
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

6-2017

Well-tuned algorithms for the team orienteering problem with time Well-tuned algorithms for the team orienteering problem with time

windows windows

Aldy GUNAWAN
Singapore Management University, aldygunawan@smu.edu.sg

Hoong Chuin LAU
Singapore Management University, hclau@smu.edu.sg

Kun LU
Singapore Management University, kunlu@smu.edu.sg

Lu KUN

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons

Citation Citation
GUNAWAN, Aldy; LAU, Hoong Chuin; LU, Kun; and KUN, Lu. Well-tuned algorithms for the team
orienteering problem with time windows. (2017). Journal of the Operational Research Society. 68, (8),
861-876.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4305

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4305&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4305&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Well-tuned algorithms for the Team Orienteering
Problem with Time Windows
Aldy Gunawan1*, Hoong Chuin Lau1, Pieter Vansteenwegen2 and Kun Lu1

1School of Information Systems, Singapore Management University, 80 Stamford Road, Singapore 178902,

Singapore; and 2KU Leuven Mobility Research Centre - CIB, Celestijnenlaan 300, Box 2422, 3001 Leuven,

Belgium

The Team Orienteering Problem with Time Windows (TOPTW) is the extension of the Orienteering Problem
(OP) where each node is limited by a predefined time window during which the service has to start. The objective
of the TOPTW is to maximize the total collected score by visiting a set of nodes with a limited number of paths.
We propose two algorithms, Iterated Local Search and a hybridization of Simulated Annealing and Iterated Local
Search (SAILS), to solve the TOPTW. As indicated in multiple research works on algorithms for the OP and its
variants, determining appropriate parameter values in a statistical way remains a challenge. We apply Design of
Experiments, namely factorial experimental design, to screen and rank all the parameters thereby allowing us to
focus on the parameter search space of the important parameters. The proposed algorithms are tested on
benchmark TOPTW instances. We demonstrate that well-tuned ILS and SAILS lead to improvements in terms of
the quality of the solutions. More precisely, we are able to improve 50 best known solution values on the
available benchmark instances.

Journal of the Operational Research Society (2017) 68(8), 861–876. doi:10.1057/s41274-017-0244-1;

published online 26 June 2017

Keywords: Orienteering Problem; time windows; Iterated Local Search; Simulated Annealing; hybrid algorithm

1. Introduction

The Orienteering Problem (OP), introduced by Tsiligirides

(1984), is a sport in which a competitor has to determine a path

from a start point to a final destination, visiting a subset of

control points (nodes) along the path. In the context of the

Team OP (TOP), a certain number of paths are allowed,

instead of only one. The Team Orienteering Problem with

Time Windows (TOPTW) is an extension of the TOP (Labadie

et al, 2012). The visit on each node is limited by a given time

window. The score of a particular node will be received once a

node is visited within its time window. The main objective of

the TOPTW is to maximize the total collected score by visiting

a set of nodes with a limited number of paths.

Since the OP has been proven to be NP-hard (Golden et al,

1987), it is unlikely that the TOPTW can be solved optimally

within polynomial time. Therefore, it is interesting to propose

fast algorithms to solve the problem, especially when dealing

with large instances. A survey of (T)OP(TW) formulations and

applied solution algorithms is published by Vansteenwegen

et al (2011). Gunawan et al (2016) present a comprehensive

and thorough survey of recent variants of the OP, including the

proposed solution approaches and the most recent applications

of the OP. For example, TOPTW has been used as a model in

formulating various practical applications, such as the Tourist

Trip Design Problem (TTDP) and the mobile-crowdsourcing

problem (Gunawan et al, 2016). Other applications of the TOP

(TW), mentioned in Vansteenwegen et al (2009), are the home

fuel delivery problem, athlete recruiting from high schools,

routing technicians to service customers, etc.

In this paper, we introduce two algorithms for solving the

TOPTW. The first algorithm is based on an Iterated Local

Search (ILS) algorithm. Iterated Local Search (Louren et al,

2003) is a simple but effective metaheuristic. Vansteenwegen

et al (2009) introduce a simple, fast and effective ILS for the

TOPTW. Our ILS differs in the way of generating the initial

solution. An initial solution is constructed by inserting nodes

subsequently into one of the paths, based on Roulette-Wheel

Selection method (Goldberg, 1989). Various components of

ILS such as LOCALSEARCH, PERTURBATION, and ACCEPTANCECRI-

TERION are also included. A simplified version of our ILS has

been used to solve the TOPTW, with only one path (Gunawan

et al, 2015b). Since the TOPTW involves more than one path,

we introduce in this paper more operators of LOCALSEARCH,

such as swapping two nodes from two different paths and

moving one node from one path to another, and an exchange

path strategy in PERTURBATION.

*Correspondence: Aldy Gunawan, School of Information Systems,

Singapore Management University, 80 Stamford Road, Singapore 178902,

Singapore.

E-mail: aldygunawan@smu.edu.sg

Journal of the Operational Research Society (2017) 68, 861–876 ª 2017 The Operational Research Society. All rights reserved. 0160-5682/17

www.palgrave.com/journals

Published in Journal of the Operational Research Society, 2017 August, Volume 68, Issue 8, Pages 861-876
http://doi.org/10.1057/s41274-017-0244-1

The second algorithm, namely SAILS, is a hybridization of

ILS and Simulated Annealing (SA). SA helps to increase the

diversification of the search, which is typically needed for

obtaining high-quality OP-solutions, as stated by, for

instance, Gendreau et al (1998) and Vansteenwegen et al

(2009). The current implementation of ILS easily gets

trapped in local optima. The hybridization with SA helps to

escape from these local optima. SA has the capability to

escape from a local optimum by accepting a worse solution

with a probability that changes over time. SA has been

applied to a huge variety of combinatorial problems. Prelim-

inary results of SAILS were presented in the 7th Multidis-

ciplinary International Scheduling Conference (MISTA 2015)

(Gunawan et al, 2015a).

Associated with both ILS and SAILS is a set of parameter

values that need to be tuned. It is known that good parameter

values can have a significant impact on the performance of an

algorithm (Hutter et al, 2009). Many proposed algorithms do

not pay special attention to it—the underlying parameters are

set either rather arbitrarily without any explanation or based on

limited preliminary tests, or based on values reported in

previous studies.

The problem of setting the parameter values has become an

interesting research area, typically divided in two categories,

parameter control and parameter tuning (Eiben et al, 1999).

The former changes the parameter values during an algorithm

run while the latter focuses on finding good parameter values

before running the algorithm. Some works related to parameter

control are presented by Eiben et al (2007) and Stützle et al

(2012). An example of parameter tuning is presented by Eiben

and Smit (2012).

In response to this need for a sound statistical approach to

obtain parameter values, we focus on the parameter tuning

by applying a factorial design experiment to screen and rank

all the parameters based on their importance, as described in

Gunawan and Lau (2011). In this approach, parameters

found to be ‘‘unimportant’’ (in the sense that the solution

quality is insensitive to the values of these parameters) are

set to some constant values so that the resulting parameter

space that needs to be explored is reduced and we can focus

on tuning the important parameters. Adenso-Diaz and

Laguna (2006) develop CALIBRA which employs a Taguchi

fractional experimental design followed by a local search

procedure. However, CALIBRA can only handle up to five

parameters and focuses on the main effects of parameters

without exploiting the interaction effects between

parameters.

We test our well-tuned ILS and SAILS on benchmark

TOPTW instances. The experiments are run with different

scenarios in order to ensure fair comparison. We compare the

results with those of the state-of-the-art algorithms: Iterated

Local Search (Vansteenwegen et al, 2009), Variable Neigh-

borhood Search (Tricoire et al, 2010), Ant Colony System

(Montemanni and Gambardella, 2009; Montemanni et al,

2011), Slow Simulated Annealing (Lin and Yu, 2012),

Granular Variable Neighborhood Search, Hybridized Greedy

Randomized Iterated Local Search (Souffriau et al, 2013)

and Iterative Three-Component Heuristic (Hu and Lim,

2014). We show that our proposed algorithms outperform

the state-of-the-art algorithms. More precisely, 50 new best

known solutions are found for a set of 304 well-known

benchmark instances for which no proven optimal solution is

available.

The main contributions of this paper are listed below:

• We extend the ILS that has been used for solving the

OPTW (Gunawan et al, 2015b). More operators of

LOCALSEARCH and an exchange path strategy in PERTURBA-

TION are introduced in order to deal with the TOPTW.

• We propose a hybrid algorithm, SAILS, in order to

improve the performance of the ILS. Simulated Annealing

is incorporated in order to avoid early termination in local

optimality. We show that SA is well suited to improve the

ILS.

• We apply the concept of Design of Experiment in order to

determine the algorithm parameter values of important

parameters.

• We are able to find 50 new best known solutions. This

serves as benchmark for future studies and complements

our previous work (Gunawan et al, 2015b).

The paper is organized as follows. In Section 2, the TOPTW is

described, including most recent related works. Section 3

describes the proposed algorithms, ILS and SAILS. We also

briefly explain the factorial experimental design for determin-

ing the parameter values of both algorithms. Section 4 is

devoted to the experimental results and analysis. Finally,

conclusions and some ideas for future works are summarized

in Section 5.

2. The Team Orienteering Problem with Time Windows

In this section, we first present the formal definition of the

TOPTW including notations used in this paper. We then

summarize a short overview of the related literature on the

TOPTW, including the state-of-the-art algorithms. For more

details about algorithms, we refer to the original papers.

2.1. Problem description

The TOPTW is defined as follows. Consider an undirected

network graph G ¼ ðN;AÞ where N ¼ f0; 1; 2; . . .; mg is the set
of nodes and A ¼ fði; jÞ : i 6¼ j 2 Ng refers to the set of arcs

connecting two different nodes i and j. The nonnegative travel

time between nodes i and j is represented by tij. Each node

i 2 N n f0g has a positive score ui that is collected when node

i is visited, a service time Ti and a time window [ei; li]. ei and li
refer to the earliest and latest times allowed for starting the

visit at node i. In the TOPTW, it is often assumed that node 0

862 Journal of the Operational Research Society Vol. 68, No. 8

is the starting and end nodes; therefore, u0 ¼ T0 ¼ 0. Take

note that each graph G has (mþ 1) nodes.

