
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

11-2018

Recommending who to follow in the software engineering Twitter Recommending who to follow in the software engineering Twitter

space space

Abhabhisheksh SHARMA
Singapore Management University, abhisheksh.2014@smu.edu.sg

Yuan TIAN
Singapore Management University, ytian@smu.edu.sg

Agus SULISTYA
Singapore Management University, aguss.2014@smu.edu.sg

Dinusha WIJEDASA
Singapore Management University, dwijedasa@smu.edu.sg

David LO
Singapore Management University, davidlo@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Social Media Commons, and the Software Engineering Commons

Citation Citation
SHARMA, Abhabhisheksh; TIAN, Yuan; SULISTYA, Agus; WIJEDASA, Dinusha; and LO, David.
Recommending who to follow in the software engineering Twitter space. (2018). ACM Transactions on
Software Engineering and Methodology. 27, (4), 16-33.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4304

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4304&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1249?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4304&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4304&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

16

Recommending Who to Follow in the Software Engineering
Twitter Space

ABHISHEK SHARMA, YUAN TIAN, AGUS SULISTYA, DINUSHA WIJEDASA, and

DAVID LO, School of Information Systems, Singapore Management University, Singapore

With the advent of social media, developers are increasingly using it in their software development activities.
Twitter is one of the popular social mediums used by developers. A recent study by Singer et al. found that
software developers use Twitter to “keep up with the fast-paced development landscape.” Unfortunately, due
to the general-purpose nature of Twitter, it’s challenging for developers to use Twitter for their development
activities. Our survey with 36 developers who use Twitter in their development activities highlights that
developers are interested in following specialized software gurus who share relevant technical tweets.

To help developers perform this task, in this work we propose a recommendation system to identify spe-
cialized software gurus. Our approach first extracts different kinds of features that characterize a Twitter user
and then employs a two-stage classification approach to generate a discriminative model, which can differen-
tiate specialized software gurus in a particular domain from other Twitter users that generate domain-related
tweets (aka domain-related Twitter users). We have investigated the effectiveness of our approach in finding
specialized software gurus for four different domains (JavaScript, Android, Python, and Linux) on a dataset of
86,824 Twitter users who generate 5,517,878 tweets over 1 month. Our approach can differentiate specialized
software experts from other domain-related Twitter users with an F-Measure of up to 0.820. Compared with
existing Twitter domain expert recommendation approaches, our proposed approach can outperform their
F-Measure by at least 7.63%.

CCS Concepts: • Software and its engineering → Collaboration in software development;

Additional Key Words and Phrases: Twitter, software engineering, recommendation systems

ACM Reference format:

Abhishek Sharma, Yuan Tian, Agus Sulistya, Dinusha Wijedasa, and David Lo. 2018. Recommending Who to
Follow in the Software Engineering Twitter Space. ACM Trans. Softw. Eng. Methodol. 27, 4, Article 16 (October
2018), 33 pages.
https://doi.org/10.1145/3266426

1 INTRODUCTION

Twitter is a popular social media platform and is continuously gaining traction and users. As of
July 2017, Twitter has a total of more than 328 million active monthly users who generate about
500 million short messages (aka tweets or microblogs) daily [54]. Twitter allows users to post short

This research is supported by the National Research Foundation, Prime Minister’s Office, Singapore under its International
Research Centres in Singapore Funding Initiative.
Authors’ address: A. Sharma, Y. Tian, A. Sulistya, D. Wijedasa, and D. Lo, School of Information Systems, Singapore Man-
agement University, 81 Victoria St., Singapore, VA, 188065, Singapore; emails: {abhisheksh.2014, ytian, aguss.2014, dwi-
jedasa, davidlo}@smu.edu.sg.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
1049-331X/2018/10-ART16 $15.00
https://doi.org/10.1145/3266426

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 4, Article 16. Pub. date: October 2018.

Published in ACM Transactions on Software Engineering and Methodology,
Vol 27, Issue 4, November 2018, Pages 16–33
DOI 10.1145/3266426

https://doi.org/10.1145/3266426
mailto:permissions@acm.org
https://doi.org/10.1145/3266426

16:2 A. Sharma et al.

messages that are broadcasted to other users who have chosen to follow them. These messages can
be further retweeted (i.e., propagated) to reach an even larger number of Twitter users. Additionally,
users can mention other users (by specifying user names prefixed by the “@” symbols) or attach
hashtags (keywords prefixed by the “#” symbols) in their tweets. Twitter allows users to get fast
up-to-date information about recent events and is a powerful platform for information sharing,
having characteristics at the intersection of news media and social networks [22].

Twitter and general social media channels have revolutionized the way developers work and
interact with one another. Singer et al. surveyed 271 GitHub developers and found that Twitter
“helps them keep up with the fast-paced development landscape” [45]. Among their respondents,
more than 70% of them used Twitter to help them stay current about the latest technologies, prac-
tices, and tools they use, and learn things that they aren’t actively looking for. Furthermore, a
majority of the respondents used Twitter to connect to and build trust with other developers, and
a significant percentage of respondents used Twitter to build communities around software devel-
opment projects. The survey highlighted the increasing role that Twitter plays in the professional
activities of software developers.

