
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

1-2019

Automatic query reformulation for code search using Automatic query reformulation for code search using

crowdsourced knowledge crowdsourced knowledge

Mohammad M. RAHMAN

Chanchal K. ROY

David LO
Singapore Management University, davidlo@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Programming Languages and Compilers Commons, and the Software Engineering

Commons

Citation Citation
RAHMAN, Mohammad M.; ROY, Chanchal K.; and LO, David. Automatic query reformulation for code
search using crowdsourced knowledge. (2019). Empirical Software Engineering. 1-56.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4323

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4323&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4323&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4323&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4323&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Empirical Software Engineering
https://doi.org/10.1007/s10664-018-9671-0

Automatic query reformulation for code search
using crowdsourced knowledge

MohammadM. Rahman1 ·Chanchal K. Roy1 ·David Lo2

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Traditional code search engines (e.g., Krugle) often do not perform well with natural lan-
guage queries. They mostly apply keyword matching between query and source code.
Hence, they need carefully designed queries containing references to relevant APIs for the
code search. Unfortunately, preparing an effective search query is not only challenging but
also time-consuming for the developers according to existing studies. In this article, we
propose a novel query reformulation technique–RACK–that suggests a list of relevant API
classes for a natural language query intended for code search. Our technique offers such sug-
gestions by exploiting keyword-API associations from the questions and answers of Stack
Overflow (i.e., crowdsourced knowledge). We first motivate our idea using an exploratory
study with 19 standard Java API packages and 344K Java related posts from Stack Over-
flow. Experiments using 175 code search queries randomly chosen from three Java tutorial
sites show that our technique recommends correct API classes within the Top-10 results
for 83% of the queries, with 46% mean average precision and 54% recall, which are 66%,
79% and 87% higher respectively than that of the state-of-the-art. Reformulations using
our suggested API classes improve 64% of the natural language queries and their overall
accuracy improves by 19%. Comparisons with three state-of-the-art techniques demon-
strate that RACK outperforms them in the query reformulation by a statistically significant
margin. Investigation using three web/code search engines shows that our technique can
significantly improve their results in the context of code search.

Keywords Code search · Query reformulation · Keyword-API association ·
Crowdsourced knowledge · Stack Overflow

Communicated by: Andrea De Lucia

� Mohammad M. Rahman
masud.rahman@usask.ca

Chanchal K. Roy
chanchal.roy@usask.ca

David Lo
davidlo@smu.edu.sg

1 University of Saskatchewan, Saskatoon, Canada
2 Singapore Management University, Singapore, Singapore

Published in Empirical Software Engineering, 2019 January, Pages 1-56
https://doi.org/10.1007/s10664-018-9671-0

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-018-9671-0&domain=pdf
http://orcid.org/0000-0003-3821-5990
mailto: masud.rahman@usask.ca
mailto: chanchal.roy@usask.ca
mailto: davidlo@smu.edu.sg

Empirical Software Engineering

1 Introduction

Studies show that software developers on average spend about 19% of their development
time in web search. On the web, they frequently look for relevant code snippets for their
tasks (Brandt et al. 2009). Online code search engines–Open Hub, Koders, GitHub and
Krugle– index thousands of large open source projects, and these projects are a potential
source for such code snippets (McMillan et al. 2011). However, these traditional code search
engines mostly employ keyword matching. Hence, they often do not perform well with
unstructured natural language (NL) queries due to vocabulary mismatch between NL query
and source code (Bajracharya and Lopes 2012b). They retrieve code snippets based on lexi-
cal similarity between a search query and the project source code. That means, these engines
require the queries to be carefully designed by the users and to contain relevant API ref-
erences. Unfortunately, preparing an effective search query that contains information on
relevant APIs is not only challenging but also time-consuming for the developers (Kevic and
Fritz 2014a; Brandt et al. 2009). A previous study (Kevic and Fritz 2014a) also suggested
that on average, developers regardless of their experience levels performed poorly in coming
up with good search terms for code search. Thus, an automated technique that complements
a natural language query with a list of relevant API classes or methods (i.e., search-
engine friendly query) can greatly assist the developers in performing the code search. Our
paper addresses this particular research problem–query reformulation with relevant API
classes–by exploiting the crowdsourced knowledge stored at Stack Overflow programming
Q & A site.

Existing studies on API recommendation accept one or more natural language queries,
and return relevant API classes and methods by mining feature request history and API
documentations (Thung et al. 2013b), large code repositories (Zhang et al. 2017), API invo-
cation graphs (Chan et al. 2012), library usage patterns (Thung et al. 2013a), code surfing
behaviour of the developers and API invocation chains (McMillan et al. 2011). McMillan
et al. (2011) first propose Portfolio that recommends relevant API methods for a given code
search query and demonstrates their usage from a large codebase. Chan et al. (2012) improve
upon Portfolio by employing further sophisticated graph-mining and textual similarity tech-
niques. Thung et al. (2013b) recommend relevant API methods to assist the implementation
of an incoming feature request. Although all these techniques perform well in different
working contexts, they share a set of limitations and thus fail to address the research prob-
lem of our interest. First, each of these techniques (McMillan et al. 2011; Chan et al. 2012;
Thung et al. 2013b) exploits lexical similarity measure (e.g., Dice’s coefficients for candi-
date API selection. This warrants that the search query should be carefully prepared, and it
should contain keywords similar to the API names. In other words, the developer should or
must possess a certain level of experience with the target APIs to actually use these tech-
niques (Bajracharya and Lopes 2012a). Second, API names and search queries are generally
provided by different developers who may use different vocabularies to convey the same
concept (Kevic and Fritz 2014b). Furnas et al. (1987) named this the vocabulary mismatch
problem. Lexical similarity based techniques often suffer from this problem. Hence, the per-
formance of these techniques is not only limited but also subject to the identifier naming
practices adopted in the codebase under study. We thus need a technique that overcomes
the above limitations, and recommends relevant or appropriate APIs for natural language
queries from a wider vocabulary.

One possible way to tackle the above challenges is to leverage the knowledge or expe-
rience of a large technical crowd on the usage of particular API classes and methods. Let
us consider a natural language query–“Generating MD5 hash of a Java string.” Now, we

Empirical Software Engineering

mine thousands of Q & A posts from Stack Overflow that discuss relevant APIs for this
task and then recommend APIs from them. For instance, the Q & A example in Fig. 1
discusses on how to generate an MD5 hash (Fig. 1a), and the accepted answer (Fig. 1b)
suggests that MessageDigest API should be used for the task. Such usage of the API is
also recommended by at least 305 technical users from Stack Overflow, which validates the
appropriateness of the usage. Our approach is thus generic, language independent, project
insensitive, and at the same time, it overcomes the vocabulary mismatch problem suffered
by the past studies. One can argue in favour of Google which is often used by the developers
for searching code on the web. Unfortunately, recent study (Rahman et al. 2018) shows that
developers need to spend more efforts (i.e., two times) in code search than in web search
while using Google search engine. In particular, they need to reformulate their queries more
frequently and more extensively for the code search. Such finding suggests that the general-
purpose web search engines (e.g., Google) might be calibrated for the web pages only, and
they perform sub-optimally with the source code, especially due to vocabulary mismatch
issues (Hellendoorn and Devanbu 2017; Haiduc and Marcus 2011). Thus, automatic tool
supports in the query formulation for code search is still an open research problem that
warrants further investigation.

In this paper, we propose a query reformulation technique–RACK–that exploits the asso-
ciations between query keywords and different API classes used in Stack Overflow and
translates a natural language query intended for code search into a set of relevant API
classes. First, we motivate our idea of using crowdsourced knowledge for API recommen-
dation with an exploratory study where we analyse 172,043 questions and their accepted

Fig. 1 An example of a Stack Overflow question and b its accepted answer

Empirical Software Engineering

answers from Stack Overflow. Second, we construct a keyword-API mapping database
using these questions and answers where the keywords (i.e., programming requirements)
are extracted from questions and the APIs (i.e., programming solutions) are collected from
the corresponding accepted answers. Third, we propose an API recommendation technique
that employs three heuristics on keyword-API associations and recommends a ranked list of
API classes for a given query for its reformulation. The baseline idea is to capture and learn
the responses from millions of technical users (e.g., developers, researchers, programming
hobbyists) for different programming problems, and then exploit them for relevant API sug-
gestion. Our technique (1) does not rely on the lexical similarity between query and source
code of projects for API selection, and (2) addresses the vocabulary mismatch problems by
using a large vocabulary (i.e., 20K) produced by millions of users of Stack Overflow. Thus,
it has a great potential for overcoming the challenges faced with the past studies.

An exploratory study with 172,043 Java related Q & A threads (i.e., question + accepted
answer) from Stack Overflow shows that (1) each answer uses at least two different API
classes on average (RQ1), and (2) about 65% of the classes from each of the 11 core Java
API packages are used in these answers (RQ2). Such findings clearly suggest the potential
of using Stack Overflow for relevant API suggestion. Experiments using 175 code search
queries randomly chosen from three Java tutorial sites–KodeJava, Java2s and Javadb–show
that our technique can recommend relevant API classes with an accuracy of 83%, a mean
average precision@10 of 46% and a recall@10 of 54%, which are 66%, 79% and 87%
higher respectively than that of the state-of-the-art (Thung et al. 2013b) (RQ4, RQ8). Query
reformulations using our suggested API classes improve 46%–64% of the baseline queries
(i.e., contain natural language only), and their overall code retrieval accuracy improves by
19% (RQ9). Comparisons with the state-of-the-art techniques on query reformulation (Nie
et al. 2016; Zhang et al. 2017) also demonstrate that RACK offers 48% net improvement in
the baseline query quality as opposed to 26% by the state-of-the-art, which is 87% higher
(RQ10). Our investigations with Google, Stack Overflow native search, and GitHub native
code search also report that our reformulated queries can improve their results by 22%–26%
in precision and 12%–28% in reciprocal rank in the context of code example search (RQ11).

Novelty in Contribution This paper is a significantly extended version of our earlier work
(Rahman et al. 2016) which employed two heuristics (KAC and KKC, Section III-B), exper-
imented with 150 queries, and answered seven research questions. This work extends the
earlier work in various aspects. First, we improve the earlier heuristics by recalibrating their
weights and thresholds (i.e., RQ7). Second, we introduce a novel heuristic– Keyword Pair
API Co-occurrence (KPAC, Section III-B)–that leverages word co-occurrences for candi-
date API selection more effectively. In fact, this one performs better than the earlier two.
Third, we conduct experiments with a larger dataset containing 175 distinct queries, and
further evaluate them in terms of their code retrieval performance (i.e., missing in the ear-
lier work). Fourth, we extend our earlier analysis and answer 11 research questions (i.e., as
opposed to seven questions answered by the earlier work). Fifth, we investigate the potential
application of our approach in the context of code search using popular web search engines
(e.g., Google) and code search engines (e.g., GitHub).

Thus, this journal article makes the following contributions:

– An exploratory study that suggests the potential of using Stack Overflow for relevant
API suggestion against an NL query intended for code search.

– A keyword-API mapping database that maps 655K question keywords to 551K API
classes from Stack Overflow (Table 1).

Empirical Software Engineering

Table 1 API packages for exploratory study

Package #Class Package #Class

Core packages

java.lang 255 java.net 84

java.util 470 java.security 148

java.io 105 java.awt 423

java.math 09 java.sql 29

java.nio 189 javax.swing 1,195

java.applet 05

Non-core packages

java.beans 62 java.rmi 67

javax.xml 327 javax.annotation 17

java.text 44 javax.print 123

javax.sound 56 javax.management 201

Total API Classes: 3,809

– A novel technique–RACK–that exploits query keyword-API associations stored in the
crowdsourced knowledge of Stack Overflow, and reformulates a natural language query
using a set of relevant API classes from Stack Overflow.

– Comprehensive evaluation of the proposed technique with five performance metrics,
and comparison with the state-of-the-art techniques and contemporary web search
engines (e.g., Google, Stack Overflow native search) and code search engines (e.g.,
GitHub native code search).

Structure of the Article The rest of article is organized as follows: Section 2 discusses
design and findings of our exploratory study, and Section 3 describes our proposed
technique for query reformulation. Section 4 focuses on our conducted evaluation and val-
idation, Section 5 on threats to validity, Section 6 on related work from the literature, and
finally Section 7 concludes the article with future research directions projected by this work.

2 Exploratory Study

Our technique relies on the mapping between natural language keywords from the questions
of Stack Overflow and API classes from corresponding accepted answers for translating a
code search query into relevant API classes. Thus, an investigation is warranted whether
such answers contain any API related information and the questions contain any search
query keywords. We perform an exploratory study using 172,043 Q & A threads from Stack
Overflow, and analyse the usage and coverage of standard Java API classes in them. We also
explore if the question titles are a potential source of suitable keywords for code search. We
particularly answer three research questions as shown in Table 2.

Empirical Software Engineering

Table 2 Research questions answered using exploratory study

Research questions targeting API coverage

RQ1: To what extent do the accepted answers from Stack Overflow refer to standard Java API classes?

RQ2: To what extent are the API classes from each of the core Java packages covered (i.e., mentioned) in
the accepted answers from Stack Overflow?

Research Question on Search Keyword Matching

RQ3: Do the titles from Stack Overflow questions contain potential query keywords (i.e., technical terms)
for code snippet search?

2.1 Data Collection

We collect 172,043 questions and their accepted answers from Stack Overflow using Stack-
Exchange data explorer1 for our investigation. Since we are interested in Java APIs, we
only collect such questions that are annotated with java tag. In addition, we apply several
other constraints–(1) each of the questions should have at least three answers (i.e., average
answer count) with one answer being accepted as the solution, in order to ensure that the
questions are answered substantially and successfully (Mamykina et al. 2011), and (2) the
accepted answers should contain code like elements such as code snippets or code tokens
so that API information can be extracted from them. We identify the code elements with the
help of <code> tags in the HTML source of the answers (details in Section 2.2), and use
Jsoup2, a popular Java library, for HTML parsing and content extraction.

We repeat the above steps, and construct another dataset by collecting 440K Q & A
threads from one of our recent works (Rahman and Roy 2018). This dataset is a superset of
the above collection, and it contains more recent threads from Stack Overflow. We call it
the extended dataset in the remaining sections of the exploratory study.

We collect a total of 3,809 Java API classes for our study from 19 packages of standard
Java edition 7. While 2,912 classes are taken from 11 core Java packages3, the remaining
classes have come from 8 non-core Java packages. The goal is to find out if these classes are
referred to in Stack Overflow posts, and if yes, to what extent they are referred to. We first
use Java Reflections4, a runtime meta data analysis library, to collect the API classes from
JDK 7, and then apply regular expressions on their fully qualified names for extracting the
class name tokens. Table 1 shows class statistics of the 19 API packages selected for our
investigation.

We also collect a set of 18,662 real life search queries from the Google search history
of the first author over the last eight years, which are analysed to answer the third research
question. Although the queries come from a single user, they contain a large vocabulary
of 9,029 distinct natural language search keywords, and the vocabulary is built over a long
period of time. Thus, a study using these queries can produce significant intuitions and help
answer the third research question.

1http://data.stackexchange.com/stackoverflow
2https://jsoup.org/
3https://goo.gl/A6gEqA
4https://code.google.com/p/reflections

http://data.stackexchange.com/stackoverflow
https://jsoup.org/
https://goo.gl/A6gEqA
https://code.google.com/p/reflections

Empirical Software Engineering

2.2 API Class Name Extraction

Several existing studies (Rigby and Robillard 2013; Dagenais and Robillard 2012; Bacchelli
et al. 2010) extract code elements such as API packages, classes and methods from unstruc-
tured natural language texts (e.g., forum posts, mailing lists) using information retrieval
(e.g., TF-IDF) and island parsing techniques. In the case of island parsing, they apply a set
of regular expressions describing Java language specifications (Gosling et al. 2012), and
isolate the land (i.e., code elements) from water (i.e., free-form texts). We borrow their pars-
ing technique (Rigby and Robillard 2013), and apply it to the extraction of API elements
from Stack Overflow posts. Since we are interested in the API classes only, we adopt a
selective approach for identifying them in the post contents. We first isolate the code like
sections from HTML source of each of the answers from Stack Overflow using <code>

tags. Then we split the sections based on white spaces and punctuation marks, and collect
the tokens having the camel-case notation of Java class (e.g., HashSet). According to the
existing studies (Rigby and Robillard 2013; Dagenais and Robillard 2012), such parsing of
code elements sometimes introduces false positives. Thus, we restrict our exploratory anal-
ysis to a closed set of 3,809 API classes from 19 Java packages (details in Table 1) to avoid
false positives (e.g., camel-case tokens but not valid API classes).

2.3 Answering RQ1: Use of APIs in the Accepted Answers of Stack Overflow

Since our API suggestion technique exploits keyword-API associations from Stack Over-
flow, we investigate whether the accepted answers actually use certain API classes of
interest in the first place. According to our investigation, out of 172,043 accepted answers,
136,796 (79.51%) answers refer to one or more Java API class-like tokens. About 61.02%
of the answers actually use API classes from 11 core Java packages whereas 9.94% of them
use the classes from 8 non-core packages as a part of their solution. We analyse the HTML
contents from Stack Overflow answers with tool supports and then detect the occurrences of
3,809 standard API classes (Table 1) in each of the accepted answers using a closed-world
assumption (Rigby and Robillard 2013). We then examine the statistical properties or dis-
tribution of such API occurrence frequencies (i.e., total appearances, unique appearances)
and attempt to answer our first research question.