Let M ¼ f1; 2; . . .; lg be the set of paths. Each path j 2 M

starts and ends at node 0. Each path is also constrained within

the time limit [e0; l0]. Each node i 2 N, except node 0, is

visited at most once. The start time at node i 2 N in path j 2 M

is within time window ½ei; li]. In case of an early arrival, a visit

will only start when the time window opens. We have e0 ¼ 0

and l0 ¼ Tmax, where Tmax is the time budget or the maximum

duration to complete a path. The objective function of the

TOPTW is to maximize the total collected score from visited

nodes from all paths. For the mathematical model formulation,

please refer to the works of Vansteenwegen et al (2009, 2011).

2.2. Literature review

Vansteenwegen et al (2009) propose an ILS algorithm to solve

the TOPTW. Only two operations of ILS, INSERT and SHAKE,

are considered in this algorithm. A new dataset, which is

generated from Cordeau et al (1997) and Solomon (1987), is

introduced.

A metaheuristic algorithm based on an Ant Colony System

(ACS) is proposed by Montemanni and Gambardella (2009).

Montemanni et al (2011) further improve it by introducing

Enhanced ACS (EACS). The algorithm includes two addi-

tional operations to overcome the drawbacks of ACS. Both

operations focus on using the best solution found so far during

the construction phase and applying the local search procedure

only on those solutions on which the local search has not been

recently applied.

Variable Neighborhood Search (VNS) with several neigh-

borhood structures is proposed by Tricoire et al (2010). Lin

and Yu (2012) propose two different versions of Simulated

Annealing, Fast SA (FSA) and Slow SA (SSA). FSA is mainly

for the application that needs quick responses, while SSA is

more concerned about the quality of the solutions at the

expense of more computational time.

Another ILS algorithm is proposed by Gunawan et al

(2015b) for solving the OPTW, i.e., with only one path. The

algorithm starts by a greedy construction heuristic to construct

an initial feasible solution. The initial solution is further

improved by ILS. ILS is mainly based on several local search

components, such as SWAP, 2-OPT, INSERT and REPLACE. The

combination between ACCEPTANCECRITERION and PERTURBATION

mechanisms is implemented to control the balance between

diversification and intensification of the search.

The idea of combining some advantages of algorithms has

been brought up by many researchers for solving different

combinatorial optimization problems. Labadie et al (2011)

propose a hybridization of the Greedy Randomized Adaptive

Search Procedure (GRASP) and Evolutionary Local Search

(ELS) for the TOPTW. Different constructive heuristics

based on GRASP are introduced for constructing the initial

solutions. Those initial solutions are further improved by

ELS.

Another hybrid algorithm based on a local search (LS)

procedure, Simulated Annealing (SA) and Route Combination

(RR) is proposed by Hu and Lim (2014). Three components

are iteratively incorporated within a certain number of

iterations. Labadie et al (2012) introduce an LP-based Gran-

ular Variable Neighborhood Search (GVNS). The idea is to

include time constraints and profits in addition to pure

distances. By including the granularity, the performance of

the proposed algorithm is improved.

Most recently, Cura (2014) proposes an Artificial Bee

Colony (ABC) algorithm to solve the TOPTW. The hybridiza-

tion of SA and a new scout bee search behavior based on a

local search procedure is introduced to improve the solution

quality of benchmark instances. More details about the

performances of the state-of-the-art algorithms for the

TOPTW can be found in a recent survey (Gunawan et al,

2016).

3. Algorithms

This section is devoted to the description of our proposed

algorithms, ILS and SAILS. We introduce a greedy construc-

tion heuristic for providing an initial solution. The initial

solution is further improved either by ILS or by SAILS. The

details of our proposed algorithms are described in the

following subsections.

3.1. Greedy construction heuristic

The greedy construction heuristic is outlined in Algorithm 1.

The idea of constructing an initial solution extends the one

proposed by Gunawan et al (2015b) which is only dedicated

for l = 1. First, we initialize N 0, N� and S0. N
0 and N� denote

the sets of unscheduled and scheduled nodes, respectively

(N 0 [N� ¼ N). N� is initialized by the starting and end nodes,

node 0, while N 0 consists of unscheduled nodes. Take note that

all benchmark instances assume both start and end nodes are

the same. S0 refers to the current feasible solution obtained so

far, represented by l-row vectors. Each row is initialized with

starting and end nodes, node 0.

Aldy Gunawan et al—Well-tuned algorithms for the Team Orienteering Problem with Time Windows 863

Algorithm 1 Construction (N , M)
N∗ ←node 0
N ′ ← N\node 0
Initialize S0 ← N∗
F ← UpdateF(N ′, M)
while F �= ∅ do

〈n∗, p∗, m∗〉 ← Select(F)
S0 ← 〈n∗, p∗, m∗〉
Update P (m)
N ′ ← N ′ \ {n∗}
N∗ ← N∗ ∪ {n∗}
F ← UpdateF(N ′, M)

end while
return S0

Algorithm 2 UpdateF (N ′, M)
F ← ∅
for all n ∈ N ′ do

for all m ∈ M do
for all p ∈ P (m) do

if insert node n in position p of path m is feasible then
calculate ration,p,m

F ← F ∪ 〈n, p, m〉
end if

end for
end for

end for
Sort all elements of F in non-increasing order based on ration,p,m

Select the best f elements of F and remove the rest
return F

Algorithm 3 Select (F)
SumRatio ← 0
for all 〈n, p, m〉 ∈ F do

SumRatio ← SumRatio + ration,p,m

end for
for all 〈n, p, m〉 ∈ F do

probn,p,m ← ration,p,m/SumRatio
end for
AccumProb ← 0
U ← rand(0, 1)
for all 〈n, p, m〉 ∈ F do

AccumProb ← AccumProb + probn,p,m

if U ≤ AccumProb then
〈n∗, p∗, m∗〉 ← 〈n, p, m〉
break

end if
end for
return 〈n∗, p∗, m∗〉

The construction heuristic is started by generating a set of

all feasible candidate nodes that can be inserted, F. Each

element of F, denoted as hn; p;mi, represents a feasible

insertion of node n in position p of path m. We examine all

possibilities of inserting an unscheduled node n 2 N 0 in

position p of path m. An insertion hn; p;mi is feasible if after

the insertion, all scheduled nodes do not violate their

respective time windows and the total spent time in path m

does not exceed Tmax.

Algorithm 2 summarizes the algorithm of generating F.

Let P(m) be a set of the positions of scheduled nodes on path

m. For each possible insertion, the benefit of insertion

ration;p;m is calculated by Eq. 1. Diffn;p;m represents the

difference between the total time spent before and after the

insertion of node n in position p of path m. All elements of F

are then sorted in descending order based on ration;p;m values.

Only a certain number of elements, f, would be kept and

considered.

ration;p;m ¼ u2n
Diffn;p;m

ð1Þ

If F is not an empty set, Algorithm 3 is run in order to select

which hn�, p�, m�i to be inserted. Each hn, p, mi corresponds to
a particular probability value probn;p;m. The probability is

calculated by Eq. 2:

probn;p;m ¼ ration;p;mP
hi;j;ki2F ratioi;j;k

ð2Þ

The selection of hn�, p�, m�i from F is based on the Roulette-

Wheel Selection method (Goldberg, 1989). The probability of

selection is proportional to the benefit of insertion of an

individual, denoted as ration;p;m. First, a random number

U� rand½0; 1� is generated. We then select a particular hn, p,
mi and add the respective probability value probn;p;m to the

value of AccumProb. If ðU�AccumProbÞ, the corresponding

hn, p, mi is then selected.

The greedy construction heuristic is terminated when

F ¼ ;. Vansteenwegen et al (2009) concluded that due to

the time windows, the score of the node considered for

insertion is more relevant compared to the time consumption

of an insertion. Therefore, the square of the score is applied

in Eq. 1.

3.2. ILS

The outline of ILS is presented in Algorithm 4. Three

components of ILS: PERTURBATION, LOCALSEARCH and ACCEP-

TANCECRITERION are taken into consideration.

The initial solution S0 which is generated by the greedy

construction heuristic is treated as the current solution in ILS.

LOCALSEARCH is applied in order to generate some possible

neighborhood solutions and pick a better one, if any. We then

update the current solution S0. The updated solution is treated

as the best found solution so far S�.

We continue with applying PERTURBATION to S0. LO-

CALSEARCH is then applied after a perturbation. If the current

solution S0 is better than S�, we update the best found solution

so far S�. This part is related to the ACCEPTANCECRITERION

component of ILS.

We include the intensification strategy in our ILS. This is

the main difference of the standard ILS and our ILS. The idea

of the intensification strategy is as follows. If S� is not updated

for a certain number of iterations, ((NOIMPR?1) MOD THRESH-

OLD1 = 0), we restart the search from the best found solution,

864 Journal of the Operational Research Society Vol. 68, No. 8

S�. Finally, the entire algorithm will be run within the

computational budget, TIMELIMIT.

Algorithm 4 ILS (N,M)
S0 ← Construction(N, M)
S0 ← LocalSearch(S0, N∗, N ′, M)
S∗ ← S0
NoImpr ← 0
while TimeLimit has not been reached do

S0 ← Perturbation(S0, N∗, N ′, M)
S0 ← LocalSearch(S0, N∗, N ′, M)
if S0 better than S∗ then

S∗ ← S0
NoImpr ← 0

else
NoImpr ← NoImpr + 1

end if
if (NoImpr+1) Mod Threshold1 = 0 then

S0 ← S∗
end if

end while
return S∗

Two components that play important roles for improving the

performance of ILS are PERTURBATION and LOCALSEARCH. ILS

escapes from local optima by applying PERTURBATION to the

current local minimum. LOCALSEARCH is applied to the current

solution in order to generate neighborhoods. In the following

subsections, we provide the descriptions of PERTURBATION and

LOCALSEARCH.