Despite the benefit brought by Twitter, its enormous size poses a number of challenges for its
users, including software developers. Singer et al. highlighted that a central challenge faced by
developers is to maintain a relevant network. Due to the fact that following other users is the
preferred way of getting information from Twitter (besides search), not carefully curating the
network might make it hard for developers to find relevant information that is interesting and
useful. To validate this challenge, Singer et al. surveyed developers for their experience in using
Twitter. Seventy-two percent of the respondents in their survey agree that they carefully consider
whom they would want to follow. Unfortunately, finding suitable users to follow among the more
than 328 million users in Twitter is not an easy feat.

In this work, we would like to help developers find interesting people to follow. To accomplish
this goal, we first surveyed about 38 developers to better understand developers’ needs. For 36 of
them who actively use Twitter in their development activities, we asked them about the kinds of
Twitter accounts they would like to follow (see Section 3). Our survey questionnaire was open
ended and developers were free to enter any type of account that they wanted to follow. We find
that more than 75% of the 36 respondents prefer to follow specialized software gurus in their
domains of interest. Our finding is in line with that of Singer et al., who observed that many
developers follow thought leaders from their technological niches [45].

To follow up on this finding, we propose an automated approach that can identify specialized
software gurus from a large number of Twitter users. Our criteria for a specialized software guru is
that he/she must be an experienced software developer in a specialized domain, and he or she must
have shared useful information for other developers in the specialized domain. We include the last
criterion since a guru (meaning teacher in Sanskrit) must have imparted knowledge to others.
Also, it would be pointless to follow an expert developer who never shares something useful.

Our guru recommendation system identifies software gurus by first finding a subset of Twit-
ter users who are potentially interested in software development and who generate domain-related

tweets (i.e., tweets mentioning a particular domain of interest, e.g., Python). Our approach then ex-
tracts different kinds of features from each user in this set of domain-related users (i.e., users that
generate domain-related tweets). These features can be grouped into four families: Content, Net-
work, Profile, and GitHub. Based on these features, this candidate user set is then further analyzed
by a two-stage classification process, which generates a discriminative model (aka a classifier) that
differentiates specialized software gurus from other domain-related users.

To evaluate the main contribution of this work, which is a new approach that identifies special-
ized software gurus on Twitter, we have considered four domains of interest (JavaScript, Android,

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 4, Article 16. Pub. date: October 2018.

Recommending Who to Follow in the Software Engineering Twitter Space 16:3

Python, and Linux) and analyzed a collection of 5,517,878 tweets. These tweets were generated
by 86,824 Twitter users and were collected over a 1-month period. The evaluation results show
that our approach can differentiate between specialized software gurus and other domain-related
users with an F-Measure score of 0.820 (for JavaScript gurus), 0.681 (for Android gurus), 0.602 (for
Python gurus), and 0.522 (for Linux gurus), respectively. Our approach outperforms the state-of-
the-art domain-specific Twitter expert recommendation approaches by Pal and Counts [33], as
well as Klout [38], and achieves higher scores on metrics of precision, recall, and F-Measure. The
improvement in F-Measure scores is by at least 7.63% (for Linux gurus). The effectiveness of our
approach has been evaluated based on the following research questions, which are discussed in
detail in Section 6:

• RQ1: How effective is our specialized software guru recommendation approach?
• RQ2: Can our approach outperform existing Twitter expert recommendation approaches?
• RQ3: What are important features that better differentiate specialized software gurus from

nongurus?
• RQ4: Which feature values have the best predictive power across each domain?
• RQ5: What is the cross-domain performance of our approach?

The structure of the remainder of the article is as follows. We discuss related work in Section 2. In
Section 3, we present the design and results of our online survey to find out who developers would
like to follow on Twitter. In Section 4, we introduce the features that we use to characterize domain-
related users on Twitter. In Section 5, we present our proposed approach that finds specialized
software gurus on Twitter. We describe the settings and results of the experiments that evaluate
our proposed approach in Section 6. We discuss the results in Section 7. We conclude and mention
future work in Section 8.

2 RELATED WORK

Singer et al. surveyed 271 and interviewed 27 active developers on GitHub [45]. They found that
many developers are using Twitter to “keep up with the fast-paced development landscape.” Specif-
ically, developers used Twitter to get awareness of people and trends, extend their technical knowl-
edge, and build connections with other developers. Their paper also presents two major challenges
affecting software developers using Twitter (i.e., maintaining a relevant network and consuming
content), which highlight the need to help developers to find suitable users to follow from the
massive number of Twitter users. Our study is motivated by this need.

Researchers have performed a number of empirical studies on microblogs posted in Twitter
(aka tweets) [5, 51, 52, 60]. Bougie et al. analyzed 11,679 tweets posted by 68 developers from
three open-source projects [5]. They observed that software engineers leverage Twitter to com-
municate and share information. Wang et al. analyzed 568 tweets posted by developers from the
Drupal open-source project [60]. They found that Drupal developers use Twitter to coordinate
efforts, share knowledge, encourage potential contributors to join, and so forth. Tian et al. man-
ually categorized 300 tweets that contained software-related hashtags into 10 groups, which in-
clude commercial, news, tools and code, question and answer, events, personal, opinion, tips, job,
and miscellaneous [51]. Prasetyo et al. manually analyzed a sample of 300 tweets and labeled
each of them as a software-related tweet or non-software-related tweet. They then used Support
Vector Machine (SVM) to train a model from a set of labeled tweets and applied the model on
another set of tweets to identify each of them as software related or not [37]. In a later work,
Tian et al. analyzed software microblogger behaviors using a dataset that contains more than
13 million tweets posted by 42,000 microbloggers [52]. An analysis of popular topics in Twitter was

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 4, Article 16. Pub. date: October 2018.

