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Abstract—Upon the occurrence of a phenomenon of interest
in a wireless sensor network, multiple sensors may be activated,
leading to data implosion and redundancy. Data aggregation
and/or fusion techniques exploit spatio-temporal correlation
among sensory data to reduce traffic load and mitigate conges-
tion. However, this is often at the expense of loss in Information
Quality (IQ) of data that is collected at the fusion center.

In this work, we address the problem of finding the least-
cost routing tree that satisfies a given IQ constraint. We note
that the optimal least-cost routing solution is a variation of the
classical NP-hard Steiner tree problem in graphs, which incurs
high overheads as it requires knowledge of the entire network
topology and individual IQ contributions of each activated sensor
node. We tackle these issues by proposing: (i) a topology-aware
histogram-based aggregation structure that encapsulates the cost
of including the IQ contribution of each activated node in
a compact and efficient way; and (ii) a greedy heuristic to
approximate and prune a least-cost aggregation routing path.
We show that the performance of our IQ-aware routing protocol
is: (i) bounded by a distance-based aggregation tree that collects
data from all the activated nodes; and (ii) comparable to another
IQ-aware routing protocol that uses an exhaustive brute-force
search to approximate and prune the least-cost aggregation tree.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) comprise of large num-
bers of sensor nodes that are deployed in the terrain to
sense physical phenomena of interests (PoIs) [1] and transmit
the sensed data to one or more centralized sinks for real-
time processing and decision-making [2]. These networks can
be used for a multitude of applications, such as healthcare
monitoring and tactical surveillance. However, the successful
deployment and maintenance of sensor networks is challenged
by several factors, such as temporal link connectivity as well
as limited bandwidth, energy and processing capabilities.

We focus on a particular class of sensor networks that is
deployed specifically for the detection of PoIs. Such networks
have convergecast traffic characteristics [3] and are considered
to be event-driven as sensory data is typically generated
only when the PoI is detected. Upon the occurrence of a
PoI (such as a fire hazard or an elderly person falling in
a monitored home environment), multiple sensors may be
activated concurrently. This may lead to severe data implosion
and redundancy [4], especially in extremely dense networks.

To mitigate the effects of congestion and reduce medium
access contention, data aggregation and/or fusion techniques
are often used to suppress data from multiple sensor sources.

These schemes exploit spatio-temporal correlation among sen-
sory data to reduce traffic load and energy consumption. How-
ever, this often comes at the expense of loss in information
quality (IQ) of data that is collected at the fusion center.
In event-driven sensor networks, this is equivalent to a loss
in (event) detection accuracy, which results in overall lower
system and network reliability. As such, there exists an obvious
trade-off between information quality and energy efficiency in
data aggregation and/or fusion schemes [5].

We address the problem of finding a least-cost routing tree
that satisfies a given IQ constraint, noting that the optimal
least-cost routing solution is a variation of the classical NP-
hard Steiner tree problem in graphs [6]. In the context of event-
driven sensor networks, the original Steiner tree problem is to
find a Steiner Minimum Tree that spans the fusion center and
entire set of activated sensor nodes (denoted as Va) that detect
the PoI. However, it is unnecessary and expensive for all the
sensors in Va to transmit their data to the fusion center.

Ideally, an IQ-aware event-driven routing scheme only needs
to aggregate sufficient sensory data from a subset of activated
nodes Vτ ⊆ Va to meet the IQ constraint. We refer to this
as a subset-τ Steiner Tree (SST) problem. Clearly, the latter
is a harder problem than the Steiner tree, as the: (i) set of
activated nodes Va and IQ contribution of each activated node
are not known a priori until the PoI occurs; and (ii) subset
of activated nodes Vτ whose aggregated IQ meets the given
constraint is not unique. Knowledge of the entire network
topology and individual IQ contributions of each activated
sensor node are quintessential to find the least-cost SST that
satisfies the required IQ. Unfortunately, this incurs extensive
computational, storage as well as communication overheads,
and is not a feasible approach in resource-constrained WSNs.

We tackle the fundamental issues in constructing an optimal
least-cost SST in an IQ-aware event-driven sensor network
by proposing: (i) a topology-aware histogram-based aggre-
gation structure that encapsulates the cost of including the
IQ contribution of each activated node, in a compact and
efficient way; and (ii) a greedy heuristic to approximate and
prune a least-cost aggregation routing path. The proposed IQ-
Aware Routing (IQAR) protocol constructs an initial distance-
based aggregation tree that spans all the sensors in the WSN.
When a PoI occurs, activated sensors forward their data to
the fusion center using the underlying pre-built distance-based
aggregation tree. At each hop along the routing path, the IQ
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contributions of each activated sensor and its downstream (for-
warding) nodes are discretized and incorporated together, to
form a topology-aware histogram-based aggregation structure.

When data packets (with incorporated histograms) reach the
fusion center, it utilizes a greedy heuristic to prune the original
aggregation tree such that: (i) aggregated IQ of the resulting
pruned tree satisfies a given IQ constraint; and (ii) total cost
of collecting data from activated nodes in the pruned tree is
minimized. The pruning process is recursively executed at each
forwarding node along the initial aggregation tree.