3.2.1. Perturbation PERTURBATION is applied to S0 in order to

escape from local optima. Two different steps implemented

are EXCHANGEPATH and SHAKE. If the number of iterations

without improvement, NOIMPR, is larger than THRESHOLD2 and

(NOIMPR ? 1) Mod THRESHOLD3 is equal to 0, EXCHANGEPATH is

executed; otherwise, SHAKE is selected. THRESHOLD2 and

THRESHOLD3 are constant parameters.

By implementing EXCHANGEPATH, we restructure the current

solution in order to provide opportunities for operators of

LOCALSEARCH. In this step, we change the order of the paths in

the solution by swapping two adjacent paths every time. The

MOVE operator of LOCALSEARCH, explained in Section 3.2.2, is

applied to paths in ascending order, e.g., from path one to the

last path. Exchanging the order of the paths therefore creates

extra opportunities for improvement by the MOVE operator.

The strategy of selecting two different paths is based on

generating permutations by adjacent transposition method

(Johnson, 1963). Each permutation is derived from its

predecessor by a single interchange of two paths in adjacent

positions. For example, with l = 3, the selected permutation is

run once in this order: 1 2 3, 1 3 2, 3 1 2, 3 2 1, 2 3 1 and 2 1 3.

Bold numbers represent two adjacent paths need to be

swapped. Figure 1 provides an example of the EXCHANGEPATH

step. If the selected permutation is 1 2 3, all nodes from path 2

are exchanged to path 3 and vice versa (Figure 1a, b).

The SHAKE step is adopted from the one proposed by

Vansteenwegen et al (2009) with some modifications. One or

more nodes will be removed from each path m, which depends

on two integer values, CONS and POST. CONS indicates how

many consecutive nodes to remove for a particular path while

POST indicates the first position of the removing process in a

particular path. If we reach the last scheduled node, the process

will continue to the first node after the starting node. Figure 2

illustrates the example of the SHAKE step with CONS equals to 2

and POST equals to 3. Two nodes are removed starting from

position 3 of each path. For path 1, since we have reached the

last node, node 4, we continue to remove node 1.

Both CONS and POST are initially set to one. After each

SHAKE step, POST is increased by CONS. CONS is also increased

by one after a fixed number of consecutive iterations, e.g., two

iterations. If POST is greater than the number of scheduled

Figure 1 Example of EXCHANGEPATH. a Before EXCHANGEPATH, b After EXCHANGEPATH.

Figure 2 Example of SHAKE. a Before SHAKE, b After SHAKE.

Aldy Gunawan et al—Well-tuned algorithms for the Team Orienteering Problem with Time Windows 865

nodes of the shortest path, POST is subtracted with the size of

the shortest path to determine the new position POST. If CONS is

greater than the size of the largest path, or S� is updated, CONS

is reset to one.

This is different from the one in Vansteenwegen et al (2009)

where CONS is always increased by one for each iteration and it

would be set to one if it equals to m
3�l. After removing CONS

nodes, we update N 0 and N� accordingly. F is then regenerated

based on Algorithm 2, and an unscheduled node that needs to

be inserted is selected by using Algorithm 3. This is repeated

until F ¼ ;.

3.2.2. Local search In LOCALSEARCH, we run six different

operations consecutively, as shown in Table 1. The first four

operators (SWAP1, SWAP2, 2-OPT and MOVE) restructure the

current solution by increasing the remaining travel time. The

remaining travel time refers to the difference between Tmax

and the time in which the path arrives to the end node. The

order of the four operators is decided after conducting some

preliminary experiments. Two other operators, INSERT and

REPLACE, contribute to improve the quality of the solution. The

main reason why we put the first four operators first is that

they could provide opportunities for INSERT and REPLACE to

make improvements. When l = 1, only SWAP1, 2-OPT, INSERT

and REPLACE are considered.

SWAP1 is defined by swapping two scheduled nodes within

one particular path with the lowest remaining travel time. We

examine all possible combinations of swapping two different

nodes. SWAP1 is executed if it increases the remaining travel

time of the path.

The idea of SWAP1 is extended to two different paths with

the lowest and the second lowest remaining travel times,

namely SWAP2. This operation will be accepted if the total

remaining travel times from both paths, after exchanging the

nodes, is increased. Both SWAP1 and SWAP2 would be

terminated if we cannot find two nodes to be swapped.

2-OPT is started by selecting one path with the lowest

remaining travel time. All possible combinations of selecting

two different nodes are enumerated, and the sequence of

scheduled nodes is reversed as long as there is no constraint

violation. It has to increase the remaining travel time of the

selected path. This would be terminated until no improving

move is found.

MOVE is performed by reallocating one node from one path

to another path. It is started from the first scheduled node n�

from the first path m�. We try to insert node n� to another path.

F is generated by using Algorithm 2 where N 0 = fn�g and

M ¼ M n fm�g. If F 6¼ ;, node n� would be reallocated using

Algorithm 3. Otherwise, the process will continue to the next

scheduled node. This operation would be terminated if the

selected node is moved successfully or the last scheduled node

of the last path l is examined.

The purpose of INSERT is to insert one unscheduled node to a

particular path. It is started by generating F based on

Algorithm 2 and selecting node i 2 N 0 to be inserted by using

Algorithm 3. After the insertion, S0, N
0, N� and F are updated

accordingly. This is repeated until F ¼ ;.
In the last operation REPLACE, one scheduled node i 2 N� is

replaced with one unscheduled node j 2 N 0. The operation is

started by selecting path m with the highest remaining travel

time, followed by selecting one node j 2 N 0 with the highest

score uj. We then check each position p of the selected path

and examine whether selected node j can replace the node in

position p. Once this operation is successful, the process will

continue to the next unscheduled node j and repeat the

operation. This will continue until there is no possible

replacement.

3.3. SAILS

The outline of SAILS is presented in Algorithm 5. The SA

algorithm requires three parameters T0, a and INNERLOOP. T0
refers to the initial temperature. a is a coefficient used to

control the speed of the cooling schedule (0\a\1).

INNERLOOP denotes the number of iterations at a particular

temperature. Let S0, S
� and S0 be the current solution, the best

found solution so far and the starting solution for each

iteration, respectively. At the beginning, the current temper-

ature Temp is equal to T0 and would be decreased after

INNERLOOP iterations by using the following formula: Temp =

Temp� a. SAILS consists of three components of ILS:

PERTURBATION, LOCALSEARCH and ACCEPTANCECRITERION that

have been described in Section 3.2.

Table 1 LOCALSEARCH operations

Operation Description

SWAP1 Exchange two nodes within one path
SWAP2 Exchange two nodes within two paths
2-OPT Reverse the sequence of certain nodes within one

path
MOVE Move one node from one path to another path
INSERT Insert nodes into a path
REPLACE Replace one scheduled node with one unscheduled

node

866 Journal of the Operational Research Society Vol. 68, No. 8

Algorithm 5 SAILS (N,M)
S0 ← Construction(N, M)
S∗ ← S0
S′ ← S0
Temp ← T0
NoImpr ← 0
while TimeLimit has not been reached do

InnerLoop = 0
while InnerLoop < MaxInnerLoop do

S0 ← Perturbation(S0, N∗, N ′, M)
S0 ← LocalSearch(S0, N∗, N ′, M)
δ ← obj value of S0 - obj value of S′
if δ > 0 then

S′ ← S0
if S0 is better than S∗ then

S∗ ← S0
NoImpr ← 0

else
NoImpr ← NoImpr + 1

end if
else

r ← rand[0, 1]
if r < exp(δ/Temp) then

S′ ← S0
else

S0 ← S′
end if
NoImpr ← NoImpr + 1

end if
InnerLoop ← InnerLoop + 1

end while
Temp ← Temp × α
if NoImpr > Limit then

S0 ← S∗
S′ ← S0
NoImpr ← 0

end if
end while
return S∗

At a particular value of temperature Temp, we apply two

components of ILS: PERTURBATION and LOCALSEARCH in order

to explore neighborhoods of S0. For each iteration, we

calculate the difference between the objective function

values of the solutions S0 and S0, denoted as d. If d is

greater than 0, which implies that the objective function value

is improved, S0 is replaced by S0. If S0 also improves S�, S� is

then replaced by S0. We follow the same step of SA in

accepting a worse solution, as shown in Algorithm 5.

The main difference of the standard SA and our SAILS lies

in the additional strategy applied. We include the intensifica-

tion strategy. The idea of this strategy is as follows. For each

iteration, if there is no improvement of S�, we increase the

number of no improvement NOIMPR by one. If the number of

no improvement NOIMPR reaches a threshold LIMIT, we focus

the search once again starting from the best solution obtained

S�. Finally, the entire algorithm will be run within the

computational budget TIMELIMIT.

3.4. Parameter tuning

We implement a sequential experimental approach which is

grounded on the Design of Experiment (DOE) methodology

for screening algorithm parameters (Gunawan and Lau, 2011).

We briefly explain the idea of this approach.

Given a set of parameters PR, it is assumed that the initial

range value of each parameter par 2 PR is known and

bounded by a numerical interval [LBpar;UBpar]. We apply a

2jPRj factorial design to screen and rank the parameters. A

complete design requires rep� 2jPRj observations where rep

represents the number of replicates for one particular set of

parameter values. The purpose of screening is to determine

which parameters are statistically significant. By doing so, the

number of parameters that require tuning is reduced.