16:4 A. Sharma et al.

performed in [43]. In [16], the authors explored what Twitter users say about software applications.
A technique to extract informative URLs related to software engineering was proposed in [44].

Researchers have also built tools to support developers to better use Twitter for their day-to-
day work [1, 37, 42]. Achananuparp et al. built a tool that visualizes trends based on a number
of software-related tweets [1]. Sharma et al. proposed NIRMAL, which builds a language model
based on the publicly available Stack Overflow data, and use it to compute a likelihood score of a
tweet being software related or not [42]. The usages of various other social media channels have
also been researched lately. Storey et al. surveyed software developers on how they use social
media channels to communicate and collaborate, and present insights into the challenges faced by
developers while using the channels [48, 49]. Macleod et al. explored how developers use YouTube
for documenting and sharing programming knowledge [28]. Ponzanelli et al. developed a tool that
extracts relevant fragments from software development video tutorials [35]. Lin et al. recently
studied how developers use slack1 to help them in their software development activities [24]. Our
work recommends specialized software gurus, which is not considered in these prior works.

Past studies have explored the problem of recommending experts to certain tasks, e.g., bug triag-
ing [3, 4, 27, 62, 64], question answering [9, 10, 17], and so forth. Our approach is related but
different from these existing techniques. First, Twitter data contains a lot of noise since the top-
ics of information shared on Twitter may include software engineering, politics, economy, idle
chatter, and more. Second, Twitter data has unique features; for example, Twitter data contains
information about people who follow a user or are followed by the user, how much a tweet is liked
and/or shared (retweeted) by others, and so forth. Not utilizing these unique features is a missed
opportunity.

The closest work to ours is that by Pal and Counts [33], which proposes an approach to rank
Twitter users given a particular topic (represented by one or more keywords). They first extract a
set of features from each Twitter user, i.e., the 10 content features that are considered in this work.
Next, they generate a feature vector to represent each Twitter user who has posted tweets that
contain the input keywords, and use them to cluster the Twitter users. The most likely cluster is
selected and members in this cluster are deemed as experts. The members are also ranked to create
a ranked list of domain experts. In this work, we extend the work by Pal and Counts by considering
not only content features but also network, profile, and GitHub features. We also leverage a two-
step classification algorithm to improve the accuracy of Pal and Counts’s clustering approach.

There also exist systems such as Klout [38] that provide influence scores for Twitter users with
respect to a queried domain. These scores can be interpreted as a measure of expertise of a Twitter
user over a given domain. In this work, we compare our two-step classification algorithm with
Klout and find that it performs better than Klout (see Section 6).

3 WHO TO FOLLOW: DEVELOPERS’ PERSPECTIVE

To guide and motivate the design of our automated recommendation system, we conducted an
open-ended online survey with developers who have already made use of Twitter in their software
development activities. We investigated the kinds of users they would like to follow on Twitter.
The survey details are described below.

Survey Design and Analysis: The primary objective of our survey is to understand what cat-
egories of Twitter users software developers like to follow. To understand this, we designed an
open-ended survey. Our survey consisted of three key questions:

1https://slack.com/.

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 4, Article 16. Pub. date: October 2018.

https://slack.com/

Recommending Who to Follow in the Software Engineering Twitter Space 16:5

• The first question asks whether a respondent develops software systems and uses Twitter
in his or her software development activities. People who have not developed software
systems or not used Twitter in their software development activities may not have sufficient
background to respond to our survey. This question aims to validate the reliability of the
answers that we receive for the subsequent questions.

• The second question asks a respondent for his or her years of experience as a software
developer (less than 5 years, 5 to 10 years, or more than 10 years).

• The third question asks a respondent to indicate the types of Twitter accounts they like to
follow for the purpose of helping them in software development activities. This question
was open ended and the respondent was asked to give a text description of accounts they
follow or would like to follow.

We then analyzed the responses provided by developers using grounded theory methodol-
ogy [12, 39]. Specifically, we used open card sort [18] in order to develop categories of Twitter
accounts that software developers like to follow. The first two authors of the paper are involved
in the open card sort process. Our card sorting process has three phases. In the preparation phase,
each response is read, and cards are created based on the user responses. Some users mentioned
more than one type of account they would like to follow; for such cases, we create multiple cards.
Next, in the execution phase, all the cards are clustered into meaningful groups. Finally, in the anal-

ysis phase, based on the clusters we get from the last phase, we formed a higher-level theme and
categories to come up with the final categories. In the card sort process, we ignore responses such
as “I look for accounts that are insightful or informative” as they are too general to be put into a
specific category. Additionally, we merge categories that are mentioned by less than three respon-
dents into a special category Others. The open card sort process was performed together by the
first two authors. Our process is similar to the negotiated agreement technique described in [8].
As the card sorting has been performed together, there is no interrater agreement number. Many
previous studies involving card sorting have also followed a similar process [2, 20, 21, 26, 46].

