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ABSTRACT

Effective traffic management can help port operators gain a competitive edge in service level and efficient
use of limited resources. One critical aspect of traffic management is gate operations management, ensuring
a good customer experience to logistic carriers and considering the impact of congestion in and around
the port. In this paper, we describe the design and implementation of a decision support tool to help gate
operators plan for future scenarios with fluctuating demand and limited resources. We propose a simulation-
optimization framework which incorporates theoretical results from queuing theory to approximate complex
multi-lane multi-server systems. Our major contribution in this paper is the demonstration that the proposed
design, when coupled with real data, can indeed help port operators improve their performances. To provide
concrete real-world evidence that such technology has benefits, we have tested the system operationally
since December 2017 and present the results and analysis in this paper.

1 INTRODUCTION

Port operations and logistics are integral parts of global supply chains. There are many subsystems of a
port that may be optimized as smaller but decomposed units. For example, ship berthing and yard usage
have been studied a great deal in literature (Bierwirth and Meisel 2015). An interesting, yet complex
subsystem of the port is the gate system, which is made up of a combination of multiple gates in parallel or
in sequence or both. The gates are a crucial link and a potential bottleneck that may lead to large queues,
running up to a few kilometers either in or out of the port. On one hand the gate operators have to ensure
a good service experience to their customers (logistics carriers); on the other hand they have to adhere to
strict safety procedures perhaps even relevant to national security. For many Asian countries with busy
ports, port infrastructure is a scarce resource. When facing high congestion under high demand, increasing
the number of lanes at a gate or increasing the number of gates itself is not often a feasible solution due
to land or budget constraints. In addition, the staffing of gates requires trained labor, which is also an
expensive resource. Hence, optimization of gate operations, particularly lane management, is an important
area to explore, considering its impact on overall port operations.

We first introduced this problem in our previous work (Kulkarni et al. 2017). The first part of this project,
presented in the previous work, detailed our study to understand the gate operations through historical data
analysis and field surveys. It explained how the discrete-event simulation model was built. Specifically, we
described how a simulation-optimization heuristic approach was applied to solve the optimization problem
of lane management. In this paper, we describe the second part of this project, that is, how the simulation
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model has been incorporated into a decision support tool, along with an optimization solver. We have
developed a mathematical model that solves the problem exactly, using an Integer Linear Programming
(ILP) solver. This exact formulation is part of the engine of the tool. We also describe how this tool was
designed, implemented and finally tested under multiple scenarios at the port. The results from the field
trials are analyzed to quantitatively demonstrate the value of the tool. We now provide a brief description
of the system that is being modeled.

The port in our study uses different freight vehicles (trucks) to bring cargo to and from vessels (ships).
There are multiple gates at different locations for entry and exit of these freight vehicles. Since this is a
multipurpose port, the vehicles are varied. The services required by a vehicle depend on the type of cargo
they carry and hence service time is a function of vehicle type. Each vehicle needs to undergo multiple
kinds of services, such as driver identification and cargo verification. A checkpoint may provide only one
kind of service at the gate and hence a vehicle is required to visit multiple checkpoints before entering or
exiting the port. The choice of lane or gate does not affect the service time. The tool described in this
paper has been developed for deployment at the main gate of the port, for managing the exit lanes. These
lanes are used by vehicles to exit the port, carrying various types of cargo. There are multiple identical
lanes in parallel, each with multiple successive checkpoints. Every vehicle needs to pass through these
checkpoints in sequence. More details on the layout are presented in Section 3.1. The rest of the paper is
organized as follows. The next section presents a literature review of related work. Section 3 describes
the tool and its various components. Sections 4 and 5 present the details of the field trials along with the
analysis of collected data from these trials. Section 6 concludes the paper.