Activated sensor nodes that are not part of the pruned
routing tree suppress their data for a time epoch. When the
time epoch expires, activated nodes whose data have been
suppressed resume the forwarding of their data to the fusion
center. This allows the routing protocol to be adaptive towards
dynamic changes in the network and phenomena of interest.
We show that the performance of IQAR is upper bounded
by a distance-based aggregation tree that collects data from
all the activated nodes, and comparable to another IQ-aware
routing protocol that uses an exhaustive brute-force search to
approximate and prune the least-cost aggregation tree.

The rest of this paper is organized as follows: Section II
discusses background and related work. The system model
is described in Section III. Details of the topology-aware
histogram-based aggregation structure and IQAR are presented
in Sections IV and V respectively. We evaluate the perfor-
mance of IQAR in Section VI and conclude in Section VII.

II. BACKGROUND AND RELATED WORK

A. Aggregation and/or Fusion based Routing

Data aggregation and/or fusion based-routing has gained
significant popularity in WSNs due to the obvious benefits
brought about by in-network processing [4] [7]. These schemes
exploit presence of spatio-temporal correlation [8] among sen-
sory data to reduce traffic load, which subsequently alleviates
medium contention as well as reduces transmission costs and
end-to-end delays. Generally, such techniques can be classified
into two main categories, viz. structure-less and structured.

In structure-less techniques [9] [10], data aggregation occurs
opportunistically only when data flows happen to meet at
the same time at the same intermediate forwarding node.
There is no deliberate attempt to delay any transmission
or re-route packets such that these encounters take place.
Consequently, structure-less approaches incur shorter delays
when the network is lightly loaded, as data is forwarded
towards the fusion center using an underlying shortest-path
or least-cost routing algorithm. However, such approaches do
not scale well with large networks or high traffic volumes as
aggregation opportunities are not maximized.

In structured techniques [11] [12] [13] [14], routing paths
are computed and maintained to allow efficient data aggrega-
tion. The routing path is influenced primarily by the amount of
data reduction that can be achieved by data compression before
it is forwarded to the fusion center. Such techniques incur
relatively higher overheads to maintain the network struc-
ture, and are associated with a delay factor, as intermediate

forwarding nodes have to wait for their upstream nodes to
send data to them, before aggregating these data packets and
forwarding them to the fusion center. Nevertheless, structured
techniques can achieve significant energy savings, as data is
maximally aggregated along the forwarding paths. They are
well-suited for WSNs with slow-varying traffic characteristics,
such as periodic monitoring. Many structured schemes adopt
a clustering approach [15] [16] [17], whereby sensory data is
first transmitted to a cluster head for aggregation before being
forwarded to the fusion center.

These existing aggregation-based approaches require all
sensory data to be collected at the fusion center, which results
in high data redundancy and energy costs. As not all the data
has to be transmitted to the fusion center for reliable PoI
detection in IQAR, it can achieve significant energy savings
over generic aggregation-based routing schemes.

B. Information-Quality (IQ) Aware Routing

Unlike aggregation-based routing schemes, IQ-aware rout-
ing schemes consider the information content of data during
data aggregation and forwarding. Information-directed ap-
proaches such as IDSQ and CADR [18] [19] [20] handle data
querying and routing using energy-efficient techniques, while
minimizing delay and bandwidth consumption. At each step
along the routing path, the neighboring node with the highest
predicted information gain is selected to be the next-hop, and
the fused data is transmitted to the fusion center as soon as it
satisfies a given IQ threshold. These existing schemes differ
from IQAR in that they are query-based, targeted at tracking
applications, and data flows along a single path which is
initiated from the fusion center. However, IQAR adopts a tree-
based approach and is targeted at event detection in WSNs.

The emphasis of existing literature on event-detection in
sensor networks [1] [21] [22] [23] is on designing energy-
efficient hypothesis testing models to detect the presence of
the PoI. Most of these schemes do not consider routing, and
are based on a centralized one-hop sensor network topology. In
contrast, IQAR addresses both event detection and multi-hop
routing simultaneously.

III. SYSTEM MODEL

In an event-detection WSN, the information quality of
concern is related to the detection accuracy of the system. In
this section, we detail how IQ is mapped onto the targeted
detection and false alarm probabilities Pd and Pf using
sequential detection [24] [25]. We also describe the Likelihood
Ratio Test (LRT) [26], which has been shown to be the optimal
detection scheme that maximizes detection probability.

The network is modeled as a graph G = {V,E}, where V =
{v0, v1, v2, ..., vn} denotes the set of n sensor nodes and fusion
center v0, and E denotes the set of edges (or links) between
any two nodes. An edge eij ∈ E represents the existence of a
communication link between two arbitrary sensors vi and vj .

We let hypothesis H1 denote the presence of a PoI in the
sensor network; H0 denotes the corresponding absence of the
PoI. The probabilities P (H1) = p and P (H0) = 1− p, where
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0 < p < 1, are known a priori. Each node independently
senses and collects data about the environment periodically.
When conditioned upon the hypothesis Hi, i ∈ {0, 1}, sensor
observations are assumed to be independently and identically
distributed (i.i.d.) at each sensor as well as across sensors [25].