Survey Participants: We targeted software developers who are present on Twitter. Following
[1, 42, 43, 52], we collect a set of 161,067 Twitter users who are potentially interested in software
development—see Section 6.1 for details. Next, we identify from this set a subset of users who
satisfy two criteria: (1) they are recently active (i.e., those who had posted tweets after February
2017), and (2) they allow anyone to send them Twitter direct messages.2 Users who have not been
recently active on Twitter may not respond to our survey requests—and thus the first criterion.
The second criterion is there since we need to use the Twitter direct messaging service to connect
to our potential survey participants. This service allows us to send a detailed personalized message
to users, which would not have been possible if we had contacted the users by sending tweets as
they are limited to 140 characters. After creating this subset of users, we randomly select users
from it to contact. The first author of the article has sent personalized Twitter direct messages to
hundreds of these users, requesting them to fill out the survey. In total, we have contacted 213
developers, out of which 38 developers responded back by filling out the survey. This translates
to a response rate of 17.84%. We discarded the responses of two respondents since they did not
use Twitter in their software development activities (i.e., they respond with a “No” for the first
survey question). We performed an open card sort on the remaining 36 responses.

After the card sort, in order to decide whether the survey responses are adequate, we checked
if the responses have reached saturation. According to Strauss and Corbin [50], sampling for
a survey can be terminated when collecting new data does not generate any new information.

2https://support.twitter.com/articles/14606.

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 4, Article 16. Pub. date: October 2018.

https://support.twitter.com/articles/14606

16:6 A. Sharma et al.

Fig. 1. Graph showing saturation of CosSimn score.

During the survey, we observed that after we got about 25 responses, new responses were not
leading to any new insights or information. This observation suggested that theoretical saturation
had been reached, so we decided to stop the survey and perform the card sort. We had already
received 36 responses by the time we stopped the survey, so we went on to perform the card sort
on all of the 36 responses. To further validate and check for saturation, we used the following
steps. We first represented the nth survey response as a vector Rn of size equal to the number of
categories we developed through card sort. Each element of Rn represents a category, with the
default value of the element being 0. The element corresponding to a category is assigned a value
of 1 if the response mentioned the category. Then, for the nth response, we calculated the average
mean response for the first n responses An as follows:

An =

∑n
i=1 Rn

n
.

The intuition behind using the vector An is to validate if getting a new response helps us to get
any new information (category in our case). The An vector does not change much when the new
response does not mention new information (or category). This can be captured by measuring
cosine similarity between subsequent vectors An and An+1. After computing An for the 36 valid
responses, we then compared pairs of vectorsAn andAn+1 using cosine similarity [30]. The cosine
similarity CosSimn between the nth and (n + 1)th responses is computed as

CosSimn =
An · An+1

‖An ‖‖An+1‖
.

In the above equation, · is the dot operation between vectors and ‖Ai ‖ is the size of vector Ai .
Saturation can be observed when the value ofCosSimn stabilizes and does not change much when
a new response is added. The value of CosSimn is shown in Figure 1. We can note that CosSimn

stabilizes after the 23rd response. So based on this observation, we decided not to send out any
further requests to developers for filling out our survey.

Survey Results: By analyzing the responses to the first question of the survey, we found that
94.73% of the respondents (i.e., 36) have developed software systems and use Twitter for their
software development activities.

After performing the open card sort on the responses provided by the 36 respondents, we were
able to identify five prominent categories apart from Others. These categories are shown in Table 1.

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 4, Article 16. Pub. date: October 2018.

Recommending Who to Follow in the Software Engineering Twitter Space 16:7

Table 1. Categories of Twitter That Users/Accounts Developers Like to Follow on Twitter

Code Category

I Accounts of domain experts (includes well-known developers, library & framework
authors, etc.)

II Accounts that provide technology related news
III Accounts of software organizations/companies/firms related to a particular domain
IV Accounts of CTOs/CEOs of software/technology companies of a particular domain
V Accounts of software frameworks/tools/libraries related to a particular domain
VI Others

Fig. 2. Infograph displaying what types of Twitter accounts developers across different experience levels

prefer to follow. For descriptions of categories I through V, please refer to Table 1.

Figure 2 shows the percentage of our survey respondents who mention a particular category in
their response to the third question of our survey. From the figure, we can note that only one cat-
egory, i.e., accounts of domain experts, is preferred by more than 70% of respondents. The choice
of this category is consistent among developers across all experience levels. Based on this result,
in the rest of this article, we focus on building an automated tool to recommend domain experts
who generate specialized domain contents that others can benefit from (i.e., specialized software
gurus) and evaluate our results by asking people to label whether a recommended Twitter account
belongs to such domain experts. We do not consider the other five categories as a substantial
majority of respondents (62.50% to 100%) are not interested in following users belonging to them.

4 DOMAIN-SPECIFIC CHARACTERIZATION OF TWITTER ACCOUNTS

In this section, we describe the features that we use to characterize a Twitter user (i.e., a regis-
tered account on Twitter) given a particular specialized domain of interest. In this work, a domain
corresponds to a software engineering concept of interest and is represented by a keyword. In par-
ticular, we consider two programming language keywords (i.e., JavaScript and Python) and two
operating system keywords (i.e., Android and Linux). We pick these keywords as they are popular,
well represented in our dataset, and known well to participants we hired for labeling experts.

We consider four feature families Content, Network, Profile, and GitHub , each of which is de-
scribed in the following subsections.

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 4, Article 16. Pub. date: October 2018.

16:8 A. Sharma et al.