2 RELATED WORK

Optimization of port operations and the tools for port planning are gaining importance in research. As
Lee et al. (2012) describe in their study, use of Information Technology (IT) based tools and services can
lead to a better customer experience, while ensuring that all regulations are complied with. For example,
informing logistics carriers of expected latency time at gates while they are still inside the port, can help
them plan their routes or breaks. The authors provide a useful conclusion based on empirical studies, that
planning tools or e-Transformation can help ports in retaining competitiveness while ensuring customer
satisfaction. In our previous work (Kulkarni et al. 2017), we conducted a literature review on diverse
streams of research relevant to port operations and in particular, to port gate simulation and optimization.
In this paper, we refer to other efforts on developing mathematical models along with simulation techniques
to solve real problems. We are especially interested in cases where the research has been applied using
actual data.

Melamed et al. (2016) describe a version of Little’s law adapted for finite horizon scenarios. They
discuss how the traditional form of the law, which is used under the assumption of long term steady state
behavior, can be adapted to analyze finite horizon data. Most real systems would require analyzing data
over limited time horizons, since observation periods are finite. However, Melamed et al. (2016) do not
apply the findings to a real case study. In our work, we do apply similar insights in analyzing the vehicles
in the system over finite horizons. This is described in detail in Section 3.2.

Kim and Whitt (2013) provide a useful statistical approach in estimating sojourn times, given the queue
length and arrival rate. They use output from a simulation model to improve estimates. They compare
estimates obtained from various methods, and observe that there is strong merit in statistical analysis using
simulation models. They also use data from a real system to compare different approaches. However, while
this approach is useful for analyzing data, it cannot be directly incorporated into an optimization framework.
This is because using the expressions in an optimization model requires expressing the parameters in terms
of decision variables. Often, the resulting constraints would introduce non-linearity, so that the optimization
problem is hard to solve using existing LP solvers. In this paper, we describe some approximations essential
for ensuring that the model remains “solvable” in reasonable time.
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3 TOOL DESIGN

This section discusses the design and implementation of our decision support tool for gate system operations.
Figure 1 shows the various aspects of the tool at a glance.

Figure 1: Tool design at a glance.

The inputs to the system include the layout of the gate, existing scheduling policies, historical data on
vehicle arrivals and service rates and other inputs from field studies. The engine contains two blocks: the
simulation and the optimization units. The discrete-event simulator is built using Java libraries. The Key
Performance Indicators (KPIs) are the average time spent in system (sojourn time) and average waiting time.
The optimization component generates a schedule that gives the number of lanes to be open in each hour
of the day. It is coded in Java and run using the CPLEX solver. The objective function is to minimize the
resources used, that is, the number of open lanes, while ensuring that the sojourn time is within acceptable
limits. The output from the simulation and optimization units can be viewed using the tool’s visualization
panels, where the various KPIs are organized in different categories. The visualization has been developed
using Bootstrap for user interface (UI) elements such as buttons, date picker and sliders, Plotly for drawing
diagrams and jQuery for communicating with the engine (back-end) and updating UI dynamically. The
tool also allows users to perform various what-if scenarios, by varying different input conditions manually.
Multiple scenarios can be analyzed together for comparison. Each component of this tool is now described
in detail.

3.1 Simulation Functionality

The simulation unit is a discrete-event simulator developed in Java using queuing libraries. The model is
intended to capture the structure and operational practices at the port gate, along with stochastic elements
such as vehicle arrivals and service rates. Figure 2a shows a typical gate structure. The gate consists of
multiple identical lanes in parallel, each with several checkpoints in series. The choice of lane by the
vehicle does not affect the service rates. The simulation not only captures the current layout of the port gate,
but is also flexible enough to incorporate future changes, such as the number of checkpoints or number of
lanes or the order of the checkpoints. This model is capable of being extended to simulate a larger, more
complex gate system as well, involving more than one gate. The multiple-gate system can be modeled as
a network of gates, where vehicles may be required to enter another gate after exiting the previous gate,
as shown in Figure 2b. This is useful for the port management to study and understand the impact of any
planned infrastructural changes to the gate.
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(a) Simulation structure. (b) Network of gates.

Figure 2: Gate structure and network of gates.

The simulator can work as a standalone functionality or in combination with the optimization unit,
simulating the output of the optimizer. The optimizer has been integrated into the simulation framework
to facilitate usage of common inputs of service and arrival parameters.