A. Event Detection at Sensor

The independent signal yi observed by a node vi is:

yi =

{
wi if H0 (PoI is absent);

f(ri) + wi if H1 (PoI is present),
(1)

where wi ∼ N (0, σ2
w) is the noise seen by vi that follows

a normal distribution with mean 0 and standard deviation
σw; ri is the the distance between vi and the PoI; and f is
a function that monotonically decreases with increasing ri.
For each sampled signal yi, vi makes a per-sample binary
decision bi ∈ {0, 1} such that:

bi =

{
0 if yi < Ti;

1 otherwise,
(2)

where Ti is the per-sample threshold of vi.
The per-sample probability of false alarm pi

0 by vi is
independent of its location, and given by [1]:

pi
0 = P (bi = 1|H0) = Q(

Ti

σw
), (3)

where Q(x) is the Gaussian Q-function of a standard normal
distribution. The corresponding per-sample probability of de-
tection pi

1 (where pi
1 > pi

0) at vi is dependent on the distance
ri between vi and the PoI, and given by:

pi
1 = P (bi = 1|H1) = Q(

Ti − f(ri)
σw

). (4)

Although each node senses the environment at periodic
intervals, it is infeasible for each sample to be transmitted
to the fusion center v0, due to limited network bandwidth and
energy constraints of the sensors. Consequently, a data packet
is generated by vi to be transmitted to v0 only if vi detects
the presence of a PoI and becomes activated (when bi = 1).

B. Event Detection at Fusion Center

The role of the fusion center v0 is to detect the presence of
the PoI by making a global binary decision Ĥ = {H0,H1},
based on the data that it has received from the set of activated
nodes Va. Let B = {b1, b2, ..., b|Va|} be the set of per-sample
binary decisions that v0 receives from each va ∈ Va in a time
epoch. The optimal fusion rule for v0 using data from all the
activated nodes is the Likelihood Ratio Test (LRT) [25] [26]:

Λ(B) =
P (b1, b2, ..., b|Va||H1)
P (b1, b2, ..., b|Va||H0)

H1

�
H0

1− p

p
. (5)

Hence, v0 makes the decision that the PoI is present (Ĥ =
H1) if Λ(B) ≥ 1−p

p . Notice that for small values of the a
priori probability p, the likelihood ratio Λ(B) required for the
PoI to be detected is much larger than for bigger values of p.
As a numerical example, consider p = 0.01; then, the PoI can
be detected only when Λ(B) ≥ 1−0.01

0.01 = 99. In contrast, if
p = 0.1, the PoI can be detected when Λ(B) ≥ 1−0.1

0.1 = 9.

C. Sequential Detection

To reduce the amount of data that is collected for v0 to make
an accurate global binary decision Ĥ , we adopt the sequential
detection model which is based on the Sequential Probability
Ratio Test (SPRT) proposed by A. Wald [24]. In SPRT, the
amount of data required is a random variable dependent on
the prior data that has been obtained thus far.

Let Xa = {x1, x2, ..., x|Va|} be the sequence whereby data
is collected from each activated node va ∈ Va. Using sequen-
tial detection, data acquisition can terminate at the earliest
subsequence of fused local data Xτ = {x1, x2, ..., xτ} ⊆ Xa

when the decision Ĥ = {H0,H1} can be made., thus
minimizing the cost of data acquisition and PoI detection.

We consider an arbitrary node vi with hopcount h along the
routing path. The neighboring node vj with hopcount h + 1
and which uses vi to forward packets to the fusion center is
considered an upstream node of vi; the set of upstream nodes
of vi is denoted as V u

i . In the same manner, vi is known as
the downstream node of vj . In Figure 1, v1, v2 and v3 are
the upstream nodes of v0 such that V u

0 = {v1, v2, v3}.
Since observations across sensor nodes are i.i.d., the cumu-

lative log-likelihood ratio S0 at the fusion center v0 is:

S0 = log Λ(B) = log
|Va|∏
i=1

Λ(bi). (6)

The corresponding cumulative log-likelihood ratio Si at vi

comprises of its log-likelihood ratio and the cumulative log-
likelihood ratios of each upstream node vj ∈ V u

i , such that:

Si = log Λ(bi) +
∑

vj∈V u
i

Sj . (7)

The stopping rule γi = {0, 1} is computed after each
incorporated data from vi, and is dependent on the targeted
detection and false alarm probabilities Pd and Pf . It deter-
mines if the current sequence of incorporated data along the
routing path is sufficient for the global decision Ĥ to be made
at v0, and is given by Wald’s Equation [24]:

γi =

{
0 if A < Si < B;

1 otherwise,
(8)

where A = log( 1−Pd

1−Pf
); and B = log(Pd

Pf
). This stopping rule is

considered to be optimal in sequential detection, as it results in
the least possible amount of data required for decision making.

If γi = 0, the current sequence of data collected is
insufficient for a global decision Ĥ to be made and more
data samples have to be acquired. However, when γi = 1, the
decision Ĥ can be made based on the current sequence of
incorporated data, according to:

Ĥ =

{
H0 if Si ≤ A;

H1 otherwise (Si ≥ B).
(9)

Hence, additional data need not be collected from other sensor
nodes and data acquisition can be terminated to minimize the
overall cost while satisfying the Pd and Pf constraints.
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Based on this sequential detection model, the minimum
cumulative log-likelihood ratio required for v0 to detect the
PoI with sufficient accuracy is S0 ≥ B. The IQ threshold IT

can then be directly mapped to B such that IT = B. The
corresponding IQ provided by each node vi is hence given by
qi = log Λ(bi). As an illustration, the IQ provided by v7 and
v8 in Figure 1 are q7 = log Λ(b7) = 0.4 and q8 = log Λ(b8) =
0.6 respectively. The corresponding cumulative log-likelihood
ratio at v3 is S3 = log Λ(b3)+q7+q8 = 1.2+0.4+0.6 = 2.2.

