
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

2-2018 

Cross-language learning for program classification using bilateral Cross-language learning for program classification using bilateral 

tree-based convolutional neural networks tree-based convolutional neural networks 

Duy Quoc Nghi BUI 
Singapore Management University, dqnbui.2016@phdis.smu.edu.sg 

Lingxiao JIANG 
Singapore Management University, lxjiang@smu.edu.sg 

Yijun YU 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Software Engineering Commons, and the Theory and Algorithms Commons 

Citation Citation 
BUI, Duy Quoc Nghi; JIANG, Lingxiao; and YU, Yijun. Cross-language learning for program classification 
using bilateral tree-based convolutional neural networks. (2018). AAAI Workshops at the Thirty-Second 
AAAI Conference on Artificial Intelligence: NLP for Software Engineering (NL4SE) 2018, New Orleans, 
February 2-7. 758-761. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4307 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4307&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4307&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4307&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Cross-Language Learning for Program Classification
Using Bilateral Tree-Based Convolutional Neural Networks

Nghi D. Q. Bui
School of Information Systems

Singapore Management University
dqnbui.2016@phdis.smu.edu.sg

Lingxiao Jiang
School of Information Systems

Singapore Management University
lxjiang@smu.edu.sg

Yijun Yu
Centre for Research in Computing

The Open University, UK
yijun.yu@open.ac.uk

Abstract

Towards the vision of translating code that implements an al-
gorithm from one programming language into another, this
paper proposes an approach for automated program classi-
fication using bilateral tree-based convolutional neural net-
works (BiTBCNNs). It is layered on top of two tree-based
convolutional neural networks (TBCNNs), each of which rec-
ognizes the algorithm of code written in an individual pro-
gramming language. The combination layer of the networks
recognizes the similarities and differences among code in dif-
ferent programming languages. The BiTBCNNs are trained
using the source code in different languages but known to
implement the same algorithms and/or functionalities. For
a preliminary evaluation, we use 3591 Java and 3534 C++
code snippets from 6 algorithms we crawled systematically
from GitHub. We obtained over 90% accuracy in the cross-
language binary classification task to tell whether any given
two code snippets implement a same algorithm. Also, for the
algorithm classification task, i.e., to predict which one of the
six algorithm labels is implemented by an arbitrary C++ code
snippet, we achieved over 80% precision.

1. Introduction
Software engineers need to classify a code snippet against
known algorithms, such as Quick Sort, in order to under-
stand it. All algorithms, however, can be implemented in
different programming languages, making it hard to recog-
nise an algorithm from the knowledge of its implementation
in other languages. It is, therefore, useful to recognise cer-
tain algorithms from programs in different languages, i.e.,
performing cross-language program classification.

For a similar problem of language migration, statisti-
cal language models have been studied for tokens (?),
phrases (?; ?), or APIs appeared in the code(?; ?; ?; ?;
?). Some of these (i.e., for language recognition and API
migration) have been helped by deep neural networks (?;
?), however, little has been done on cross-language program
classification.

This paper proposes to use bilateral neural networks
(BiNNs), a technique originally developed for comparing
natural language sentences, to recognise code snippets in
languages that have similar syntax and potentially seman-
tics. Our basic idea is to construct individual subnetworks to
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

encode abstract syntax trees (ASTs) of individual languages,
and then construct a combination layer of subnetworks to
encode similarities and differences among code structures
in different languages.

Our proposed BiTBCNNs are a combination of three ma-
jor constructs: (i) BiNNs using softmax operation for struc-
tured data to be compared for classification; (ii) a variant
of tree-based convolutional neural networks (TBCNNs) on
each side of the BiNNs to encode AST structures, inde-
pendent of the programming language of choice; and (iii)
a unified encoding of AST in multiple programming lan-
guages that enables cross-language program classification.
With collected programs in different languages, evaluation
has shown that our BiTBCNNs have over 80% accuracy in
classifying them according to their underlying algorithms.