3.2 Optimization Functionality

The second main component of the tool is the optimizer which solves the lane schedule optimization
problem for a period of 24 hours, generating the number of lanes required to be open in each hour. The
complexity lies with the fact that it is a multi-period problem where vehicles that do not finish their service
in a given time period continue their service in the next subsequent time period. This section presents some
discussion on the mathematical formulation. Details of how this model has been developed are beyond the
scope of this paper, which focuses on how the techniques have been implemented as a tool and tested at
an actual port.

The system under consideration is stochastic in terms of the arrival of different types of vehicles in
each hour of the day and the service rate at the various checkpoints in the system. While these aspects
are quite easily captured by the simulation model, suitable approximations need to be made in order to
operate with an exact optimization model. The planning horizon is divided into 24 periods and the vehicle
arrivals are approximately Poisson processes in each hour. Since the system is stochastic, it is impossible
to know the precise number of vehicles in each hour or the exact service time of each vehicle. Therefore,
in order to have a “solvable” mathematical model, an approximation of these two parameters are required.
As mentioned previously, the optimization is a plug-in in the simulation environment and has access to the
common inputs. We use the Random Number Generator (RNG) in the simulator to generate realizations
of random variables that represent the stochastic arrival and service processes, for any given time period
t in the planning horizon. This means, the optimization model is solved for a given number of vehicles
of different types arriving in each hour, where the number is obtained by sampling from the distribution
representing the stochastic arrival process. The formulation is now described in detail, starting with the
notation and symbols described in Table 1. The set of all lanes is L, set of time periods is T and set of
vehicles is V .
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Table 1: Notations and symbols.

Parameters Decision Variables
βl Cost of opening lane l xtl 1 when lane l is open in time t, and 0 otherwise
αt Penalty for unserved vehicle in time

t
ηt Number of vehicles not served at the end of time t

λ t
v Number of vehicles of type v arriv-

ing in time t (n)
ytlvn 1 if vehicle n of type v is assigned to lane l in time

t, and 0 otherwise
W ∗ Acceptable sojourn time Zt

v Sum of vehicles arriving in t and unserved vehicles
from t−1

Wlt Average sojourn time in lane l in
time t

min ∑
t∈T

∑
l∈L

(βl ∗ xtl +αt ∗ηt) (1)

subject to ∑
l∈L

ytlvn ≤ 1 ∀t ∈ T,v ∈V,n = 1, . . . ,Zt
v (2)

∑
l∈L

xtl ≥ 1 ∀t ∈ T, (3)

∑
v∈V

λ
t
v− ∑

l∈L,v∈V

Zt
v

∑
n=1

ytlvn = ηt ∀t ∈ T (4)

Zt+1
v = λ

t+1
v +ηt ∀v ∈V, t ∈ T (5)

Wlt ≤W ∗ ∀t ∈ T, l ∈ L (6)

ηt ≥ 0 ∀t ∈ T (7)

xtl,ytlvn ∈ {0,1}∀t ∈ T, l ∈ L,v ∈V (8)

The objective function (1) minimizes the number of open lanes in each hour and penalizes the number
of vehicles not served at the end of each time period. We consider all lanes to be identical and hence the
operating cost of any lane is the same. However, to ensure that minimum number of lanes are opened in
each hour, we use βl . For the first lane, β1 is 1, which ensures that it is always open. For each subsequent
lane, βl = 100∗βl−1. Therefore, the cost of opening an additional lane when one lane is already open, is
quite high (for modelling purposes). Compared to βl , the values of αt are much smaller. This term penalizes
any vehicles left without service in time period t. When the traffic is significantly low, for example, around
early morning (1am-5am), the model is expected to open lesser lanes. During peak hour traffic, the model
suggests higher number of lanes. However, during intermediate traffic hours, there is a trade-off between
opening new lanes versus allowing vehicles to carry over into the next time period. The parameter αt is
useful to control model behaviour during such hours.