4.1 Content Features

Content features characterize how often a Twitter user generates tweets about a specialized do-
main or topic of interest and the impact of his or her tweets on other users. Users who frequently
post about a domain are likely to have expertise in the given domain. Among such users, those
who interact frequently with other domain-related users are more likely to be specialized software
gurus.

We reuse a set of features first proposed by Pal and Counts to recommend domain experts on
Twitter [33]. Before we present the features, we need to first introduce some feature components
and terminology related to them. These feature components are then combined to arrive at scores
for content features.

Terminology: Given a particular domain that is represented by a keyword, e.g., Python, we
define the following concepts:

• Domain-related tweets are tweets that contain the representative keyword.
• Domain-related hashtag is a word that starts with the # symbol and contains the represen-

tative keyword, e.g., #Python for keyword Python.
• Domain-related Twitter users are Twitter users who have posted 10 or more domain-related

tweets.

The tweets generated by a user can be categorized into the following three categories:

• Conversational tweets (CTs) are tweets that mention at least one Twitter user.
• Retweeted tweets (RTs) are tweets that are originally generated by someone else and the

Twitter user copies or forwards them in order to spread the information to his or her fol-
lowers.

• Original tweet (OTs) are the non-RT and -CT tweets that are produced by a Twitter user.

Based on the above concepts, Table 2 presents feature components that can be calculated for
each Twitter user. These feature components are used to construct more complex content features
later. The concept of “friend” is used to calculate G2 and G4. A user A and user B are friends of
each other if bothA and B follow each other, and thus get automatically subscribed to each other’s
tweets.

Features: We consider a total of 10 content features as proposed in [33]. These features are
based on the feature components introduced in Table 2. All of them are calculated for each user
with respect to a particular domain. We further subcategorize the content features into categories
of Content Strength and Content Popularity. We describe the subcategories and their respective
features below:

Content Strength: The features under this category measure how closely related the content
generated by a Twitter user is to a given domain.

• Topical Signal: Topical Signal (TS) estimates how much a useru is involved with the domain
d irrespective of the types of tweets posted by him or her. The TS score of a Twitter user u
for a domain d is defined as

TS (u,d) =
OT 1(u,d) +CT 1(u,d) + RT 1(u,d)

#AllTweets (u)
.

In this equation, #AllTweets (u) refers to the total number of tweets generated by user u
whether or not they are domain-related tweets. This feature can take values in the interval
[0,1].

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 4, Article 16. Pub. date: October 2018.

Recommending Who to Follow in the Software Engineering Twitter Space 16:9

Table 2. A List of Feature Components

Component Name Component Description

OT1(u,d) Number of original tweets related to domain d posted by a user u

OT2(u,d) Number of URL links shared in tweets related to domain d posted by a
user u

OT3(u,d) Number of hashtags related to domain d used in tweets posted by a user u

CT1(u,d) Number of conversational tweets related to domain d posted by a user u

CT2(u,d) Number of conversational tweets related to domain d where conversation
is initiated by a user u

RT1(u,d) Number of times a user u retweets tweets related to domain d of other
users u

RT2(u,d) Number of unique original domain-related tweets of a user u that are
retweeted by other domain-related users, where domain is d

RT3(u,d) Number of unique domain-related users who retweet original
domain-related tweets of a user u, where domain is d

M1(u,d) Number of mentions of other domain-related users by a user u in his or
her domain-related tweets, where domain is d

M2(u,d) Number of unique domain-related users mentioned by a user u in his or
her domain-related tweets, where domain is d

M3(u,d) Number of mentions of a user u by other domain-related users in their
domain-related tweets, where domain is d

M4(u,d) Number of unique domain-related users mentioning a user u in their
domain-related tweets, where domain is d

G1(u,d) Number of domain-related followers of a user u, where domain is d

G2(u,d) Number of domain-related friends of a user u, where domain is d

G3(u,d) Number of domain-related followers generating domain-related tweets
after a user u generated a domain-related tweet, where domain is d

G4(u,d) Number of domain-related friends generating domain-related tweets
before a user u generates a domain-related tweet, where domain is d

• Signal Strength: Signal Strength (SS) indicates how strong a user’s topical signal is, such
that for a true authority this score should approach 1. This feature can take values in the
interval [0,1]. The SS score of a Twitter user u for a domain d is defined as

SS (u,d) =
OT 1(u,d)

OT 1(u,d) + RT 1(u,d)
.

• Nonchat Signal: Nonchat Signal (NCS) captures how much a user posts on the domain and
how much he or she digresses into conversations with other users. The NCS score of a
Twitter user u for a domain d is defined as

NCS (u,d) =
OT 1(u,d)

OT 1(u,d) +CT 1(u,d)
+ λ

CT 1(u,d) −CT 2(u,d)

CT 1(u,d) + 1
.

As discussed in Pal and Counts [33], the intuition behind adding the second fraction in the
above formulation is to discount cases when the account did not start the conversation but
simply replied back out of courtesy. This is desirable as we wish to find real experts rather
than organizations who are somewhat more social. The second fraction accounts for such
cases. We have used the λ value as 0.05, as also used by Pal and Counts [33]. The second

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 4, Article 16. Pub. date: October 2018.

16:10 A. Sharma et al.

fraction contains 1 in the denominator to account for cases where CT1(u,d) is 0. This feature
can take values in the interval (0,1).

