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Abstract

Effective emergency (medical, fire or criminal) response is
crucial for improving safety and security in urban environ-
ments. Recent research in improving effectiveness of emer-
gency management systems (EMSs) has utilized data-driven
optimization models for efficient allocation of emergency re-
sponse vehicles (ERVs) to base locations. However, these
data-driven optimization models either ignore the dispatch
strategy of ERVs (typically the nearest available ERV is dis-
patched to serve an incident) or employ myopic approaches
(e.g., greedy approach based on marginal gain). This results
in allocations that are not synchronised with the real evolu-
tion dynamics on the ground or can be improved significantly.
To bridge this gap, we make the following contributions: (1)
We first provide a novel exact optimization model for allo-
cation of ERVs that incorporates the non-linear real-world
dispatch strategy as linear constraints and ensures that opti-
mization exactly imitates the real-world dynamics of EMS;
(2) In order to improve scalability, we then provide two novel
heuristic approaches to solve problems with large number of
emergency incidents; and (3) Finally, using two real-world
EMS data sets, we empirically demonstrate that our heuris-
tic approaches provide significant improvement over the best
known benchmark approach.

Introduction

Emergency Management Systems (EMSs) are an essential
component of public safety and health-care services. The ap-
plication domains for EMS range from emergency medical
support to fire evacuation to crime management. In an EMS,
a set of base stations are strategically placed throughout
the city and a set of Emergency Response Vehicles, ERVs
(e.g., ambulances, fire trucks, police vehicles) are stationed
in each of those base stations. Upon arrival of an emergency
request, the operators typically dispatch the nearest available
ERV to assist the victim. The personnel on board the ERV
provide initial treatment and move the victim to a neighbour-
ing hospital. After transferring the patient over to hospital,
ERV returns back to the base from where it was dispatched.
EMS is an extremely sensitive and critical domain, as ar-
riving at an incident location a few seconds early can save a
human life. Therefore, EMS operators measure performance
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using metrics that are based on response time (i.e., the time
taken by an ERV to reach the incident location after the re-
quest arrived into the system). One such widely adopted key
performance metric is bounded time response (the percent-
age of requests served within a threshold response time), and
will be the main focus in this paper.

Performance of an EMS can be improved either by opti-
mizing allocations of ERVs to base stations or by improv-
ing strategies to dispatch ERVs to incidents. In this pa-
per, we specifically focus on the optimization of ERV al-
location. There are two types of data-driven approaches re-
searchers have recently employed to improve ERV alloca-
tion: (a) Yue, Marla, and Krishnan (2012) proposed a greedy
approach to incrementally allocate one ERV at a time using
an event-driven simulator that follows the nearest available
ERV dispatch strategy. They employ the bounded time ob-
jective where the goal is to maximize the number of inci-
dents served within a fixed time. However, the solution of
this greedy approach can be far away from the optimal due to
its myopic nature (one request at a time) and as the bounded
time response metric is not sub-modular; (b) On the other
hand, Saisubramanian, Varakantham, and Chuin (2015) gen-
erated an allocation that minimizes response time with a
bounded risk (i.e., percentage of incidents that can have re-
sponse times higher than the objective) using a linear opti-
mization model that follows an omniscient dispatch policy.
They then evaluate the obtained solution using a simulator
with the actual dispatch strategy to get the actual objective
value. While the optimization approach with omniscient dis-
patch provides promising results, the use of omniscient dis-
patch is not realistic since the optimization occurs over a dif-
ferent evolution of emergency response dynamics than the
one that happens on the ground.

Therefore, in order to reduce the response times for emer-
gency requests, we need to consider both these operational
(day-to-day) inefficiencies simultaneously: (a) allocation of
all ERVs (and not one by one) to base stations; and (b) dis-
patch of the “right” ERVs to the emergency requests. To
tackle the above mentioned issues and to bridge the gap be-
tween the optimization model and the real-world scenarios,
we provide a dispatch guided optimization approach for al-
locating all ERVs to base stations. We specifically consider
the widely used bounded time objective employed by Yue et
al. (Yue, Marla, and Krishnan 2012). To that end, our key



contributions are as follows:

e We provide a novel Integer Linear Programming (ILP)
model for dynamic allocation of ERVs that incorporates
the real-world ERV dispatch strategies as linear con-
straints. This allows for exactly imitating the real dynam-
ics of EMS when optimizing the allocation.

e As the proposed ILP and its equivalent constraint pro-
gramming (CP) models suffer with scalability issues
when the number of emergency requests are increased,
we provide two novel heuristic approaches to solve the
problems with large number of incidents.

e By employing an event-driven simulation model based on
two real-world EMS data sets, we empirically show that
our proposed heuristic approaches can consistently and
in some cases significantly improve the efficacy of EMS
over the existing benchmark approach.