The following example provides an illustration of the

screening phase. Suppose there are two different parameters,

par1 and par2. The 22 factorial design consists of four

experimental units where each unit is run rep times:

• Set par1 at LBpar1 and par2 at LBpar2

• Set par1 at LBpar1 and par2 at UBpar2

• Set par1 at UBpar1 and par2 at LBpar2

• Set par1 at UBpar1 and par2 at UBpar2

A factorial experiment is then analyzed by using analysis of

variance (ANOVA) to evaluate the main effect for a particular

parameter. Further diagnosis related to normality, constant

variance, time-dependent effects, and model significance are

conducted. The test of significance of the main effect of the

parameters with a significance level (a = 5%) is conducted for

determining the importance of parameters. The important

parameters are ranked by comparing the absolute values of the

main effects of those parameters. Each unimportant (non-

significant) parameter is then set to a constant value. The

details of the statistical test can be found in Gunawan and Lau

(2011) and Montgomery (2005).

4. Computational experiments

In this section, we first present the benchmark TOPTW

instances and the state-of-the-art algorithms for comparison

purpose. In Section 4.2, we describe how we determine and set

the parameter values for the proposed algorithms. Compre-

hensive results are analyzed in Section 4.3.

4.1. Benchmark instances and approach comparison

The benchmark OPTW instances are initially proposed by

Righini and Salani (2009). 58 problem instances are generated

from Solomon’s instances (Solomon, 1987), and 10 instances

are adapted from Cordeau’s instances (Cordeau et al, 1997).

Montemanni and Gambardella (2009) develop another set of

37 instances for the OPTW. The TOPTW instances are

designed by extending the OPTW instances with different

values of paths: l = 2, 3 and 4. These instances are classified

as the ‘‘INST-M’’ category (Hu and Lim, 2014).

Aldy Gunawan et al—Well-tuned algorithms for the Team Orienteering Problem with Time Windows 867

Subsequently, Vansteenwegen et al (2009) add more

instances based on instances of Solomon (1987) and Cordeau

et al (1997). Those instances are considered more difficult

instances, with the number of paths l set to the number of

vehicles. Due to the specific setting on the number of provided

vehicles, the optimal solutions for these instances are known

and are equal to the total score collected from all customers.

Hu and Lim (2014) include these instances into the ‘‘OPT’’

category. Table 2 summarizes the benchmark TOPTW

instances into three groups. All benchmark instances can be

downloaded from http://www.mech.kuleuven.be/en/cib/op.

To evaluate the performance of our proposed algorithms, we

consider the state-of-the-art algorithms, as listed in Table 3.

The last two rows refer to our proposed algorithms, ILS and

SAILS. In order to ensure fair comparisons due to different

experimental environments, we use the same approach used by

Hu and Lim (2014), namely the SuperPi benchmark. This

method adjusts the computational time to the speed of the

computers used in other approaches. The main idea is to set the

performance of our machine to be 1 and estimate the single-

thread performance of other processors by multiplying with

the single-thread performance estimation, as shown in Table 3.

Therefore, the computational times shown in this paper have

been adjusted accordingly.

We propose two different scenarios for conducting exper-

iments. Each scenario is related to a different purpose that

would be explained below. For the first scenario, we focus on

the quality of the solution rather than the computational time.

We notice that among the state-of-the-art algorithms, only

ACS uses the computational budget, while the rest uses the

number of iterations. The computational budget required by

ACS to solve each instance is 1 h, which is considered large.

For this scenario, we decide to run experiments with three

different settings (computational budgets): 3600 s, 35% �
3600 s and 10% � 3600 s. The main purpose is to show that

our proposed algorithms are able to perform well with shorter

computational times.

The computational budgets per run for each instance using

our processor are then set to 100% � 0.22 � 3600 s

(�792 s), 35% � 0.22 � 3600 s (� 277 s and 10% � 0.22

� 3600 s (� 79.2 s), respectively. Our algorithms are then

named as ILS100, ILS35, ILS10, SAILS100, SAILS35 and

SAILS10, respectively.

In the second scenario, we conduct experiments in which

both ILS and SAILS are set to the same computational time as

the other algorithms, e.g., I3CH (Hu and Lim, 2014) and VNS

(Tricoire et al, 2010) so that our approach can be compared on

the same base. The main purpose is to show that our

algorithms are able to improve the solutions of the state-of-

the-art algorithms on average.

It has been proven that I3CH outperforms other algorithms,

such as IterILS, SSA and GVNS (Hu and Lim, 2014). We also

select the computational time of VNS (Tricoire et al, 2010)

since the computational time of VNS is much longer than the

one of I3CH. For our proposed algorithms, each instance is

executed in 10 runs with different random seeds. ACS is

executed in 5 runs, whereas VNS, GVNS and GRILS are also

executed 10 runs. IterILS, SSA and I3CH are only executed

once.

4.2. Parameter tuning

Our proposed algorithm ILS consists of 4 parameters: f,

THRESHOLD1, THRESHOLD2 and THRESHOLD3, as listed in Table 4.

In this section, we present details of our parameter tuning

experiments. We follow the same scenario used by Hu and Lim

(2014) for selecting some training instances. The chosen

instances are ‘‘c203,’’ ‘‘c207,’’ ‘‘pr02,’’ ‘‘pr07,’’ ‘‘pr12,’’

‘‘pr16,’’ ‘‘r102,’’ ‘‘r105,’’ ‘‘rc107’’ and ‘‘rc204’’ with l = 4. Hu

andLim (2014) carried out experiments to tune some parameters

by setting other parameters to constant values.

We implement the concept of Design of Experiment (DOE)

as described in Section 3.4. In our problem, the DOE result is

shown in Figure 3. Two statistically significant parameters

with p value\5% are f and THRESHOLD1. These two parameters

are considered as important parameters. By referring to the

absolute effect values, the direction of adjustment for each

parameter can be determined. For example, the most important

parameter, f, has the highest absolute effect value of �0:984.

Since our objective is to maximize the total collected score, we

should set f to the lower range so we decide to adjust the range

to [1, 5].

A similar idea is applied to the second highest important

parameter, THRESHOLD1. On the other hand, for nonsignificant

parameters (e.g., THRESHOLD2 and THRESHOLD3), we set to a

Table 2 Benchmark instances

Reference Name Instance set Number of instances Number of nodes m Number of paths l

Righini and Salani (2009) Solomon c100, r100, rc100 29 � 4 100 1–4
Cordeau pr01–pr10 10 � 4 48–288

Montemanni and Gambardella (2009) Solomon c200, r200, rc200 27 � 4 100 1–4
Cordeau pr11–pr20 10 � 4 48–288

Vansteenwegen et al (2009) Solomon c100, r100, rc100 29 � 1 100 3–20
c200, r200, rc200 27 � 1 100

Cordeau pr01–pr10 10 � 1 48–288

868 Journal of the Operational Research Society Vol. 68, No. 8

http://www.mech.kuleuven.be/en/cib/op

constant value by referring to the sign of the effect value. Both

are considered as unimportant parameters. For instance,

THRESHOLD2 has a positive effect; therefore, we set to its

higher value, which is 20. The final range or the final value for

each parameter can be referred to the last column of Table 4.

Since our main concern is to screen the parameters, we ignore

the effect of interaction among parameters (Montgomery,

2005).

Our main attention now is on important parameters, f and

THRESHOLD1. We select some integer values within their final

ranges and re-run ILS. In our design, the experiment is

repeated six times with f 2 f1; 3; 5g and THRESHOLD1

2 f5; 10g. For each run, the percentage gap between the

solution value achieved by ILS and the best known solution

is computed. Table 5 summarizes the average gap for each

possible combination of f and THRESHOLD1. Based on the

preliminary testing, the following parameter values have the

best performance within a reasonable computational time:

f = 5, THRESHOLD1 = 10, THRESHOLD2 = 20 and THRESHOLD3

= 3.

For the second proposed algorithm, SAILS, we adopt the

following parameter values from ILS: f = 5, THRESHOLD2 = 20

and THRESHOLD3 = 3. Other parameter values: a; T0 and

MAXINNERLOOP, are determined by implementing the DOE to

the same set of training instances. Figure 4 shows the

experimental result of the DOE.

From Figure 3, parameter MAXINNERLOOP seems not signif-

icant with a p value[5%. We then set its value to its lower

value, which is 50. Another parameter, LIMIT, depends on the

values of MAXINNERLOOP and a constant value c, using the

formula: d LIMIT = c � MAXINNERLOOP e. In this paper, we use

c ¼ 0:05. Other two parameters, a and T0, are statistically

significant with p value\5%. By referring to the positive sign

of their effect values, we conclude that both algorithms

perform better if we focus on the range with higher values. For

example, the initial range for T0 is [100, 1000] which is

adjusted to [500, 1000]. Table 6 presents the initial and final

Table 3 Estimation of single-thread performance

Algorithm Abbreviation Experimental environment Estimate of single-
thread performance

Iterated Local Search IterILS (Vansteenwegen et al, 2009) Intel Core 2 with 2.5 GHz CPU 0.92
Variable Neighborhood Search VNS (Tricoire et al, 2010) Intel Pentium 4 with 2.4 GHz

CPU, 4 GB RAM
0.39

Ant Colony System ACS (Montemanni and Gambardella,
2009; Montemanni et al, 2011)

Dual AMD Opteron 250 with 2.4
GHz CPU, 4 GB RAM

0.39

Slow Simulated Annealing SSA (Lin and Yu, 2012) Intel Core 2 with 2.5 GHz CPU 0.92
Granular Variable Neighborhood
Search

GVNS (Labadie et al, 2012) Intel Pentium (R) IV with 3 GHz
CPU

0.39

Hybridized Greedy Randomized
Iterated Local Search

GRILS (Souffriau et al, 2013) Intel Xeon with 2.5 GHz CPU, 4
GB RAM

0.39

Iterative Three-Component
Heuristic

I3CH (Hu and Lim, 2014) Intel Xeon E5430 with 2.66 GHz
CPU, 8 GB RAM

1.16

Iterated Local Search ILS Intel (R) Core(TM) i5 with 3.2
GHz CPU, 12 GB RAM

1

Hybridized Simulated
Annealing—Iterated Local
Search

SAILS Intel (R) Core(TM) i5 with 3.2
GHz CPU, 12 GB RAM

1

Table 4 Parameter values of ILS

Parameter
par

Initial range
[LBpar;UBpar]

Final range
[LBpar;UBpar]

f [1, 10] [1, 5]
THRESHOLD1 [1, 10] [5, 10]
THRESHOLD2 [10, 20] 20
THRESHOLD3 [1, 3] 3

Table 5 Parameter tuning on f and THRESHOLD1

f ¼ 1 f ¼ 3 f ¼ 5

THRESHOLD1 = 5 2.58 2.33 2.76
THRESHOLD1 = 10 3.18 2.45 1.99

Figure 3 Design of Experiments result for ILS.