Figure 2 shows (a) probability mass function (PMF) and (b) cumulative density func-
tion (CDF) for the total occurrences of API classes per SO answer where the API classes
belong to the core Java API packages. Both density curves suggest that the frequency

Fig. 2 Frequency distribution for core API classes – a API frequency PMF, b API frequency CDF

Empirical Software Engineering

Fig. 3 Frequency distribution for core and non-core API classes over the extended dataset – a API frequency
PMF, b API frequency CDF

observations derive from a heavy-tailed distribution, and majority of the densities accu-
mulate over a short frequency range. That is, most of the time only a limited number of
API classes co-occur in each answer from Stack Overflow. The empirical CDF curve also
closely matches with the theoretical CDF5 (i.e., red dots in Fig. 2b) of a Poisson distribu-
tion. Thus, we believe that the observations are probably taken from a Poisson distribution.
We get a 95% confidence interval over [5.27, 5.37] for mean frequency, λ = 5.32, which
suggests that the API classes from the core packages are referred to at least five times
on average in each of the answers from Stack Overflow. We also get 10th quantile at
frequency=2 and 97.5th quantile at frequency=10 which suggest that only 10% of the fre-
quencies are below 3 and only 2.5% of the frequencies are above 10. When our investigation
is repeated for non-core classes, we get a mean frequency, λ = 0.36, with 95% confi-
dence interval over [0.35, 0.37]. When 11 core and 8 non-core packages are combined and
employed against the extended dataset, we get a 95% confidence interval over [23.62, 23.87]
for the mean frequency, λ=23.75 with a similar distribution (i.e., Fig. 3). Figure 4 shows
density curves of the core API class occurrences per answer where only unique API classes
are considered. These observations are also drawn from a heavy-tailed distribution. We get
a 95% confidence interval over [2.35, 2.38] for the mean frequency, λ = 2.37, which sug-
gests that at least two distinct classes are used on average in each answer. 30th quantile at
frequency = 1 and 80th quantile at frequency = 4 suggest that 30% of the Stack Overflow
answers refer to at least one API class whereas 20% of the answers refer to at least four
distinct API classes from the core Java packages under our study. In the case of non-core
classes, we get 90th quantile at frequency = 1, which suggests that their frequencies are neg-
ligible. When the same investigation is repeated with 19 (11 core + 8 non-core) packages
against the extended dataset, we get a 95% confidence interval over [3.44, 3.46] for λ=3.45
with a similar heavy tailed distribution (i.e., Fig. 5).

5http://stats.stackexchange.com/questions/132652

http://stats.stackexchange.com/questions/132652

Empirical Software Engineering

Fig. 4 Frequency distribution of unique API classes from core packages – a Distinct API frequency PMF, b
Distinct API frequency CDF

2.4 Answering RQ2: Coverage of API Classes in the Accepted Answers from Stack
Overflow Q& A Site

Since our technique exploits inherent mapping between API classes in Stack Overflow answers
and keywords from corresponding questions for API suggestion, we need to investigate if
such answers actually use a significant portion of the API classes from the standard pack-
ages as a part of the solution. We thus identify the occurrences of the API classes from
core and non-core packages (Table 1) in Stack Overflow answers, and determine the API
coverage for these packages.

Figure 6 shows the fraction of the API classes that are used in Stack Overflow answers for
each of the 11 core packages under study. We note that at least 60% of the classes are used
in Stack Overflow for nine out of 11 packages. The remaining two packages–java.math
and javax.swing have 55.56% and 37.41% class coverage respectively. Among these
nine packages, three large packages– java.lang, java.util and java.io have a
class coverage over 70%. Thus, on average, 65% of the classes are mentioned at least once
in Stack Overflow. In Fig. 7, when our investigations are repeated using 19 (11 core + 8
non-core) packages and an extended dataset, we get a 95% confidence interval over [56.11,
73.01] for mean coverage, μ=64.56% with a normal distribution. We note that at least 40%
of the classes from seven non-core packages are used in Stack Overflow. The remaining
package, javax.management, has a class coverage of ≈ 20%. Figure 8 shows the frac-
tion of Stack Overflow answers (under study) that use API classes from each of the core

Fig. 5 Frequency distribution of unique API classes from core and non-core packages – a Distinct API
frequency PMF, b Distinct API frequency CDF

Empirical Software Engineering

Fig. 6 Coverage of API classes from core packages by Stack Overflow answers

Fig. 7 Coverage of API classes from a core and b non-core packages by Stack Overflow answers (extended
dataset)

Empirical Software Engineering

Fig. 8 Use of core API packages in the Stack Overflow answers

11 packages. We see that classes from java.lang package are used in over 50% of the
answers, which can be explained since the package contains a number of frequently used
and basic classes such as String, Integer, Method, Exception and so on. Two
packages– java.util and java.awt that focus on utility functions (e.g., unzip, pat-
tern matching) and user interface controls (e.g., radio button, check box) respectively have
a post coverage over 20%. We also note that classes from java.io and javax.swing
packages are used in over 10% of the Stack Overflow answers, whereas the same statistic
for the remaining six packages is less than 10%. When our investigations are repeated using
19 (11 core + 8 non-core) packages with the extended dataset, most of the above findings
on core packages are reproduced, as shown in Fig. 9a. However, as in Fig. 9b, we see that
API classes from all eight non-core packages except javax.xml are used in less than 5%
of the Stack Overflow answers under study. Thus, although a significant amount (e.g., 40%)
of the classes from non-core packages are mentioned in Stack Overflow at least for once
(i.e., Fig. 7b), as a whole, they are less frequently discussed compared to the core classes.
Such finding can also be explained by the highly specific functionalities (e.g., RMI, print)
of the classes from non-core packages under study.

Empirical Software Engineering

Fig. 9 Use of a core and b non-core API packages in the Stack Overflow answers (extended dataset)

2.5 Answering RQ3: Presence of Code Search Keywords in the Title of Questions
from Stack Overflow

Our technique relies on the mapping between natural language terms from Stack Over-
flow questions and API classes from corresponding accepted answers for augmenting a
code search query with relevant API classes. Thus, an investigation is warranted on whether
keywords used for code search are present in the SO question texts or not. We are particu-
larly interested in the title of a Stack Overflow question since it summarizes the technical
requirement precisely using a few important words, and also resembles a search query. We
analyse the titles of 172,043 Stack Overflow questions and 18,662 real life queries used for
Google search (Section 2.1). Since we are interested in code related queries, we only select
such queries that were intended for code search. Rahman et al. (2018) recently used popular
tags from Stack Overflow questions to separate code related queries from non-code queries
that were submitted to a general-purpose search engine, Google. We use a subset of their
selected tags (shown in Table 3) for identifying the code related queries. We discover 3,073
such queries from our query collection (Section 2.1) where the queries contain a total of
2,001 unique search keywords.

Table 3 Keywords intended for code search

java code example

sql server file

string mvc web

add type lucene

android table programmatically

Empirical Software Engineering

Fig. 10 Coverage of keywords from the collected queries in Stack Overflow questions

According to our analysis, 172,043 question titles contain 20,391 unique terms after
performing natural language preprocessing (i.e., stop word removal, splitting and stem-
ming). These terms match 69.22% of the keywords collected from our code search queries.
Figure 10 shows the fraction of the search keywords that match with the terms from Stack
Overflow questions for the past eight years starting from 2008. On average, 62.69% of the
code search keywords from each year match with Stack Overflow vocabulary derived from
its question titles.

Figure 11 shows (a) probability mass function, and (b) cumulative density function of
keyword frequency in the question titles. We see that the density curve shows the central ten-
dency like a normal curve (i.e., bell shaped curve), and the empirical CDF closely matches
with the theoretical CDF (i.e., red curve) of a normal distribution with mean, μ = 3.22 and
standard deviation, σ = 1.60. We also draw 172,043 random samples from a normal distri-
bution with equal mean and standard deviation, and compare with the keyword frequencies.
Our Kolmogorov-Smirnov test reported a p-value of 2.2e-16<0.05 which suggests that both
sample sets belong to the same distribution. Thus, we believe that the keyword frequency
observations come from a normal distribution. We get a mean frequency, μ = 3.22 with
95% confidence interval over [3.21, 3.23], which suggests that each of the question titles

Fig. 11 Collected search query keywords in Stack Overflow– a Keyword frequency PMF b Keyword
frequency CDF

Empirical Software Engineering

Table 4 Code search keywords found in tutorial sites

Website #Pages #Terms Source Matched

Javatpoint 1,291 784 Title 20.54%

10,099 Title+Body 60.12%

Tutorialspoint 2,219 1,292 Title 20.14%

14,930 Title+Body 63.62%

Stack Overflow 172,043 20,391 Title 69.22%

Matched=Overlap between extracted terms and code search keywords

from Stack Overflow contains at least three code search keywords on average. Furthermore,
a recent query classification model that leverages Stack Overflow tags for separating code
queries from non-code queries achieves a promising accuracy of 87% precision and 86%
recall (Rahman et al. 2018). Such findings further suggest the potential of Stack Overflow
vocabulary for improving the code search.

We also collect all the Q & A threads from two other popular tutorial sites–Javatpoint6

and Tutorialspoint7, construct two baseline vocabularies from them, and then contrast with
the vocabulary of Stack Overflow. Table 4 shows the statistics on downloaded pages and
unique terms extracted from them. For example, Tutorialspoint has a total of 2,219 web
pages, and they form a vocabulary of 14,930 unique terms when both title and body of the
pages are considered. It encompasses various programming domains including Java, C/C++,
and C#. On the contrary, when titles from only Java related questions of Stack Overflow
are considered, they form a vocabulary of 20K. We also note that terms from Tutorialspoint
page titles match only ≈20% of the code search keywords. On the contrary, such matching
ratio is 69% for Stack Overflow which is 237% higher. Surprisingly, when analysed from a
granular perspective, Stack Overflow might not be better than these two sites. For example,
titles from Javatpoint and Tutorialspoint provide 15.91% and 9.08% of search keywords as
opposed to <1.00% by Stack Overflow when 1000 random pages are analysed. However,
Stack Overflow offers (1) a nice combination of query terms (in the questions) and API
classes (in the code snippets), and (2) a much larger collection of Q & A threads compared
to Javatpoint and Tutorialspoint across various domains. Thus, it has a higher potential for
assisting the developers in traditional code search.

6https://www.javatpoint.com
7https://www.tutorialspoint.com

https://www.javatpoint.com
https://www.tutorialspoint.com

Empirical Software Engineering

3 RACK: Automatic Reformulation of Code Search Query Using
Crowdsourced Knowledge

According to the exploratory study (Section 2), at least two API classes are used in each of
the accepted answers of Stack Overflow, and about 65% of the API classes from the core
packages are used in these answers. Besides, the titles from Stack Overflow questions are a
major source of query keywords for code search. Such findings suggest that Stack Overflow
might be a potential source not only for code search keywords but also for API classes rele-
vant to them. Since we are interested in exploiting this keyword-API association from Stack
Overflow questions and answers for API suggestion (i.e., for query reformulation), we need
a technique that stores such associations, mines them automatically, and then recommends
the most relevant APIs. Thus, our proposed technique has two major steps – (a) Construction
of token-API mapping database, and (b) Recommendation of relevant API classes for a code
search query which is written in natural language (a.k.a., NL query). Figure 12 shows the
schematic diagram of our proposed technique–RACK– for API recommendation targeting
query reformulation.

3.1 Construction of NL Token-API Mapping Database

Since our technique relies on keyword-API associations from Stack Overflow, we need
to extract and store such associations for quick access. In Stack Overflow, each question

Fig. 12 Proposed technique for API recommendation–a Construction of token-API mapping database, b
Translation of a code search query into relevant API classes

Empirical Software Engineering

describes a technical requirement such as “how to send an email in Java?” The correspond-
ing answer offers a solution containing code example(s) that refer(s) to one or more API
classes (e.g., MimeMessage, Transport). We capture both the requirement and API
classes carefully, and exploit their semantic association for the development of token-API
mapping database. Since the title summarizes a question using a few but important words,
we only use the titles from the questions. Acceptance of an answer by the person who posted
the question indicates that the answer actually meets the requirement in the question. Thus,
we consider only the accepted answers from the answer collection for our analysis. The
construction of the mapping database has several steps as follows:

Token Extraction from Titles We collect title(s) from each of the questions, and apply
standard natural language pre-processing steps such as stop word removal, splitting and
stemming on them (Step 1, Fig. 12a). Stop words are the frequently used words (e.g., the,
and, some) that carry very little meaning for a sentence. We use a stop word list8 hosted
by Google for the stop word removal step. The splitting step splits each word contain-
ing any punctuation mark (e.g., .,?,!,;), and transforms it into a list of words. Finally, the
stemming step extracts the root of each of the words (e.g., “send” from “sending”) from
the list, where Snowball stemmer (Ponzanelli et al. 2014; Vassallo et al. 2014) is used.
Thus, we extract a set of unique and stemmed words that collectively convey the mean-
ing of the question title, and we consider them as the “tokens” from the title of a question
from Stack Overflow. Finally, our database ended up with a total of 19,783 unique NL terms.

API Class Extraction We collect the accepted answer for each of our selected questions,
and parse their HTML source using Jsoup parser9 for code segments (Step 2, 3, Fig. 12a).
We extract all <code> and <pre> tags from the source content as they generally contain
code segments (Rahman et al. 2014). It should be noted that code segments may sometimes
be demarcated by other tags or no tag at all. However, identification of such code segments
is challenging and often prone to false-positives. Thus, we restrict our analysis to contents
inside <code> tags and <pre> for code segment collection from Stack Overflow. We
split each of the segments based on punctuation marks and white spaces, and discard the
programming keywords. Existing studies (Bacchelli et al. 2010; Rigby and Robillard 2013)
apply island parsing for API method or class extraction where they use a set of regular
expressions. Similarly, we use a regular expression for Java class (Gosling et al. 2012),
and extract the API class tokens having a camel case notation. Thus, we collect a set of
unique API classes from each of the accepted answers. The API classes (e.g., String,
Integer, Double) from java.lang package are mostly generic and frequently used
in the code, which is also supported by our RQ2. Hence, we also avoid all the API classes
from this package during our API extraction from Stack Overflow answers.

Token-API Linking Natural language tokens from a question title hint about the technical
requirement described in the question, and API names from the accepted answer represent
the relevant APIs that can meet such requirement. Thus, the programming Q & A site–Stack
Overflow– inherently provides an important semantic association between a list of tokens
and a list of APIs. For instance, our technique generates a list of natural language tokens–
{generat, md5, hash}– and an API token– MessageDigest– from the showcase example
on MD5 hash (Fig. 1). We capture such associations from 126,567 Stack Overflow question
and accepted answer pairs, and store them in a relational database (Step 4, 5, Fig. 12a) for
relevant API recommendation for any code search query.

8https://code.google.com/p/stop-words
9http://jsoup.org

https://code.google.com/p/stop-words
http://jsoup.org

Empirical Software Engineering

3.2 API Relevance Ranking & Reformulation of the NL-Query

In the token-API mapping database, each NL token (or term) associates with different APIs,
and each API class associates with a number of NL tokens. Thus, we need a technique that
carefully analyses such associations, identifies the candidate APIs, and then recommends
the most relevant ones from them for a given query. It should be noted that we do not
apply the traditional association rule mining (Xie and Pei 2006). Our investigations using
the constructed database (Section 3.1) report that frequencies of co-occurrence between NL
terms and API classes in Stack Overflow posts are not sufficient enough to form associa-
tion rules for all queries. The API class ranking and recommendation targeting our query
reformulation for code search involve several steps as follows:

3.2.1 Identification of Keyword Context

In natural language processing, the context of a word refers to the list of other words that
co-occur with that word in the same phrase, same sentence or even the same paragraph
(Harris 1968). Co-occurring words complement the semantics of one another (Mihalcea and
Tarau 2004). Yuan et al. (2014) analyse programming posts and tags from Stack Overflow
Q & A site, and use word context for determining semantic similarity between any two
software-specific words. In this research, we identify the words that co-occur with each
query keyword in the thousands of question titles from Stack Overflow. For each keyword,
we refer to these co-occurring words as its context. We then opportunistically use these
contextual words for estimating semantic relevance between any two keywords.

3.2.2 Candidate API Selection

In order to collect candidate APIs for a NL query, we employ three different heuristics.
These heuristics consider not only the association between query keywords and APIs but
also the coherence among the APIs themselves. Thus, the key idea is to identify such pro-
gramming APIs as candidates that are not only likely for the query keywords but also
functionally consistent to one another.

Keyword-API Co-occurrence (KAC) Stack Overflow discusses thousands of programming
problems, and these discussions contain both natural language texts (i.e., keywords) and
reference to a number of APIs. According to our observation, several keywords might co-
occur with a particular API and a particular keyword might co-occur with several APIs
across different programming solutions. This co-occurrence generally takes place either by
chance or due to semantic relevance. Thus, if carefully analysed, such co-occurrences could
be a potential source for semantic association between keywords and APIs. We capture
these co-occurrences (i.e., associations) between keywords from question titles and APIs
from accepted answers, discard the random associations using a heuristic threshold (δ), and
then collect the top API classes (LKAC[Ki]) for each keyword (Ki) that co-occurred most
frequently with the keyword at Stack Overflow.

LKAC[Ki] = {Aj | AjεA ∧ rankf req(Ki → Aj) ≤ δ}
Here, Ki → Aj denotes the association between a keyword Ki and an API class Aj ,

rankf req returns rank of the association from the ranked list based on association frequency,
and δ is a heuristic rank threshold. In our research, we consider top ten (i.e., δ = 10) APIs

Empirical Software Engineering

as candidates for each keyword, which is carefully chosen based on iterative experiments
on our dataset (see RQ7 for details).