D. Cost Model

Each link between a pair of nodes vi and vj is associated
with some cost Cij . In the absence of power control, the per-
hop link cost Cij is independent of the distance between vi

and vj , and can be computed as a function of: (i) processing
energy required to process and perform data aggregation on a
data packet; (ii) transmission energy expended by vi; and (iii)
reception energy expended by neighbors of the transmitting
node vi upon reception of the packet in a wireless medium.
One implicit assumption in our cost model is that each data
packet is of the same size, regardless of the amount of data
that has been fused together from different nodes. We explain
our assumptions behind this model in Section IV.

E. Problem Formulation

Given the network G = {V,E}, set of activated nodes Va,
IQ contribution qa of each activated node va ∈ Va and IQ
threshold IT , our objective is to design an IQ-aware routing
protocol that detects the PoI with an IQ of at least IT using
minimal cost. Formally, we want to find a subset-τ Steiner
Tree, which is a Steiner Minimum Tree Gτ = {Vτ , Eτ} ⊆ G
that spans the fusion center v0 and all nodes in Vτ ⊆ Va,
such that: (i) aggregated IQ collected from Vτ exceeds IT ;
and (ii) total cost of the aggregation tree is minimum among
all possible Steiner trees that meet the IQ constraint, i.e.,

min
∑

eij∈Eτ

Cij ; (10)

subject to: ∑
vi∈Vτ

qi ≥ IT . (11)

Lemma The IQ-aware routing problem which finds the
least-cost routing path for a given subset Vτ ⊆ Va of the
activated nodes that satisfies the IQ constraint IT is NP-hard.
The proof for NP-hardness can be found in [27].

In addition to the computational complexity on the fusion
center, the acquisition of knowledge on the global network
topology and individual IQ contribution of each node incurs
high overheads in both communication and computation. Thus,
such an approach is impractical in the context of wireless
sensor networks which are inherently resource-limited. In the
following sections, we describe a compact and efficient way
of representing the network topology and IQ contributions of
each node, and then propose a heuristic for solving the NP-
hard least-cost IQ-aware routing problem.
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Fig. 1. Fusion center v0 with three upstream nodes v1, v2 and v3.

IV. TOPOLOGY-AWARE HISTOGRAM-BASED

AGGREGATION

We first illustrate our approach using the network topology
in Figure 1, where the fusion center v0 has three (direct)
upstream nodes such that V u

0 = {v1, v2, v3}. All the nodes
are assumed to be activated; the number associated with each
node vi represents its IQ contribution qi = log Λ(bi). The
cost of data transmission across each link is assumed to be of
unit cost, i.e. Cij = 1 ∀eij ∈ E, as the packet size remains
constant across each link in our IQ aggregation scheme.

A. Motivation

Using a direct (or brute force) approach, all activated
sensors forward their data to v0, which will then determine
if the PoI is present. Such an approach is inefficient as
data acquisition from all the activated nodes without any
aggregation incurs high communication costs and overloads
v0. Furthermore, even if all these data can be obtained by v0,
the optimal least-cost routing tree cannot be found efficiently.

Given a global view of the topology and knowledge of IQ
contributions of each sensor node in Figure 1, it is easy to see
that the minimum cost aggregation tree comprises of only {v3}
if the required IQ IT = 1.0. If IT = 2.0, the minimum cost
aggregation tree can be {v3, v7, v8}, {v2, v3, v8}, {v2, v3, v5},
{v1, v3, v8} or {v1, v4, v9}. Similarly, if IT = 4.5, then the
minimum cost aggregation tree can be {v2, v3, v5, v6, v8, v12}
or {v1, v2, v3, v5, v5, v9}. However, it is desirable to utilize an
efficient and distributed way of computing a minimum cost
aggregation tree that meets the IQ constraint IT .

In the proposed approach, upon the detection of a PoI,
activated nodes that are further from the fusion center v0

initiate the transmission of hints towards it. These hints
are aggregated by downstream nodes and further propagated
towards v0. The aggregated hint conveyed by an arbitrary node
vi is designed to present useful information about how IQ
is distributed in the subtree rooted at vi, without providing
the detailed IQ values of each node and the actual topology
of the subtree. For the purpose of scalability, these hints are
of constant size. The objective is to design a scheme that
generates sufficiently useful hints to v0, so that a minimum
cost tree can be constructed in the reverse direction, in a
distributed fashion. Our approach is based on the concept of
a topology-aware histogram-based (hints) aggregation.
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Fig. 2. Cost functions of subtrees rooted at v1, v2 and v3 in Figure 1, with IQ threshold IT = 5 and number of discretization levels φ = 5.