Related Work

Given the practical need for having efficient emergency re-
sponse, a wide range of research papers have studied re-
source (e.g., base station) placement and ERV allocation
problems in EMS. We focus on three relevant threads of
research. The first thread of research focuses on resource
placement for rare and large-scale disaster response (e.g.,
fire, natural disaster or catastrophic events), which enjoys
a rich history. The conventional models for facility loca-
tion problem in disaster response can be categorised into
two groups: (a) location set covering problem [LSCP] (Tore-
gas et al. 1971), where the goal is to cover all the demand
points; and (b) maximal covering location problem [MCLP]
(Church and Velle 1974), where the goal is to maximize
the coverage of demand points within a given budget. In a
survey, (Luis, Dolinskaya, and Smilowitz 2012) summarise
the leading contributions in large-scale disaster response for
strategic placement of ERV depots and allocation of ERVs
to those depots. The recent research in designing decision
support systems for disaster response (Jia, Ordéfiez, and
Dessouky 2007; Huang, Kim, and Menezes 2010) has em-
ployed mathematical optimization methods or dynamic pro-
gramming. However, these solution approaches only con-
sider the spatial distribution of demand locations and there-
fore, are not relevant for EMS. In EMS, the emergency inci-
dents occur on a regular basis and spatio-temporal distribu-
tion of the demand points changes dynamically over time.
The second thread of papers focus on learning an efficient
ERV dispatch strategy. (Andersson and Virbrand 2007;
Schmid 2012; Ibri, Nourelfath, and Drias 2012; Bjarnason
et al. 2009) develop techniques to learn a dispatch strategy
while allocating ERVs. They also provide an ERV relocation
model that suggests a destination location for ERVs in an on-
line fashion. Although dispatch strategy plays an important
role in improving EMS, the EMS operators typically fol-
low the nearest available ERV dispatch strategy to avoid the
inherent complexities such as uncertainties associated with
future incident demand points, traffic congestion, and misin-
terpretation of incident criticality by the operators. Further-
more, continuous relocation of ERVs is inefficient both in

776

terms of cost-effectiveness and utilisation of ERVs. There-
fore, we employ a data-driven optimisation model to com-
pute a fixed allocation strategy for the entire day and follow
the typical nearest available ERV dispatch strategy.

The third thread of research focuses on allocation of
ERVs. (Maxwell et al. 2010) propose an allocation and dy-
namic relocation model for single ERV. In contrast, we con-
sider the allocation of an entire fleet of ERVs. (Brotcorne,
Laporte, and Semet 2003; Gendreau, Laporte, and Semet
2006) propose mathematical optimization or local search
based heuristics to solve the allocation problem, where the
performance metrics are considered as the model param-
eter. However, these optimization models typically fail to
capture the spatio-temporal dynamics of EMS (e.g., ERV
travel times or response times for incidents change over
time). To address these issues, recent research (Saisubra-
manian, Varakantham, and Chuin 2015; Yue, Marla, and
Krishnan 2012; Restrepo, Henderson, and Topaloglu 2009;
Ghosh and Varakantham 2016) has utilized data-driven op-
timization model or real-world event-driven simulator for
ERV allocation and placement of base stations. However,
these approaches either solve the problem greedily (add one
ERV at a time) through simulation or ignore the ERV dis-
patch strategy in the optimization. In this paper, we pro-
pose a data-driven optimization approach by incorporating
the real-world dispatch constraints for allocation of ERVs.