The remainder of the paper is organised as follows: Sec-
tion 2 presents an overview of the proposed process of clas-
sifying code in different programming languages; Section
3 details how we make TBCNNs bilateral for the cross-
language program classification tasks; Section 4 evaluates
the effectiveness of cross-language benchmarks we col-
lected and how they behave when transferring the models
across languages or across algorithms; Section 5 presents
related work; and finally, Section 6 concludes the findings
and suggests some further directions.

2. Overview of Our Approach

An overview of our approach is illustrated in Figure 1. As
shown by our open-source repository1, each step in the pro-
cess is supported by a simplified docker command.

First, a programmer may define a list of algorithms (e.g.,
mergesort, quicksort, breath-first-search, linkedlist, buble-
sort, knapsack), and a list of programming languages (e.g.,
Java, C++, Python). Given the two lists, automated calls to
GitHub RESTful APIs crawl GitHub repositories to retrieve
about 600 instances of program code that implement each
algorithm in each programming language.

These code snippets are then parsed2 into abstract syn-
tax trees (ASTs) represented in Pickle format. These ASTs
are loaded into memory and converted into a vector form
that preserve the distances of similar features (AST2vec) by

1https://github.com/bdqnghi/bi-tbcnn
2https://bitbucket.org/yijunyu/fast

The Workshops of the Thirty-Second 
AAAI Conference on Artificial Intelligence

758



Figure 1: An overview of our proposed program classification process

training the embeddings of leaf-level tokens, using Tensor-
flow, according to the programming language (e.g., 385 to-
ken types for Java/C/C++/C#/Objective C in SrcML gram-
mar and 82 token types for Python).

The vectors of both programs of cross-language nature
are then combined into BiTBCNNs, using Tensorflow again,
approximating a function that classifies these vectors to al-
gorithm names.

The trained model can be used to answer many types of
queries, e.g., (i) what is the algorithm of a piece of code and
(ii) whether two programs in different languages implement
the same algorithm.

3. Construction of BiTBCNNs

Our BiTBCNNs construct extends TBCNNs with pretrained
vectors as bilateral NNs for cross-language classification.

3.1 Tree-based convolutional neural networks

TBCNNs were proposed by ? (?). Figure 2 shows its ar-
chitecture. Each AST node is represented as a vector by
using an encoding layer, whose task is to embed AST node
types in a continuous vector space where semantically sim-
ilar types are mapped to nearby points. For examples, the
types ‘while’ and ‘for’ are similar because they are both loop
statements. We use a different strategy to embed AST node
types, as described in Section 4.2.

? (?) designed a set of fixed-depth subtree filters sliding
over an entire AST to extract structural information of the
tree. The pooling layer was added to gather the extracted in-
formation over various parts of the tree. They also proposed
“continuous binary trees” and applied dynamic pooling (?)
to deal with varying numbers of children of AST nodes. Fi-
nally, they added a hidden layer and an output layer to clas-
sify programs.

3.2 The pre-trained vector

To train the TBCNNs, one needs an initial vector represen-
tation for each tree node. ? (?) use the “coding criterion”
from ? (?) to learn the vector representation for each AST
node. We use a different strategy, similar to the skip-gram
model of word2vec (?), but applied to the context of ASTs.
The skip-gram model, given an input word in a sentence,
looks at the words nearby and picks one at random. The
model predicts the probability for each word in the whole
vocabulary to be a “nearby word” of the input word. So the
task here is to “predict the contextual words given an input
word”.

With this idea in mind, we apply it for the so-called
AST2vec task. That is, we pick random children of a given
AST node. The networks, in this case, will tell us the prob-
ability for each node in the whole AST vocabulary to be the
“chosen children”. The vocabulary words, in this case, are
the AST node types, which are of rather small sizes (around
450 combining C/C++, C#, Objective C, and Java).

3.3 The neural network classification model

Our model in Figure 3 has (1) a bilateral structure with two
subnetworks, each of which processes a tree representation
in parallel, and (2) the classification networks, which are
simply fully connected layers connecting the two trees to
the final Softmax layer, classifying if the two code snippets
represented by the trees implement a same algorithm.