B. Histogram-Based Representation

In our baseline histogram representation, the y-axis is the
cost (total number of transmissions along routing path) and
the x-axis is the IQ that can be accumulated with the given
cost. Depending on the routing path that is taken, different IQ
values may be accumulated for a given cost. In this baseline
representation, the accumulated IQ is the largest possible for
a particular cost. Note that the computation of this maximum
IQ for a given cost is similar to the original routing problem
(which finds the minimum cost of obtaining a particular IQ
value), and cannot be computed efficiently for a large network.

An exhaustive search can be used to compute the maximum
IQ values for each cost in the small network in Figure 1. The
solid lines (labeled as baseline) in Figure 2 illustrate baseline
curves for cost vs maximum IQ, for each upstream node of
v0. As highlighted previously, such a baseline representation
embeds detailed network topology and IQ distribution infor-
mation, at the cost of excessive computational and communi-
cation overheads. To reduce information content and overheads
of the representations, quantization levels are introduced.

1) Quantization: Let φ be the number of quantization levels
in the baseline representation. This results in φ histograms,
each of width IT

φ , where IT is the IQ threshold required for
PoI detection. The range of IQ values represented by the ith

block (i = 1, ..., φ) is (i− 1) · IT

φ to i · IT

φ (inclusive).
The number of data points that fall within the range of IQ

values governed by the ith block of the histogram is denoted
as ni. The corresponding cost ci for the ith block is ci =∑j=i

j=1 nj . It can be deduced that with a cost of ci + 1, the
maximum IQ obtainable is at least i · IT

φ . The dotted lines
(labeled as histogram) in Figure 2 illustrate the relationship
between the baseline and histogram representations from the
perspectives of nodes v1, v2 and v3 in Figure 1.

2) IQ Estimation: After quantization, the (original) baseline
representation of the IQ that is known to an arbitrary node ve

is substituted by a (compact) histogram representation, to be
transmitted to its downstream node vd. We now discuss how
vd estimates the IQ of the subtree rooted at ve, based on the
histogram representation it receives from ve.

Each of the ni points in the ith block of the histogram is
associated with cost ck

i = ci − ni + k, where 1 ≤ k ≤ ni.
Assuming that each of these points is uniformly distributed

TABLE I
ESTIMATED AND ACTUAL IQ GAIN PER INCREMENTAL COST c.

v1 v2 v3

Cost c q1(c) q̂1(c) q2(c) q̂2(c) q3(c) q̂3(c)

1 0.3 0.3 0.4 0.4 1.2 1.2

2 0.4 0.65 1.4 1.4 1.8 1.6

3 2.1 2.1 1.9 1.9 2.2 2.2

4 - - 2.7 2.7 - -

5 - - 3 2.9 - -

6 - - 3.2 3.2 - -

within the block range, the corresponding estimated IQ q̂e(ck
i )

obtained with a cost of ck
i (from the perspective of vd) is:

q̂e(ck
i ) =

IT

φ
[(i− 1) +

k

ni + 1
]. (12)

Given the IQ qe obtainable from the upstream node ve and
the maximum IQ qM

e that can be obtained using the subtree
rooted at ve, the estimated IQ in Equation (12) can be further
tightened by using qe and qM

e as the lower and upper bounds
of the histogram. Note that ci and q̂e(ck

i ) are undefined ∀
i = �qM

e · φ
IT
	 as these are not regions of interest.

The dotted lines with points (labeled estimation) in Figure
2 plot the values of estimated IQ q̂e(c) for each additional
edge from the subtree rooted at ve, from the perspective of its
downstream node vd. The estimation plot can be interpreted
in this way: For a cost of c, it is likely that at least an IQ
of q̂e(c) can be obtained. Table I lists the baseline qe(c) and
estimated q̂e(c) values for each of the subtrees rooted at the
upstream nodes of v0 in Figure 1. Note that qe(c) can be larger
or smaller than q̂e(c).

Finally, we discuss the selection of the parameter φ. In
our IQ estimations, each of the ni points in the ith block
is assumed to be uniformly distributed; the corresponding IQ
estimations for each of the points is also uniformly distributed.
If this assumption is valid, then the value of φ can be small.
However, if IQ values vary significantly among nodes, then
a larger φ value is required to increase the accuracy of the
piecewise linear approximation. We can now describe our
proposed IQ-aware routing protocol in the following section.
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Algorithm 1 IQ Approximation Algorithm in Phase 2

1: Input: IT , q̂j(cj) ∀vj ∈ V u
i , 1 ≤ cj ≤ CM

j

2: Variable: Itotal = 0, c̄j = 0 ∀vj

3: Output: q̂i(ci) 1 ≤ ci ≤ CM
i

4: while
∑

c̄j <
∑

CM
j OR Itotal < IT do

5: k ← argmax
j

[q̂j(c̄j + 1)− q̂j(c̄j)]

6: c̄k ← c̄k + 1
7: Itotal ← Itotal + [q̂j(c̄j + 1)− q̂j(c̄j)]
8: q̂i(

∑
c̄j)← Itotal

9: end while

V. IQ-AWARE ROUTING PROTOCOL

In an event-driven WSN, data generated by a sensor pro-
vides information about the likelihood that a PoI has occurred.
Section III describes how this data is mapped to the IQ qa

provided by an activated node va. To minimize the cost of
data transmission, activated nodes first generate hints that are
aggregated towards the fusion center v0 so that a minimum
cost detection tree can be constructed. The minimum IQ IT

required to detect the PoI is assumed to be known.
Upon activation, each node vj transmits hints to its down-

stream node vi in the form of a quadruple comprising:

1) information quality qj of vj ;
2) maximum information quality qM

j that can be obtained
using the subtree rooted at vj ;

3) maximum cost CM
j of the subtree rooted at vj ; and

4) histogram {n1
j , n

2
j , ..., n

φ
j } representing the topology-

aware IQ obtainable using the subtree rooted at vj .