Motivation: Dynamic Allocation of ERVs

We now formally define the generic model for Dynamic
ERV Allocation Problem (DEAP). We employ the follow-
ing tuple to represent the DEAP:

(B,A,R,T,C,L)

BB denotes the set of base stations and .4 represents a fleet
of ERVs. R denotes a set of emergency requests for a par-
ticular weekday (e.g., incident logs of consecutive ten Mon-
days). Each request r € R is a tuple (¢, s, h, B, iy, Ar).
t, s, h denote the arrival time, source location and destina-
tion hospital for the particular request r. 3, represents a
set of nearby base stations from which the request r can
be served. p, provides the response times for each of the
nearby bases in B,.. Specifically, if B, = {l1,l2, ...}, then y
denotes the response time from base /;. For the ease of rep-
resentation, we assume that the nearby base set 13, is sorted
according to the response times. That is to say, uf < pitl.
A, provides the round-about times (i.e., the total time re-
quired for an ERV to return back to the origin base after
serving the request) for the nearby bases, where A% denotes
the round-about time for base ;. T" provides the ERV travel
time between any two locations. Specifically, 1}, ;, repre-
sents travel time for an ERV between source location [ to
destination /5. C' denotes the capacities of the bases, where
C; represents the maximum number of ERVs the base [ € B
can hold at a time. Finally, L represents the utility function,
which is defined as follows:

Lrl = {1
0

ifT s <A
Otherwise



Where, A denotes the threshold response time bound pro-
vided by the EMS operators. Intuitively, a reward of 1 unit
is provided if a request is served within the threshold time.
With the given DEAP input tuple, our objective is to find an
efficient dynamic! allocation of an entire fleet of ERVs, A to
a given set of base stations, 5 that maximizes the percentage
of requests which can be served within the given threshold
time bound, A. This is also referred to as the bounded time
objective provided by (Yue, Marla, and Krishnan 2012).

Event-driven Simulation Model

We first present an event-driven simulation model (adopted
from Yue, Marla, and Krishnan 2012), which is used to eval-
uate the performance of an allocation strategy. Algorithm (1)
delineates the key functionalities of the event-driven simu-
lator. Let us assume, & denotes a set of events where each
event e € ¢ represents an emergency request and the list
is sorted according to the arrival time of incidents. Let we
need to evaluate the performance of allocation strategy A.
Then, the set of available ERVs, [ is initialized according
to the allocation strategy A. Let, a,- denotes the ERV which
is assigned for request » € R, where each incident is ini-
tialized with a null assignment. In each iteration, the first
element in the event list is popped. If the element is a new
request r, then we assign the nearest available ERV, a,. for
the request (a typical dispatch strategy followed by the real-
world EMS operators) and that particular ERV is removed
from the available ERV set I. In addition, we insert a job
completion event in & at time ¢,.(a,-), which denotes the time
when the ERYV, a, will return back to the base after serv-
ing request r. On the contrary, if the popped event is a job
completion event for request r, we add the ERV, a,. into the
available ERV set /. This iterative process continues until
the event list becomes empty. Once the simulation is over,
we have a valid assignment for each request and therefore,
we can compute the utility of the given allocation strategy, A
in terms of the percentage of requests served with the given
threshold response time bound, A.

Solution Approaches

We first propose an exact Integer Linear Programming (ILP)
formulation for efficiently solving the DEAP. This exact for-
mulation can also with minor modifications be converted to
a Constraint Program (CP). However, as the two exact mod-
els do not scale to problems with large number of requests,
we provide two novel heuristic approaches to improve scal-
ability of our solutions?.

"For dynamic allocation, the allocation strategy changes on ev-
ery weekday. For instance, to generate the allocation strategy for a
Monday, we consider R as the set of requests of past Mondays.

*Dynamic allocation of ERVs is a offline process for prepared-
ness. As the allocation needs to be generated once in a day, our
proposed approaches (which follow our imposed time-limit of two
hours) are suitable for these scenarios. During the response phase,
as the allocation and dispatch strategy are given as input, the op-
erators can continuously dispatch the nearest available ERV for an
incident by employing the simulator from Algorithm (1).
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Algorithm 1: EDSimulator(R, 5, A)

Initialize: I <— A // Initialize set of available ERV;
¢ < R sorted in arrival order;
a = {a,|a, + L} // Initialize as null assignment ;

repeat
Pop next arriving event e from &;

if e =New Request r then
a, < Dispatch(r, I) // Dispatch nearest free
ERV;
I + I — {a,} // Update available ERV;
Push job completion event at time ¢,.(a,.) into
3
else if e=job completion event for r then
I+ I U{a,} // Update available ERV;

until (|¢] > 0);
return {a, }

Integer Linear Programming Formulation

We first provide a compact ILP formulation with novel dis-
patch related constraints to find an optimal allocation for a
fleet of ERVs, A to the given set of bases B. A requestr € R
can be served from a feasible set of nearby bases, {53, U L},
where L denotes a null assignment (i.e., the request can-
not be served). Let, x,;, denotes a binary assignment vari-
able, which is set to 1 if the request r is served from base
l; € {B,. U L}. Let, a; is an integer variable which denotes
the number of ERVSs allocated to base [ € BB. a; can be set to
any value between 0 and the base capacity C;. Our objective
in the ILP is to find an efficient allocation that maximizes
the utility function, L.