Constraint (2) ensures that each vehicle is assigned to at most one lane. Constraint (3) ensures that at
least one lane is open in any given hour of the day. Constraints (4) and (5) count the number of vehicles
that arrived in time period t but cannot be served and carried over to the next subsequent time period.
Constraint (6) enforces that the average observed sojourn times are lesser than the system threshold for
sojourn time for each lane.

We will now briefly describe how the sojourn times are approximated for each lane. From Gautam

(2012), the expression for average queue length for an M/G/1 queue is obtained as L = ρ + λ 2

2

σ2+ 1
µ2

1−ρ
, where

λ is the long run arrival rate, ρ = λ

µ
is the utilization, mean service time is 1

µ
with variance σ2. From
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Little’s Law, it is known that Wlt =
Llt
λlt

in the long run. Combining the two formulas, the average sojourn
time can be expressed in terms of parameters λ and µ as shown below.

Wlt =
1
µ
+

λlt

2

(σ2 + 1
µ2 )

1−ρlt
(9)

In Eqn (9), λlt represents the number of vehicles assigned to lane l in time t and ρlt is the utilization
for lane l. Note that unlike λ the parameter µ is not time-varying and is identical across lanes as well.
Also, a single-server approximation is made to represent the multiple servers (checkpoints) in a lane. Since
service time depends on vehicle type, the single-server approximation 1

µ
depends on the mix of vehicles

assigned to the lane.
Lastly, we end this discussion on optimization by presenting the ranges and some likely values for the

parameters mentioned in the model in Table 2. For the output and intermediate parameters like ηt and Zt ,
the values mentioned are summarized observations obtained after running the model, for the given weeks
of trial. The range mentioned for λ t

v is across all vehicle types. The ranges for individual vehicle types are
in between this range.

Table 2: Likely values for model parameters.

Sets Parameters Intermediate ranges
L 1,. . . ,6 W ∗ 5,. . . ,10 min λ t

v 1,. . . ,100 (for different v)
T 1,. . . ,24 αt 1,. . . ,10 ηt 0,. . . ,20
V 1,. . . ,4 Zt

v 10,. . . ,250

3.3 Role of Queuing Theory and Simulation

While simulation is useful in performing what-if analysis, in order to get recommendations for lane schedules,
an optimization framework is required. To capture and integrate the parameters related to waiting, service
and arrivals within the optimization model, we use queuing theory as described in the sections so far. To
make this model computationally efficient, certain approximations are made, so that closed form queuing
expressions can be used. This helps to ensure that the mathematical formulation remains linear, thereby
increasing computational tractability. However, in reality, the system is not M/G/1. It consists of multiple
checkpoints (servers) in each lane. Further, there is a finite space between the checkpoints, where vehicles
may wait. Capturing a system with multi-class non-homogeneous Poisson arrivals and multiple sequential
servers with spaces in between them using analytic expressions is extremely challenging and also results
in highly non-linear expressions. These effects have been modeled with relative ease in the simulation
framework. Hence the role of queuing theory is to efficiently find solutions (lane schedules) while making
suitable approximations, and the role of simulation is to evaluate the efficacy of these solutions (as well
as other scenarios) against the ‘real’ system.

The process of validating results using simulation is now briefly described. The lane schedule from
the optimization model is tested by using it as an input in the simulation model along with the expected
vehicle arrival patterns obtained from historical data inference. Given the various sources of stochasticity
(service times at multiple checkpoints and arrival rates for different types of vehicles) as well as the finite
spaces in between servers for waiting, the solution robustness is checked by running the simulation over
multiple replications. The waiting times reported by the tool are averages obtained over these multiple
replications on multiple runs. This analysis then allows the user to view expected hourly performance. In
case the user is not satisfied by the expected waiting times in a particular hour, they have the option of
making manual edits to the schedule in that hour. Following this, the modified schedule may be simulated
again, to ensure that desired performance is obtained in each hour.
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The third main component of the tool is the KPI calculation and visualization. An analysis dashboard
is developed for this purpose. This is described in the next subsection.