A. Initialization

A distance-based aggregation tree is constructed using
a shortest-path algorithm during network initialization. To
maximize aggregation opportunities, data generated by an
activated node is transmitted only after a delay that is inversely
proportional to its distance from v0. As an activated leaf node
(without activated upstream nodes) has only one data point,
building the histogram is trivial using the method in Section
IV-B. Non-leaf nodes can have multiple upstream nodes.

B. Aggregation and Update

The histogram at node vi is updated in three main phases.

• In Phase 1, vi estimates the IQ q̂j(cj) that can be obtained
for each cost 1 ≤ cj ≤ CM

j , using the subtree rooted at
each upstream node vj ∈ V u

i .
• Phase 2 is triggered if vi has multiple (activated) upstream

nodes. A greedy heuristic is used to approximate the max-
imum IQ obtainable for each given cost 1 ≤ ci ≤

∑
CM

j .
• In Phase 3, vi incorporates its cost and IQ qi into the

IQ estimations obtained in earlier phase(s), and translates
these estimations back into a (new) histogram for trans-
mission to its downstream node.

We now detail each of these phases, using numerical examples
from the topology in Figure 1, with IT = 5 and φ = 5.
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Itotal = 1.2+0.6
        =1.8 > 1.5

(a) v3 includes v8 into the
pruned tree and updates Itotal.

1.2

0.6

0.4

I3=1.5

v3

v8

v0

v7

I8=0.6

I7=0

(b) v3 assigns the appropriate IQ
thresholds to its upstream nodes.

Fig. 3. Sequence of pruning activities for subtree rooted at v3.

1) Phase 1: Estimation of the IQ q̂j(cj) for the subtree
rooted at each upstream node vj is done by utilizing the
histogram which is part of the quadruple transmitted from vj

to vi. Considering the subtree rooted at v3, the quadruples
transmitted by v7 and v8 to v3 are {0.4, 0.4, 1, {1, ∅, ∅, ∅, ∅}}
and {0.6, 0.6, 1, {1, ∅, ∅, ∅, ∅}} respectively. v3 then estimates
the information quality q̂7(c7) ∀1 ≤ c7 ≤ CM

7 and q̂8(c8)
∀1 ≤ c8 ≤ CM

8 using Equation (12). Since v7 and v8 are
both activated leaf nodes, v3 can easily and accurately estimate
q̂7(1) = 0.4 and q̂8(1) = 0.6.

2) Phase 2: From a global perspective, it is trivial to see
that with a cost of 1, only v3 is included in the routing path.
Similarly, with a cost of 3, all the three nodes (v3, v7 and
v8) in the subtree rooted at v3 are included. However, with a
cost of 2, either v7 or v8 is included, with the latter yielding
a higher cumulative IQ. The general complexity of computing
the highest IQ for each cost 1 ≤ ci ≤

∑
CM

j using an
exhaustive brute-force search is

∏
vj∈V u

i
CM

j .
We approximate the maximum IQ for each cost using

a greedy heuristic that significantly reduces computational
complexity while maintaining reasonable IQ accuracy. Let
Itotal be the estimated cumulative IQ of all sensors that
are included in the minimum cost tree Mi (initially empty).
Recall that vi has computed q̂j(cj) for each incremental cost
1 ≤ cj ≤ CM

j along each subtree rooted at vj ∈ V u
i in Phase

1. Let c̄j denote the current cost of the subtree rooted at vj ,
that has been included in Mi; initially, c̄j = 0 ∀vj .

At each iterative step, the estimated IQ q̂k(c̄k + 1) that
provides the maximum IQ gain to Itotal is included in Mi.
The IQ gain is computed by q̂k(c̄k + 1) − q̂k(c̄k). This
process repeats until: (i) all the subtrees rooted at the upstream
nodes have been added to Mi; or (ii) Itotal exceeds the IQ
threshold IT . Based on the subtree rooted at v3 (and excluding
itself) in Figure 1, the estimated maximum IQ values for the
different costs using this greedy heuristic, are q̂3(1) = 0.6
and q̂3(2) = 0.6 + 0.4 = 1.0. Algorithm 1 summarizes the IQ
approximation procedure that is executed by vi in Phase 2.