max E E Tyt; Ly,
a,r

reR ;B

To represent the evolution dynamics of EMS exactly, we
now describe the constraints. Please note that the descrip-
tion of dispatch constraints is novel and the title of dispatch
constraint description is highlighted in bold below:

A request can only be assigned to one base station: This
set of constraints ensure that only one ERV from one of the
feasible nearby bases is dispatched to assist an emergency
incident. If all the nearby bases are empty when the request
arrived into the system, the request is assigned to a dummy
base | and we label it as a null assignment.

>

liG{BTUL}

Tyr, =1, VreR

A request can be served from a base if it has at least one
ERV available: Let P denotes the set of parent requests for
r that are served from base [;. More specifically, a requests
7" belongs to the parent set P, if it has arrived in the system
before request r and an ERV is still busy in serving 7’ when
the request r has arrived if the ERV is assigned from base
l; for request r’. Therefore, these set of constraints enforce
that if all the ERVs of a base [; are busy in serving the parent



requests of r (i.e., Zjepﬁ xj1, = ai,), then the request r
cannot be served from base [;.

Zrl, + g i, < ai,,
jEP

Vr € R,l; € B,

The entire fleet of ERVs has to be allocated: This constraint
assures that each ERV is allocated to one of the base stations.

> a=|Al

leB

The nearest available ERV needs to be dispatched for as-
sisting an emergency request: As mentioned previously, we
assume that the set of nearby bases, 5, from which a request
r can be served is sorted according their response times. So,
the logical constraints (1) ensure that a request is always
served from the nearest base with more than one idle ERV.
Precisely, constraints (1) enforce that a request r must be
assisted from a base [; € B, where more than one ERV is
present and all the other bases from which request r can be
served faster are empty when the request has arrived.

Zl‘rlk 21 if ap, — Z Tjil; Z 1

= jePl

ey

#ERV available at base [;

To linearise these constraints we introduce a binary variable
by, which is set to 1 if more than one ERV is available in
base [; € B, when the request 7 has arrived.

b, = {1 if 2 jept Tt < oy, — 1
‘ 0

Otherwise
The logical definition of these binary variables, b can easily
be linearised using the following set of linear constraints,
where Cj, denotes the capacity of base /;.

a, — Y wj, < Ci, by, Vr e R,1; € B,
jepli

ap, — Z Tjl; > Cl,; . (lei — 1) + 1Vr e R,1; € B,
jEP

We can now replace the logical and non-linear dispatch con-
straints (1) by using the following linear constraints.

Z Lyl > bT'l{,

k<i

Vr € R,l; € B,

An efficient alternative for the dispatch constraints:
Let, |B| denotes the average number of nearby bases for
each of the incidents. To represent the dispatch policy ac-
cording to the above mentioned approach, we need to intro-
duce |R| x |B| binary variables and 3 x |R| x |B| linear
constraints. Due to these large number of newly introduced
binary variables and constraints, the prior approach for in-
corporating the dispatch constraints performs poorly. There-
fore, in this section we provide a simplified and compact
representation of the dispatch constraints (1). According to
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constraints (1), we just need to ensure that a request is served
from a base with an idle ERV if other adjacent bases (from
which the request can be served faster) are empty. As the
assignment variables, x are binary, it would be adequate if
we can ensure that the value of >, . x,, (i.e., sum of all
the assignment variables for bases whose response times are
less than or equals to the one for base [;) is greater than zero
and less than or equals to one. These conditions can be im-
posed using constraints (2), where Cj, denotes the capacity
of the base /; (i.e., the maximum number of ERVs the base
l; can hold at a time). Specifically, we normalise the right-
hand side value of constraints (2) to ensure that it is always
bounded between 0 and 1. Note that, as Cj, is a given input,
the constraints (2) are linear in nature.