Keyword Pair–API Co-occurrence (KPAC) While frequent co-occurrences of APIs with a
query keyword are a good indication of their relevance to the query, they might also fall
short due to the fact that the query might contain more than one keyword. That is, API
classes relevant to (i.e., frequently co-occurred with) one keyword might not be relevant
to other keywords from the query. Thus, API classes that are simultaneously relevant to
multiple keywords should be selected as candidates. We consider nC2 keyword pairs from
n keywords of a query using combination theory, and identify such APIs that frequently co-
occur with both keywords from each pair in the same context (e.g., same Q & A thread).
Suppose, Ki and Kj are two keywords, and they form one of the nC2 keyword pairs from
the query. Now, the candidate API classes (LKPAC[Ki,Kj]) are relevant if they occur in
an accepted answer of Stack Overflow whereas both keywords appear in the corresponding
question title. We select such relevant candidates as follows:

LKPAC[Ki,Kj] = {Am | AmεA ∧ rankf req((Ki, Kj) → Am) ≤ δ}
Here (Ki,Kj) → Am denotes the association between keyword pair (Ki,Kj) from a ques-
tion title and API class Am from the corresponding accepted answer of Stack Overflow.
We capture top ten (i.e., δ = 10) such co-occurrences for KPAC heuristic, and the detailed
justification for this choice can be found in RQ7. We determine the association based on
their co-occurrences in the same set of documents. In this case, each question-answer thread
from Stack Overflow is considered as a document. While co-occurrences of keyword triples
with APIs could also be considered for API candidacy, existing IR-based studies report that
phrases of two words are more effective as a semantic unit (e.g., “chat room”) rather than
the triples (e.g., “find chat room”) (Mihalcea and Tarau 2004; Rahman and Roy 2017).

Keyword–Keyword Coherence (KKC) The two heuristics above determine relevant API
candidacy based on the co-occurrence between query keywords and APIs in the same doc-
ument. That is, multiple keywords from the query are also warranted to co-occur in the
same document. However, such co-occurrences might not always happen, and yet the key-
words could be semantically related to one another (i.e., co-occurred in the query). More
importantly, the candidate APIs should be relevant to multiple keywords that do not co-
occur. Yuan et al. (2014) determine semantic similarity between any two software specific
words by using their contexts from Stack Overflow questions and answers. We adapt their
technique for identifying coherent keyword pairs which might not co-occur. The goal is to
collect candidate APIs relevant to these pairs based on their coherence. We (1) develop a
context (Ci) for each of the n query keywords by collecting its co-occurring words from
thousands of question titles from Stack Overflow, (2) determine semantic similarity for each
of the nC2 keyword pairs based on their context derived from Stack Overflow, and (3) use
these measures to identify the coherent pairs and then to collect the functionally coherent
APIs for them. At the end of this step, we have a set of candidate APIs for each of the
coherent keyword pairs.

Suppose, two query keywords Ki and Kj have context word list Ci and Cj respec-
tively. Now, the candidate APIs (LKKC) that are relevant to both keywords and functionally
consistent with one another can be selected as follows:

LKKC[Ki,Kj] = {L[Ki] ∩ L[Kj] | cos(Ci, Cj) > γ }
Here, cos(Ci, Cj) denotes the cosine similarity (Rahman et al. 2014) between two context
lists– Ci and Cj , and γ is the similarity threshold. We consider γ = 0 in this work based

Empirical Software Engineering

on iterative experiments on our dataset (see RQ7 for the detailed justification). L[Ki] and
L[Kj] are top frequent APIs for the two keywords– Ki and Kj where Ki and Kj might
not co-occur in the same question title. Thus, LKKC[Ki, Kj] contains such APIs that are
relevant to both keywords (i.e., co-occurred with them in Stack Overflow answers) and func-
tionally consistent with one another. Since the candidate APIs co-occur with the keywords
from each coherent pair (i.e., semantically similar, γ > 0) in different contexts, they are
also likely to be coherent for the programming task at hand. Such coherence often could be
explained in terms of the dependencies among the API classes.

Empirical Software Engineering

3.2.3 API Relevance Ranking Algorithm

Figure 12b shows the schematic diagram, and Algorithm 1 shows the pseudo code of our
API relevance ranking algorithm–RACK. Once a search query is submitted, we (1) per-
form Part-of-Speech (POS) tagging on the query for extracting the meaningful words such
as nouns and verbs (Wong et al. 2013; Capobianco et al. 2013), and (2) apply standard nat-
ural language preprocessing (i.e., stop word removal, splitting, and stemming) on them to
extract the stemmed words (Lines 3–4, Algorithm 1). For example, the query–“html parser
in Java” turns into three keywords–‘html’, ‘parser’ and ‘java’ at the end of the above step.
We then apply our three heuristics–KAC, KPAC and KKC– on the stemmed keywords, and
collect candidate APIs from the token-API linking database (Step 2, Fig. 12b, Lines 5–8,
Algorithm 1). The candidate APIs are selected based on not only their co-occurrence with
the query keywords but also the coherence (i.e., functional consistency) among themselves.
We then use the following metrics (i.e., derived from the above heuristics) to estimate the
relevance of the candidate API classes for the query.

API co-occurrence likelihood estimates the probability of co-occurrence of a candidate
API (Aj) with one (Ki) or more (Ki, Kj) keywords from the search query. It considers
the rank of the API in the ranked list based on keyword-API co-occurrence frequency (i.e.,
KAC and KPAC) and the size of the list, and then provides a normalized score (on the
scale from 0 to 1) as follows:

SKAC(Aj ,Ki) = 1 − rank(Aj , sortByFreq(L[Ki]))
|LKAC[Ki]|

SKPAC(Aj , Ki,Kj) = 1 − rank(Aj , sortByFreq(LKPAC[Ki,Kj]))
|LKPAC[Ki,Kj]|

Here, SKAC and SKPAC denote the API co-occurrence likelihood estimates, and they range
from 0 (i.e., not likely at all for the keywords) to 1 (i.e., very much likely for the keywords).
The more likely an API is for the keywords, the more relevant it is for the query. This
approach might also encourage the common API classes (e.g., List, String) that are
often used with most programming tasks. Such APIs might not be helpful for relevant code
snippet search. We thus apply appropriate filters and thresholds to avoid such noise.

API coherence estimates the coherence of an API (Aj) with other candidate APIs for a
query. Since the query targets a particular programming task (e.g., “parsing the HTML
source”), the suggested APIs should be logically consistent with one another. One way to
heuristically determine such coherence is to exploit the semantic relevance among the cor-
responding keywords that co-occurred with that API (Aj). The underlying idea is that if two
keywords are semantically similar, their co-occurred API sets could also be logically con-
sistent with each other. We thus determine semantic similarity between any two keywords
(Ki,Kj) from the query using their context lists (Ci, Cj) (Yuan et al. 2014), and then prop-
agate that measure to each of their candidate API classes (Aj) that co-occurred with both of
the keywords (i.e., KKC) as follows:

SKKC(Aj ,Ki, Kj) = cos(Ci, Cj) | (Ki → Aj) ∧ (Kj → Aj)

Here, SKKC denotes the API Coherence estimate, and it ranges from 0 (i.e., not relevant at
all with multiple keywords) to 1 (i.e., highly relevant). It should be noted that each candidate,
Aj , comes from L[Ki] or L[Kj], i.e., the API is already relevant to each of Ki and Kj in

Empirical Software Engineering

their corresponding contexts. SKKC investigates how similar those contexts are, and thus
heuristically estimates the coherence between the APIs from these contexts.

We first estimate API Co-occurrence Likelihood of each of the candidate APIs that sug-
gests the likeliness of the API for one or more keywords from the given query (Lines 9–22,
Algorithm 1). Then we determine API Coherence for each candidate API that suggests
coherence of the API with other candidate APIs for the query (Lines 23–30). Once all met-
rics of each candidate are calculated (Step 3, Fig. 12b), only the maximum score is taken
into consideration where appropriate weights–α, β and (1− α − β)–are applied (Lines 31–
34, Algorithm 1). These weights control how two of our above dimensions– co-occurrence
and coherence–affect the final relevance ranking of the candidates. We consider a heuristic
value of 0.325 for α and a value of 0.575 for β, and the detailed weight selection method
is discussed in Section 4.9. The candidates are then ranked based on their final scores,
and Top-K API classes from the ranked list are returned as API recommendation (Lines
35–36, Algorithm 1, Step 4, 5, Fig. 12b). Such API classes are then used for NL-query
reformulation.

Working Example Table 5 shows a working example of how our proposed query reformu-
lation technique –RACK– works. Here we reformulate our natural language query–“HTML
parser in Java”–into relevant API classes. We first applyKAC heuristic, and collect the Top-
5 (i.e., δ = 5) candidate APIs for each of the three keywords–‘html’,‘parser’ and ‘java’–
based on co-occurrence frequencies of the candidates with the keywords. We also repeat
the same step for each of the three (i.e., 3C2) keyword pairs–(html, parser), (html, java)
and (parser, java) by applying our KPAC heuristic. Then we estimate co-occurrence likeli-
hood (with the keywords and keyword pairs) of each of the candidate APIs. For example,
Document has a maximum likelihood of 1.00 among the candidates not only for the sin-
gle search keyword but also for the keyword pairs. We then determine coherence of each
candidate API (with other candidates) based on semantic relevance among the above three
keyword pairs. For example, ‘html’ and ‘parser’ have a semantic relevance of 0.42 between
them (on the scale from 0 to 1) based on their contexts from Stack Overflow questions and
answers, and they have several common candidates such as Document, Element and
File. Since the two keywords are semantically relevant, their relevance score (i.e., 0.42,
SKKC) is propagated to their shared candidate APIs as a proxy to the coherence among
the candidates. We then gather all scores for each candidate, choose the best score, and
finally get a ranked list. From the recommended list, we see that Document, Element and
Jsoup are highly relevant APIs from Jsoup library for the given NL-query. Our technique
returns such a list of relevant API classes as the reformulation to an original NL query.

4 Experiment

One of the most effective ways to evaluate a technique that suggests relevant API classes
or methods for a query is to check their conformance with the gold set APIs of the query.
Since the suggested APIs could be used to reformulate the initial query (i.e., using natural
language), the quality of the automatically reformulated query could be another perfor-
mance indicator for the technique. We evaluate our technique using 175 code search queries,
their goldset APIs and their relevant code segments (i.e., implementing the tasks in the
query) collected from three programming tutorial sites. We determine the performance of
our technique using six appropriate metrics from the literature. Then we compare with two
variants of the state-of-the-art technique on API recommendation (Thung et al. 2013b) and a

Empirical Software Engineering

Ta
bl
e
5

A
n
ex
am

pl
e
of

qu
er
y
re
fo
rm

ul
at
io
n
us
in
g
R
A
C
K

ht
m
l

S
K

A
C

pa
rs
er

S
K

A
C

ja
va

S
K

A
C

K
A
C

D
o
c
u
m
e
n
t

1.
00

D
o
c
u
m
e
n
t

1.
00

O
b
j
e
c
t

1.
00

J
s
o
u
p

0.
80

E
l
e
m
e
n
t

0.
80

A
r
r
a
y
L
i
s
t

0.
80

E
l
e
m
e
n
t

0.
60

F
i
l
e

0.
60

F
i
l
e

0.
60

E
l
e
m
e
n
t
s

0.
40

I
O
E
x
c
e
p
t
i
o
n

0.
40

C
l
a
s
s

0.
40

I
O
E
x
c
e
p
t
i
o
n

0.
20

N
o
d
e

0.
20

I
O
E
x
c
e
p
t
i
o
n

0.
20

(h
tm

l,
pa
rs
er
)

S
K

P
A

C
(h
tm

l,
ja
va
)

S
K

P
A

C
(p
ar
se
r,
ja
va
)

S
K

P
A

C

K
PA

C
D
o
c
u
m
e
n
t

1.
00

D
o
c
u
m
e
n
t

1.
00

D
o
c
u
m
e
n
t

1.
00

J
s
o
u
p

0.
80

J
s
o
u
p

0.
80

E
l
e
m
e
n
t

0.
80

E
l
e
m
e
n
t

0.
60

E
l
e
m
e
n
t

0.
60

F
i
l
e

0.
60

E
l
e
m
e
n
t
s

0.
40

I
O
E
x
c
e
p
t
i
o
n

0.
40

D
o
c
u
m
e
n
t
B
u
i
l
d
e
r

0.
40

P
a
r
s
e
r

0.
20

E
l
e
m
e
n
t
s

0.
20

D
o
c
u
m
e
n
t
B
u
i
l
d
e
r
F
a
c
t
o
r
y

0.
20

(h
tm

l,
pa
rs
er
)

S
K

K
C

(h
tm

l,
ja
va
)

S
K

K
C

(p
ar
se
r,
ja
va
)

S
K

K
C

K
K
C

D
o
c
u
m
e
n
t

0.
42

I
O
E
x
c
e
p
t
i
o
n

0.
28

F
i
l
e

0.
20

E
l
e
m
e
n
t

0.
42

F
i
l
e

0.
28

I
O
E
x
c
e
p
t
i
o
n

0.
20

I
O
E
x
c
e
p
t
i
o
n

0.
42

F
i
l
e

0.
42

A
r
r
a
y
L
i
s
t

0.
42

In
iti
al
qu
er
y

R
ef
or
m
ul
at
ed

qu
er
y

Su
gg
es
te
d
A
PI

Sc
or
e

R
A
C
K

D
o
c
u
m
e
n
t

0.
79

Q
′ =

{D
o
c
u
m
e
n
t
,

E
l
e
m
e
n
t
,

E
l
e
m
e
n
t

0.
69

Q
=
“
H
T
M
L
pa
rs
er

in
Ja
va
”

F
i
l
e
,

I
O
E
x
c
e
p
t
i
o
n
,

F
i
l
e

0.
69

J
s
o
u
p
}+

Q
I
O
E
x
c
e
p
t
i
o
n

0.
52

J
s
o
u
p

0.
50

Empirical Software Engineering

Table 6 Research questions answered using experiment

Research questions on API suggestion

RQ4: How does the proposed technique –RACK– perform in recommending relevant APIs for a code search
query?

RQ5: How effective are the proposed heuristics–KAC, KPAC and KKC–in capturing the relevant APIs for
a query?

RQ6: Does an appropriate subset of the query keywords perform better than the whole query in retrieving
the relevant APIs?

RQ7: How do the heuristic weights (i.e., α, β) and threshold settings (i.e., γ, δ) influence the performance
of our technique?

RQ8: Can RACK outperform the state-of-the-art techniques in recommending relevant APIs for a given set
of natural language queries?

Research questions on query reformulation

RQ9: Can RACK significantly improve the natural language queries in terms of relevant code retrieval
performance?

RQ10: Can RACK outperform the state-of-the-art technique in improving the natural language queries for
code search?

RQ11: How does RACK perform compared to the popular web search engines (e.g., Google) and code
search engines (e.g., GitHub code search)?

popular code search engine–Lucene (Haiduc et al. 2013)–for validating our performance.
We answer eight research questions with our experiments as shown in the Table 6.

4.1 Experimental Dataset

Data Collection We collect 175 code search queries for our experiment from three Java
tutorial sites– KodeJava10, JavaDB11 and Java2s12. These sites discuss hundreds of pro-
gramming tasks that involve the usage of different API classes from the standard Java API
libraries. Each of these task descriptions generally has three parts–(1) a title (i.e., question)
for the task, (2) one or more code snippets (i.e., answer), and (3) an associated prose explain-
ing the code. The title summarizes a programming task (e.g., “How do I decompress a GZip
file in Java?”) using natural language texts. It generally uses a few pertinent keywords (e.g.,
“decompress”, “GZip”), and also often resembles a query for code search (Section 2.5).
We thus consider such titles from the tutorial sites as the code search queries, and use them
for our experiment in this research.

Gold Set Development The prose explaining the code often refers to one or more APIs
(e.g., GZipOutputStream, FileOutputStream) from the code snippet(s) that are
found to be essential for the task. In other words, such APIs can be considered as the most
relevant ones (i.e., vital) for the target programming task. We collect such APIs from the
prose against each of the task titles (i.e., code search queries) from our dataset, and develop
a gold set–API-goldset–for the experiment. Since relevance of the APIs is determined based
on working code examples and their associated prose from the publicly available and pop-
ular tutorial sites, the subjectivity associated with the relevance of the collected APIs is

10http://kodejava.org
11http://www.javadb.com
12http://java2s.com

http://kodejava.org
http://www.javadb.com
http://java2s.com

Empirical Software Engineering

minimized (Chan et al. 2012). We also collect the code segments verbatim that implement
each of the selected tasks (i.e., our queries) from these tutorial sites, and develop another
gold set–Code-goldset–for our experiments. Our goals are to (1) compare our queries
containing the suggested API classes with the baseline queries containing only NL key-
words and (2) compare our queries with the reformulated queries by the state-of-the-art
techniques on API recommendation (Thung et al. 2013b; Nie et al. 2016; Zhang et al. 2017).

Corpus Preparation We evaluate not only the API recommendation performance of RACK
but also the retrieval performance of its reformulated queries. We collect relevant code snip-
pets (i.e., ground truth) for each of our 175 search queries from the above tutorial sites, and
develop a corpus. It should be noted that each query-code snippet pair comes from the same
Q & A thread from the tutorial sites. However, this approach leaves us with a corpus of
175 documents which do not represent a real world corpus. We thus extend our code corpus
by adding more code snippets from one of our earlier works (Rahman and Roy 2014), and
this provided a corpus containing 4,170 (175+3,995) code snippets. It should be noted that
the additional 3,995 code snippets were carefully collected from hundreds of open source
projects hosted at GitHub (see Rahman and Roy (2014) for details). This corpus is referred
to as 4K-Corpus throughout the later sections in the paper.