The subnetworks are adapted from TBCNNs (?). Each
subnetwork receives the AST representation of a program
as the input. The TBCNNs will perform a convolutional
step to extract features from the trees. In our case, after
the pooling layer of each TBCNN, we get the feature rep-
resentation vector of each program, and concatenate the two
vectors to a merged vector, so called the “joint feature rep-
resentation layers”. Then, two more fully connected hidden
layers above the joint feature representation layers are added

759



Figure 2: TBCNNs, excerpt from (?)

Figure 3: BiTBCNN architecture for program classification

Table 1: C++ and Java code sampled from GitHub
Lang. ms bs qs ll bfs kns total
C++ 588 531 567 609 609 630 3534
Java 588 609 567 588 609 630 3591

and connected to a Softmax layer to classify if the two input
programs implement a same algorithm or not.

4. Evaluation

4.1 Datasets

We have collected data from GitHub for six algorithms:
mergesort (ms), bubblesort (bs), quicksort (qs), linkedlist
(ll), breadth first search (bfs) and knapsack (kns), both in
C++ and Java. For each language, we get approximately
3500 programs. The details of our dataset are depicted in
Table 1, where the number of instances of programs crawled
from the GitHub for specific algorithms are shown.

We use Tensorflow3 to build our model. For the hidden
layers, we add dropout with the probability of 0.7 to pre-
vent the model from over-fitting. We use leaky ReLU as
the activation function of the hidden layers to avoid gradient
vanishing/exploding problem.

4.2 Experiments

Our experiments include two settings. The first checks
whether BiTBCNNs perform well in classifying whether a
random pair of cross-language programs implements a same
algorithm. The second is to check whether the classifier still
works well when it is applied to classify which algorithm
an unknown program implements, based on a set of known
programs in another language, simulating a cross-language
learning situation that motivates this work in Section 1.

4.2.1 Binary classification. This task is designed to ver-
ify if our model can successfully detect whether two pro-
grams from two different languages are the same or not. For
programs in the original dataset of each language and each
algorithm, we split 70 percent for training and 30 percent
for testing. Thus we have approximately 2,500 programs on
each language for training and 1,000 programs for testing.
With 2,500 programs on each side, we get 6,250,000 pairs
of programs (about 1,100,000 similar pairs and 5,100,000
dissimilar pairs). At this moment, we feed into the left sub-
network C++ programs and the right subnetwork Java pro-
grams. For each training epoch, we randomly select 1,000
similar pair and 1,000 dissimilar pairs to get balanced inputs
for the epoch. We train the model for 100 epochs.

For the testing, as we have approximately 1,000 C++ pro-
grams and 1,000 Java programs, we could have approxi-
mately 1,000,000 pairs in total. To save time, we randomly
select 2,000 similar pairs and 2,000 dissimilar pairs, which
amount to around 0.4% of all the testing pairs. We use preci-
sion, recall and f1 score as the metrics to evaluate this task.
The result is shown in Table 2.

4.2.2 Algorithm Detection. This task evaluates how well
our model performs in classifying the actual algorithm im-
plemented by a given input program. Taking a random pro-
gram A for testing, we use it as the input for the left subnet-
work, and pick a known program B implementing a known

3https://github.com/tensorflow/tensorflow

760



Table 2: Results of cross-language program classifications.
The first column shows the labels of pairs, 1 means similar,
0 means dissimilar. The rest are metrics to evaluate this task.

label precision recall f1
1 0.98 0.91 0.95
0 0.92 0.94 0.93

algorithm and use it for the right. In this way, one can infer
the algorithm label of the program A based on outputs from
the above binary classifier. Note that in our experiment, we
always assume that the left input is a C++ program and the
right input is a Java program.

We thus take 1,000 random C++ programs from the test-
ing data. Then for each of the C++ programs, we randomly
pick one known/training Java programs from each of the
six algorithm labels. We compare each C++ program with
each of six Java programs using BiTBCNNs, in order to
tell which one yields the highest probability in the softmax
layer, and we use the algorithm label of the Java program
that yields the highest probability as the predicted label of
the C++ program. Finally, we compare the true label of the
C++ program with the predicted one, and get a precision of
80.5%.