1
Downz ool = 37w W ERLEB @

= jep

#ERV available at base 1;

We show the entire ILP model for the ERV allocation
problem compactly in Table (1). We refer to this approach
as ILP in the later sections.

max Z Z Tri; L, 3)
DT ER U EB,
st > @ =1, VreR (4
L;e{B, UL}
Tyl + Z T, < a,, Vr € R,l; € B, (5)
jeph
D a=|Al ©)
leB
1
Zxrl’“ > o [Cl,lz - Z‘rﬂi] VreR,l; € B (7)
‘ I;
k<i jepk
a; € {0,1,...,0[},.’1?,«1,1 S {071} (8)

Table 1: FindAllocationWDispatch(R, B, A)

Constraint Programming

As the optimization model of Table (1) cannot be solved op-
timally with more than few hundred emergency requests us-
ing state-of-the-art black-box optimization solvers such as
CPLEX, we now provide an alternative constraint program-
ming (CP) model of Table (1). For every allocation variable,
a; we have created variable allocation[l] whose domain
range is defined as {0, 1, ..., C;}. Similarly, for the assign-
ment variables, x,; we created variable assignment[r][l]
whose domain range is defined as {0, 1}. With these defini-
tion of variables, the equations (3)-(7) of Table (1) can be
translated to CP. We refer to this approach as CP.

Continuous Assignment

Unfortunately, neither the ILP nor the CP model can be
solved optimally within our threshold time-limit of 12 hours.
Therefore, we now provide an heuristic approach which can



be solved within a minute with large number of emergency
incidents. We essentially modify the ILP of Table (1) by re-
laxing the 0/1 dispatch variables to a probabilistic or contin-
uous assignment. The revised optimization model is shown
in Table (2), where we modified the assignments,  from
discrete or binary to continuous variables. However, as the
allocation variables, a remain integer, we are still allocating
each ERV to exactly one base station. Therefore, the solution
of the optimization problem will provide a valid ERV allo-
cation, which can be executed on the event-driven simulator
delineated in Algorithm (1) to obtain a valid and integral
assignment for each request and to compute the actual util-
ity of the allocation strategy. Although the objectives of the
optimization problem and the simulation model might not
be synchronised, we experimentally show that this approach
provides better solution than the above mentioned exact ap-
proaches. This approach is referred to as Relaxation.

max E E Ty, Ly,
a,

reR ;€8
s.t. Constraints (4), (5), (6) and (7) holds

a; € {0, 1,...,01},0 <zq; <1 )

Table 2: FindRelaxedAllocation(R, B, A)

Observation 1 If all the base stations have single capacity
(i.e., a; € {0,1}), then the optimization model of Table (2)
provides an optimal and integral solution.

Proof: In case of single capacity base stations, the alloca-
tions a become binary variables. Therefore, when the first
request 7 arrives in the system, constraints (7) enforce that
the assignment variable x,; is set to 1 if base [ is the nearest
base for request r and a; = 1. If the nearest base is empty,
then this logic is applicable for the second nearest base and
so on. Henceforth, no request can be served from base [,
until the ERV returns back to the base after serving the re-
quest. Due to this reasoning, the value of the right-hand side
of constraints (7) can only be either O or 1. Hence, the as-
signment variables, x for all the requests can take either 0
or 1. Therefore, even with continuous assignment variables,
a the optimization model of Table (2) provides an integral
solution and is equivalent to our ILP model of Table (1). B

Two-stage Optimization

In this section, we provide another heuristic approach to find
an efficient ERV allocation. We propose a two stage hierar-
chical approach?, where a preliminary allocation is gener-
ated for a subset of ERVs in the first stage and then we utilize
that to guide the solution of the second stage for achieving
allocation of the entire fleet of ERVs. In the first stage, we
solve the ILP of Table (1) for the entire fleet of ERVs as a
linear program (LP). That is to say, we relax both the alloca-
tion, a and assignment, x variables from integer to continu-

3Note that, our two-stage optimisation is a single-shot (i.e., non-
iterative) hierarchical approach.
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ous one. The LP formulation for the first stage optimization
problem is shown in Table (3).

max E E xrlieri
a,xr

reR ;B
s.t. Constraints (4), (5), (6) and (7) holds

0<a <CL0< o <1 (10)

Table 3: FindLPallocation(R, B, A)

The LP solution provides a sense of best possible frac-
tional allocation and therefore, we utilize this solution to
compute the final integral and feasible solution in the second
stage. Let a denote the allocation obtained from the LP so-
lution of Table (3). We use the following rounding approach
to obtain an initial integral allocation, a from a.