• Self-Similarity: Self-Similarity (SelfS) indicates how similar is a user’s recent tweet w.r.t. to
his or her previous tweets. To compute SelfS for a user u, first, from each tweet i of the
user u, commonly used words are removed based on a stop word list.3 Then each tweet i is
represented as a vector of words si that contains the remaining nonstop words. Then, the
similarity S between two tweet vectors si and any previous tweet sj is calculated as follows:

S (si (u), sj (u)) =
|(si (u) ∩ sj (u) |
|si (u) | .

The self-similarity score for a user u is computed as the average similarity scores for all
pairs of tweets:

SelfS(u) =
2 ·∑n

i=2

∑i−1
j=1 S (si (u), sj (u))

(n − 1)n
.

In this equation, n is the total number of tweets generated by u irrespective of the domain.
This feature can take values in the interval [0,1].

• Link Rate: Link Rate (LR) for a useru considering domaind is the ratio of the number of URL
links a user u shared in his or her domain-related tweets to the total number of domain-
related tweets made by user u:

LR (u,d) =
OT 2(u,d)

OT 1(u,d)
.

Since a tweet is short and deep technical contents cannot be elaborated in 140 characters, a
higher LR score might improve the likelihood of a topic-related tweet being useful to other
developers. Twitter has a limit of 140 characters per tweet and each URL shared consumes
23 characters, so a tweet can at the maximum contain five URL links. Thus, this feature can
take values in the interval [0,5].

• Domain-Hashtag Rate: Domain-Hashtag Rate (HR) is similar to link rate, but it considers the
proportion of domain-related tweets that contain a domain-related hashtag. The HR score
of a Twitter user u for a domain d is defined as

HR (u,d) =
OT 3(u,d)

OT 1(u,d)
.

Hashtags in a tweet are created by adding “#” before any character other than a space or
punctuation. So any hashtag will at least contain two characters (including the “#”). Twitter
has a limit of 140 characters per tweet, and if a single character preceded by “#” is used as
a hashtag, then a tweet can contain a maximum of 47 hashtags (94 characters for hashtags
and 46 for spaces in between hashtags). So, this feature can take values in the interval [0,47].

Content Popularity: The features under this category measure how popular and impactful is
the domain-related information generated by a user.

• Retweet Impact: Retweet Impact (RI) indicates the impact of the contents generated by the
user. The RI of a Twitter user u for a domain d is computed as

RI (u,d) = RT 2(u,d) · loд(RT 3(u,d)).

The retweet impact is primarily captured by RT2, which measures how many times a user
u has been retweeted. However, for some users the values of RT2 can be high just because

3http://www.ranks.nl/stopwords.

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 4, Article 16. Pub. date: October 2018.

http://www.ranks.nl/stopwords

Recommending Who to Follow in the Software Engineering Twitter Space 16:11

some of their devoted followers always retweet the content. To dampen the impact of such
users, multiplication by the logarithm of RT3 is done, as RT3 only captures the unique
followers who retweet content of a user. This feature can take values in the interval [0,∞).

• Mention Impact: Mention Impact (MI) indicates how much an account is mentioned with
regard to the domain of interest. The MI score of a Twitter user u for a domain d is defined
as

MI (u,d) = M3(u,d) · loд(M4(u,d)) −M1(u,d) · loд(M2(u,d)).

MI is measured as a difference of two components mentioned below:
* The first component is a product of M3 and logarithm of M4. Mainly, M3 gives a good

estimate of this component. However, in order to account for mentions being received
from people known to a user, M3 is multiplied by the logarithm of M4. As M4 consists of
only unique users, its logarithm helps to dampen the impact of M3.

* The second component is a product of M1 and logarithm of M2, which measures how
much a user is mentioning other users in Twitter. Again, the logarithm of M2 is used to
dampen the impact of people frequently mentioned by the user. Sometimes a user may
also receive mentions back only because of the fact that they mention others. To account
for this factor, we need to subtract the second component (which estimates how often
the user mentions others) from the first component.

The above steps ensure that the MI we calculate for a user is based on his or her merit and
not as a result of him or her mentioning other users. This feature can take values in the
interval [0,∞).

• Neighbor Score: Neighbor Score (NS) captures the raw number of domain-related users for
a domain d around a user u. The network score of a user u for a domain d is computed as

NS (u,d) = loд(G1(u,d) + 1) − loд(G2(u,d) + 1).

Instead of using the absolute values of G1 and G2, their logarithms have been used here to
avoid issues with clustering as the distribution of G1 and G2 follows a long-tail distribu-
tion [33]. This feature can take values in the interval [0,∞).

• Information Diffusion: Information Diffusion (ID) estimates how much influence is diffused
by the user in its network. We define the ID score of a Twitter user u for a domain d as

ID (u,d) = loд(G3(u,d) + 1) − loд(G4(u,d) + 1).

Similar to NS, logarithms have been used here. This feature can take values in the interval
[0,∞).

4.2 Network Features

In Twitter, one user is connected to other users via the follow relationship. For each Twitter user, we
can thus form a network of other users that are connected to it via this follow relationship (either
directly or indirectly). In this network, we can estimate the importance of a user in the network.
A software guru who shares many gems of knowledge with others is likely to be followed by
many other developers who benefit from his or her microblogs and thus is expected to have a high
importance score among other users in the network.