Aldy Gunawan et al—Well-tuned algorithms for the Team Orienteering Problem with Time Windows 869

ranges for significant parameters and the final values for

nonsignificant parameters.

We continue the parameter tuning experiment by generating

different values for each significant parameter in order to

determine the final value of a and T0. The values of parameters

considered are as follows: a 2 f0:5; 0:75; 0:9g and

T0 2 f500; 600; 700; 800; 900; 1000g. All possible combina-

tions are run in order to obtain the final parameter values, as

shown in Table 7. We conclude that the following values: a =

0.75, T0 = 1000, MAXINNERLOOP = 50 and LIMIT = 3, perform

best.

4.3. Computational results

We report a comprehensive analysis of the results from two

different scenarios. The last subsection consolidates all new

best known solutions.

4.3.1. First scenario Table 8 summarizes the comparison of

our proposed algorithms with ACS (Montemanni and

Gambardella, 2009; Montemanni et al, 2011) for all

instances from ‘‘INST-M.’’ The Numb column provides the

number of instances in a set. The BG and AG columns report

the best and average percentage gaps with the best known

solutions (BKs). All BKs are collected from the state-of-the-art

algorithms listed in Table 3. A negative value indicates an

improvement of the current best known solutions. As

described in Section 4.1, both ILS and SAILS are run with

three different computational budgets (settings), while ACS is

run for 3600 s (�792 s with our processor).

We observe that the average percentage gaps (AG values)

over all ‘‘INS-M’’ instances achieved by ILS100 and SAILS100

are 0.81 and 0.80%, respectively. They outperform ACS at

least by 1.52%. As computational budget becomes less, ILS

and SAILS become less effective in solving the TOPTW

instances. However, both ILS and SAILS are still better than

ACS in terms of the average percentage gap values (AG

values).

We also record the best solution found from 10 runs and

calculate the percentage gap with the best known solution (BG

values). On average, ILS and SAILS with different computa-

tional budgets still outperform the ACS. The worst average is

around 0.73% (by ILS10) which is still better than the one of

the ACS which is 1.69%. We also conclude that SAILS

outperforms ILS in terms of BG and AG values in all different

computational budgets.

In order to support the above-mentioned paragraph about the

performance of SAILS, we summarize the average improve-

ment of the initial solution generated by SAILS35, as shown in

Table 9. Take note that SAILS10 and SAILS100 show similar

performance. SAILS35 is able to improve the initial solution

generated by the greedy construction heuristic between 0.60

and 19.41%. SAILS35 performs best for l = 1 where the

average values of percentage of improvement vary from 9.51

to 19.41%. We observe that the higher the value of l, the
lower the average value is.

For other state-of-the-art algorithms, we provide Table 10

for comparison purpose. The comparison should be done

carefully since some results are obtained after one run while

others are based on multiple runs. Our algorithms use the

computational budget mentioned in Section 4.1, while other

state-of-the-art algorithms use the number of iterations. We

compare the average results of multiple runs with the results of

the single-run algorithms. The average results correspond to

the average expected quality and computational time of the

multiple-run algorithm when it is executed only once (Souf-

friau et al, 2013).

Both ILS and GRILS are suitable for problems in real time

since both are solved very fast although the solution quality is

worse than other algorithms. I3CH outperforms SSA and

GVNS although it requires more computational times. Both

ACS and VNS do not perform well since they also require

more computational times but the solution quality is worse. In

conclusion, I3CH is considered as the best algorithm among

the state-of-the-art algorithms (Hu and Lim, 2014).

We first compare SAILS100 and ILS100 against the state-of-

the-art algorithms in terms of solution quality and computa-

tional time. Please note that, as discussed in Section 4.1, the

computational time for SAILS100 and ILS100 is 792 s per run.

Both outperform the state-of-the-art algorithms, except I3CH,

and require a higher computational time. SAILS35, ILS35,

SAILS10 and ILS35 are able to outperform VNS in terms of

solution quality and computational time. On the other hand,

they perform worse than SSA.

Figure 4 Design of Experiments result for SAILS.

Table 6 Parameter values of SAILS

Parameter par Initial range
[LBpar;UBpar]

Final range
[LBpar;UBpar]

a [0.1, 0.9] [0.5, 0.9]
T0 [100, 1000] [500, 1000]
MAXINNERLOOP [50, 100] 50
LIMIT – d0:05� 50 ¼ 3e

870 Journal of the Operational Research Society Vol. 68, No. 8

Table 11 reports the overall comparisons on the instances in

the ‘‘OPT’’ category. Take note that ACS, VNS and GRILS

are not tested on those instances. SAILS100 and ILS100

outperform IterILS, SSA and GVNS, but use more computa-

tional time. The I3CH achieves the smallest average gap over

all ‘‘OPT’’ instances.

4.3.2. Second scenario For the purpose of ensuring a fair

comparison among our proposed algorithms, SAILS and ILS,

and other algorithms, I3CH and VNS, we now conduct

experiments in which the ILS and SAILS were set to the same

computational time as the other approaches, adjusted by their

computers’ speed (Table 3).

In this scenario, we follow the same scenario which is used

in Hu and Lim (2014). The experiments are carried out on the

‘‘INST-M’’ instances. The computational time and the number

of runs for each instance were set to the ones required by

I3CH. We also include the computational time of VNS for

comparison purpose since I3CH has not been compared with

the computational time of VNS before Hu and Lim (2014). To

differentiate with other scenarios, our proposed algorithms are

named as ILSI3CH, ILSVNS, SAILSI3CH and SAILSVNS,

respectively.

Table 12 summarizes the performance of ILSI3CH and

SAILSI3CH in solving all instances from ‘‘INST-M.’’ ILSI3CH

outperforms I3CH on instance sets with l = 1. SAILSI3CH

performs well on the instance sets with l = 1 and 2. I3CH,

ILSI3CH and SAILSI3CH achieve average percentage gaps of

0.69, 1.20 and 0.61%, respectively.

When we set the computational times of ILSVNS and

SAILSVNS to the one of VNS, we conclude that both ILSVNS

and SAILSVNS outperform VNS. However, we found that

Table 7 Parameter tuning on a and T0

T0 ¼ 500 T0 ¼ 600 T0 ¼ 700 T0 ¼ 800 T0 ¼ 900 T0 ¼ 1000

a ¼ 0:5 2.20 2.43 2.51 2.23 1.91 1.94
a ¼ 0:75 2.18 2.52 2.86 2.22 2.71 1.76
a ¼ 0:9 2.84 2.39 2.05 2.49 3.56 2.41

Table 8 Overall comparison of ILS and SAILS to ACS on ‘‘INST-M’’

Instance set Numb ACS ILS100 ILS35 ILS10 SAILS100 SAILS35 SAILS10

BG AG BG AG BG AG BG AG BG AG BG AG BG AG

l ¼ 1
Cordeau 1–10 10 1.06 1.22 0.24 0.36 0.34 0.74 0.37 0.76 0.25 0.73 0.44 0.93 0.34 0.84
Cordeau 11–20 10 11.13 11.87 1.21 1.53 1.33 2.12 1.56 2.16 1.27 1.82 1.14 2.28 1.52 2.45
Solomon 100 29 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.02 0.00 0.03
Solomon 200 27 1.38 2.07 0.08 0.40 0.04 0.71 0.27 0.91 -0.01 0.52 0.12 0.83 0.30 0.83

l ¼ 2
Cordeau 1–10 10 2.59 3.57 0.48 1.30 0.77 2.30 1.37 2.52 0.19 1.15 0.56 2.09 1.08 1.83
Cordeau 11–20 10 5.00 6.15 1.19 2.13 1.66 3.38 2.36 3.48 1.12 2.17 1.40 3.11 1.59 2.82
Solomon 100 29 0.17 0.62 -0.01 0.00 -0.01 0.07 -0.01 0.08 -0.01 0.04 -0.01 0.09 0.01 0.12
Solomon 200 27 2.46 3.18 0.23 0.83 0.47 1.39 0.91 1.65 0.37 0.93 0.46 1.40 0.68 1.45

l ¼ 3
Cordeau 1–10 10 2.96 4.21 1.12 2.29 2.13 3.59 1.79 3.17 1.03 2.17 1.26 2.85 1.89 3.40
Cordeau 11–20 10 5.40 7.24 1.76 2.94 2.07 3.59 2.41 3.98 0.92 2.24 2.02 3.39 1.83 2.99
Solomon 100 29 0.31 1.07 0.06 0.22 0.05 0.51 0.16 0.44 0.07 0.30 0.08 0.51 0.15 0.60
Solomon 200 27 0.50 0.86 0.14 0.30 0.21 0.52 0.34 0.71 0.08 0.25 0.16 0.43 0.21 0.49

l ¼ 4
Cordeau 1–10 10 2.76 3.42 2.34 3.48 2.33 4.00 3.00 4.45 1.67 2.79 2.08 3.58 2.49 3.69
Cordeau 11–20 10 5.53 6.34 2.14 3.47 2.91 4.42 3.43 4.55 1.85 3.12 2.05 3.97 2.71 3.97
Solomon 100 29 0.65 1.79 0.34 0.84 0.28 1.13 0.46 1.20 0.28 0.86 0.27 1.23 0.53 1.17
Solomon 200 27 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Grand Mean 1.69 2.33 0.42 0.81 0.54 1.19 0.73 1.28 0.34 0.80 0.46 1.14 0.61 1.15