G = { [di]
La]
a provides a valid allocation for a subset of ERVs. As all
the ERVs are homogeneous, it does not matter which spe-
cific subset of ERVs are allocated a priori. However, a does
not allocate the entire fleet of ERVs. We then utilize the val-
ues of a to guide the original ILP of Table (1). In the second
stage, we essentially solve the ILP of Table (1) with addi-
tional set of constraints (11), which enforce that at least a;
ERVs need to be allocated in base | € 3. The second stage
optimization model is shown compactly in Table (4). Note
that, although the entire fleet of ERVs are employed in the
optimization model of Table (4), this problem is less compu-
tationally challenging than the one of Table (1), because we
manually fix the allocation for a subset of ERVs using con-
straints (11). Therefore, the optimizer needs to search for an
allocation of only |.A| — |@| ERVs. This approach is referred
to as TwoStage.

ifa; — [d;] > 0.95
Otherwise

max E E IrllLrll
a,x

reR1;EBy
s.t. Constraints (4), (5), (6), (7) and (8) holds
a > a Vie B an

Table 4: FindTwoStageAllocation(R, B, A)

Experimental Results

We conduct experiments* on two real-world data sets. We
obtain the dataset-1 from a real-world EMS in the form
of anonymous and modified sample of request logs. The
dataset-2 is adopted from Yue, Marla, and Krishnan (2012)°.
Both the data sets provide details of emergency requests over

*All the optimization models are solved using IBM ILOG Op-
timization Studio V12.5. incorporated within python code.
Shttp://projects.yisongyue.com/ambulance_allocation/



Greedy ILP CP Relaxation TwoStage
Mon 58.97 % 57.96 % 57.56 % 60.10 % 60.46 %
Tue 59.15 % 44.95 % 56.12 % 60.76 % 60.16 %
Wed 59.27 % 47.51 % 57.43 % 61.76 % 62.52 %
Thu 60.27 % 59.32 % 57.96 % 62.86 % 62.42 %
Fri 59.87 % 59.81 % 52.83 % 61.68 % 61.92 %
Sat 63.65 % 63.16 % 63.47 % 66.69 % 66.80 %
Sun 65.76 % 67.44 % 67.05 % 70.06 % 69.46 %

Table 5: Performance (percentage of requests served within 8 minutes) comparison on testing data of dataset-1.

a certain period. Each request log contains the following in-
formation (a) Incident location; (b) Arrival time; (c) A set
of feasible nearby bases from where the request can be as-
sisted; (d) Response time from each of the feasible base
to incident location; and (e) Round-about time for each of
the feasible base. While these specific details might not al-
ways be readily available for real deployment, as indicated
in Ghosh and Varakantham (2016), we can estimate them us-
ing a straightforward method. As the geographical locations
of the requests, hospitals and bases are available in the his-
torical data sets, we can compute the set of feasible nearby
bases and predict the response and round-about times for
each of these bases.

Empirical results on dataset-1

The dataset-1 contains a fleet of 35 ERVs and 35 base sta-
tions. We have an anonymous request sample over a period
of six months. We divide our 6 months of data set into two
parts - first 3 months is used for training purpose to generate
the allocation strategies and the performance of these strate-
gies are tested on other 3 months of data. We evaluate the
performance of our approach by employing a real-life event-
driven simulation model (refer to Algorithm 1 for the details
of simulator) which follows the nearest available ERV dis-
patch rule. We compare our approach against the existing
greedy approach which was introduced by Yue, Marla, and
Krishnan (2012). The greedy approach incrementally adds
one ERV in each iteration using the event-driven simulator
until the entire fleet is allocated. We refer to this approach
as Greedy. We do not provide comparison results against
the approach proposed by Saisubramanian et. al. (Saisubra-
manian, Varakantham, and Chuin 2015), as their objective is
to miminize response time for a fixed percentile of requests,
which is different from the metric of interest in our paper
(i.e., maximizing the number of requests served within a
threshold time bound). Due to different objective functions,
we experimentally observe that the approach from Saisubra-
manian et. al. (2015) produced worse quality solutions than
the greedy approach proposed by Yue et. al. (2012).