3) Phase 3: In the final step of the algorithm, the estimated
maximum IQ obtained for the subtree rooted at vi is updated
to include its own cost and IQ qi. The values of q̂3(ci), where
1 ≤ ci ≤ CM

i are updated such that q̂3(1) = 1.2, q̂3(2) =
1.2 + 0.6 = 1.8 and q̂3(3) = 1.2 + 1.0 = 2.2. Based on this
updated set of IQ estimations, a new quantized histogram is
constructed and forwarded to the downstream node v0.
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C. Pruning

The pruning phase commences after v0 receives data from
its upstream nodes vj ∈ V u

0 . Its objective is to prune off
as many nodes as possible from the initial distance-based
aggregation tree, such that: (i) IQ constraint IT is still satisfied;
and (ii) total transmission cost of collecting data from the
resulting pruned tree is minimized. Hence, v0 has to allocate an
IQ threshold Ij (with corresponding estimated cost ĉj ≤ CM

j )
to each upstream node vj such that: (i)

∑
Ij ≥ IT ; (ii)

q̂j(ĉj) ≥ Ij ; and (iii)
∑

ĉj is minimized.
The pruning algorithm adopts a greedy approach similar

to that in Phase 2 of the data aggregation algorithm. Based
on previous computations, each node vi has the estimated
maximum IQ q̂j(cj) of all its upstream nodes vj ∈ V u

i for
each cost 1 ≤ cj ≤ CM

j . The pruned routing tree is initially
empty with total IQ Itotal = 0. vi iteratively includes into
its pruned tree, the value of q̂j(cj) that provides maximum
IQ increment. This process repeats at vi until: (i) subtree
rooted at each upstream node vj is included in the pruned
tree; or (ii) aggregated IQ Itotal of the pruned tree exceeds
the IQ threshold Ii at vi. The expected output of the pruning
algorithm at vi is the assignment of Ij to each upstream
node vj . The pruning algorithm is executed recursively at each
upstream node vj along the initial aggregation tree using Ij .

An activated node vj with assigned IQ threshold Ij = 0 is
considered to be pruned off and not required to be part of
the resulting pruned tree. Pruned nodes suppress their data for
a time epoch before resuming the forwarding of data towards
v0. The temporary suppression of data enables the aggregation
routing path to be adaptive towards dynamic changes in the
network and PoI, while reducing transmission costs.

Assuming that v0 has assigned I3 = 1.5 in Figure 1, we
look at how v3 assigns I7 and I8 to its upstream nodes v7

and v8. Since q̂8(1) > q̂7(1), the former is included into the
pruned tree of v3 and Itotal = q3 + q̂8(1) = 1.2+0.6 = 1.8 >
1.5 = I3, as in Figure 3(a). Since the IQ threshold at v3 is
met, the pruning algorithm at v3 terminates with I7 = 0 and
I8 = 0.6, as shown in Figure 3(b).

D. Discussion

The advantage of the proposed aggregation scheme is that
while the fusion center sees a highly aggregated summary of
how IQ is distributed in the WSN, the accuracy improves
in the pruning process when specific subtrees are selected.
Hence, one can think of the aggregation process as building a
distributed structure that allows IQ distribution information to
be selective refined as needed by the pruning process.

Finally, each sensor node has a low but non-zero probability
of false positive event detection. If the network is sufficiently
large, aggregation of a large number of sensors that falsely
detect an event may be sufficient to trigger event detection.
Such false alarms can be handled by the fusion center using
simple heuristics: Since sensors with false positives are ran-
domly distributed, the cost for event detection is very large as
compared to that of normal event detection; hence, a simple
cost threshold may be used to suppress such false positives.

VI. PERFORMANCE EVALUATION

We evaluate the performance of IQAR in Qualnet 4.0 [28]
and compare against the following routing protocols:

1) aggTree: Distance-based aggregation tree that collects
data from all activated sensors, to be processed at v0.

2) walk: IQ-aware routing protocol that routes data greedily
towards next hop with highest IQ. When no IQ can
be further gained from neighbors of the transmitter, or
when aggregated data has sufficient IQ, data is routed
back to v0 using a shortest path algorithm. Routing
process is initiated from node with highest global IQ
among all activated nodes, and there is only one ongoing
transmission (and routing path) at any time.

3) brute-force: IQ-aware routing protocol that is similar
in operations to IQAR, but uses an exhaustive brute-
force search to compute the maximum IQ for each cost
function during data aggregation and pruning.

The fusion center v0 is located near the bottom left hand corner
of the terrain of size {100m×100m}. All the other sensors are
uniform-randomly distributed in the network. An exponential
sensing model [29] is used for function f(ri) in Equation (1).
The performance result illustrated is averaged over the sensing
interval (1 second), and 20 seed runs. The target detection
and false alarm probabilities are Pd = 0.9 and Pf = 0.001
respectively, and the transmission range is ≈ 8m.

A. Varying Local Information Quality

The per-sample false alarm probability p0 is increased in
Figure 4, which leads to: (i) increase in number of activated
nodes and detection region; and (ii) decrease in local IQ of
each node. The PoI occurs at a fixed location {80m× 80m}
and the network has 250 nodes.

The aggregation cost in Figure 4(a) measures number of
transmissions required to collect data from fused nodes, and
is highly correlated to the number of fused nodes. Due to
the lowered per-node IQ as p0 increases, more sensory data
have to be aggregated to meet the IQ threshold IT , resulting in
increased aggregation cost for all protocols . aggTree incurs the
highest aggregation cost as it fuses data from all the activated
nodes. In contrast, the three IQ-aware protocols - walk, brute-
force and IQAR - aggregate data from only a subset of the
activated nodes and incur less aggregation costs.