4.3 Threats to Validity & Discussion

We have not looked at all available programming languages
or algorithms. We will need to verify whether the current
code collected via GitHub search APIs may have biases, and
evaluate our approach with more languages and more algo-
rithms, e.g., using Rosetta Code (http://rosettacode.org/wiki/
Rosetta Code).

The programs we used are relatively small with relatively
clearly defined algorithms. If a program becomes larger or
contains mixed set of algorithms, our approach may not be
applicable directly. Training speed may become a concern
too when more data is used, although each round of train-
ing for our limited dataset only took tens of minutes on a
commodity desktop machine. We think traditional program
analysis (e.g., dependence-based slicing ) may be useful for
alleviating such problems by partitioning a large program
into smaller ones first before applying our approach.

The architecture of our BiTBCNNs may be varied in
many ways as studies in the area of natural language pro-
cessing have shown. And we have only used simple data
dropout rate of 0.7 to reduce over-fitting. There is still much
work to explore various neural network structures. Also, our
encoding of the trees removed identifier names. In future we
will consider leveraging on the similarity in names and more
code semantics (e.g., dependencies among code elements)
for more accurate code encoding.

5. Related Work

For the problem of cross-language program translation,
much work has utilized various statistical language mod-
els for tokens (?), phrases (?; ?), or APIs (?; ?; ?; ?;

?). Only a few studies have used deep learning for lan-
guage recognition and translation, at the API level (?;
?), which is still far from classifying functionally similar
code fragment or performing translation for any code frag-
ment. Although some practical tools exist for translating
code among specific languages (e.g., Java2CSharp: https:
//github.com/codejuicer/java2csharp), they are mostly rule-
based, rather than statistics-based (?) depending on clearly
defined grammars of individual languages, and not easily
extensible for different languages.

For natural languages, many studies on sentence com-
parisons and translations involve variants of bilateral struc-
tures as shown by ? (?). Among them, ? (?) pioneered
“Siamese” structures to join two subnetworks for written
signature comparison. ? (?) also use such structures to
compute sentence features at multiple levels of granularity.
However, these studies have not considered tree-based struc-
tures that are more accurate representations of code.

In code learning, ? (?) point out that simpler models (e.g.,
n-gram) improved with cached information about code lo-
cality and hierarchy may even outperform complex models
(e.g., deep neural networks). But this also indicates to us
that incorporating code locality and structural information
with deep learning by using tree-based convolutional neural
networks (TBCNNs) may improve code learning accuracy.
Using TreeNNs, ? (?) propose to represent symbolic ex-
pressions; however, it has not been applied to other type of
code structures. Although ? (?) introduce TBCNNs to clas-
sify C++ programs based on functionality and to detect code
of certain patterns and others use tree-based encodings too
(e.g., ? (?) for code clone detection), it has not been applied
to cross-language program classification.

6. Conclusions & Future Work

In this paper, we have presented the BiTBCNNs approach
to the cross-language program classification problem, where
algorithms are identified from source AST structures auto-
matically. Using benchmarks of algorithms crawled from
GitHub, we have shown that it is possible to train a model
on multiple languages, with an accuracy of above 80%. The
number and representativeness of training datasets may af-
fect the ultimate performance, while cross-language deep
learning makes it likely possible to reuse the implementa-
tion of algorithms from different languages.

Our future work include tuning BiTBCNNs structures
and parameters, supporting more programming languages
and more algorithms with more training data, learning from
more code semantic information such as dependence data,
and applying to more tasks such as cross-language code
clone detection, algorithm patent protection, and bug fixing.

Acknowledgements

This work is supported in part by eSTEeM project at
The Open University on Ask Programming Aloud (http:
//www.open.ac.uk/about/teaching-and-learning/esteem) and
ERC Advanced Grant No. 291652 on Adaptive Security and
Privacy (ASAP, http://asap-project.eu).

761


	Cross-language learning for program classification using bilateral tree-based convolutional neural networks
	Citation

	Cross-Language Learning for Program Classification Using Bilateral Tree-Based Convolutional Neural Networks