3.4 Analysis Dashboard

An important feature of any simulation tool is capturing the performance metrics for comparison and
analysis. As mentioned earlier, sojourn time of vehicles is an important metric. There are four main panes
on this panel. The first one on the right top corner gives the summary of vehicles that were simulated
over 24 hours under this scenario. The vehicles are arranged by vehicle type. The second pane in the top
row (left top corner) gives a visual display of sojourn times for each lane over 24 hours. A darker red or
pink color indicates higher sojourn times. The actual names of vehicle types and the y-axis of plots has
been masked to maintain client data confidentiality. The bottom right pane displays the lane operations
schedule that was simulated in this scenario, indicating how many lanes were open in each hour. Finally,
the bottom left pane shows the sojourn times. The default view shows the average sojourn time in each
hour for all vehicles in the system. The user has the option of selecting a particular vehicle type to view
the average sojourn time experienced by vehicles of the particular type. For example, the tool allows the
user to see the average time spent by vehicles of type T1 in the system. Examples of the dashboard are
shown as part of the analysis of field trials in subsequent sections.

4 FIELD TRIAL

We conducted a field trial in a local port to verify our system. Firstly, the simulation module was tested,
by observing how effectively the tool captured the system behavior, given the input data. Secondly, a
lane management schedule, indicating the number of lanes open in any given hour, was generated by the
optimization tool based on observed and simulated behavior for a week. The schedule was recommended to
the planner for ground execution and the performance of the schedule was quantified based on the average
time in system for different vehicle types, as well as the number of lanes used for the trial period. The
trials were carried out in two phases. In the first phase, the users (gate planners) were assisted in operating
the tool. The second phase of the trial involved independent use of tool by the operators. Both these trials
are described next.

4.1 Assisted Field Trial

This trial was carried out over four days of two successive weeks. The data from the first week was used to
create the baseline scenario, based on which recommendations were generated using the optimization tool for
the second week. The KPI were observed over both weeks to test the effectiveness of the recommendations.
Two days (referred to as Day 1 and Day 2) of each week were selected as days of observation, since
prior data analysis revealed higher traffic on these days of the week. After the data collection from survey
for two days of week 1, the data was analyzed and compared with the historically available data for the
same period. It was observed that the current demand patterns at the port were higher than the historical
values. Particularly, there was a higher traffic of T1 vehicles than usual. Hence the input to the simulation
was based on the current traffic trend, not the historical values. No records are available for service times
at certain checkpoints. The simulation tool works on the service times based on surveys conducted over
different months in 2017. During the current trial, these values were observed again, to check for any
substantial changes in service behavior. It was noticed that while most values remained close to previously
noted values, the service times for T2 and T3 vehicles did show changes. These values were modified to
reflect the current practices.

After updating the inputs to the simulation model and verifying that current demand patterns were
represented as accurately as possible, the tool was then used to generate schedule recommendations. These
recommendations were forwarded to the users, who implemented them for the second week of the trial.
After running the optimization model, the tool gave recommendations for lane opening and closing. These
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recommendations were then simulated multiple times to ensure that the average time in system is lesser
than or equal to 5 minutes for any hour of the day. The tool further allows to manually improvise on the
recommended schedule to reduce waiting time for certain hours of the day or to incorporate any operational
features that are not in the current model. For example, certain checkpoint operators prefer to have a partial
lunch hour between 1-2pm. This was manually incorporated into the optimization recommended schedule
and thoroughly tested to meet system requirements. The recommendations were only generated for the
hours of 8am-4pm due to the limitation on availability of volunteers for observation.

4.2 Analysis of Assisted Field Trial

In the first part of this section, we present the results from paired t-testing. For the given study, there
were two sessions of observations on each day: morning (M) and afternoon (A). Around 400 vehicles
were surveyed on each day. Also, as previously mentioned, there are 4 vehicle types under consideration.
The data is sorted into categories based on observation session and vehicle type. Since it is impossible to
compare values for each individual vehicle, averages for each “vehicle type-session” are compared instead.
The data for Day 1 and Day 2 of week 1 are paired with the respective Day 1 and Day 2 of week 2. Table 3
shows the sorting of data and pairing of the days for testing.

Table 3: Paired T-test: Sorting data for comparison.