The forwarding cost in Figure 4(b) measures number of
transmissions required to forward data from the last aggregated
node to v0, and is dependent on activated node locations as
well as PoI location. The enlarged detection region resulting
from the increase in p0 leads to a corresponding increase
in forwarding cost, especially for aggTree as it collects data
from all the activated nodes. IQAR incurs higher costs than
brute-force as the former adopts a greedy approach that may
not yield the best routing path for a given IQ threshold.
The gradual decrease in forwarding cost observed for all the
protocols as p0 increases is due to the activation of more
sensor nodes that are nearer to v0, which decreases the distance
between v0 and first aggregated node along each routing path.
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Fig. 4. Performance with increasing per-sample false alarm probability p0.
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Fig. 5. Performance with increasing network density.
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Fig. 6. Performance with increasing distance to event (PoI).

Figure 4(c) illustrates the total cost of aggregating and
forwarding data packets to v0. Since aggregation cost dom-
inates over forwarding cost in a network with a small network
diameter, the total cost has a similar trend to aggregation cost.

The delay incurred in Figure 4(d) is measured in terms
of number of (sequential) transmissions. Despite the low
transmission cost incurred by walk, it incurs the highest
delay as transmissions occur sequentially along a single path,
where aggregation occurs strictly before forwarding. Due to
the presence of multiple paths in brute-force and IQAR,
multiple aggregation and forwarding of data can take place
simultaneously, thus reducing the overall delays.

B. Varying Network Density

In Figure 5, network size increases from 200 to 400 nodes
and PoI is located at {80m×80m} with p0 = 0.35. Due to the
increase in network size (and density), the number of activated
nodes increase. The total cost incurred by aggTree increases
correspondingly in Figure 5(a) as it collects data from all
activated nodes. The remaining three IQ-aware protocols do
not collect data from all the activated nodes and can achieve
lower costs. The excessive delays incurred by walk in Figure
5(b) highlights the caveat of having only a single routing path
that limits parallelism of data aggregation and forwarding.

C. Varying Distance between Event (PoI) and Fusion Center

We vary the distance between the PoI and fusion center v0

in a network of 250 nodes with p0 = 0.35 in Figure 6. The
x/y coordinates of the PoI are varied from 40m to 80m1.

As distance to event increases, it is located nearer to edges
of the terrain, leading to decrease in number of activated nodes.
Consequently, the number of fused nodes and aggregation

1A distance of 60 to the PoI implies that the PoI is located at {60m×60m}.

cost using aggTree decreases in Figure 6(a). Forwarding cost
generally increases with increasing distance to PoI in Figure
6(b), as more transmissions are required to forward data
from activated sensors to v0. IQAR uses a greedy heuristic
to estimate IQ contributions of nodes; hence it incurs higher
forwarding cost than brute-force. Despite the low aggregation
cost incurred by walk, it incurs relatively higher forwarding
costs as the activated sensor with the highest global IQ may
be further away from v0 than other activated nodes.

D. Varying Suppression Interval

In the above scenarios, the PoI is statically located through-
out the monitoring period. Both brute-force and IQAR can
achieve significant cost and delay savings over aggTree as they
aggregate data from only a subset of activated nodes to satisfy
the IQ threshold. Data from the remaining activated nodes are
suppressed for a suppression interval to reduce transmission
costs2. However, one main concern with such protocols (which
utilize data suppression to reduce costs) is whether a mobile
PoI can be detected with sufficient IQ.

In Figure 7, the speed of the PoI is fixed at 2.5 ms−1

in a network of 250 nodes with p0 = 0.35. As suppression
interval increases from 2s to 10s, the amount of aggregated
data decreases as nodes are suppressed for longer periods
of time. Subsequently, there is a decrease in total cost and
delay of brute-force and IQAR in Figures 7(a) and 7(b).
However, it should be noted that due to the suppression of
data, the detection accuracies achieved by these two protocols
deteriorate by 5% to 10% with mobile PoIs. The total cost and
delay incurred by aggTree and walk remain constant as they
do not suppress data.

2With a suppression interval of x seconds, an activated node suppresses its
data for at least x seconds after its last transmission.
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Fig. 8. Performance with varying event (PoI) mobility.

E. Varying Event Mobility

In Figure 8, the PoI moves with varying speeds from 0 ms−1

to 3.5 ms−1 diagonally across the network with 250 nodes and
p0 = 0.35. The suppression interval is fixed at 5 seconds.

As event mobility increases, forwarding cost in Figure 8(b)
increases as the PoI is located increasingly further away from
v0. As the PoI also exits the suppression region more quickly
with higher event mobility, more sensors are activated, leading
to the increased aggregation cost incurred by brute-force and
IQAR in Figure 8(a). Since the PoI moves diagonally across
the network, it is much closer to the network edge at higher
mobilities, which limits the number of activated nodes. Hence,
the aggregation costs incurred by aggTree, IQAR and brute-
force drop slightly when speed exceeds 2 ms−1.

VII. CONCLUSION

In this work, we propose IQAR - an Information Quality
Aware Routing protocol for event-driven sensor networks.
IQAR considers the individual IQ contribution of each sensory
data, and collects only sufficient data for a phenomenon
of interest (PoI) to be detected reliably. Redundant data is
suppressed for a time interval to reduce traffic load and
alleviate medium access contention. This allows IQAR to
achieve significant energy and delay savings while maintaining
information quality in event detection.
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