We also develop two other corpora containing 256,754 (175+256,399) and 769,244
(175+769,069) documents respectively. They are referred to as 256K-Corpus and 769K-
Corpus in the rest of the sections. These corpus documents are Java classes extracted from
an internet-scale and well-established dataset– IJaDataset (Lopes et al. 2010; Keivanloo
et al. 2014; Svajlenko et al. 2014). The dataset was constructed using 24,666 real world Java
projects across various domains, and they were collected from SourceForge13 and Google
Code14 repositories. We analyse 1,500,000 Java source files from the dataset, and discard
the ones with a size greater than 3KB. 95% of our ground truth code segments have a size
less than 3KB. The goal was to avoid the large and potentially noisy code snippets in the
corpus. Given the large size (i.e., 769K documents) and cross-domain nature of the collected
projects, our corpora are thus likely to represent a real world code search scenario.

We consider each of these code snippets from all three corpora as an individual doc-
ument, apply standard natural language preprocessing (i.e., token splitting, stop word
removal, programming keyword removal) to them, and then index the corpus documents
using Apache Lucene15, a search engine widely used by the relevant literature (Haiduc et al.
2013; Kevic and Fritz 2014a; Moreno et al. 2014). The indexed corpus is then used to
determine the retrieval performance of the initial and reformulated queries for code search.

Replication All the experimental data, associated tools and implementations are hosted
online16 for replication or third party reuse.

4.2 PerformanceMetrics

We choose five performance metrics for the evaluation and validation of our technique that
are widely adopted by relevant literature (McMillan et al. 2011; Chan et al. 2012; Thung

13https://sourceforge.net/
14https://code.google.com/
15http://lucene.apache.org/
16http://homepage.usask.ca/∼masud.rahman/rack/

https://sourceforge.net/
https://code.google.com/
http://lucene.apache.org/
http://homepage.usask.ca/~masud.rahman/rack/

Empirical Software Engineering

et al. 2013b). Two of them are related to recommendation systems whereas the other four
metrics are widely popular in the information retrieval domain.

Top-K Accuracy/Hit@K It refers to the percentage of the search queries for each of which
at least one item (e.g., API class, code segment) is correctly returned within the Top-K
results by a recommendation technique. It is also called Hit@K (Wang and Lo 2014). Top-K
Accuracy of a technique can be defined as follows:

T op–KAccuracy(Q) =
∑

q∈Q isCorrect (q,K)

|Q| %

Here, isCorrect (q,K) returns a value 1 if there exists at least one correct API class (i.e.,
from the API-goldset) or one correct code segment (i.e., implements the task in query) in
the Top-K returned results, and returns 0 otherwise. Q denotes the set of all search queries
used in the experiment. Although Top-K Accuracy and Hit@K are used interchangeably
in the literature (Thongtanunam et al. 2015; Wang and Lo 2014), we use Hit@K to denote
recommendation accuracy in the remaining sections for the sake of consistency.

Mean Reciprocal Rank@K (MRR@K) Reciprocal rank@K refers to the multiplicative
inverse of the rank (i.e., 1/rank(q, K), q ∈ Q) of the first relevant API class or code seg-
ment in the Top-K results returned by a technique. Mean Reciprocal Rank@K (MRR@K)
averages such measures for all search queries (∀q ∈ Q) in the dataset. It can be defined as
follows:

MRR@K(Q) = 1

|Q|
∑

q∈Q

1

rank(q, K)

Here, rank(q,K) returns the rank of the first correct API or the correct code segment from
a ranked list of size K. If no correct API class or code segment is found within the Top-
K positions, then rank(q,K) returns ∞. On the contrary, it returns 1 for the correct result
at the topmost position of a ranked list. Thus, MRR can take a maximum value of 1 and a
minimum value of 0. The bigger the MRR value is, the better the technique is.

Mean Average Precision@K (MAP@K) Precision@K calculates the precision at the occur-
rence of every single relevant item (e.g., API class, code segment) in the ranked list. Average
Precision@K (AP@K) averages the precision@K for all relevant items within Top-K results
for a code search query. Mean Average Precision@K is the mean of Average Precision@K
for all queries (Q) from the dataset. MAP@K of a technique can be defined as follows:

AP@K =
∑K

k=1 Pk × relk

|RR|

MAP@K =
∑

qεQ AP@K(q)

|Q|
Here, relk denotes the relevance function of kth result in the ranked list that returns either 1
(i.e., relevant) or 0 (i.e., non-relevant), Pk denotes the precision at kth result, and K refers
to number of top results considered. RR is the set of relevant results for a query, and Q is
the set of all queries.

Mean Recall@K (MR@K) Recall@K refers to the percentage of gold set items (e.g., API,
code segment) that are correctly recommended for a code search query in the Top-K results

Empirical Software Engineering

by a technique. Mean Recall@K (MR@K) averages such measures for all queries (Q) in
the dataset. It can be defined as follows:

MR@K(Q) = 1

|Q|
∑

q∈Q

|result (q,K) ∩ gold(q)|
|gold(q)|

Here, result (q,K) refers to Top-K recommended APIs by a technique, and gold(q) refers
to goldset APIs for each query q ∈ Q. The bigger the MR@K value is, the better the
recommendation technique is.

Query Effectiveness (QE) It refers to the rank of first relevant document in the results list
retrieved by a query. The metric approximates a developer’s effort in locating the first item
of interest. Thus, the lower the effectiveness measure is, the more effective the query is
(Rahman and Roy 2017; Moreno et al. 2015). We use this measure to determine whether a
given query is improved or not after its reformulation.

NormalizedDiscountedCumulativeGain (NDCG) It determines the quality of ranking pro-
vided by a technique. With a graded relevance scale for results, the metric accumulates
overall gain or usefulness from the top to the bottom of the list (Järvelin and Kekäläinen
2002; Wang et al. 2013). It assumes that (1) highly relevant results are more useful when
they appear earlier in the ranked list, and (2) highly relevant results are more useful than
marginally relevant results. Thus, Discounted Cumulative Gain (DCG) of a ranked list
returned by a query q can be calculated as follows:

DCG(q) =
K∑

k=1

grelk

log2(k + 1)
where grelk = 1 − goldRank(k, gold(q))

|gold(q)|

Here, grelk refers to the graded relevance of the result at position k. goldRank(.) returns
the rank of the kth result within the goldset items gold(q). If kth result is not found in the
goldset, grelk simply returns 0 as a special case. Thus, grelk provides a graded relevance
scale between 0 and 1 for each relevant result. Once DCG(q) is calculated, the normalized
DCG can be calculated as follows:

NDCG(q) = DCG(q)

IDCG(q)
, NDGC(Q) = 1

|Q|
∑

q∈Q

NCDG(q)

Here IDCG(q) is the Ideal Discounted Cumulative Gain which is derived from the ranking
of goldset items. Thus,NDCG(q) is the metric for one single query q, whereasNDCG(Q)

averages the metric over all queries (∀q ∈ Q). We use NDCG in order to determine the
quality of code search ranking from the traditional web/code search engines (Section 4.13).

4.3 Evaluation Scenarios

Our work in this article has two different aspects– (a) relevant API suggestion and (b)
automatic query reformulation. We thus employ two different setups for evaluating our
approach. In the first case, we investigate API suggestion performance of RACK, calibrate
our adopted parameters, and compare with the state-of-the-art approaches on API sugges-
tion (Thung et al. 2013b; Zhang et al. 2017) (RQ4–RQ8). In the second case, we reformulate
the initial NL queries from the dataset using our suggested API classes. Then we compare

Empirical Software Engineering

our reformulated queries not only with the baseline queries but also with the queries gen-
erated by the state-of-the-art approaches on query reformulation (Nie et al. 2016; Zhang
et al. 2017) (RQ9–RQ10). We also investigate the potential of our queries in the context of
contemporary web and code search practices (RQ11).

4.4 Statistical Significance Tests

In our comparison studies, we perform two statistical tests before claiming significance of
one set of items over the other. In particular, we employ Mann-Whitney Wilcoxon (MWW)
and Wilcoxon Signed Rank (WSR) for significance tests. We refer to them as MWW and
WSR respectively in the remaining sections. MWW is a non-parametric test that (1) does not
assume normality of the data and (2) is appropriate for small dataset (Haiduc et al. 2013).
We use this test for comparing any two arbitrary lists of items. WSR test is another non-
parametric test that performs pair-wise comparison between two lists. In our experiment,
WSR was used for significance test between performance measures (e.g., Hit@K) of RACK
in API/code suggestion and that of an existing approach for the same K positions (i.e.,
1≤K≤10) (RQ8, RQ9, RQ10). We report p-value of each statistical test, and use 0.05 as
the significance threshold. In addition to these significance tests, we also perform effect
size test using Cliff’s delta to demonstrate the level of significance. For this work, we use
three significance levels – short (0.147≤ 	 ≤0.33), medium (0.33≤ 	 ≤0.474) and large
(≥0.474) (Romano et al. 2006). We use two R packages – stats, effsize – for
conducting these statistical tests.

4.5 Matching of Suggested APIs with Goldset APIs

In order to determine performance of a technique, we apply strictmatching between gold set
APIs and the recommended APIs. That is, we consider two API classes matched if (1) they
are categorically the same, and (2) they are superclass or subclass of each other. For exam-
ple, if OutputStream is a gold set API and FileOutputStream is a recommended
API, we consider them and their inverse as matched. If a base class is relevant for a pro-
gramming task, the derived class is also likely to be relevant and thus, the recommendation
is considered to be accurate. In the case of relevant code segment retrieval, we also apply
exact matching between gold set segment and returned segment by a query. Since the tuto-
rial sites clearly indicate which of the code segments implements which of our selected tasks
(i.e., queries), such matching is warranted for this case. It should be noted that items (e.g.,
API class, code segment) outside the goldset could be also relevant to our queries. However,
we stick to our gold sets for the sake of simplicity and clarity of our experiments. Our gold
sets are also publicly available17 for third-party replication or reuse.

4.6 Answering RQ4: How Does the Proposed Technique Perform in Suggesting
Relevant APIs for a Code Search Query?

Each of our selected queries summarizes a programming task that requires the use of one
or more API classes from various Java libraries. Our technique recommends Top-K (e.g.,
K = 10) relevant API classes for each query. We compare the recommended items with the

17http://homepage.usask.ca/∼masud.rahman/rack/

http://homepage.usask.ca/~masud.rahman/rack/

Empirical Software Engineering

Table 7 Performance of RACK

Metric Non-weighted version Weighted version

Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10

Hit@K 30.29% 55.43% 68.57% 83.43% 38.29% 61.14% 72.00% 83.43%

MRR@K 0.30 0.41 0.44 0.46 0.38 0.48 0.48 0.52

MAP@K 30.29% 40.19% 42.00% 39.66% 38.29% 48.14% 48.39% 45.74%

MR@K 9.24% 22.67% 33.53% 52.78% 12.12% 26.41% 37.94% 54.07%

API-goldset and evaluate them using above four metrics. In this section, we answer RQ4
using Table 7 and Fig. 13.

Table 7 shows the performance details of our technique for Top-1, Top-3, Top-5 and
Top-10 API recommendations. We see that our technique recommends at least one API
correctly for 83%+ of the queries with both its (a) non-weighted and (b) weighted versions.
The weighted version applies a fine tuned weight to each of our three heuristics–KAC,
KPAC and KKC–whereas the non-weighted version treats each of the heuristics equally.
Such accuracy is highly promising according to the relevant literature (Chan et al. 2012;
McMillan et al. 2011). Mean average precision and mean recall of RACK are 40%–46%
and 53%–54% respectively for Top-10 results which are also promising. It also should be
noted that RACK provides 55%–61% accuracy and 40%–48% precision for only Top-3
results which are good. That means, one out of the two suggested API classes is found to
be relevant for the task, which could be really helpful for effective code search. Our mean
reciprocal ranks are 0.46 and 0.52 for non-weighted and weighted version respectively.
That is, the first correct suggestion is generally found between first to second position of
our ranked list, which demonstrates the potential of our technique. Figure 13 shows how
different performance metrics – accuracy, precision and recall– change over different values
of Top-K . We see that our technique reaches a high precision (i.e., 48.14%) quite early
(i.e., K = 3) and the highest (i.e., 48.39%) at K = 5, and then stays comparable for the
rest of the K values. However, the improvement of recall measure is comparatively slow.
It is ≈ 10% for K = 1, and then increases somewhat linearly up to 54% for the last value
of K = 10. On the contrary, the accuracy of RACK improves in a log-linear fashion, and
becomes somewhat stationary for K = 10 with 83%. While our accuracy and recall could
further improve for increased K-values, the precision is likely to drop. Thus, we conduct
our experiments using only Top-10 suggestions from a technique. Developers generally
do not check items beyond the Top-10 items from the ranked list, and relevant literature
(Thongtanunam et al. 2015; Rahman and Roy 2017) also widely apply such cut-off value.
Thus, our choice of K = 1 to 10 is also justified.

We also analyse the distribution of API classes from 19 (11 core + 8 non-core) Java
packages (i.e., Table 1) in our ground truth, and investigate how they correlate with corre-
sponding distributions from Stack Overflow. We found that on average, 10% of the standard
Java API classes from each package overlap with our ground truth classes. On the contrary,
65% of the API classes from each package are discussed in Stack Overflow Q & A threads
according to RQ2. Thus, Stack Overflow discusses more API classes than the ground truth
warrants for. In short, Stack Overflow is highly likely to deliver the relevant classes from
standard API packages, and our approach harnesses that power. We also found that 51% of
the ground truth classes come from the core packages whereas 10% of them come from the
non-core packages. Since Stack Overflow has a good coverage (e.g., ≈ 65%) for both core

Empirical Software Engineering

Fig. 13 Hit@K, Mean Average Precision@K, and Mean Recall@K of RACK using a non-weighted version
(i.e., dashed line) and b weighted version (i.e., solid line)

and non-core packages (Fig. 7), RACK is also likely to perform well for such queries that
require the API classes from non-core packages only.

We also determine correlation between four performance measures (e.g., Hit@10, recip-
rocal rank, average precision, recall) of our API suggestions (against NL queries) and the
coverage of their corresponding ground truth in the constructed API database (Section 3.1).
We employed two correlation methods – Pearson and Spearman, and found either very weak
or negligible correlations (i.e., 0.04≤ ρ ≤0.12) between those two entities. That is, the API
suggestion performance of RACK is not biased by the coverage of the ground truth API
classes in our API database. Such finding strengthens the external validity of our results.

4.7 Answering RQ5: How Effective are the Proposed Heuristics–KAC, KPAC and KKC–
in Capturing the Relevant API Classes for a Query?

We investigate the effectiveness of our adopted heuristics– KAC, KPAC and KKC, and jus-
tify their combination in the API ranking algorithm (i.e., Algorithm 1). Table 8 and Fig. 14
demonstrate how each heuristic performs in capturing the relevant APIs for a given set of
code search query as follows:

From Table 8, we see that our technique suggests correct API classes for 78.00%
and 79% of the queries when KAC and KPAC heuristics are employed respectively.
Both heuristics leverage co-occurrences between query keywords (in the question titles)
and API classes (in the accepted answers) from Stack Overflow for such recommen-
dation. On the contrary, KKC considers coherence among the candidate API classes,
and is found less effective than the former two heuristics. In fact, KPAC performs the
best among all three heuristics with up to 46% precision and 52% recall. However, the
weighted combination of our heuristics provides the maximum performance in terms of
four metrics. It provides 83% Hit@10 with a mean reciprocal rank@10 of 0.52, a mean
average precision@10 of 46% and a mean recall@10 of 54%. That is, our combina-
tion harnesses the strength from all the heuristics, and also overcomes their weaknesses
simultaneously using appropriate weights. All these statistics are also highly promising
according to the relevant literature (Thung et al. 2013b; McMillan et al. 2011). Thus,

Empirical Software Engineering

Table 8 Role of Proposed Heuristics– KAC, KPAC and KKC

Heuristics Metric Top-1 Top-3 Top-5 Top-10

{Keyword-API Hit@K 19.43% 42.29% 58.86% 76.00%

Co-occurrence (KAC)} MRR@K 0.19 0.29 0.33 0.36

MAP@K 19.43% 29.05% 31.94% 32.57%

MR@K 5.97% 15.35% 25.71% 46.42%

{Keyword Pair-API Hit@K 36.57% 58.86% 69.14% 79.43%

Co-occurrence (KPAC)} MRR@K 0.37 0.46 0.49 0.50

MAP@K 36.57% 46.19% 46.13% 43.65%

MR@K 11.08%% 24.88% 36.20% 52.21%

{Keyword-Keyword Hit@K 13.71% 32.57% 41.14% 55.43%

Coherence (KKC)} MRR@K 0.14 .22 0.24 0.26

MAP@K 13.71% 21.52% 23.05% 24.26%

MR@K 4.46% 12.32% 18.07% 28.29%

{KAC + KKC} Hit@K 17.71% 40.00% 58.29% 77.71%

(Rahman et al. 2016) MRR@K 0.18 0.28 0.32 0.34

MAP@K 17.71% 27.57% 30.24% 30.84%

MR@K 5.65% 14.66% 25.56% 46.15%

RACK Hit@K 38.29% 61.14% 72.00% 83.43%

MRR@K 0.38 0.48 0.48 0.52

MAP@K 38.29% 48.14% 48.39% 45.74%

MR@K 12.12% 26.41% 37.94% 54.07%

our combination of these three heuristics is also justified. Our earlier work combines
KAC and KKC, and provides 79% Hit@10 with 35% precision and 45% recall from
the experiments with 150 queries. Replication with our current extended dataset (i.e.,
175 queries) reports similar performance (e.g., 78% Hit@10), which supports our earlier
findings (Rahman et al. 2016) as well. In this work, we introduce the new heuristic–
KPAC–which improved our performance in terms of all four metrics– Hit@10 (i.e., 7%
improvement), reciprocal rank (i.e., 53% improvement), precision (i.e., 48% improvement)
and recall (i.e., 17% improvement). Thus, the addition of KPAC heuristic to our ranking
algorithm is justified. Furthermore, we apply appropriate weights to these heuristics for
controlling their influence in the API relevance ranking. Figure 14 further demonstrates how
the performance of our heuristics changes over various Top-K results. We see that KPAC
is the most dominant one among the heuristics (as observed above) and achieves the max-
imum performance. However, the addition of the other two heuristics also improves our
performance marginally (i.e., 2% – 4%) in terms of all four metrics.