Table 9 The improvement of the greedy construction heuristic
result by SAILS (in %)

Instance set l ¼ 1 l ¼ 2 l ¼ 3 l ¼ 4

Cordeau 1–10 18.57 18.86 15.70 12.80
Cordeau 11–20 19.41 18.63 14.26 11.43
Solomon 100 12.42 13.08 13.20 13.30
Solomon 200 9.51 8.29 4.56 0.60
Grand Mean 12.87 12.59 10.50 8.17

Aldy Gunawan et al—Well-tuned algorithms for the Team Orienteering Problem with Time Windows 871

T
a
b
le

1
0

O
v
er
al
l
co
m
p
ar
is
o
n
o
f
IL
S
an
d
S
A
IL
S
to

th
e
st
at
e-
o
f-
th
e-
ar
t
al
g
o
ri
th
m
s
o
n
‘‘
IN

S
T
-M

’’

In
st
a
n
ce

se
t

N
u
m
b

It
er
IL
S

V
N
S

S
S
A

G
V
N
S

G
R
IL
S

I3
C
H

IL
S
1
0
0

IL
S
3
5

IL
S
1
0

S
A
IL
S
1
0
0

S
A
IL
S
3
5

S
A
IL
S
1
0

A
G

A
T

A
G

A
T

A
G

A
T

A
G

A
T

A
G

A
T

A
G

A
T

A
G

A
G

A
G

A
G

A
G

A
G

l
¼

1
C
o
rd
ea
u
1
–
1
0

1
0

4
.7
0

1
.7

1
.1
0

7
5
3
.6

0
.9
8

1
0
3
.2

1
.6
2

4
.8

3
.7
4

3
.8

1
.0
7

1
2
6
.8

0
.3
6

0
.7
4

0
.7
6

0
.7
3

0
.9
3

0
.8
4

C
o
rd
ea
u
1
1
–
2
0

1
0

8
.4
0

1
.8

3
.3
8

9
5
8
.9

3
.7
1

1
4
9
.3

4
.2
6

9
.3

7
.9
6

4
.7

4
.2
8

1
5
1
.5

1
.5
3

2
.1
2

2
.1
6

1
.8
2

2
.2
8

2
.4
5

S
o
lo
m
o
n
1
0
0

2
9

1
.8
2

0
.2

0
.0
7

7
8
.3

0
.0
5

2
0
.5

2
.4
6

2
5
.7

0
.2
7

1
.3

0
.6
9

3
1
.1

0
.0
0

0
.0
0

0
.0
0

0
.0
3

0
.0
2

0
.0
3

S
o
lo
m
o
n
2
0
0

2
7

2
.8
7

1
.5

0
.8
9

7
8
6
.4

0
.8
5

4
0
.8

2
.8
8

1
6
.8

2
.4
1

7
.7

1
.3
4

1
5
3
.7

0
.4
0

0
.7
1

0
.9
1

0
.5
2

0
.8
3

0
.8
3

l
¼

2
C
o
rd
ea
u
1
–
1
0

1
0

6
.0
0

4
.4

3
.8
8

4
8
1
.1

2
.4
5

1
5
9
.9

1
.7
9

1
5
.1

6
.7
6

1
0
.8

1
.1
1

2
8
7
.4

1
.3
0

2
.3
0

2
.5
2

1
.1
5

2
.0
9

1
.8
3

C
o
rd
ea
u
1
1
–
2
0

1
0

7
.1
0

4
.8

3
.6
3

5
6
7
.2

3
.8
8

1
8
5
.4

2
.1
8

3
1
.8

1
1
.2
8

1
2
.4

2
.7
0

3
5
4
.3

2
.1
3

3
.3
8

3
.4
8

2
.1
7

3
.1
1

2
.8
2

S
o
lo
m
o
n
1
0
0

2
9

1
.8
8

0
.8

1
.0
7

6
3
.1

0
.1
5

3
1
.7

1
.7
4

2
8
.5

1
.7
3

3
.7

0
.4
9

8
0
.6

0
.0
0

0
.0
7

0
.0
8

0
.0
4

0
.0
9

0
.1
2

S
o
lo
m
o
n
2
0
0

2
7

3
.0
6

2
.4

1
.0
0

7
4
6
.0

0
.9
6

7
0
.7

1
.4
6

7
.6

3
.7
4

1
2
.6

0
.4
7

5
3
9
.5

0
.8
3

1
.3
9

1
.6
5

0
.9
3

1
.4
0

1
.4
5

l
¼

3
C
o
rd
ea
u
1
–
1
0

1
0

6
.4
0

8
.5

3
.6
3

4
3
3
.8

2
.3
4

1
8
1
.1

1
.1
3

3
3
.2

7
.5
8

1
6
.9

0
.3
6

4
9
3
.2

2
.2
9

3
.5
9

3
.1
7

2
.1
7

2
.8
5

3
.4
0

C
o
rd
ea
u
1
1
–
2
0

1
0

8
.5
0

8
.9

3
.3
5

4
7
4
.5

3
.8
1

2
3
1
.5

1
.8
0

5
8
.2

1
1
.2
1

1
8
.6

1
.1
1

5
7
8
.1

2
.9
4

3
.5
9

3
.9
8

2
.2
4

3
.3
9

2
.9
9

S
o
lo
m
o
n
1
0
0

2
9

1
.9
2

1
.4

1
.2
2

6
3
.1

0
.4
4

4
2
.2

1
.8
7

3
5
.2

3
.1
9

5
.8

0
.2
0

1
5
8
.0

0
.2
2

0
.5
1

0
.4
4

0
.3
0

0
.5
1

0
.6
0

S
o
lo
m
o
n
2
0
0

2
7

1
.1
0

1
.6

0
.1
4

2
9
5
.5

0
.4
8

4
8
.0

0
.2
7

2
.8

1
.6
5

1
3
.0

0
.0
2

1
0
3
.8

0
.3
0

0
.5
2

0
.7
1

0
.2
5

0
.4
3

0
.4
9

l
¼

4
C
o
rd
ea
u
1
–
1
0

1
0

6
.5
0

1
3
.0

3
.5
7

3
6
9
.6

2
.2
3

2
3
5
.0

1
.6
0

4
9
.1

8
.1
0

2
3
.3

0
.3
6

6
5
9
.0

3
.4
8

4
.0
0

4
.4
5

2
.7
9

3
.5
8

3
.6
9

C
o
rd
ea
u
1
1
–
2
0

1
0

6
.9
0

1
2
.6

3
.4
9

3
7
4
.1

3
.9
5

2
6
1
.1

2
.8
1

8
9
.8

1
0
.3
4

2
5
.1

0
.4
5

8
4
7
.6

3
.4
7

4
.4
2

4
.5
5

3
.1
2

3
.9
7

3
.9
7

S
o
lo
m
o
n
1
0
0

2
9

2
.8
3

2
.2

1
.6
6

6
1
.2

0
.5
8

5
3
.6

1
.9
5

3
3
.4

5
.0
6

8
.2

0
.1
6

2
3
2
.1

0
.8
4

1
.1
3

1
.2
0

0
.8
6

1
.2
3

1
.1
7

S
o
lo
m
o
n
2
0
0

2
7

0
.0
0

0
.9

0
.0
0

1
2
9
.4

0
.0
0

3
7
.2

0
.0
0

0
.2

0
.0
0

1
3
.1

0
.0
0

0
.2

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

G
ra
n
d
M
ea
n

3
.2
0

2
.8

1
.4
2

3
4
4
.3

1
.0
9

8
1
.2

1
.7
4

2
4
.8

3
.8
7

9
.7

0
.6
9

2
3
3
.7

0
.8
1

1
.1
9

1
.2
8

0
.8
0

1
.1
4

1
.1
5

872 Journal of the Operational Research Society Vol. 68, No. 8

SAILSVNS displays better performance on 8 of the 16

instances sets. ILSVNS performs well for l = 1.

4.3.3. New best known solution During the different

scenarios explained in previous subsections, we have found

50 new best known solutions that can serve as benchmarks for

future studies. Forty-two percent of them are benchmark

instances with l ¼ 2. Around 30% of new BKs are from

Cordeau et al.’s datasets which is harder to solve compared

against Solomon’s datasets (Duque et al, 2015).

Table 13 presents the new best known results including

their respective algorithms. In total, we have ten different

settings for both ILS and SAILS. Some of new best known

solutions are identical with those found in our earlier works

(Gunawan et al, 2015a, b). We found that two benchmark

instances (r107 with l = 2 and r104 with l = 3) can be

solved with almost all settings. The details of new solutions

can be downloaded from https://unicen.smu.edu.sg/oplib-

orienteering-problem-library.

We summarize the performance of the algorithms in

Table 14. We observe that most of new best known solutions

are discovered by using the computational times of 100% of

ACS, I3CH and VNS. SAILS dominates ILS in all different

settings. The computational time of VNS is higher than the one

of I3CH; therefore, ILSVNS outperforms ILSI3CH by 14.2%. On

the other hand, SAILSVNS outperforms SAILSI3CH by 4.4%. In

conclusion, SAILS is able to discover more new best known

solutions than ILS does.