Vehicle Average sojourn time (sec) Difference Average sojourn time (sec) Difference
and slot Day 1-Week 1 Day 2-Week 2 d1−d2 Day 1-Week 2 Day 2-Week 2 d1−d2

T1 - M 31 31 0 25 30 -5
T1 - A 28 21 7 26 21 5
T2 - M 171 123 48 165 149 16
T2 - A 141 171 -30 199 199 0
T3 - M 335 252 83 289 208 81
T3 - A 184 179 5 227 167 60
T4 - M 294 218 76 163 181 -18
T4 - A 161 103 58 104 86 18

The null hypothesis for this test is that any difference in observations from the weeks can be attributed
to chance. That is, the data in week 2 is not significantly different from the data in week 1. The level
of significance (α) for this test is 0.05. The p-values obtained were higher than 0.05. Therefore, the
conclusion is that any difference in observation is likely due to chance and the difference in data is not
statistically significant. This test helps us establish that the reduction in lane-hours did not worsen the
system performance. Table 4 shows the comparison of recommended schedules with default operating
practices. From the discussion so far, we have obtained that the difference in average sojourn times was
not statistically significant. We further see that the recommended schedules use fewer hours to obtain this
performance, and hence are more efficient than the default.

Table 4: Tool recommended schedule.

Regular Recommended schedule from 8am-4pm
Lane-hours Day of week Proposed lane-hours % saving Sojourn time difference

24 Day 1 21 12.5 not significant
24 Day 2 21 12.5 not significant

Although the results of statistical testing indicate that the observations over two weeks are not statistically
different, visual inspection of data hinted that the values for Day 2 in week 2 are less than the corresponding
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values in week 1. We ran simulation experiments to understand this change better. Apart from the reduced
lane-hour schedule, the recommendation for Day 2 also included shifting the lunch hour from the usual
1-2pm slot to 12-1pm instead. The simulation runs were set up as follows. Each simulation run was for
30 virtual days and 10,000 replications. For each scenario, 30 such simulation runs were performed. The
average sojourn time obtained at the end of these 30 runs is reported in this section. For a given schedule,
two different scenarios were tested; one with the lunch hour from 1-2pm and the other with the lunch
hour moved to 12-1pm. In Figures 3a and 3b, the darker columns indicate the average time in system for
vehicles observed for the schedule without shifting the lunch hour (default).

(a) T3 sojourn times. (b) T2 sojourn times.

Figure 3: Peak hour sojourn times.

The grey columns show the average time in system after moving the lunch hour (recommended). It is
clear from the figures that minor shifts in lunch hours can bring down the average sojourn times around that
time. This effect is higher for certain vehicle types. This was an important takeaway from the trial, since
it showed that even if the total number of lane-hours are similar, impact can be obtained by rescheduling
breaks.

5 INDEPENDENT FIELD TRIAL

In the second phase of the field trial, the tool was used by the user independently who had been trained on
tool operations in generating schedules, importing new data, manipulating inputs and using the analysis
dashboard. This trial was conducted for a period of one week. The week of trial was a low demand period
for the port and hence expected traffic was less than normal. However, different days of the week allowed
for experimenting with various scenarios. While three of the five days were regular days with normal
operations, the gate operators decided to schedule planned maintenance activities on two days. Historical
data analysis has shown that traffic is not uniform across the week; the two days chosen for maintenance
were expected to have higher traffic as compared to other days. However, due to availability of maintenance
staff, the downtime had to be scheduled on the relatively higher traffic days. This was useful in testing the
tool’s capabilities of helping understand impact of planned downtime.

5.1 Analysis of Independent Trial

We report the results obtained from the one week of trial. The baseline for comparison is the data from
the previous week, since historical analysis and current trend study showed that these two weeks are likely
to experience similar demand. The default lane schedules are the operational schedules that were used in
the previous week. A discussion with the users confirmed that if not for the tool recommendations, they
were likely to use the same schedules in the current week as well. While analyzing each day, three main
metrics were compared between the two weeks: the number of open lanes, the vehicles arrivals, and the
average sojourn time. Figures 4a and 4b show the analysis where operating schedules and vehicle arrivals
are compared for the two Mondays. It is observed that the vehicle arrivals (or demand patterns) are fairly
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similar in both cases, validating the assumptions made by the user. The actual values have been re-scaled
for confidentiality.