Solution quality of the heuristic approaches: The ILP or
CP cannot solve the large-scale problems optimally within
our imposed time-limit of two hours. However, these exact
approaches can be solved optimally for very small problems
with only a few hundred requests. We experimentally ob-
serve that the our heuristic approaches provide good quality
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solutions in comparison to the optimal for these small in-
stances. For instance, our two-stage optimization approach
is only 1.5% away from the optimal. However, in our prob-
lem instances, we have a few thousands training incident re-
quests. So, we can only get a sense of ILP optimum from
the optimality gap provided by black-box solvers such as
CPLEX. Unfortunately, these gaps are loose and are far
away from the optimal solution (specifically for the ILP) and
hence are unreliable.

Performance comparison: We now demonstrate the per-
formance comparison between our approaches and the
greedy approach on testing data of dataset-1. Table (5)
shows the comparison results for all the weekdays. Our key
performance metric is the percentage of requests that are
served within 8 minutes. We observe that the solution quality
of CP and ILP is worse than the existing greedy approach.
This is so because we impose a time-limit of two hours for
both the approaches and none of these approaches can be
solved optimally within our time-limit. On an average, the
optimality gap for ILP was more than 20%. However, both
our heuristic approaches (i.e., two-stage optimization and re-
laxation approach) outperform the greedy approach. On an
average, both these heuristics can serve around 63.4% re-
quests within 8 minutes. Most importantly, for all the week-
days, our heuristic approaches serve around 2.4% additional
requests within the threshold time bound (i.e., 8 minutes)
over the existing greedy approach.

Effect of ERV fleet size: In this thread of results, we
demonstrate the performance comparison between different
approaches on dataset-1 by varying the ERV fleet size. We
use the same training and testing data set for these exper-
iments. Figure 1(a)-(b) depict the performance comparison
on training and testing data set for one of the weekdays. In
the X-axis we vary the number of ERVs and Y-axis shows
the percentage of requests served within 8 minutes. Due to
the scalability issue, ILP and CP yield poor quality solu-
tion than our heuristic approaches for all the settings of ERV
fleet size. Both the two-stage optimization and relaxation ap-
proach always outperforms the greedy approach. More inter-
estingly, the gain over the greedy approach increases if we
decrease the number of ERVs. This insight clearly indicates
that the performance of the existing greedy approach de-
grades for EMS with limited resources and our approaches
are suitable to tackle such scenarios.
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Figure 1: Performance comparison by varying ERV fleet size: (a) Training results on weekday; (b) Testing result on weekday.
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weekend.

Figure 2(a)-(b) demonstrate the performance compari-
son on training and testing data set for one of the week-
ends. We observe a similar pattern for these results. Our
heuristic approaches always produce better solution than the
greedy approach, specially when we have fewer ERVs. For
instance, the performance gain of our two-stage optimiza-
tion approach over the greedy approach on testing data set
increases from 0.6% to 4.2% when the ERV fleet size is re-
duced from 50 to 30.

Empirical results on dataset-2

The dataset-2 contains a fleet of 58 ERVs and 58 base sta-
tions. We have 1500 weeks of request logs which are gen-
erated using a memory-less stochastic process (i.e., poisson
distribution). The parameters of this stochastic process are
learnt from historical data®. We use Sample Average Ap-
proximation [SAA] (Verweij et al. 2003) for validation and
performance estimation. We generate 10 policies for each of
the weekdays, where each policy is generated using request
logs of that particular weekday for 10 consecutive weeks
(e.g., the second policy for Monday is generated using re-
quests of all the Mondays from week 11 to week 20). Then
we identify the policy with best validation performance for
each of the weekdays separately over 500 weeks of request
logs. Finally, we evaluate the performance of the validated

SFor dataset-2, refer to Section 3.1 and Section 7.1 of Yue er.
al. (Yue, Marla, and Krishnan 2012) for the details of request sam-
pling process and for the general settings of Sample Average Ap-
proximation (SAA), respectively.
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policies on 3 testing data sets, each of which contains 300
weeks of request logs.