Empirical Software Engineering

Fig. 14 a Hit@K of RACK, b Mean Average Precision@K (MAP@K) of RACK, and c Mean Recall@K
(MR@K) of RACK for three heuristics–KAC, KPAC and KKC

4.8 Answering RQ6: Does an Appropriate Subset of the Query Keywords Perform
Better than theWhole Query in Retrieving the Relevant API Classes?

Since the proposed technique identifies relevant API classes based on their co-occurrences
with the keywords from a query, the keywords should be chosen carefully. Selection of
random keywords might not return appropriate API classes. Several earlier studies choose
nouns and verbs from a sentence, and report their salience in automated comment generation
(Wong et al. 2013) and corpus indexing (Capobianco et al. 2013). We thus also extract
noun and verb terms from each query as the search keywords using Stanford POS tagger
(Toutanova and Manning 2000), and then use them for our experiments. In particular, we
investigate whether our selection of keywords for code search is effective or not.

From Table 9, we see that our technique performs better with noun-based keywords than
with verb-based keywords. The verb-based keywords provide a maximum of 35% Hit@10.
On the contrary, RACK returns correct API classes for 82% of queries with 43% precision,
55% recall and a reciprocal rank of 0.49 when only noun-based keywords are chosen for
search. However, none of the performance metrics reaches the baseline performance except
recall. That is, they are lower than the performance of RACK with all query terms minus the
stop words. Interestingly, when both nouns and verbs are employed as search keywords, the
performance reaches the maximum especially in terms of accuracy, precision and reciprocal
rank. For example, RACK achieves 83% Hit@10 with 46% precision, 54% recall and a
reciprocal rank of 0.52. Although the improvement over the baseline performance (i.e.,
with all keywords of a query) is marginal, such performances were delivered using a fewer

Empirical Software Engineering

Table 9 Impact of different query term selection

Query terms Metric Top-1 Top-3 Top-5 Top-10

All terms Hit@K 37.14% 60.57% 71.43% 82.86%

from query MRR@K 0.37 0.48 0.50 0.52

MAP@K 37.14% 47.29% 47.81% 45.29%

MR@K 11.69% 26.93% 38.85% 54.80%

Noun terms only Hit@K 33.71% 58.86% 70.29% 82.29%

MRR@K 0.34 0.45 0.48 0.49

MAP@K 33.71% 44.95% 45.71% 42.62%

MR@K 10.56% 25.47% 36.67% 55.21%

Verb terms only Hit@K 7.43% 17.71% 24.00% 35.43%

MRR@K 0.07 0.11 0.13 0.14

MAP@K 7.43% 11.52% 12.68% 14.02%

MR@K 2.14% 6.69% 10.46% 17.38%

{Noun terms + Hit@K 38.29% 61.14% 72.00% 83.43%

Verb terms} MRR@K 0.38 0.48 0.48 0.52

MAP@K 38.29% 48.14% 48.39% 45.74%

MR@K 12.12% 26.41% 37.94% 54.07%

{Noun terms + Hit@K 37.14% 60.57% 72.00% 83.43%

Verb terms}-“java” MRR@K 0.37 0.47 0.47 0.52

MAP@K 37.14% 46.90% 47.35% 45.19%

MR@K 11.84% 26.18% 38.09% 54.08%

number of search keywords. That is, our subset of keywords not only avoids the noise but
also ensures a comparatively higher performance than the baseline with relatively lower
costs (i.e., fewer keywords). Thus, selection of a subset of keywords from the NL query
intended for code search is justified, and our subset is also found effective.

We also investigate the impact of generic search keywords such as “java” in our query.
According to our analysis, 11.43% of our queries in the dataset contain this keyword. From
Table 9, we see that removal of this keyword marginally degrades most of the performance
measures of our technique. Only marginal improvements can be observed in the recall
measure for Top-5 and Top-10 results. Thus, our choice of retaining the generic keywords
is also justified.

Empirical Software Engineering

4.9 Answering RQ7: How do the Heuristic Weights (i.e., α, β) and Threshold Settings
(i.e., γ , δ) Influence the Performance of our Technique?

Our relevance ranking algorithm applies two relative weights–α and β–to our proposed
heuristics, and the heuristics are also constrained with two thresholds–γ and δ. While the
thresholds help the heuristics collect appropriate candidate API classes, the weights con-
trol the influence of the heuristics in the API relevance ranking. In this section, we justify
our chosen weights and thresholds, and investigate how they affect the performance of our
technique.

We adopt a greedy search-based technique (Yuan et al. 2014) (i.e., controlled itera-
tive approach) for determining the relative weights for our heuristics. That is, we start our
searches with our best initial guesses for α (i.e., 0.25) and β (i.e., 0.30), refine our weight
estimates in every iteration with a step size of 0.025, and then stop when the fitness function
(Yuan et al. 2014) (i.e., performance) reaches the global maximum. We use mean average
precision@10 and mean recall@10 as the fitness functions in the search for α and β.
Figure 15 shows how different values of α and β can influence the performance of RACK.
Please note that when one weight is calibrated, the other one is kept constant during perfor-
mance computation. We see that precision and recall of RACK reach the maximum when
α ∈ [0.300, 0.325] and β=0.575. The target weights are identified using dashed vertical lines
above. While α and β are considered as the relative importance of the co-occurrence based
heuristics, KAC and KPAC respectively, (1− α − β) goes to the remaining heuristic–KKC.
Since KKC is found relatively weak according to our earlier investigation, we emphasize
more on α and β, and chose the following heuristic weights: 0.325, 0.575 and 0.10–for
KAC, KPAC and KKC respectively. Thus, all the weights sum to 1, and such weighting
mechanism was also used by an earlier study (Moreno et al. 2014). The performance of
RACK is significantly higher than its non-weighted version especially in terms of MRR@K

Fig. 15 a Mean Average Precision@10 (MAP@10), and b Mean Recall@10 (MR@10) of RACK for
different values of the heuristic weights–α and β

Empirical Software Engineering

Fig. 16 Performance of RACK for different δ thresholds with a Top-5 results and b Top-10 results considered

(i.e., WSR, p-value= 0.002, 	 = 1.00 (large)) and MAP@K (i.e., WSR, p-value< 0.001,
	 = 0.84 (large)) for Top-1 to Top-10 results. Thus, the application of relative weights to
our adopted heuristics is also justified.

Both KAC and KPAC apply δ threshold for collecting candidate API classes from the
token-API linking database. Figure 16 shows how different values of δ can affect our per-
formance. We use Hit@K, MAP@K and MR@K as the fitness functions, and determine
our fitness for Top-5 and Top-10 returned results. We see that each of these performance
measures reach their maximum when δ = 10 for both settings. That is, collecting 10 candi-
date API classes for each keyword or keyword pair from the query is the most appropriate
choice. Less or more than that provides comparable performance but not the best one. Thus,
we chose δ = 10 in our algorithm, and our choice is justified.

KKC applies another threshold, γ , for candidate API selection that refers to the degree
of contextual similarity between any two keywords from the query. Figure 17 reports our
investigation on this threshold. We see that different values of γ starting from 0 to 0.5 do not
change our fitness (i.e., performance) at all. Since the heuristic itself, KKC, is not strong,
the variance of γ also does not have much influence on the performance of our technique.
Thus, our choice of γ = 0 is also justified. That is, we consider two API classes coherent
to each other when their contexts share at least one search keyword.

4.10 Answering RQ8: can RACK Outperform the State-of-the-Art Techniques
in Suggesting Relevant API Classes for a Given Set of Queries?

Thung et al. (2013b) accept a feature request as an input and return a list of relevant API
methods. Their API suggestions are based not only on the mining of feature request history
but also on the textual similarity between the request texts and the corresponding API doc-
umentations. Zhang et al. (2017) determine semantic distance between an NL query and a
candidate API using a neural network model (CBOW) and a large code repository, and then
suggest a list of relevant API classes for the query. To the best of our knowledge, these are

Empirical Software Engineering

Fig. 17 Performance of RACK for different γ thresholds with a Top-5 results and b Top-10 results
considered

the latest and the closest studies to ours in the context of API suggestion, and thus, we select
them for comparison.

Since feature request history is not available in our experimental settings, we implement
Description-Based Recommender module from Thung et al. (2013b) We collect API doc-
umentations of 3,300 classes from the Java standard libraries (i.e., JDK 6), and develop
Vector Space Model (VSM) for each of the API classes. In fact, we develop two models
for each API class using (1) class header comments only, and (2) class header comments +

Table 10 Comparison of API recommendation performance with existing techniques (for various Top-K
results)

Technique Metric Top-1 Top-3 Top-5 Top-10

Thung et al. (2013b)-I Hit@K 20.57% 30.85% 38.29% 44.00%

MRR@K 0.21 0.25 0.26 0.27

MAP@K 20.57% 24.57% 25.47% 24.84%

MR@K 6.37% 11.74% 15.79% 22.19%

Thung et al. (2013b)-II Hit@K 20.00% 32.57% 39.43% 50.29%

MRR@K 0.20 0.26 0.27 0.29

MAP@K 20.00% 25.14% 25.85% 25.59%

MR@K 6.19% 13.02% 18.47% 28.95%

Zhang et al. (2017) Hit@K 19.43% 32.00% 36.00% 39.43%

MRR@K 0.19 0.25 0.26 0.26

MAP@K 19.43% 24.86% 25.44% 24.81%

MR@K 6.00% 15.86% 21.54% 29.87%

RACK Hit@K 38.29% 61.14% 72.00% 83.43%

(Proposed technique) MRR@K 0.38 0.48 0.48 0.52

MAP@K 38.29% 48.14% 48.39% 45.74%

MR@K 12.12% 26.41% 37.94%% 54.07%

*Emboldened items are the highest statistics for the existing and proposed techniques

Empirical Software Engineering

Fig. 18 Comparison of API recommendation performances with the existing techniques-a Hit@K, b Mean
Reciprocal Rank@K, cMean Average Precision@K, and dMean Recall@K

method header comments, and implement two variants– (Thung et al. 2013b)-I and (Thung
et al. 2013b)-II for our experiments. We use Apache Lucene18 for VSM development, cor-
pus indexing and for textual similarity matching between the API documentations and each
of the queries from our dataset. In the case of Zhang et al. (2017), we (1) make use of
IJaDataset (Keivanloo and Rilling 2011) as a training corpus (as was done by the origi-
nal authors), and (2) learn the word embeddings for both keywords and API classes using
fastText (Bojanowski et al. 2016), an improved version of word2vec implementation. We
then use these vectors to determine semantic distance between a query and the candidate
API classes using cosine similarity (Rahman et al. 2014). We also determine API popularity
within the training corpus, and then combine with semantic distance metric to identify a set
of relevant API classes for the NL query.

Table 10 summarizes the comparative analysis between our technique–RACK– and three
existing techniques. Here, emboldened items refer to maximum measures provided by the
existing techniques and our technique. We see that the variants of Thung et al. (2013b) can
provide a maximum of about 50% accuracy with about 26% precision and 29% recall for
Top-10 results. On the other hand, RACK achieves a maximum accuracy of 83% with 46%
precision and 54% recall which are 66%, 79% and 87% higher respectively. We investigate
how the four performance measures change for different Top-K results for each of these
three techniques. From Fig. 18, we see that Hit@K of RACK increases gradually up to 83%
whereas such performance measures for the textual similarity based techniques stop at 50%.

18https://lucene.apache.org/core

https://lucene.apache.org/core

Empirical Software Engineering

Fig. 19 Comparison of API recommendation with existing techniques using box plots

The MRR@K of RACK improves from 0.38 to 0.52 whereas such measures for the counter-
parts are as low as 0.20–0.29. It should be noted that RACK reaches its maximum precision,
i.e., 48%, quite early at K = 3, and then its recall gradually improves up to 54% (at K =
10). On the contrary, such measures for the counterparts are at best 25% and 30% respec-
tively. These demonstrate the superiority of our technique. From the box plots in Fig. 19, we
see that RACK performs significantly higher than both variants in terms of all three metrics–
accuracy, precision and recall. Our median accuracy is above 70% whereas such measures
for those variants are close to 40%. The same goes for precision and recall measures. We
perform significance and effect size tests, and compare our performance measures with the
measures of the state-of-the-art for various Top-K results (1≤K≤10). We found that the
performance of our approach is significantly higher than that of the existing techniques in
terms of Hit@K (i.e., WSR, p-value=0.002<0.05, 	=0.79 (large)), MRR@K (i.e., WSR,
p-value=0.002<0.05, 	=0.90 (large)), MAP@K (i.e., WSR, p-value=0.002<0.05, 	=0.90
(large)) and MR@K (i.e., WSR, p-value=0.002<0.05, 	=0.70 (large)). All these findings
above suggest that (1) textual similarity between query and API signature or documenta-
tions might not be always effective for API recommendation, and (2) semantic distance
between keyword and API classes should be calculated using appropriate training corpus.
Our technique overcomes that issue by applying three heuristics –KAC, KPAC and KKC–
which leverage the API usage knowledge of a large developer crowd stored in Stack Over-
flow. Performance reported for Thung et al. (2013b) is project-specific, and the technique is
restricted to feature requests (Thung et al. 2013b). On the contrary, our technique is generic
and adaptable for any type of code search. It is also independent of any subject systems.
Although (Zhang et al. 2017) employ a large training corpus, they learn word embeddings
for NL keywords from the source code which might not be always helpful. Source code
inherently has a smaller vocabulary than regular texts (Hellendoorn and Devanbu 2017). On
the contrary, we leverage the contexts of NL keywords and API classes more carefully from
Stack Overflow Q & A site to determine their relevance. Furthermore, we harnesses the
expertise of a large crowd of technical users effectively for relevant API suggestion which
was not considered by the past studies from literature. Thus, our technique possibly has a
greater potential.

Empirical Software Engineering

4.11 Answering RQ9: can RACK Significantly Improve the Natural Language Queries
in Terms of Relevant Code Retrieval Performance?

Our earlier research questions (RQ4–RQ8) evaluate the performance of RACK in suggest-
ing relevant API classes for a natural language query intended for code search. Although
they clearly demonstrate the potential of our technique, another way of evaluation could be
the retrieval performance of our suggested queries. In this section, we investigate whether
our reformulations to the baseline queries improve them or not in terms of their relevant
code retrieval performances. We employ three corpora – 4K-Corpus, 256K-Corpus, and
769K-Corpus– each of which includes 175 ground truth code segments (see Section 4.1 for
details). We apply limited natural language preprocessing (i.e., removal of stop words and
keywords, splitting of complex tokens) to each corpus document, and then index them for
retrieval. We employ Apache Lucene19, a popular code search engine that has been used by
several earlier studies from the literature (Haiduc et al. 2013; Ponzanelli et al. 2014; Moreno
et al. 2014), for document indexing and for source code retrieval.

Table 11 and Fig. 20 summarize our findings on comparing our reformulated queries
with the baseline queries. We consider two versions of our reformulated queries– RACKA

and RACKA+Q–for our experiments. While RACKA comprises of suggested API classes
only, RACKA+Q combines both the suggested API classes and the NL keywords from
baseline queries. From Table 11, we see that the baseline queries (i.e., comprise of NL key-
words) perform poorly especially with the large corpora. In the case of 256K-Corpus, they
return relevant code segments at the Top-1 position and within the Top-5 positions for only
22% and 38% of the queries respectively (i.e., Hit@K). On the contrary, our reformulated
queries, RACKA+Q, can return relevant code segments for 40% and 59% of the queries
within Top-1 and Top-5 positions respectively, which are more promising. We see a notable
increase in the query performance with the smaller corpus (i.e., 4K-Corpus) and a notable
decrease with the bigger corpus (i.e., 769K-Corpus). Such observations can be explained by
the reduced and added noise in the corpus respectively. However, our reformulated queries
perform consistently higher than the baseline across all three corpora. For example, while
the baseline Hit@10 reduces to 34% for 769K-Corpus, our reformulated queries deliver
a Hit@10 of 57% which is 65% higher. Thus, our query reformulations offer 23%-80%
improvement in Hit@K over the baseline performance across the three corpora. It should be
noted that Hit@1 and Hit@5 could reach up to 60% and 85% respectively when the gold-
set API classes are used as the search queries. Combination of NL queries and goldset API
classes performs even better. Such findings also strengthen our idea of suggesting and using
relevant API classes for code search. However, we also see that reformulated queries con-
taining both NL keywords and API classes (e.g., RACKA+Q) are always better than those
containing only the suggested API classes (e.g., RACKA).

Our MRR@K measures in Table 11 are also found more promising. They suggest that
on average, the relevant code segments are returned by our queries within the top three posi-
tions of the result list across all three corpora, which is promising from the perspective of
practical use. Furthermore, our MRR@K measures are 29%–81% higher than the baseline
counterparts across all three corpora which demonstrate the potential of our reformulated
queries for code search.