(a) Lane schedule comparison. (b) Vehicle arrival comparison.

Figure 4: Comparison of simulation inputs.

Figures 5a and 5b show the comparison between the average sojourn times over 24 hours. It is observed
visually that for the trial week, there are fewer peaks of sojourn time. However, this could also be attributed
to the slight variation in demand patterns. Overall, the more reliable metric once again is that the difference
in observations are not statistically significant. Similar analyses were performed for all days of the week
and the tool was able to recommend schedules that were more efficient, without affecting service levels.

(a) Average sojourn time for default schedule.
(b) Observed average sojourn time using recom-
mended schedule.

Figure 5: Analysis of outputs from simulation.

Table 5 shows the summary of the schedule recommendations for the week of the trial. The days of
the week are numbered and presented out of order for confidentiality. Around 100 vehicles were surveyed
during peak hours on each day. As is seen, the proposed schedules always recommended lesser lane-hours
than the default operating practice. Day 1 recorded the highest resource saving of 16.6%.

Table 5: Schedules generated by user.

Regular Day of Proposed Sojourn time
Lane-hours week lane-hours % saving Type difference

48 Day 1 40 16.6 Regular not significant
48 Day 2 42 12.5 Regular not significant
44 Day 3 42 4.5 Planned maintenance not significant
44 Day 4 42 4.5 Planned maintenance not significant
52 Day 5 44 15.4 Regular not significant
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5.2 Analysis of Planned Maintenance

This second phase of trial allowed for experimenting with planned downtime. This gave the user multiple
options: either to manually enter a schedule and check for consequences without using optimization, or
obtain an optimized solution and make manual adjustments to reflect the planned downtime. In either
case, this is an iterative process, where the user fine-tunes the schedule. We had two such sessions where
downtime was planned: Day 3 morning and Day 4 afternoon. We present the analysis of the Day 4
session. Figure 6 shows the average sojourn times evaluated by the tool after taking into account the
planned downtime, along with the schedule and vehicle arrivals expected. The user had chosen to use the
optimization feature and then manually close the lanes under maintenance. The planned downtime was
between 1-4pm. The tool showed that high waiting times of 15-20 minutes may be expected between
2-3pm. It was observed that 13 vehicles experienced high waiting between 2-3pm (above 5 minutes).

Figure 6: Average sojourn times for Day 4.

At least 5 vehicles waited for 10 or more minutes and the worst sojourn time observed was 20.43
minutes. The impact of the lane closure reduced significantly after 3pm, finally achieving required service
levels around 3.30pm. This observed performance closely matched the scenario analysis by the tool and
hence the user was able to prepare in advance for the situation. This was evident by the actions taken by
the gate operators: knowing beforehand that vehicles could end up waiting 15-20 minutes during 2-3pm,
they had prepared an additional lane in another area to facilitate service of certain vehicle types, so that
long queue build could be tackled if needed.

6 CONCLUSION

The objective of this study was to develop a decision support tool for gate operators at a multi-purpose
port. A simulation and optimization based tool was designed and implemented to suggest lane operating
schedules based on demand and service patterns. Two rounds of field trials were conducted to gauge the
impact and usability of the tool. The tool was able to provide recommendations that were more efficient than
default practices, by suggesting lesser use of resources (lanes). Statistical testing ensured that service level
was not adversely affected by reduction of resources. The tool also helped evaluate downtime scenarios,
enabling user to plan for unavoidable queues in advance.

7 FUTURE WORK

This tool and solution framework have been successfully adapted to suit the port operations. Work is
ongoing to generalize the framework for other related applications such as airport immigration or fast food
service counters. The exact mathematical model works reasonably well for small scale systems. However,
for potentially larger systems requiring a faster response, a heuristic based approach is being worked on.
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