Table 11 Overall comparison of ILS and SAILS to the state-of-the-art algorithms on ‘‘OPT’’

Instance set Numb IterILS SSA GVNS I3CH ILS100 ILS35 ILS10 SAILS100 SAILS35 SAILS10

AG AT AG AT AG AT AG AT AG AG AG AG AG AG

Cordeau 1–10 10 2.32 28.0 1.04 520.3 1.25 19.8 0.78 380.0 0.96 1.11 1.23 0.92 1.05 1.05
Solomon 100 29 1.80 3.0 0.59 83.4 1.14 11.4 0.03 458.1 0.47 0.18 0.19 0.39 0.12 0.12
Solomon 200 27 0.39 1.4 0.08 44.5 0.12 1.3 0.04 147.9 0.02 1.68 1.84 0.09 1.53 1.43
Grand Mean 1.30 6.1 0.45 133.7 0.74 8.5 0.15 319.4 0.36 0.82 0.90 0.35 0.75 0.73

Table 12 Overall comparison of ILS and SAILS to I3CH and VNS on ‘‘INST-M’’

Instance set Numb I3CH ILSI3CH SAILSI3CH AT VNS ILSVNS SAILSVNS AT
AG AG AG AG AG AG

l ¼ 1
Cordeau 1–10 10 1.07 0.66 0.24 126.8 1.10 0.57 0.66 753.6
Cordeau 11–20 10 4.28 2.28 1.83 151.5 3.38 1.70 1.84 958.9
Solomon 100 29 0.69 0.00 0.00 31.1 0.07 0.00 0.03 78.3
Solomon 200 27 1.34 0.88 0.32 153.7 0.89 0.47 0.52 786.4

l ¼ 2
Cordeau 1–10 10 1.11 2.32 0.87 287.4 3.88 1.90 1.43 481.1
Cordeau 11–20 10 2.70 2.78 1.83 354.3 3.63 2.73 2.38 567.2
Solomon 100 29 0.49 0.12 0.06 80.6 1.07 0.01 0.12 63.1
Solomon 200 27 0.47 1.18 0.55 539.5 1.00 1.12 0.90 746.0

l ¼ 3
Cordeau 1–10 10 0.36 2.79 1.46 493.2 3.63 2.78 2.26 433.8
Cordeau 11–20 10 1.11 3.21 1.79 578.1 3.35 3.20 2.49 474.5
Solomon 100 29 0.20 0.45 0.25 158.0 1.22 0.28 0.63 63.1
Solomon 200 27 0.02 1.65 0.66 103.8 0.14 0.33 0.33 295.5

l ¼ 4
Cordeau 1–10 10 0.36 3.48 1.98 659.0 3.57 3.61 3.30 369.6
Cordeau 11–20 10 0.45 3.53 1.89 847.6 3.49 3.88 3.24 374.1
Solomon 100 29 0.16 1.11 0.48 232.1 1.66 0.85 1.27 61.2
Solomon 200 27 0.00 0.18 0.06 0.2 0.00 0.00 0.00 129.4

Grand Mean 0.69 1.20 0.61 233.7 1.42 0.95 0.93 344.3

Aldy Gunawan et al—Well-tuned algorithms for the Team Orienteering Problem with Time Windows 873

https://unicen.smu.edu.sg/oplib-orienteering-problem-library
https://unicen.smu.edu.sg/oplib-orienteering-problem-library

T
a
b
le

1
3

N
ew

b
es
t
so
lu
ti
o
n
v
al
u
es

d
is
co
v
er
ed

b
y
IL
S
an
d
S
A
IL
S

In
st
a
n
ce

l
O
ld

B
K

N
ew B
K

A
lg
o
ri
th
m

In
st
a
n
ce

l
O
ld

B
K

N
ew B
K

A
lg
o
ri
th
m

r2
0
3

1
1
0
2
1

1
0
2
8

IL
S
V
N
S

rc
2
0
1
a

2
1
3
8
4

1
3
8
5

S
A
IL
S
1
0
0
,
S
A
IL
S
I3
C
H

r2
0
4
a

1
1
0
8
6

1
0
9
3

IL
S
3
5
,
S
A
IL
S
I3
C
H
,
IL
S
V
N
S

rc
2
0
2

2
1
5
0
9

1
5
1
2

IL
S
I3
C
H

r2
0
6
a

1
1
0
2
9

1
0
3
2

IL
S
1
0
0
,
S
A
IL
S
1
0
0
,
S
A
IL
S
3
5
,
S
A
IL
S
V
N
S

rc
2
0
6

2
1
5
4
6

1
5
5
2

IL
S
3
5
,
IL
S
V
N
S

r2
0
7

1
1
0
7
2

1
0
7
6

IL
S
1
0
0
,
S
A
IL
S
V
N
S

rc
2
0
7

2
1
5
8
7

1
5
9
9

S
A
IL
S
I3
C
H

r2
0
8

1
1
1
1
2

1
1
1
8

S
A
IL
S
1
0
,
S
A
IL
S
V
N
S

rc
2
0
8

2
1
6
9
1

1
6
9
2

S
A
IL
S
1
0
0

r2
0
9

1
9
5
0

9
6
1

IL
S
1
0
0
,
S
A
IL
S
V
N
S

p
r1
3
a

2
8
3
2

8
4
3

S
A
IL
S
3
5
,
S
A
IL
S
1
0
0
,
S
A
IL
S
I3
C
H

r2
1
0

1
9
8
7

1
0
0
0

S
A
IL
S
1
0
0

p
r1
5

2
1
2
1
9

1
2
2
0

IL
S
3
5

r2
1
1

1
1
0
4
6

1
0
5
1

IL
S
1
0
0
,
IL
S
V
N
S
,
S
A
IL
S
V
N
S

p
r1
8

2
9
3
8

9
5
3

IL
S
V
N
S

rc
2
0
2
a

1
9
3
6

9
3
8

IL
S
1
0
0
,
S
A
IL
S
1
0
0
,
S
A
IL
S
I3
C
H
,
S
A
IL
S
V
N
S

p
r2
0

2
1
2
3
2

1
2
4
1

S
A
IL
S
V
N
S

rc
2
0
6
a

1
8
9
5

8
9
9

IL
S
1
0
0
,
S
A
IL
S
1
0
0
,
IL
S
I3
C
H
,
S
A
IL
S
I3
C
H
,
IL
S
V
N
S
,

S
A
IL
S
V
N
S

r1
0
4
a

3
7
7
7

7
7
8

IL
S
1
0
,
IL
S
3
5
,
IL
S
1
0
0
,
IL
S
V
N
S
,
S
A
IL
S
1
0
,
S
A
IL
S
3
5
,
S
A
IL
S
1
0
0
,

S
A
IL
S
I3
C
H
,
S
A
IL
S
V
N
S

rc
2
0
8
a

1
1
0
5
3

1
0
5
7

S
A
IL
S
1
0
0
,
IL
S
1
0
0
,
IL
S
3
5
,
IL
S
1
0
0
,
S
A
IL
S
V
N
S

rc
1
0
4
a

3
8
3
4

8
3
5

IL
S
3
5
,
IL
S
1
0
0
,
IL
S
I3
C
H
,
IL
S
V
N
S
,
S
A
IL
S
3
5
,
S
A
IL
S
I3
C
H

p
r1
3

1
4
6
6

4
6
7

IL
S
1
0
0
,
S
A
IL
S
1
0
0
,
S
A
IL
S
V
N
S

p
r0
2

3
9
4
2

9
4
3

S
A
IL
S
3
5
,
S
A
IL
S
1
0
0
,
S
A
IL
S
V
N
S

p
r1
5

1
7
0
7

7
0
8

IL
S
1
0
0
,
IL
S
I3
C
H
,
IL
S
V
N
S

r2
0
1

3
1
4
4
1

1
4
4
2

S
A
IL
S
I3
C
H

r1
0
7
a

2
5
3
6

5
3
8

IL
S
3
5
,
IL
S
I3
C
H
,
IL
S
V
N
S
,
S
A
IL
S
1
0
,
S
A
IL
S
3
5
,
S
A
IL
S
1
0
0
,

S
A
IL
S
I3
C
H
,
S
A
IL
S
V
N
S

p
r1
3

3
1
1
4
5

1
1
5
2

S
A
IL
S
I3
C
H

p
r0
4
a

2
9
2
5

9
2
6

IL
S
1
0
0
,
IL
S
I3
C
H
,
IL
S
V
N
S
,
S
A
IL
S
3
5

p
r1
5

3
1
6
5
4

1
6
5
9

S
A
IL
S
1
0
0

p
r0
9
a

2
9
0
5

9
0
9

S
A
IL
S
3
5
,
S
A
IL
S
I3
C
H

p
r1
8

3
1
2
8
1

1
2
8
2

S
A
IL
S
1
0
0

p
r1
0

2
1
1
2
9

1
1
3
4

S
A
IL
S
1
0
0

p
r2
0

3
1
6
8
4

1
6
9
0

S
A
IL
S
I3
C
H

c2
0
4
a

2
1
4
8
0

1
4
9
0

IL
S
1
0
0
,
IL
S
V
N
S
,
S
A
IL
S
3
5
,
S
A
IL
S
1
0
0

r1
0
4

4
9
7
2

9
7
5

S
A
IL
S
I3
C
H

r2
0
1

2
1
2
5
4

1
2
5
6

S
A
IL
S
V
N
S

r1
0
8

4
9
9
4

9
9
5

IL
S
V
N
S
,
S
A
IL
S
V
N
S

r2
0
2

2
1
3
4
7

1
3
4
8

S
A
IL
S
V
N
S

r1
1
2

4
9
7
1

9
7
4

S
A
IL
S
1
0
0

r2
0
3

2
1
4
1
6

1
4
1
8

S
A
IL
S
I3
C
H

rc
1
0
3
a

4
9
7
4

9
7
5

IL
S
1
0
0
,
IL
S
I3
C
H
,
IL
S
V
N
S
,
S
A
IL
S
3
5
,
S
A
IL
S
V
N
S

r2
0
5

2
1
3
8
0

1
3
8
6

S
A
IL
S
I3
C
H

rc
1
0
4

4
1
0
6
4

1
0
6
5

IL
S
1
0

r2
0
6

2
1
4
4
0

1
4
5
0

S
A
IL
S
I3
C
H

rc
1
0
7

4
9
8
0

9
8
7

IL
S
1
0
,
IL
S
1
0
0
,
IL
S
I3
C
H
,
IL
S
V
N
S
,
S
A
IL
S
1
0
0
,
S
A
IL
S
V
N
S

r2
0
9

2
1
4
0
5

1
4
1
4

IL
S
V
N
S

p
r1
4

4
1
6
7
0

1
6
7
4

IL
S
I3
C
H

r2
1
0

2
1
4
2
3

1
4
2
7

S
A
IL
S
V
N
S

p
r1
9

4
1
7
5
0

1
7
6
0

S
A
IL
S
V
N
S

a
S
am

e
re
su
lt
s
w
it
h
ei
th
er

G
u
n
aw

an
et

a
l
(2
0
1
5
a)

o
r
G
u
n
aw

an
et

a
l
(2
0
1
5
b
).