Figure 20 further demonstrates the performance of baseline queries and our reformu-
lated queries for various Top-K results. We see that Hit@K and MRR@K of our queries

19https://lucene.apache.org/

https://lucene.apache.org/

Empirical Software Engineering

Table 11 Comparison of source code retrieval performance with baseline queries

Query Metric Top-1 Top-3 Top-5 Top-10

Retrieval performance with small dataset (4K-Corpus)

Baseline Hit@K 39.43% 54.86% 62.29% 68.57%

(NL Keywords) MRR@K 0.39 0.46 0.48 0.49

Goldset API Hit@K 65.71% 85.71% 89.14% 91.43%

MRR@K 0.66 0.75 0.76 0.76

Baseline + Hit@K 70.29% 88.00% 96.00% 97.14%

Goldset API MRR@K 0.70 0.78 0.80 0.80

RACKA Hit@K 29.71% 50.29% 56.00% 68.57%

MRR@K 0.30 0.39 0.40 0.42

RACKA+Q Hit@K 50.86% 73.14% 77.71% 84.00%

MRR@K 0.51 0.61 0.62 0.63

Retrieval Performance with Large Dataset (256K-Corpus)

Baseline Hit@K 22.29% 30.86% 37.71% 44.00%

(NL Keywords) MRR@K 0.22 0.26 0.27 0.28

Goldset API Hit@K 60.00% 78.29% 84.57% 90.29%

MRR@K 0.60 0.69 0.70 0.71

Baseline + Hit@K 76.00% 89.14% 90.86% 94.86%

Goldset API MRR@K 0.76 0.82 0.82 0.83

RACKA Hit@K 14.29% 26.29% 30.86% 36.57%

MRR@K 0.14 0.19 0.20 0.21

RACKA+Q Hit@K 40.00% 52.57% 59.43% 66.29%

MRR@K 0.40 0.46 0.47 0.48

Retrieval Performance with Extra-Large Dataset (769K-Corpus)

Baseline Hit@K 17.14% 24.57% 0.28.57% 34.29%

(NL Keywords) MRR@K 0.17 0.20 0.21 0.22

Goldset API Hit@K 50.86% 69.14% 75.43% 81.14%

MRR@K 0.51 0.59 0.61 0.62

Baseline + Hit@K 64.00% 80.00% 86.86% 90.29%

Goldset API MRR@K 0.64 0.71 0.73 0.73

RACKA Hit@K 10.86% 18.29% 22.29% 26.86%

MRR@K 0.11 0.14 0.15 0.16

RACKA+Q Hit@K 26.86% 42.29% 49.14% 56.57%

MRR@K 0.27 0.33 0.35 0.36

A=Suggested API classes only, A+Q=Reformulated query combining both suggested API classes and
baseline query keywords

are higher than those of the baseline queries by a large margin across all three corpora –4K-
Corpus, 256K-Corpus, and 769K-Corpus. Non-parametric tests such as Wilcoxon Singed
Rank, Mann-Whitney Wilcoxon and Cliff’s delta tests also report statistical significance of
our performance improvements for both Hit@K (i.e., all p-values<0.05, 0.82≤ 	 ≤0.94
(large)) and MRR@K (i.e., all p-values<0.05, 	=1.00 (large)). For the sake of simplicity,
only one code segment (i.e., collected from the tutorial sites, Section 4.1) was chosen as the

Empirical Software Engineering

Fig. 20 Comparison of code retrieval performance with the baseline queries in terms of a Hit@K and b
MRR@K

ground truth of each query. Thus, Hit@K and MRR@K are the most appropriate perfor-
mance metrics for this case, and consequently, precision and recall were not chosen for this
evaluation.

We also investigate query performance by relaxing the Top-K constraint and by analysing
all the results returned by each query. Table 12 and Fig. 21 report our findings on query
effectiveness (Moreno et al. 2014, 2015). That is, if the first relevant code segment by a
reformulated query is returned closer to the top of the result list than that of the baseline
query, we consider it as query quality improvement, and vice versa as query quality wors-
ening. If there is no change in the result ranks between baseline and reformulated queries,
we call it query quality preserving. From Table 12, we see that 46%–64% of the baseline
queries can be improved by our technique, RACKA+Q, across all three corpora. It worsens

Table 12 Improvement of baseline queries by RACK

Query pairs Improved Worsened Net gain Preserved

Query improvement with small dataset (4K-Corpus)

Goldset API vs. Baseline 54.29% 13.71% +40.58% 32.00%

RACKA vs. Baseline 42.29% 39.43% +2.86% 18.29%

RACKA+Q vs. Baseline 46.29% 10.86% +35.43% 42.86%

Query Improvement with Large Dataset (256K-Corpus)

Goldset API vs. Baseline 70.86% 14.29% +56.00% 14.86%

RACKA 43.43% 48.00% −4.57% 8.57%

RACKA+Q 61.71% 13.14% +48.57% 25.14%

Query Improvement with Extra-Large Dataset (769K-Corpus)

Goldset API vs. Baseline 74.86% 14.86% +60.00% 10.29%

RACKA 44.00% 48.00% −4.00% 8.00%

RACKA+Q 64.00% 16.00% +48.00% 20.00%

Net Gain = Gained improvement of result ranks through query reformulations

Empirical Software Engineering

Fig. 21 Comparison of QE distribution with baseline queries across a 4K-Corpus, b 256K-Corpus and
c 769K-Corpus

only 11%–16% of the queries, and thus, offers a net gain of 35%–49% query improvement.
While 60% net gain is possible in the best case scenario using gold set APIs directly, our
technique delivers ≈ 50%, which is promising according to relevant literature (Rahman and
Roy 2017; Haiduc et al. 2013). Figure 21 further contrast between baseline and our refor-
mulated queries. We see that the result ranks provided by RACK are closer to zero (i.e.,
top of the list) across all three corpora. Such finding provides more evidence on the high
potential of our suggested queries.

4.12 Answering RQ10: can RACK Outperform the State-of-the-Art Techniques
in Improving the Natural Language Queries Intended for Code Search?

Although our reformulations improve the baseline queries significantly, we further validate
them against the queries generated by existing techniques including the state-of-the-art. The
study of Zhang et al. (2017) is a closely related work to ours. They suggest relevant API
classes for natural language queries intended for code search by analysing semantic dis-
tance between query keywords and API classes. Thung et al. (2013b) is another related
study in the context of relevant API suggestion which was originally targeted for feature
location (i.e., project-specific code search). Recently, Nie et al. (2016) reformulate a query
for code search by collecting pseudo-relevance feedback from Stack Overflow, and then
by applying Rocchio’s expansion (Rocchio 1971) to the query. Their tool QECK suggests
software-specific terms from programming questions and answers as query expansions. To
the best of our knowledge, these are the most recent and the most closely related work
to ours in the context of query reformulation for code search which make them the state-
of-the-art. We thus compare our technique with these three existing techniques (Zhang

Empirical Software Engineering

Table 13 Comparison of code retrieval performance with existing techniques

Technique Metric Top-1 Top-3 Top-5 Top-10

Retrieval performance with small dataset (4K-Corpus)

Thung et al. (2013b)-I Hit@K 41.14% 58.29% 69.14% 74.29%

MRR@K 0.41 0.49 0.51 0.52

Thung et al. (2013b)-II Hit@K 44.00% 62.29% 71.43% 77.71%

MRR@K 0.44 0.52 0.55 0.55

Nie et al. (2016) Hit@K 48.57% 69.14% 74.86% 81.14%

MRR@K 0.49 0.58 0.59 0.60

Zhang et al. (2017) Hit@K 43.43% 64.00% 69.14% 77.71%

MRR@K 0.43 0.53 0.54 0.55

RACK Hit@K 50.86% 73.14% 77.71% 84.00%

MRR@K 0.51 0.61 0.62 0.63

Retrieval Performance with Large Dataset (256K-Corpus)

Thung et al. (2013b)-I Hit@K 27.43% 40.57% 48.00% 54.86%

MRR@K 0.27 0.33 0.35 0.36

Thung et al. (2013b)-II Hit@K 33.71% 44.57% 50.29% 59.43%

MRR@K 0.34 0.39 0.40 0.41

Nie et al. (2016) Hit@K 29.71% 44.00% 52.57% 60.00%

MRR@K 0.30 0.36 0.38 0.39

Zhang et al. (2017) Hit@K 24.00% 34.29% 41.71% 52.57%

MRR@K 0.24 0.29 0.30 0.32

RACK Hit@K 40.00% 52.57% 59.43% 66.29%

MRR@K 0.40 0.46 0.47 0.48

Retrieval Performance with Extra-Large Dataset (769K-Corpus)

Thung et al. (2013b)-I Hit@K 20.57% 29.71% 36.57% 42.86%

MRR@K 0.21 0.24 0.26 0.27

Thung et al. (2013b)-II Hit@K 25.71% 35.43% 41.14% 46.86%

MRR@K 0.26 0.30 0.31 0.32

Nie et al. (2016) Hit@K 25.14% 36.57% 41.14% 48.00%

MRR@K 0.25 0.30 0.31 0.32

Zhang et al. (2017) Hit@K 20.00% 28.57% 33.14% 38.29%

MRR@K 0.20 0.24 0.25 0.26

RACK Hit@K 26.86% 42.29% 49.14% 56.57%

MRR@K 0.27 0.33 0.35 0.36

et al. 2017; Nie et al. 2016; Thung et al. 2013b) in terms of Hit@K, MRR@K and Query
Effectiveness (QE).

From Table 13, we see that the retrieval performance of RACK is consistently higher
than that of the state-of-the-art techniques or their variants across all three corpora. Nie
et al. (2016), performs the best among the existing techniques. Their approach achieves

Empirical Software Engineering

Table 14 Comparison of query improvements with existing techniques

Query pairs Improved Worsened Net gain Preserved

Query improvement with small dataset (4K-Corpus)

Thung et al. (2013b)-I vs. Baseline 24.00% 11.43% +12.57% 64.57%

Thung et al. (2013b)-II vs. Baseline 31.43% 10.86% +20.57% 57.71%

Nie et al. (2016) vs. Baseline 32.00% 8.00% +24.00% 60.00%

Zhang et al. (2017) vs. Baseline 28.00% 10.29% +17.71% 61.71%

RACK vs. Baseline 46.29% 10.86% +35.43% 42.86%

Query improvement with large dataset (256K-Corpus)

Thung et al. (2013b)-I vs. Baseline 37.71% 22.29% +15.42% 40.00%

Thung et al. (2013b)-II vs. Baseline 42.86% 21.14% +21.72% 36.00%

Nie et al. (2016) vs. Baseline 41.71% 24.57% +17.14% 33.71%

Zhang et al. (2017) vs. Baseline 36.00% 26.86% +9.14% 37.14%

RACK vs. Baseline 61.71% 13.14% +48.57% 25.14%

Query improvement with extra-large dataset (769K-Corpus)

Thung et al. (2013b)-I vs. Baseline 41.14% 25.71% +15.43% 33.14%

Thung et al. (2013b)-II vs. Baseline 48.57% 22.86% +25.71% 28.57%

Nie et al. (2016) vs. Baseline 45.71% 24.57% +21.14% 29.71%

Zhang et al. (2017) vs. Baseline 41.14% 28.57% 12.57% 30.29%

RACK vs. Baseline 64.00% 16.00% +48.00% 20.00%

Net Gain = Gained improvement of result ranks through query reformulations

41%–75% Hit@5 with a MRR@5 between 0.31 to 0.59 on our dataset. However, our tech-
nique, RACK, achieves 49%–78% Hit@5 with 0.35–0.62 MRR@5 which are 4%–19% and
5%–13% higher respectively. RACK also achieves a Hit@10 of 57% with the extra-large
corpus (i.e., 769K-Corpus) which is 18% higher than the state-of-the-art measure, i.e., 48%
Hit@10 by Nie et al. (2016) While the performance measures of each technique degrade
as the corpus size grows from 4K to 769K documents, our performance measures remain
consistently higher than the state-of-the-art. Thus, RACK is more robust to varying sizes of
corpora than any of the existing techniques under our study.

Figure 22 further demonstrates how RACK outperforms the state-of-the-art techniques
for various Top-K results in terms of Hit@K and MRR@K. We compare RACK with
QECK by Nie et al. (2016) for Top-1 to Top-10 performance measures using non-parametric
tests. Nie et al. (2016) is clearly the state-of-the-art according to the above analysis. Our
Mann-Whitney Wilcoxon and Cliff’s delta tests reported statistical significance of RACK
over Nie et al. (2016) with large effect sizes for both Hit@K (i.e., p-values<0.05, 0.33≤
	 ≤0.52 (large)) andMRR@K (i.e., p-values<0.05, 0.68≤ 	≤0.90 (large)) across all three
corpora. Thus, the findings above clearly demonstrate the superiority of our technique over
the existing studies on query reformulation from the literature.

We also compare our technique with the existing techniques in terms of Query Effective-
ness (QE). From Table 14, we see that Nie et al. (2016) performs the best with 4K-Corpus
whereas (Thung et al. 2013b)-II performs the best with the remaining two corpora– 256K-
Corpus and 769K-Corpus. Nie et al. (2016) improves 32% of the baseline queries whereas
(Thung et al. 2013b)-II improves 43%–49% of the queries. On the contrary, RACK improves

Empirical Software Engineering

Fig. 22 Comparison of code retrieval performance with existing techniques using a, b 4K-Corpus, c, d
256K-Corpus and e, f 756K-Corpus

46% and 62%–64% of the baseline queries in the same contexts. In particular, our technique
offers 48% net gain as opposed to 26% provided by Thung et al. (2013b)-II which is 87%
higher. Thus, RACK clearly has a high potential for query reformulation than the state-of-
the-art. It also should be noted that RACK degrades only 11%–16% of the queries across
all three corpora which suggests the reliability and robustness of the technique. Figure 23
further contrasts the result ranks of RACK with that of the state-of-the-art approaches using
box plots. We see that on average, RACK provides higher ranks, and returns results closer to
the top of list than the competing approaches. For example, Thung et al. (2013b)-II returns
50% of its first correct results within the Top-8 positions and 75% of them within the Top-96
positions when dealing with extra-large corpus (i.e., 769K-Corpus). On the contrary, RACK
returns such results within Top-5 and Top-42 positions which are 38% and 57% higher

Empirical Software Engineering

Fig. 23 Comparison of QE distribution with the state-of-the-art using a 4K-Corpus, b 256K-Corpus, and
c 769K-Corpus

respectively. Similar findings can be observed with the remaining two corpora. All these
findings above clearly demonstrate of superiority of our technique in query reformulation
over the state-of-the-art.

4.13 Answering RQ11: How Does RACK Perform Compared to the Popular Web
Search Engines and Code Search Engines?

Existing studies (Rahman et al. 2018; Sadowski et al. 2015; Nakasai et al. 2016; Xia et al.
2017) report that software developers frequently use general-purpose web search engines
(e.g., Google) for code search. Hence, these search engines are natural candidates for
comparison with our technique. We thus compare our approach with three popular web and
code search engines–Google, Stack Overflow native search andGitHub code search. Unfor-
tunately, we faced several challenges during our comparison with these commercial search
engines. First, results from these search engines frequently change due to their dynamic
indexing. This makes it hard to develop a reliable or stable oracle from their results. In fact,
we found that Top-30 Google results collected for the same query in two different dates (i.e.,
two weeks apart) matched only 55%. Second, Google search API20 was used for our exper-
iments given that GUI based Google search is not a practical idea for 175 x 2 = 250 queries.
However, this paid search API imposes certain restrictions on the number of API calls to be
made. That is, results for 175 baseline queries and their reformulated queries could not be
collected all at the same time. Given the changing nature of the underlying corpus, compar-
ison between the results of baseline and reformulated queries could thus not be fair. Third,

20https://developers.google.com/custom-search

https://developers.google.com/custom-search

Empirical Software Engineering

Table 15 Comparison with popular web/code search engines

Technique Hit@10 MAP@10 MRR@10 NDCG@10

Google 100.00% 68.56% 0.82 0.46

RACKGoogle 100.00% 83.71% 0.92 0.67

Stack Overflow 91.43% 59.54% 0.67 0.43

RACKSO 91.43% 75.27% 0.82 0.62

GitHub 89.71% 55.27% 0.58 0.47

RACKGitHub 90.29% 68.59% 0.74 0.59

Emboldened= Comparatively higher than counterpart

these commercial search engines are mostly designed for natural language queries. They
also impose certain restrictions on the query length and query type. Hence, they might either
produce poor results or totally fail to produce any results for our reformulated queries which
mostly contain structured keywords (e.g., multiple API classes). Thus, we found a head-
to-head comparison with these commercial search engines infeasible. Despite the above
challenges, we still compare with them, and investigate whether our reformulated queries
can improve their search results significantly or not through a post-processing step of their
results.

Collection of Search Results and Construction of Oracle We collect Top-30 results for
each query from each search engine for oracle construction. We make use of Custom Search
API21 by Google and native API endpoints by Stack Overflow22 and GitHub23, and col-
lect the search results. Given the large volume of search results (i.e., 175 x 30 = 5,250), it
is impractical to manually analyze them all. Hence, we used a semi-automated approach in
constructing the oracle for these web/code search engines. In particular, we extract the code
segments from each of the result pages using appropriate tools (e.g., Jsoup24). In the case of
GitHub search results, we use JavaParser25 to extract the method bodies as code segments.
Then we determine their similarity against the original ground truth code that was extracted
from tutorial sites in Section 4.1. For this, we use four code similarity algorithms – Cosine
similarity (Rahman et al. 2014), Dice similarity (Haiduc et al. 2013), Jaccard similarity
(Svajlenko and Roy 2018) and Longest Common Subsequence (LCS) (Roy and Cordy 2008).
These algorithms are frequently used as the baseline for various code clone detection tech-
niques (Roy and Cordy 2008; Svajlenko and Roy 2018). We collect four normalized code
similarity scores from each result, average them, and then extract the Top-10 results con-
taining the most relevant code segments. We then manually analyse a few of these results
(and their code segments), and attempt to tweak them with various similarity score thresh-
olds. Unfortunately, score thresholds were not sufficient enough to construct oracle for all
the queries. We thus use these Top-10 results as the oracle for our web/code search engines.