To capture the above-mentioned intuition, we create a network for each domain where nodes
correspond to domain-specific users and edges correspond to the follow relationships among these
users. The edges in our network are directed; e.g., an edge from userA to user B in our graph means
that the user A follows user B on Twitter. We then evaluate the importance of each user in this
network.

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 4, Article 16. Pub. date: October 2018.

16:12 A. Sharma et al.

To measure the importance of a user, we build upon various studies in web and social network
mining communities, which have proposed various metrics [6, 13, 32, 61]. We use some of the cen-
trality indicators proposed in [6, 61], which are widely used in network analysis and graph theory
to identify the most important nodes and vertices in a graph or a network. We also use PageRank

proposed by Page et al., which gives authority scores of important nodes in a network [32]. Intu-
itively, software domain experts are typically known by many people in the domain and expected
to interact with others. Thus, it is expected that the nodes representing experts would be important
and centrally located. The network features have been further categorized into Centrality Scores

and Absolute Scores. We describe the subcategories and their respective features below. Using the
features mentioned below would help in identifying the experts.

Centrality Scores: Features in this category are metrics based on research in social and network
mining communities and they measure how central (important) a node (user) is in a network
(Twitter).

• Betweenness: Betweenness is defined based on the number of shortest paths from all nodes
to all others that pass through a node. A high score for this measure means that very often
this node (equivalent to a user in the Twitter network) serves as a bridge between other
nodes. We believe that many software gurus act as knowledge brokers and help to facilitate
information flow between various parties. Singer et al. also observe that thought leaders also
mention and retweet contents generated by others [45]. The betweenness score helps us to
identify such broker nodes in the Twitter network and thus we have used it as a network
feature in this work.

• Closeness: Closeness is defined as the reciprocal of the average shortest distance of a node to
all the other nodes in a network. The intuition behind this feature is that gurus are expected
to be directly or indirectly connected to a large number of other users a few hops (edges)
away, and hence on average are closer and easily reachable by others. The closeness scores
help us to identify such potential gurus.

• Degree Centrality: Degree Centrality for a useru is the ratio of users to which it is connected
to the total users in the network. The number of users connected to a user u includes the
users who follow u and the users who are followed by u. A user who is a domain expert
in Twitter generally has a large number of followers, resulting in a relatively large value of
this feature.

• OutDegree Centrality: OutDegree Centrality for a user u is the ratio of the number of other
users it follows to the total number of users in the network. Intuitively, experts on Twitter
have a large number of followers but do not follow a large number of accounts, so the value
of the OutDegree Centrality feature is expected to be low for experts.

• PageRank: PageRank (PR) is a node importance measurement method proposed by Page and
Brin [32]. The PR algorithm computes a probability to represent the likelihood of a walker

arriving at a particular node by randomly traversing edges in a network. The PR algorithm
runs iteratively. At iteration i , the PR score of a node u is defined as follows:

PR (u, i) =
1 − d
N
+ d

∑

v ∈B (u)

PR (v, i − 1)

|L(v) | .

In the equation, d is the probability that a random walker continues to visit other nodes
(aka the damping factor), N is the number of nodes in the network, B(u) refers to the set of
nodes that link to u, and L(v) is the set of nodes that v links to.

We use the PageRank method mentioned above to measure the importance of a user
in a Twitter network, considering the importance of other users. Intuitively, a user that is

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 4, Article 16. Pub. date: October 2018.

Recommending Who to Follow in the Software Engineering Twitter Space 16:13

followed by many credible users is more likely to be credible. Highly credible users are likely
to be software gurus who are followed by possibly many other gurus, or at least credible
Twitter users who are highly interested in software engineering contents, in a particular
domain of interest.

Absolute Scores: Features in this category are based on the absolute number of users who follow
or are followed by a user on Twitter.

• Followers: This feature indicates the number of people who follow a user on Twitter. If a user
u has a high number of followers, it intuitively means that many other users are interested
in the tweets generated by the users. Such users are expected to be highly popular and
generally have a high probability of being experts in some domain.

• Followed: This feature indicates the number of people followed by a user on Twitter. If a
user u follows a huge number of other users intuitively, it is expected to be not of an expert
or human, as generally a single person cannot comprehend the information from tweets
generated from a huge number of users they follow. Most of the times such users repre-
sent some organizational or bot accounts that are interested in monitoring the information
generated from other users. Thus, the value of this feature can be an important factor in
discerning domain experts.

• NExpertFollowers: This feature indicates the number of experts of a particular domain who
follow a user. If a useru is followed by a lot of users who are experts in a particular domain,
then most likely the user u will also be an expert in the domain. Thus, this feature value
can be an important signal in finding experts in a particular domain.

• NExpertsFollowed: This feature indicates the number of experts of a particular domain fol-
lowed by a given user u. A user u who follows a large number of experts of a particular
domain is expected to be a user related to a domain. This feature when combined with
other features should strengthen our approach in order to find users related to a particular
domain.

4.3 Profile Features

A Twitter user can specify his or her biodata and include a reference to his or her webpage in
his or her Twitter account. This information can help us to better characterize a Twitter user.
Keywords such as developer ,architect , consultant , and so forth in the biodata and webpage of
users can help to identify software experts or gurus among other domain-related users. On the
other hand, keywords such as recruiter ,headhunter , and so forth help to identify and eliminate
accounts related to hiring firms. These accounts are not preferred by most developers as discussed
in Section 3.