874 Journal of the Operational Research Society Vol. 68, No. 8

5. Conclusion

We propose two algorithms, Iterated Local Search (ILS) and a

hybridization of Simulated Annealing and Iterated Local

Search (SAILS), for solving the TOPTW. We also implement

a factorial design experiment to find good parameter values for

both algorithms.

The proposed algorithms are run by using two different

scenarios. The first scenario concerns with the solution quality;

therefore, ILS and SAILS are run with longer computational

times. The second scenario is mainly tailored for comparison

purposes with the state-of-the-art algorithms. Both well-tuned

ILS and SAILS are run by using the computational times of

several state-of-the-art algorithms.

All scenarios are applied to benchmark TOPTW instances.

The computational results show that both algorithms outper-

form all but one state-of-the-art algorithm and perform

comparable to the I3CH algorithm. They are able to discover

50 new best known solutions. The new results can serve as

benchmarks for future studies.

Several areas of future work can be considered. Using

different operators for constructing neighborhood solutions,

such as inserting or removing two or more nodes simultane-

ously, would be an interesting area. The recent trend of

hybridizing exact algorithms, such as Lagrangian Relaxation,

and metaheuristics seems also a promising future research area

for solving the TOPTW more efficiently. The idea of

parameter control can be considered for future work in order

to further improve the quality of the solutions. Since the OP

and its variants, such as the Arc Orienteering Problem and

Multiconstraint Team Orienteering Problem with Multiple

Time Windows, have attracted more attention in recent years,

ILS and SAILS can be potentially tailored to solve these as

well.

Acknowledgements—This research project is funded by National Research
Foundation Singapore under its Corp Lab @ University scheme and
Fujitsu Limited.

References

Adenso-Diaz B and Laguna M (2006). Fine-tuning of algorithms

using fractional experimental designs and local search. Operations

Research 54(1):99–114.
Cordeau J, Grendreau M and Laporte G (1997). A tabu search

heuristic for periodic and multi-depot vehicle routing problems.

Networks 30(2):105–119.
Cura T (2014). An artificial bee colony algorithm approach for the

team orienteering problem with time windows. Computers and

Industrial Engineering 74:270–290.
Duque D, Lozano L and Medaglia A (2015). Solving the orienteering

problem with time windows via the pulse framework. Computers

and Operations Research 54:168–176.
Eiben AE and Smit SK (2012). Evolutionary algorithm parameters

and methods to tune them. In Hamadi Y, Monfroy E and Saubion F

(Eds.) Autonomous Search. Springer: Berlin, pp. 15–36.

Eiben AE, Michalewicz Z, Schoenauer M and Smith JE (2007).

Parameter control in evolutionary algorithms. In Lobo FG, Lima

CF and Michalewicz Z (Eds.) Parameter Setting in Evolutionary

Algorithms. Springer: Berlin, pp. 19–46.

Eiben AE, Hinterding R and Michalewicz Z (1999). Parameter control

in evolutionary algorithms. IEEE Transactions on Evolutionary

Computation 3(2):124–141.
Gendreau M, Laporte G and Semet F (1998). A tabu search heuristic

for the undirected selective travelling salesman problem. European

Journal of Operational Research 106(2–3):539–545.
Goldberg DE (1989). Genetic Algorithms in Search, Optimization,

and Machine Learning. Addison-Wesley: Reading.

Golden B, Levy L and Vohra R (1987). The orienteering problem.

Naval Research Logistics 34(3):307–318.
Gunawan A, Lau HC and Lindawati (2011). Fine-tuning algorithm

parameters using the design of experiments approach. In Coello

CAC (Ed.) Proceedings of the 5th International Conference on

Learning and Intelligent Optimization (LION5), Vol. 6683 of

Lecture Notes in Computer Science. Springer: Berlin, pp. 278–292.

Gunawan A, Lau HC and Lu K (2015a). SAILS: hybrid algorithm for

the team orienteering problem with time windows. In Proceedings

of 7th Multidisciplinary International Conference on Scheduling:

Theory and Applications (MISTA 2015), Prague, Czech Republic,

pp. 276–295.

Gunawan A, Lau HC and Lu K (2015b). An iterated local search

algorithm for solving the orienteering problem with time windows.

In Ochoa G and Chicano F (Eds.) Proceedings of the 15th

Table 14 Tabulation of new best solution values discovered by ILS and SAILS

Algorithm l Base algorithm Total Percentage

ACS-10% ACS-35% ACS-100% I3CH VNS

ILS 1 0 2 8 2 5 17 34.69
2 0 3 2 3 6 14 28.57
3 1 2 2 1 2 8 16.33
4 2 0 2 3 3 10 20.41

Total 3 7 14 9 16 49 100
Percentage 6.1 14.3 28.6 18.4 32.6 100

SAILS 1 1 1 6 3 9 20 29.41
2 1 5 6 8 5 25 36.76
3 1 3 4 5 2 15 22.06
4 0 1 2 1 4 8 11.76

Total 3 10 18 17 20 68 100
Percentage 4.4 14.7 26.5 25.0 29.4 100

Aldy Gunawan et al—Well-tuned algorithms for the Team Orienteering Problem with Time Windows 875

European Conference on Evolutionary Computation in Combina-

torial Optimisation (EvoStar 2015), Vol. 9026 of Lecture Notes in

Computer Science, 8–10 April 2015, Copenhagen, Denmark.

Springer: Berlin, pp. 61–73.

Gunawan A, Lau HC and Vansteenwegen P (2016). Orienteering

problem: a survey of recent variants, solution approaches and

applications. European Journal of Operational Research

255(2):315–332.
Hu Q and Lim A (2014). An iterative three-component heuristic for

the team orienteering problem with time windows. European

Journal of Operational Research 232(2):276–286.
Hutter F, Hoos, Leyton-Brown K and Stützle T (2009). ParamILS: an

automatic algorithm configuration framework. Journal of Artificial

Intelligence Research 36:267–306.
Johnson SM (1963). Generation of permutations by adjacent trans-

position. Mathematics of Computation.1717(83):282–285.
Labadie N, Mansini R, Melechovskỳ J and Calvo RW (2011).

Hybridized evolutionary local search algorithm for the team

orienteering problem with time windows. Journal of Heuristics

17(6):729–753.
Labadie N, Mansini R, Melechovskỳ R and Calvo J (2012). The team

orienteering problem with time windows: an LP-based granular

variable neighborhood search. European Journal of Operational

Research 220(1):15–27.
Lin S-W and Yu VF (2012). A simulated annealing heuristic for the

team orienteering problem with time windows. European Journal

of Operational Research 217(1):94–107.
Lourenço H, Martin O and Stützle T (2003). Iterated local search. In

Glover FW and Kochenberger GA (Eds.) Handbook of Meta-

heuristics. Springer: Berlin, pp. 320–353.

Montemanni R and Gambardella LM (2009). Ant colony system for

team orienteering problem with time windows. Foundations of

Computing and Decision Sciences 34(4):287–306.
Montemanni R, Weyland D and Gambardella LM (2011). An

enhanced ant colony system for the team orienteering problem

with time windows. In Proceedings of 2011 International Sympo-

sium on Computer Science and Society (ISCCS), Kota Kinabalu,

Malaysia, pp. 381–384.

Montgomery D (2005). Design and Analysis of Expeirments, 6th Edn.

Wiley: London.

Righini G and Salani M (2009). Decremental state space relaxation

strategies and initialization heuristics for solving the orienteering

problem with time windows with dynamic programming. Comput-

ers and Operations Research 36(4):1191–1203.
Solomon M (1987). Algorithms for the vehicle routing and scheduling

problems with time window constraints. Operations Research

35(2):254–265.
Souffriau W, Vansteenwegen P, Berghe G and van Oudheusden D

(2013). The multiconstraint team orienteering problem with

multple time windows. Transportation Science 47(1):53–63.
Stützle T, López-Ibáñez M, Pellegrini P, Maur M, Montes de Oca M,

Birattari M and Dorigo M (2012). Parameter adaptation in ant

colony optimization. In Hamadi Y, Monfroy E and Saubion F

(Eds.) Autonomous Search. Springer: Berlin, pp. 191–215.

Tricoire F, Romauch M, Doerner KF and Hartl RF (2010). Heuristics

for the multi-period orienteering problem with multiple time

windows. Computers and Operations Research 37(2):351–367.
Tsiligirides T (1984). Heuristic methods applied to orienteering.

Journal of the Operational Research Society 35(9):797–809.
Vansteenwegen P, Souffriau W, Vanden Berghe G and Van Oud-

heusden D (2009). Iterated local search for the team orienteering

problem with time windows. Computers and Operations Research

36(12):3281–3290.
Vansteenwegen P, Souffriau W and Van Oudheusden D (2011). The

orienteering problem: a survey. European Journal of Operational

Research 209(1):1–10.

Received 13 October 2016;

accepted 3 May 2017

876 Journal of the Operational Research Society Vol. 68, No. 8

	Well-tuned algorithms for the team orienteering problem with time windows
	Citation

	Well-tuned algorithms for the Team Orienteering Problem with Time Windows
	Abstract
	Introduction
	The Team Orienteering Problem with Time Windows
	Problem description
	Literature review

	Algorithms
	Greedy construction heuristic
	ILS
	Perturbation
	Local search

	SAILS
	Parameter tuning

	Computational experiments
	Benchmark instances and approach comparison
	Parameter tuning
	Computational results
	First scenario
	Second scenario
	New best known solution

	Conclusion
	Acknowledgements
	References