21https://developers.google.com/custom-search
22https://api.stackexchange.com
23https://developer.github.com/v3
24https://jsoup.org/
25https://github.com/javaparser

https://developers.google.com/custom-search
https://api.stackexchange.com
https://developer.github.com/v3
https://jsoup.org/
https://github.com/javaparser

Empirical Software Engineering

Fig. 24 Comparison of RACK with popular web/code search engines

Comparison Between Initial Search Results and Re-ranked Results Using the Reformu-
lated Queries Once a search engine returns results for natural language (NL) queries, we
re-rank them with the corresponding reformulated queries provided by RACK. We first
detect the presence of code segments in their contents, and then collect Top-10 documents
based on their relevance to our reformulated queries (i.e., NL keywords + relevant API
classes). We compare both the initial and re-ranked results with the oracle constructed
above.

From Table 15, we see that our re-ranking approach improves upon the initial results
returned by each of the web and code search engines. The improvements are observed espe-
cially in terms of precision, reciprocal rank and NDCG. For example, Google achieves 69%
precision with a reciprocal rank of 0.82 and an NDCG of 0.46. However, our approach,
RACKGoogle achieves 84% precision with a reciprocal rank of 0.92 and an NCCG of 0.67,
which are 22%, 12% and 46% higher respectively. That is, although Google performs high
as a general-purpose web search engine, it might not be always precise for code search.
Similar observation is shared by a recent survey (Rahman et al. 2018) that reports that devel-
opers need more query reformulations during code search using the web search engines.
GitHub native search achieves 55% precision, a reciprocal rank of 0.58 and an NDCG of
0.47. On the contrary, our approach, RACKGitHub, delivers 69% precision with a reciprocal
rank of 0.74 and an NDCG of 0.62, which are 24%, 28% and 26% higher respectively. Such
findings demonstrate the potential of our reformulated queries. Figure 24 further contrasts
between our approach and the contemporary web/code search engines for Top-1 to Top-10
results. While Google is the best performer among the three search engines, our re-ranking

Empirical Software Engineering

using RACK outperforms Google with a significant margin in terms of precision (i.e., WSR,
p-value<0.05, 	=0.90 (large)), reciprocal rank (i.e., WSR, p-value<0.05, 	=0.90 (large))
and NDCG (i.e., WSR, p-value<0.05, 	=1.00 (large)). Thus, all the findings above sug-
gest the high potential of our reformulated queries for improving the code search performed
either with web or code search engines. The status quo of Internet-scale code search is far
from ideal (Rahman et al. 2018), and our reformulated queries could benefit the traditional
practices.

5 Threats to Validity

We identify a few threats to the validity of our findings. While we attempt to mitigate most
of them using appropriate measures, the remaining ones should be addressed in future work.
Our identified threats and their mitigation details are discussed as follows:

5.1 Threats to Internal Validity

They relate to experimental errors and biases (Yuan et al. 2014). We develop a gold set for
each query by analysing the code examples and the discussions from tutorial sites which
might involve some subjectivity. However, each of the examples is a working solution to the
corresponding task (i.e., NL-query), and they are frequently consulted. Thus, the gold set
development using sample code from the tutorial sites is probably a more objective evalu-
ation approach than human judgements of API relevance or code relevance that introduce
more subjective bias (Chan et al. 2012). According to the exploratory findings (Section 2.4),
our technique might be effective only for the recommendation of popular and frequently
used API classes. Since fully qualified names are mostly missing in Stack Overflow texts,
third-party APIs similar to Java API classes could also have been mistakenly considered
despite the fact that questions and answers selected for the study were tagged with <java>.

We use a dataset of 175 queries and a popular code search engine–Apache Lucene
(Haiduc et al. 2013)–for determining their retrieval performance across three corpora of
varying sizes. For the sake of simplicity, only one code segment was considered as relevant
for each query. However, in practice, there could be multiple code segments in the corpus
that are relevant to a given query. In this work, we trade such perfection with transparency
and objectivity in our evaluation and validation.

During code or web search, developers generally choose the most appropriate keywords
when a list of auto-generated suggestions are provided. We re-enact such behaviour of the
developers by choosing only goldset API classes from within the suggested list, and use
them for query reformulation. Such choice might have favoured the code retrieval per-
formance of our queries. However, the same approach was carefully followed for all the
existing techniques under study (Thung et al. 2013b; Nie et al. 2016; Zhang et al. 2017).
Thus, they received the same treatment in the performance evaluation as ours. Furthermore,

Empirical Software Engineering

the validation results (i.e., RQ10) clearly report the superiority of our suggested queries
over their counterparts from the existing techniques. Our investigation using the three con-
temporary web/code search engines also has drawn a similar conclusion for RACK (i.e.,
RQ11).

5.2 Threats to External Validity

They relate to the generalizablity of a technique. So far, we experimented using API
classes from only standard Java libraries. However, since our technique mainly exploits
co-occurrence between keywords and APIs, the technique can be easily adapted for API
recommendation in other programming domains. Since popularity of a programming lan-
guage or change proneness of an API (Linares-Vásquez et al. 2014) has a significant role in
triggering discussions at Stack Overflow which are mined by us, RACK could be effective
for popular languages (e.g., Java, C#) but comparatively less effective for non-popular or
less used languages (e.g., Erlang).

5.3 Threats to Construct Validity

Construct validity relates to suitability of evaluation metrics. Our work is aligned to both
recommendation system and information retrieval domains. We use Hit@K and Reciprocal
Rank which are widely used for evaluating recommendation systems (Thung et al. 2013b;
Thongtanunam et al. 2015). The remaining two metrics are well known in information
retrieval, and are also frequently used by studies (Thung et al. 2013b; Chan et al. 2012;
McMillan et al. 2011) relevant to our work. This confirms no or little threat to construct
validity.

5.4 Threats to Statistical Conclusion Validity

Conclusion validity concerns the relationship between treatment and outcome (Linares-
Vásquez et al. 2014). We answer 11 research questions in this work, and collect our data
from publicly available, popular programming Q & A and tutorial sites. In order to answer
these questions, we use non-parametric tests for statistical significance (e.g., Mann-Whitney
Wilcoxon, Wilcoxon Signed Rank), effect size analysis (e.g., Cliff’s delta) and confidence
interval analysis. We apply these tests to our experiments opportunistically and report the
detailed test results (e.g., p-values, Cliff’s). Thus, threats to the statistical conclusion
validity might be mitigated.

6 RelatedWork

Our work is aligned with three research topics–(1) API/API usage recommendation, (2)
query reformulation for code search, and (3) crowdsourced knowledge mining. In this
section, we discuss existing studies from the literature of each of these research topics, and
compare or contrast our work with them.

6.1 API Recommendation

Existing studies on API recommendation accept one or more natural language queries,
and recommend relevant API classes and methods by analysing code surfing behaviour of

Empirical Software Engineering

the developers and API invocation chains (McMillan et al. 2011), API dependency graphs
(Chan et al. 2012), feature request history or API documentations (Thung et al. 2013b),
and library usage patterns (Thung et al. 2013a). McMillan et al. (2011) first propose Port-
folio that recommends relevant API methods for a code search query by employing natural
language processing, indexing and graph-based algorithms (e.g., PageRank Brin and Page
1998). Chan et al. (2012) improve upon Portfolio, and return a connected sub-graph con-
taining the most relevant APIs by employing further sophisticated graph-mining and textual
similarity techniques. Gvero and Kuncak (2015) accept a free-form NL-query, and return a
list of relevant method signatures by employing natural language processing and statistical
language modelling on the source code. A few studies offer NL interfaces for searching rel-
evant program elements from the project source (Kimmig et al. 2011) or relevant artefacts
from the project management repository (Lin et al. 2017). Thung et al. (2013b) recom-
mend relevant API methods to assist the implementation of an incoming feature request by
analysing request history and textual similarity between API details and the request texts.
In short, each of these relevant studies above analyse lexical similarity between a query and
the signature or documentation of the API for finding out candidate APIs. Such approaches
might not be always effective and might face vocabulary mismatch issues given that choice
of query keywords could be highly subjective (Furnas et al. 1987). On the other hand, we
exploit three co-occurrence heuristics that are derived from crowdsourced knowledge, and
they are found to be more effective in the selection of candidate API classes. Co-occurrence
heuristics overcome the vocabulary mismatch issues (Haiduc andMarcus 2011; Furnas et al.
1987), and provide a generic, both language and project independent solution. Besides, we
exploit the expertise of a large crowd of technical users stored in Stack Overflow for API
recommendation which none of the earlier relevant studies did. Zhang et al. (2017) deter-
mine semantic distance between NL keywords and API classes using a neural network
model (CBOW), and suggest relevant API classes for a generic NL query intended for code
search. They collect their API classes from the OSS projects whereas ours are collected
from Stack Overflow, the largest programming Q & A site on the web. Their work is closely
related to ours. We compare with two variants of Thung et al. (2013b) and Zhang et al.
(2017), and readers are referred to Sections 4.10, and 4.12 for the detailed comparison.
Since (Thung et al. 2013b) outperform (Chan et al. 2012) as reported (Thung et al. 2013b),
we compared with Thung et al. (2013b) for our validation.

6.2 API Usage Pattern Recommendation

Thummalapenta and Xie (2007) propose ParseWeb that takes in a source object type and a
destination object type, and returns a sequence of method invocations that serve as a solu-
tion that yields the destination object from the source object. Xie and Pei (2006) take a
query that describes the method or class of an API, and recommends a frequent sequence
of method invocations for the API by analysing hundreds of open source projects. Warr
and Robillard (2007) recommend a set of API methods that are relevant to a target method
by analysing the structural dependencies between the two sets. Each of these techniques is
relevant to our work since they recommend API methods. However, they operate on struc-
tured queries rather than natural language queries, and thus comparing ours with theirs is
not feasible. Of course, we introduced three heuristics and exploited crowd knowledge for
API recommendation, which were not considered by any of these existing techniques. This
makes our contribution significantly different from all of them.

Empirical Software Engineering

6.3 Query Reformulation for Code Search

There have been a number of studies on query reformulation that target either project-
specific code search (e.g., concept/feature location (Gay et al. 2009; Hill et al. 2009; Haiduc
and Marcus 2011; Haiduc et al. 2013; Howard et al. 2013; Yang and Tan 2012; Rahman and
Roy 2017; Kevic and Fritz 2014b; Rahman and Roy 2016), bug localization Sisman and
Kak 2013; Chaparro et al. 2017) or general-purpose code search (Gvero and Kuncak 2015;
Li et al. 2016; Nie et al. 2016). Gay et al. (2009) first propose “relevance feedback” based
model for query reformulation in the context of concept location. Once the initial query
retrieves search results, a developer is expected to mark them as either relevant or irrelevant.
Then their model analyses these marked source documents, and expands the initial query
using Rocchio expansion (Rocchio 1971). Although developer feedbacks on document rel-
evance are effective, collecting them is time consuming and sometimes infeasible as well.
Therefore, latter studies came up with a less efficient but feasible alternative–pseudo rel-
evance feedback– for query reformulation where they consider only Top-K search results
(retrieved by the initial query) as the relevant ones. Then they apply term weighting (Rah-
man and Roy 2017; Rocchio 1971; Kevic and Fritz 2014a), term context analysis (Hill et al.
2009; Sisman and Kak 2013; Howard et al. 2013; Yang and Tan 2012), query quality anal-
ysis (Haiduc and Marcus 2011; Haiduc et al. 2013), and machine learning (Haiduc et al.
2013) to reformulate a given query for concept/feature location. Our work falls into the
category of general purpose code search. Relevance feedback models were also adopted in
this case for query reformulation. Wang et al. (2014) incorporate developer feedback in the
code search, and improve result ranking. Nie et al. (2016) employ Stack Overflow as the
provider of relevance feedback on the initial query, and then reformulate it using Rocchio
expansion. Although we do not apply relevance feedback for query reformulation, the work
of Nie et al. (2016) is not only closely related to ours but also relatively more recent. Another
closely related recent work by Zhang et al. (2017) leverages semantic distance between NL
keywords and API classes, and then expands the NL queries using semantically relevant
API classes for code search. We thus compare our technique with three techniques above
(Thung et al. 2013b; Zhang et al. 2017; Nie et al. 2016), and the detailed comparison can
be found in RQ10. Li et al. (2016) develop a lexical database by using software-specific
tags from Stack Overflow questions, and reformulate a given query using synonymy sub-
stitution. However, their approach searches for relevant software projects rather than source
code segments. Campbell and Treude (2017) mine titles from Stack Overflow questions, and
suggest automatic expansion to the initial query in the form of auto-completion. However,
this approach also relies on textual similarity between initial query and the expanded query,
and thus, is subject to the vocabulary mismatch issues. On the contrary, we overcome such
issues using three co-occurrence based heuristics. Besides, their approach is constrained by
a fixed set of predefined queries from Stack Overflow questions, and thus, might not help
much in the formulation of custom queries. RACK does not impose such restrictions on
query formulation.

6.4 Crowdsourced KnowledgeMining

Existing studies (Yuan et al. 2014; Rahman and Roy 2016; Nie et al. 2016; Li et al. 2016;
Ponzanelli et al. 2014; Sirres et al. 2018) leverage crowd generated knowledge to support
several search related activities performed by the developers. Yuan et al. (2014) first used
programming questions and answers from Stack Overflow to identify semantically simi-
lar software specific word pairs. They first construct context of each word by collecting

Empirical Software Engineering

co-occurred words from Stack Overflow questions, answers and tags. Then they determine
the semantic similarity between a pair of NL words based on the overlap between their cor-
responding contexts. Such word pairs might help in addressing the vocabulary mismatch
issues with web search. However, they might not help much with code search given that
source code and regular texts often hold different semantics for the same word (Yang and
Tan 2012; Bajracharya and Lopes 2012b). Wong et al. (2013) mine developer’s descrip-
tions of the code snippets from Stack Overflow answers, and suggest them as comments for
similar code segments. Rigby and Robillard (2013) mine posts from Stack Overflow, and
extract salient program elements using regular expressions and machine learning. Along
the same line with the earlier studies, we mine Stack Overflow questions and answers to
reformulate a given natural language query for code search. While our work is related to
earlier studies (Nie et al. 2016; Li et al. 2016), it is also significantly different in many
ways. First, we suggest relevant API classes for a NL-query by considering keyword-API
co-occurrences whereas (Nie et al. 2016) suggest mostly natural language terms as query
expansions by employing pseudo-relevance feedback. Li et al. (2016) reformulate queries
using crowd wisdom from Stack Overflow for searching open source projects whereas our
queries are targeted for more granular software artefacts, e.g., source code snippets. Fur-
thermore, we suggest relevant API classes in contrast with synonymous NL tags by Li et al.
(2016), which are more appropriate and effective for code search (Bajracharya and Lopes
2012b). Another contemporary work (Sirres et al. 2018) uses all program artifacts indis-
criminately from Stack Overflow posts for expanding code search queries which could be
noisy. On the contrary, we leverage co-occurrences between NL keywords (in the question
title) and API classes (in the accepted answer) as a proxy to their relevance, and choose
appropriate API classes only for our query reformulation.

Our work in this article also significantly extends our earlier work (Rahman et al. 2016)
in various aspects. We improve earlier heuristics by extensively calibrating their weights
and thresholds, and introduce a novel heuristic– Keyword Pair API Co-occurrence– that
performs better than the earlier ones. We conduct experiments with a relatively larger dataset
containing 175 distinct queries, and further evaluate them in terms of relevant code retrieval
performance which was missing in the earlier work. We not only compare with several
state-of-the-art studies but also demonstrate RACK’s potential for application in the context
of traditional web/code search practices. Furthermore, we extend our earlier analysis and
answer 11 research questions as opposed to seven questions answered by the earlier work.

7 Conclusion & FutureWork

To summarize, we propose a novel query reformulation technique–RACK–that suggests
a list of relevant API classes for a natural language query for code search. It employs
three novel heuristics, and collects the the relevant API classes by exploiting crowdsourced
knowledge stored in Stack Overflow questions and answers. Experiments using 175 code
search queries from three Java tutorial sites show that RACK recommends relevant APIs
with 83%Hit@10, 46% precision and 54% recall which are highly promising. Reformulated
queries based on our recommended APIs significantly improve the baseline queries in terms
of code retrieval performance. Comparison with the state-of-the-art techniques shows that
our technique outperforms them not only in relevant API suggestion but also in query refor-
mulation for code search by a significant margin. Furthermore, our technique is generic,

Empirical Software Engineering

project independent, and it exploits invaluable crowd generated knowledge for relevant API
suggestion. Our work in this article has opened up the following future research directions:

– Determining Relative API Salience: Each programming task requires one or more API
classes where some classes (e.g., MimeMessage) are more important than others (e.g.,
Properties) for the task (e.g., “How do I send an HTML email?”). However, based
on our experience from this study, such relative importance is task-sensitive and some-
times even subjective. Given that code search queries are short and provide very little
contexts about the task, determining the relative API salience is even more challenging.
While we attempt to address this issue using three novel heuristics derived from crowd
generated knowledge, further work is warranted (1) to better understand the issue, and
(2) to return more effective ranking for the suggested API elements.