We now present the performance comparison results on
the testing data of dataset-2. Figure 3 depicts the compari-
son on three testing data sets. The X-axis denotes the week-
days and the Y-axis represents the percentage of requests
served within 15 minutes. As each of the testing data set
involves 300 weeks of request logs, we report the average
utility using SAA. Figure 3(a) plots the bounded time re-
sponse value for the first testing data set. As shown clearly,
our two-stage optimization almost always provides the best
performance over other approaches, while our relaxation ap-
proach is proven to be highly competitive with two-stage op-
timization approach. Although, none of the CP and ILP can
be solved optimally, CP provides a reasonably better qual-
ity solution than ILP within the time-limit of two hours. For
all the weekdays, our two-stage optimization approach pro-
vides at least 1.5% gain in bounded time response value over
the greedy approach.

Figure 3(b) and 3(c) depict the performance comparison
results on second and third testing data sets. We observe a
consistent pattern on the performance over all the three test-
ing data sets. As shown in Figure 3(b), both the two-stage
and relaxation heuristics are able to serve 1.6% extra re-
quests within the threshold response time over the greedy
approach for second testing data set. Figure 3(c) demon-
strates that, for third testing data set, both the two-stage
and relaxation heuristics provide at least 1.45% performance
gain on all the weekdays and improve the average bounded
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time response value by 1.6% over the greedy approach.

Discussion

We now discuss about directions that we explored in
addition to the approaches described above. We believe that
these approaches have potential and can be improved in the
future.

Benders decomposition: By exploiting observation (1), we
can ensure that continuous assignment guarantees to provide
an optimal and integral solution for our original problem
if all the bases have single capacity. A straightforward
method to translate our problem into single capacity base
station problem is to create C; single capacity bases at the
location of base [. The response and round-about times for a
request r from all the C; bases will be same as the response
and round-about time for base . The number of feasible
nearby bases for a request r will now increase from |B,| to
e 5, C1. Once we have a continuous assignment problem
with single capacity bases, it will be an ideal ground for
applying Benders decomposition (Benders 1962), where
master solves the allocation problem and slave takes the
assignment decisions. Our initial experiments show that
due to significant increases in the number of variables and
constraints, this particular translation results in a large
optimality gap even with Benders decomposition. However,
these insights lead to a promising direction for improving
our solutions in the future.

SAT representation: The reformulated single ca-
pacity base problem is a 0/ integer program and
can be translated to a satisfiability problem. As we
have an optimization problem, we can translate it
to a partial max-SAT (Argelich and Manya 2007;
Koshimura et al. 2012) representation, where our objective
function can be converted to following soft clauses (12):

Vre R, AL T,ay <A (12)

Trl,

Constraints (4) can be translated to a set of hard clauses (13).
The clauses (14)-(15) are equivalent to constraints (5). The
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clauses (16) exactly represent the constraints (7).
Vre R, i, l; #l; € B, (13)
Vr e R,l; € B, (14)
Vr € R,1; € B,,j € P (15)
jepli Vr e R,l; € B, (16)

However, to the best of our knowledge, there is no explicit
way to represent the constraints (6) as SAT clauses. A brute-
force approach would be employing the following set of hard
clauses (17)-(19), where d.; variable is set to 1 if the ERV
¢ is allocated to base [. However, this brute-force approach
increases the number of variables and clauses significantly
and therefore, state-of-the-art partial max-SAT solvers fail to
solve it efficiently. So, discovering an efficient and compact
SAT representation would be a potential future direction.

Ly, V _‘wrlj
X, VX,

—ay, Vi<i Ty, V T,

_‘dcli V _‘dclj Ve e .A,li,lj 7é l;eB (17)
-d., V _‘del Vei,cj #£cie Ale B (18)
—a; Ve dg vie B (19)

Conclusion

In this paper, we provide dispatch guided optimization ap-
proaches for effective and dynamic allocation of ERVs to
base locations. We propose a novel optimization model
by incorporating the real-world ERV dispatch strategy and
show that the optimization model follows the real evolution
dynamics of EMS. As the proposed optimization model suf-
fers scalability issues, we provide two novel heuristic ap-
proaches to increase scalability to large number of emer-
gency incidents. The empirical results on two real-world
EMS data sets demonstrate that our heuristic approaches
always outperform the existing best known approach and
therefore, improve the efficiency of EMS. In future, this
work can be extended in the following two directions: (a)
Improve the scalability of the solutions either by translation
to an efficient partial Max-SAT or through well-known de-
composition approaches; and (b) Extend our solutions for
EMS that involves multi-tiered ERVs and multi-priority in-
cidents, where dispatch strategy plays a crucial role.
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