarse-grained geolocation, we conduct fine-grained tweet geolocation that links
tweets to specific venues. Each tweet will be associated with one posting venue instead of a city,
grid cell or a coordinate. The latter resolutions will associate each tweet with multiple venues.
Furthermore, we consider fine-grained geolocation in the context of tweet sequences.
While fine-grained geolocation is relatively less explored than coarse-grained geolocation,many

approaches from the latter task are applicable. The approach by Li et al. [30] is analogous to that
of Reference [52] for coarse-grained geolocation. They geolocate tweets to the venue with the
most similar word distribution, based on KL-divergence. Furthermore, venue probabilities based
on posting time are linearly combined with the transformed KL-divergences to form venue scores.
We implement this approach as a baseline. In Reference [27], a naive Bayesmodel for words is fitted
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to each venue, analogously to Reference [26] for coarse-grained geolocation. However, only tweets
with location indicative words are geolocated, whereas tweets without such words are discarded.
In our work, we geolocate tweets even if they have no location indicative words. In Reference [23],
Ikawa et al. learned the keywords that are highly associated with locations from geocoded content
pushed by location apps to Twitter. They geolocate tweets with at least one keyword, based on
cosine similarity matching to venues. Cao et al. [4] engineered features with content, location
history and relationships, whereby features are specific to Foursquare, e.g., venue categories, user
mayorships, and so on. Based on such features, they classify if a tweet is posted from a venue or
not. In contrast, we seek to develop a more general approach that do not require platform specific
features.
The works by References [24, 28, 29] geolocate/link venue mentions in tweets. In Reference [24],

Ji et al. performed location recognition and linking simultaneously in a joint search space. They for-
mulated fine-grained geolocation as a structured prediction problem and proposed a beam search
based algorithm. In Reference [28], Li and Sun predict for each locationmention in tweets, whether
the user has visited, is currently at, or will soon visit the mentioned location. They designed a
Conditional Random Field (CRF) based location tagger. The tagger takes in inputs such as lexical,
grammatical, geographical and BILOU5 schema features. Li et al. [29] exploit location mentions
over multiple tweets per user to infer the top-k locations for each user. Their system is based on
name matching against locations organized in hierarchical trees, whereby coarse grained loca-
tions, e.g., neighborhoods are parents of more fine-grained locations, e.g., streets. Once the top-k
locations are identified for a specific user, his location mentions in specific tweets can be linked
with greater accuracy.
While the discussed works [24, 28, 29] were shown to handle colloquial mentions, relying on

mentions remains a bottleneck. This requiresmention extraction, which remains a challenging task
for tweets. Also tweets can be location indicative without mentions, e.g., a tweet “safely landed”
is indicative of the airport even though it has no mentions. In fact, from a quick inspection of a
sample of our data, we estimate that around 90% of the tweets do not contain any venue mentions.
In our work, we geolocate tweets regardless of whether they contain any mentions or not.
Last, to our knowledge, there has been no prior work on fine-grained geolocation of tweets

contained in sequences. The closest work is by Liu and Huang [31] who conducted coarse-grained
geolocation. They geolocated tweets in sequences to cities, using Hidden Markov Models. This
is easily adapted to fine-grained geolocation. In this article, we implement the method in Refer-
ence [31] as a baseline.

6.3 User Behavior

Repeat visitation and staying behavior can be related to some prior work.

6.3.1 Proximity between Consecutive Visits. Previous studies [34, 35, 54] have shown that con-
secutive venue visits over time tend to be close in space. In [34], Noulas et al. showed that between
consecutive venue visits, the probability distribution of spatial distances has a declining trend and
resembles an inverse power law. Shorter distances have higher probabilities than longer distances,
although the latter still has small, non-negligible probabilities. A separate study in Reference [35]
applied the complementary cumulative distribution function on inter-check-in distances andmade
similar observations. In Reference [54], Yuan et al. studied venue visits from location-based social
networks to surface a similar characteristic, which they termed as spatial influence. Finally in Ref-
erence [45], Rhee et al. studied the mobility track logs of participants carrying GPS receivers. They

5BILOU schema identifies Beginning, Inside and Last word of a multi-word location name, and Unit-length location name.
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found that human walk patterns exhibit statistically similar features as Levy walks [51], whereby
people tend to visit nearby places and occasionally distant places.

6.3.2 Proximity of Visits to Home Location. In References [7, 12, 39, 40, 50], it was found that
users are more likely to visit venues near their home locations. Some of these studies [7, 40] also
highlighted that repeat visits are common. In Reference [40], Pontes et al. studied user activities
in Foursquare that are indicative of mobility patterns, e.g., posts about visited venues. They found
strong relationships between home locations and mobility patterns, whereby users made more
visits at their residing cities and that they frequently revisit venues. Cho et al. [7] studied check-
ins and cell phone logs. They showed that users are spatially focused and tend to visit venues
around individual activity centers, e.g., home or workplace. They also found venues revisits to be
a significant aspect of user behavior. Doan and Lim [12] conducted fine-grained spatial analysis of
users. They obtained user home coordinates via extracting check-ins with indicative comments,
e.g.,“Home sweet home!” On these users, they found that visitation probabilities to venues decrease
with increasing distances from users’ home locations. Otherworks [39, 50] simply assume that user
visits are spatially concentrated near their home locations, when inferring the home location of
users. Pontes et al. [39] used majority voting and mean statistics on geocoded visit data. Tasse
et al. [50] recursively partition space into uniform grids and compute the mode to infer the home
location.