– Query Quality Analysis: Given multiple natural language queries for the same pro-
gramming task, determining the best one without executing them is a challenging
task. Identification of the best query could help the developers avoid numerous trials
and errors or even performance regression. Information retrieval and Concept/feature
location communities have long strived to address this challenge using several query
quality/difficulty metrics and machine learning (Carmel et al. 2006; Carmel and
Yom-Tov 2010; Haiduc et al. 2013; Haiduc and Marcus 2011). Since we leverage
keyword-API associations in this work for relevant API suggestion, such associations
could possibly be leveraged for query quality estimation as well.

Acknowledgements This research was supported in part by the Natural Sciences and Engineering
Research Council of Canada (NSERC) and the Singapore Ministry of Education (MOE) Academic Research
Fund (AcRF) Tier 1 grant.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

Bacchelli A, Lanza M, Robbes R (2010) Linking e-mails and source code artifacts. In: Proceedings ICSE, pp
375–384

Bajracharya S, Lopes C (2012a) Analyzing and mining a code search engine usage log. Empirical Softw.
Engg. 17(4-5):424–466

Bajracharya S, Lopes C (2012b) Analyzing and mining a code search engine usage log. EMSE 17(4-5):424–
466

Bojanowski P, Grave E, Joulin A, Mikolov T (2016) Enriching word vectors with subword information.
arXiv:1607.04606

Brandt J, Guo PJ, Lewenstein J, Dontcheva M, Klemmer SR (2009) Two Studies of opportunistic program-
ming interleaving web foraging, learning, and writing code. In: Proceedings SIGCHI, pp 1589–1598

Brin S, Page L (1998) The anatomy of a large-scale hypertextual web search engine. Comput Netw ISDN
Syst 30(1-7):107–117

Campbell BA, Treude C (2017) Nlp2code: code snippet content assist via natural language tasks. In:
Proceedings ICSME, pp 628–632

Capobianco G, Lucia AD, Oliveto R, Panichella A, Panichella S (2013) Improving IR-based traceability
recovery via noun-based indexing of software artifacts. J Softw Evol Process 25(7):743–762

Carmel D, Yom-Tov E (2010) Estimating the query difficulty for information retrieval. Morgan & Claypool,
San Rafael

Carmel D, Yom-Tov E, Darlow A, Pelleg D (2006) What makes a query difficult? In: Proceedings SIGIR,
pp 390–397

http://arXiv.org/abs/1607.04606

Empirical Software Engineering

Chan W, Cheng H, Lo D (2012) Searching connected API subgraph via text phrases. In: Proceedings FSE,
pp 10:1–10:11

Chaparro O, Florez JM, Marcus A (2017) Using observed behavior to reformulate queries during text
retrieval-based bug localization. In: Proceedings ICSME, page to appear

Dagenais B, Robillard MP (2012) Recovering traceability links between an API and its learning resources.
In: Proceedings ICSE, pp 47–57

Furnas GW, Landauer TK, Gomez LM, Dumais ST (1987) The vocabulary problem in human-system
communication. Commun ACM 30(11):964–971

Gay G, Haiduc S, Marcus A, Menzies T (2009) On the use of relevance feedback in IR-based concept
location. In: Proceedings ICSM, pp 351–360

Gosling J, Joy B, Steele G, Bracha G (2012) The java language specification: Java SE 7th edn
Gvero T, Kuncak V (2015) Interactive synthesis using free-form queries. In: Proceedings ICSE, pp 689–692
Haiduc S, Marcus A (2011) On the effect of the query in IR-based concept location. In: Proceedings ICPC,

pp 234–237
Haiduc S, Bavota G, Marcus A, Oliveto R, De Lucia A, Menzies T (2013) Automatic query reformulations

for text retrieval in software engineering. In: Proceedings ICSE, pp 842–851
Harris Z (1968) Mathematical structures in language contents
Hellendoorn VJ, Devanbu P (2017) Are deep neural networks the best choice for modeling source code? In:

Proceedings ESEC/FSE, pp 763–773
Hill E, Pollock L, Vijay-Shanker K (2009) Automatically capturing source code context of NL-queries for

software maintenance and reuse. In: Proceedings ICSE, pp 232–242
Howard MJ, Gupta S, Pollock L, Vijay-Shanker K (2013) Automatically mining software-based

semantically-similar words from comment-code mappings. In: Proceedings MSR, pp 377–386
Järvelin K., Kekäläinen J (2002) Cumulated gain-based evaluation of ir techniques. ACM Trans Inf Syst

20(4):422–446
Keivanloo I, Rilling J (2011) Internet-scale java source code data set. http://aseg.cs.concordia.ca/codesearch/

#IJaDataSet
Keivanloo I, Rilling J, Zou Y (2014) Spotting working code examples. In: Proceedings ICSE, pp 664–675
Kevic K, Fritz T (2014a) Automatic search term identification for change tasks. In: Proceedings ICSE, pp

468–471
Kevic K, Fritz T (2014b) A dictionary to translate change tasks to source code. In: Proceedings MSR, pp

320–323
Kimmig M, Monperrus M, Mezini M (2011) Querying source code with natural language. In: Proceedings

ASE, pp 376–379
Li Z, Wang T, Zhang Y, Zhan Y, Yin G (2016) Query reformulation by leveraging crowd wisdom for

scenario-based software search. In: Proceedings internetware, pp 36–44
Lin J, Liu Y, Guo J, Cleland-Huang J, Goss W, Liu W, Lohar S, Monaikul N, Rasin A (2017) Tiqi: a natural

language interface for querying software project data. In: Proceedings ASE, pp 973–977
Linares-Vásquez M., Bavota G, Di Penta M, Oliveto R, Poshyvanyk D (2014) How do api changes trigger

stack overflow discussions? a study on the android sdk. In: Proceedings ICPC, pp 83–94
Lopes C, Bajracharya S, Ossher J, Baldi P (2010) UCI source code data sets. http://www.ics.uci.edu/∼lopes/

datasets/
Mamykina L, Manoim B, Mittal M, Hripcsak G, Hartmann B (2011) Design lessons from the fastest q & a

site in the west. In: Proceedings CHI, pp 2857–2866
McMillan C, Grechanik M, Poshyvanyk D, Xie Q, Fu C (2011) Portfolio: finding relevant functions and their

usage. In: Proceedings ICSE, pp 111–120
Mihalcea R, Tarau P (2004) Textrank: bringing order into texts. In: Proceedings EMNLP, pp 404–411
Moreno L, Treadway JJ, Marcus A, Shen W (2014) On the use of stack traces to improve text retrieval-based

bug localization. In: Proceedings ICSME, pp 151–160
Moreno L, Bavota G, Haiduc S, Di PentaM, Oliveto R, Russo B,Marcus A (2015) Query-based configuration

of text retrieval solutions for software engineering tasks. In: Proceedings ESEC/FSE, pp 567–578
Nakasai K, Tsunoda M, Hata H (2016) Web search behaviors for software development. In: Proceedings

CHASE, pp 125–128
Nie L, Jiang H, Ren Z, Sun Z, Li X (2016) Query expansion based on crowd knowledge for code search.

TSC 9(5):771–783
Ponzanelli L, Bavota G, Di Penta M, Oliveto R, Lanza M (2014) Mining stackOverflow to turn the IDE into

a self-confident programming prompter. In: Proceedings MSR, pp 102–111
Rahman MM, Roy CK (2014) On the use of context in recommending exception handling code examples.

In: Proceedings SCAM, pp 285–294

http://aseg.cs.concordia.ca/codesearch/#IJaDataSet
http://aseg.cs.concordia.ca/codesearch/#IJaDataSet
http://www.ics.uci.edu/~lopes/datasets/
http://www.ics.uci.edu/~lopes/datasets/

Empirical Software Engineering

Rahman MM, Roy CK (2016) QUICKAR: automatic query reformulation for concept location using
crowdsourced knowledge. In: Proceedings ASE, pp 220–225

Rahman MM, Roy CK (2017) STRICT: information retrieval based search term identification for concept
location. In: Proceedings SANER, pp 79–90

Rahman MM, Roy CK (2018) Effective reformulation of query for code search using crowdsourced
knowledge and extra-large data analytics. In: Proceedings ICSME, p 12

Rahman MM, Yeasmin S, Roy CK (2014) Towards a context-aware IDE-based meta search engine
for recommendation about programming errors and exceptions. In: Proceedings CSMR–WCRE, pp
194–203

Rahman MM, Roy CK, Lo D (2016) RACK: automatic API recommendation using Crowdsourced knowl-
edge. In: Proceedings SANER, pp 349–359

Rahman MM, Barson J, Paul S, Kayani J, Lois FA, Quezada SF, Parnin C, Stolee KT, Ray Baishakhi (2018)
Evaluating how developers use general-purpose web-search for code retrieval. In: Proceedings MSR, p
10

Rigby PC, Robillard MP (2013) Discovering essential code elements in informal documentation. In:
Proceedings ICSE, pp 832–841

Rocchio JJ (1971) The SMART retrieval system—experiments in automatic document processing. Prentice-
Hall, Inc, Upper Saddle River

Romano J, Kromrey JD, Coraggio J, Skowronek J (2006) Appropriate statistics for ordinal level data Should
we really be using t-test and Cohen’sd for evaluating group differences on the NSSE and other surveys?
In: Annual meeting of the Florida Association of Institutional Research, pp 1–3

Roy CK, Cordy JR (2008) NICAD: accurate detection of near-Miss Intentional clones using flexible pretty-
printing and code normalization. In: Proceedings ICPC, pp 172–181

Sadowski C, Stolee KT, Elbaum S (2015) How developers search for code A case study. In: Proceedings
ESEC/FSE, pp 191–201

Sirres R, Bissyandé TF, Kim D, Lo D, Klein J, Kim K, Traon YL (2018) Augmenting and structuring user
queries to support efficient free-form code search. EMSE

Sisman B, Kak AC (2013) Assisting code search with automatic query reformulation for bug localization. In:
Proceedings MSR, pp 309–318

Svajlenko J, Roy CK (2018) Fast, scalable and user-guided clone detection. In: Proceedings ICSE-c, pp
352–353

Svajlenko J, Islam JF, Keivanloo I, Roy CK, Mia MM (2014) Towards a big data curated benchmark of
inter-project code clones. In: Proceedings ICSME, pp 476–480

Thongtanunam P, Kula RG, Yoshida N, Iida H, Matsumoto K (2015) Who Should Review my Code? In:
Proceedings SANER, pp 141–150

Thummalapenta S, Xie T (2007) Parseweb: a programmer assistant for reusing open source code on the web.
In: Proceedings ASE, pp 204–213

Thung F, Lo D, Lawall J (2013a) Automated library recommendation. In: Proceedings WCRE, pp 182–191
Thung F, Wang S, Lo D, Lawall J (2013b) Automatic recommendation of API methods from feature requests.

In: Proceedings ASE, pp 290–300
Toutanova K, Manning CD (2000) Enriching the knowledge sources used in a maximum entropy part-of-

speech tagger. In: Proceedings EMNLP, pp 63–70
Vassallo C, Panichella S, Di Penta M, Canfora G (2014) Codes: mining source code descriptions from

developers discussions. In: Proceedings ICPC, pp 106–109
Wang S, Lo D (2014) Version history, similar report, and structure: Putting them together for improved bug

localization. In: Proceedings ICPC, pp 53–63
Wang S, Lo D, Jiang L (2014) Active code search: incorporating user feedback to improve code search

relevance. In: Proceedings ASE, pp 677–682
Wang Y, Wang L, Li Y, He D, Liu T (2013) A theoretical analysis of NDCG type ranking measures. In:

Proceedings COLT, pp 25–54
Warr FW, Robillard MP (2007) Suade: topology-based searches for software investigation. In: Proceedings

ICSE, pp 780–783
Wong E, Yang J, Tan L (2013) AutoComment: mining question and answer sites for automatic comment

generation. In: Proceedings ASE, pp 562–567
Xia X, Bao L, Lo D, Kochhar PS, Hassan AE, Xing Z (2017) What do developers search for on the web?

EMSE 22(6):3149–3185
Xie T, Pei J (2006) MAPO: mining api usages from open source repositories. In: Proceedings MSR, pp 54–57
Yang J, Tan L (2012) Inferring semantically related words from software context. In: Proceedings MSR, pp

161–170

Empirical Software Engineering

Yuan T, Lo D, Lawall J (2014) Automated construction of a software-specific word similarity database. In:
Proceedings CSMR-WCRE, pp 44–53

Zhang F, Niu H, Keivanloo I, Zou Y (2017) Expanding queries for code search using semantically related
api class-names. TSE, page to appear

Mohammad M. Rahman is a PhD Candidate at University of
Saskatchewan, Canada. He received an MSc in Computer Sci-
ence/Software Engineering fromUniversity of Saskatchewan in 2014.
Masud is interested in automated software debugging, concept loca-
tion, Internet-scale code search, and code reviews. In his works,
Software Engineering meets Information Retrieval, Machine Learn-
ing, Data Mining and Large-scale Data Analytics. His works got
published in most of the top venues of Software Engineering (e.g.,
ICSE, ESEC/FSE, EMSE, ASE, ICSME, and MSR) and were also
nominated for the best paper awards. Masud has been awarded pres-
tigious awards such as Dr. Keith Geddes Award 2017 and President
Gold Medal 2010. He is a regular reviewer of top SE conferences
(e.g., ICSME, MSR) and journals (e.g., TOSEM, JSS). Masud has
also been serving in the organizing committee of several reputed
international conferences (e.g., ICPC 2018, SCAM 2019).

Chanchal K. Roy is an associate professor of Software Engineer-
ing/Computer Science at the University of Saskatchewan, Canada.
While he has been working on a broad range of topics in Computer
Science, his chief research interest is Software Engineering. In partic-
ular, he is interested in software maintenance and evolution including
clone detection and analysis, program analysis, reverse engineering,
empirical software engineering, and mining software repositories. He
served or has been serving in the organizing and/or program com-
mittee of major software engineering conferences, and has been a
reviewer of major Computer Science journals. He received his Ph.D.
at Queen?s University in 2009.

David Lo received his PhD degree from the School of Computing,
National University of Singapore in 2008. He is currently an Asso-
ciate Professor in the School of Information Systems, Singapore
Management University. He has more than 10 years of experience
in software engineering and data mining research and has more than
200 publications in these areas. He received the Lee Foundation and
Lee Kong Chian Fellow for Research Excellence from the Singa-
pore Management University in 2009 and 2018, and a number of
international research and service awards including multiple ACM
distinguished paper awards for his work on software analytics. He
has served as general and program co-chair of several prestigious
international conferences (e.g., IEEE/ACM International Conference
on Automated Software Engineering), and editorial board mem-
ber of a number of high-quality journals (e.g., Empirical Software
Engineering).

	Automatic query reformulation for code search using crowdsourced knowledge
	Citation

	Automatic query reformulation for code search using crowdsourced knowledge
	Abstract
	Introduction
	Novelty in Contribution
	Structure of the Article

	Exploratory Study
	Data Collection
	API Class Name Extraction
	Answering RQ1: Use of APIs in the Accepted Answers of Stack Overflow
	Answering RQ2: Coverage of API Classes in the Accepted Answers from Stack Overflow Q & A Site
	Answering RQ3: Presence of Code Search Keywords in the Title of Questions from Stack Overflow

	RACK: Automatic Reformulation of Code Search Query Using Crowdsourced Knowledge
	Construction of NL Token-API Mapping Database
	Token Extraction from Titles
	API Class Extraction
	Token-API Linking

	API Relevance Ranking & Reformulation of the NL-Query
	Identification of Keyword Context
	Candidate API Selection
	Keyword-API Co-occurrence (KAC)
	Keyword Pair–API Co-occurrence (KPAC)
	Keyword–Keyword Coherence (KKC)

	API Relevance Ranking Algorithm
	API co-occurrence likelihood
	API coherence
	Working Example

	Experiment
	Experimental Dataset
	Data Collection
	Gold Set Development
	Corpus Preparation
	Replication

	Performance Metrics
	Top-K Accuracy/Hit@K
	Mean Reciprocal Rank@K (MRR@K)
	Mean Average Precision@K (MAP@K)
	Mean Recall@K (MR@K)
	Query Effectiveness (QE)
	Normalized Discounted Cumulative Gain (NDCG)

	Evaluation Scenarios
	Statistical Significance Tests
	Matching of Suggested APIs with Goldset APIs
	Answering RQ4: How Does the Proposed Technique Perform in Suggesting Relevant APIs for a Code Search Query?
	Answering RQ5: How Effective are the Proposed Heuristics–KAC, KPAC and KKC– in Capturing the Relevant API Classes for a Query?
	Answering RQ6: Does an Appropriate Subset of the Query Keywords Perform Better than the Whole Query in Retrieving the Relevant API Classes?
	Answering RQ7: How do the Heuristic Weights (i.e., ,) and Threshold Settings (i.e., ,) Influence the Performance of our Technique?
	Answering RQ8: can RACK Outperform the State-of-the-Art Techniques in Suggesting Relevant API Classes for a Given Set of Queries?
	Answering RQ9: can RACK Significantly Improve the Natural Language Queries in Terms of Relevant Code Retrieval Performance?
	Answering RQ10: can RACK Outperform the State-of-the-Art Techniques in Improving the Natural Language Queries Intended for Code Search?
	Answering RQ11: How Does RACK Perform Compared to the Popular Web Search Engines and Code Search Engines?
	Collection of Search Results and Construction of Oracle
	Comparison Between Initial Search Results and Re-ranked Results Using the Reformulated Queries

	Threats to Validity
	Threats to Internal Validity
	Threats to External Validity
	Threats to Construct Validity
	Threats to Statistical Conclusion Validity

	Related Work
	API Recommendation
	API Usage Pattern Recommendation
	Query Reformulation for Code Search
	Crowdsourced Knowledge Mining

	Conclusion & Future Work
	References