6.3.3 Remarks. Based on proximity between consecutive visits, tweets posted within a short
time of each other are likely to be posted from the same or nearby venues. The latter can also be
linked to the proximity of visits to home locations. Via the transitivity property, if a user visits
multiple venues near his home, then these venues will generally be near each other. If the visits
are made within a short period of time, then the visited venues also constitute a sequence bounded
within a short time interval.

6.4 Query Expansion

Query expansion is traditionally used for document retrieval. The initial query is expanded by
adding potentially relevant words using term weighting schemes. To enhance query expansion,
Reference [11] used genetic programming to learn weighting schemes. Reference [53] compared
global and local query expansion techniques. Basically, global techniques expand queries based on
corpora-wide word co-occurrence information/relationships while local techniques exploit the top
rank documents given an unexpanded query. An example of a global technique is Reference [42],
which uses a similarity thesaurus to add words that are most similar to the query concept. For
local techniques, an early work in Reference [3] expands a query with the most frequent terms
and phrases from the initial top ranked documents. More recently, Lv and Zhai [32] exploit term
positions and proximity to assign more weights to words that are closer to query words. Intuitively
suchwords are more likely to be related to the query topic. Besides retrieval tasks, query expansion
has also been applied for entity linking. In Reference [18], Gottipati and Jiang expanded queries
using both the local contexts within the query documents and global world knowledge obtained
from theWeb. Such expanded queries can be linked more accurately to the correct knowledge base
entity. Interestingly, our tweet geolocation task can also be interpreted as implicit entity linking
[38], whereby a tweet is linked (without mention extraction), to a knowledge base of venues.
With the increasing quantity of user generated content in social media, query expansion has

also been applied for tasks related to social media content. Bandyopadhyay et al. [2] applied query
expansion to tweets to retrieve relevant tweets given a user query. Given initial key words, they
retrieved web pages and used their titles as a source of expansion words to retrieve more tweets.
Fresno et al. [15] worked on a different task of retrieving more relevant keywords. They designed a
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query expansion approach for tweets to discover keywords related to natural hazard events. They
exploited user, tweet location and time information, e.g., considering candidate words from tweets
close in space and time to an event-related tweet.
Instead of the above tasks, we have adapted query expansion for the different task of fine-grained

tweet geolocation. Our query expansion approaches can be considered as a local technique in the
sense that it is personalized to each user, i.e., words are added from other tweets from the same
user.

7 CONCLUSION

We have explored geolocation of tweets that are close in time to other tweets posted by the same
user. Such a scenario is fairly common, but to our knowledge, has not been studied in prior work.
In particular we treat test tweets as akin to queries and propose temporal and visitation query ex-
pansions. These are conceptually simple, but novel expansion approaches motivated by observed
mobility patterns of users. By “Max” fusion of both query expansion approaches and stacking
with HMMs, we achieve an effective and robust model for geolocation. In future work, we will
explore more sophisticated query expansion and word weighting functions. For example, a test
tweet’s temporal neighbors may contain noise words and words that are more indicative of loca-
tions. In this case, it may be more optimal to identify and assign larger weights to the location-
indicative words. As mentioned in the negative case studies, it will also be interesting to explore
how other behavioral aspects such as cyclical visits and novelty seeking can bemodeled to improve
geolocation.

7.1 Future Work

There is room for future work. First, the current model is based on probability distributions over
discrete word representations. There is no notion of semantic similarities between different words.
As tweets are very short text, venue-word and word-word co-occurrences are sparse. These impact
the visitation query expansion component used in HMM-Max as well as the estimation of prob-
ability distributions. In future work, one can explore replacing the current word representations
with continuous representations such as Word2Vec [33], and possibly to query-expand targeted
tweets based on cosine similarities between tweets and word representations.
Second, we have thus far geolocated tweets to venues in the knowledge base. Clearly it is also

possible for users to post from new venues or venues that are not in the knowledge base. One possi-
ble approach to handle this challenge is to modify the current models to incorporate a confidence
measure. When the confidence level of a model in linking a targeted tweet is lower than some
specified threshold, then the tweet can be flagged as unlinkable. This is also the current approach
adopted by some explicit entity linking approaches whereby unlinkable mentions are flagged as
out-of-value [47, 48].

Another more interesting direction is to combine coarse-grained and fine-grained geolocation.
Basically even if a tweet is posted from some venue not in the knowledge base, it may be possible
to geolocate it to some neighborhood or a coarser parent venue. For example, consider a newly
opened restaurant in an existing shoppingmall, whereby the latter is represented in the knowledge
base. If the restaurant is not in the knowledge base, then we cannot geolocate tweets to it, but we
can geolocate tweets to its parent mall. Hence coarse-grained geolocation serves to complement
fine-grained geolocation where the latter is not possible, or is not confident about its geolocation
outcome. One can also explore how to achieve a consensus in geolocation results from both fine-
grained and coarse-grained geolocation in a fused or ensemble model. The idea is that the inferred
posting venue or ranked venue list from fine-grained geolocation should be consistent with the
inferred neighborhood/parent venue from coarse-grained geolocation. For example, if fine-grained
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geolocation indicates a tweet to be posted from some venue that is not in the posting neighborhood
inferred by coarse-grained geolocation, then at least one of the geolocation approach is providing
inaccurate results. Thus any inconsistencies can be used to refine the model to achieve better
geolocation.
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