To collect information from a Twitter user’s biodata and webpage, we perform three steps: bio-
data and URL extraction, webpage preprocessing, and text preprocessing. In the first step, we pro-
cess information from a Twitter account to extract the user’s biodata and the URL to his or her
webpage (if available). In the second step, if the URL to a user’s webpage is specified, we download
the webpage and extract textual contents from the webpage using a Python package called Beau-

tifulSoup.4 The Python package will remove HTML-related keywords and scripts that exist in the
downloaded webpage. In the third step, we perform standard text preprocessing on the biodata
and the webpage text, which includes the following substeps:

4http://www.crummy.com/software/BeautifulSoup/.

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 4, Article 16. Pub. date: October 2018.

http://www.crummy.com/software/BeautifulSoup/

16:14 A. Sharma et al.

(1) Tokenization: We split the biodata/webpage text into tokens, where each token corre-
sponds to a word that appears in the text.

(2) Stop Word Removal: We remove common English stop words, such as “is,” “are,” and so
forth, since they appear very often and thus have little discriminative power. We use the
list of English stop words provided on http://www.ranks.nl/stopwords.

(3) Stemming: We reduce a word to its root form (e.g., “reading” and “reads” are both reduced
to “read”) using a popular stemming algorithm, i.e., Porter stemmer [36]

In the end, for each user, we construct two feature vectors: one to represent his or her biodata
and the other to represent his or her webpage. Each feature corresponds to a preprocessed word
that appears in the biodata (or webpage), and the value of the feature is the number of times the
word appears in the biodata (or webpage). We call the biodata feature vector as Biodata and the
webpage feature vector as Webpage. These feature vectors are converted into four probabilities that
represent the likelihood of a Twitter user being a specialized guru, and the process is discussed
in detail in Section 5.2. We denote the four probabilities as PosBio, NegBio, PosWeb, and NegWeb.
Apart from the above four probability scores, there are a few more profile-related features that are
mentioned below:

• IsVerified: Verified accounts on Twitter represent accounts maintained by users who are
popular in key interest areas such as music, sports, and so forth and whose authenticity has
been confirmed.5 A verified account related to a software domain and which is human also
has a very high probability of being an expert in the domain.

• AccountAge: This feature indicates how long the user has been present on Twitter. A user
who is present on Twitter for a long period of time and also generates domain-related tweets
is likely be an expert developer.

• CosSimWeb: This feature measures the cosine similarity between the keyword representing
the domain of interest and the Webpage feature vector. Users who have more domain-related
text on their webpage are expected to be closer to the domain.

• CosSimTweetText: This feature measures the cosine similarity between the keyword repre-
senting the domain of interest and the text of all the original tweets made by the user. Users
who tweet more on a particular domain have a higher probability of being an expert. This
score is expected to be higher for such users.

4.4 GitHub Features

Some Twitter users include links to their GitHub profiles in their webpages. GitHub is one of
the popular code and repository holding websites, having over 21.1 million repositories held by
over 9 million users [14]. The presence of a GitHub account and high activity in GitHub can be
important factors in identifying software experts. In this work, we use the following five basic
GitHub features:

• IsGhMentioned: This feature indicates whether a Twitter user includes a link to his or her
GitHub profile in his or her webpage. Intuitively, a software expert will want to publish a
link to his or her GitHub profile on his or her webpage to highlight his or her work and
possibly to find interested people to join the projects he or she is championing on GitHub. A
newbie or a nonexpert developer is likely not to have a GitHub profile, and even if he or she
has one, he or she may not have any/many projects to display or promote. Thus, newbies
are less likely to highlight their GitHub profiles on their webpages. We set the value of this

5https://support.twitter.com/articles/119135.

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 4, Article 16. Pub. date: October 2018.

http://www.ranks.nl/stopwords
https://support.twitter.com/articles/119135

Recommending Who to Follow in the Software Engineering Twitter Space 16:15

feature to 1 if a valid GitHub profile link is present in a Twitter user’s webpage; otherwise,
it is set to 0.

• GhFollowers: This feature indicates the number of people who follow a user in GitHub. The
more followers a user has, the more popular the user is, and thus the user has a higher
likelihood of being an expert. This feature is assigned a value of 0 if IsGhMentioned = 0.

• GhRepos: This feature indicates the number of public repositories owned by a user in
GitHub. More repositories implies that the user has worked on more projects, and thus
this feature can be a good way to measure the expertise of the user. This feature is assigned
a value of 0 if IsGhMentioned = 0.

• GhGists: This feature indicates the number of public Gists shared by a user in GitHub. Gists
in GitHub are a way for developers to share useful code snippets or scripts. They are dif-
ferent from GitHub repositories, which are generally entire projects in themselves. A user
having a large number of public GitHub Gists can be taken as an indicator of their expe-
rience in creating reusable solutions for common tasks or problems. It also suggests their
willingness to share such information with other fellow developers. This feature can be a
good way to find experienced developers who are also willing to share their experience
with other developers. This feature is assigned a value of 0 if IsGhMentioned = 0.

• GhUserType: This feature indicates the type of GitHub Account. GitHub accounts can be
of various types, such as individual accounts or those of organizations. This feature is as-
signed a value of 1 if the values returned by account type is “User”; otherwise, the feature
is assigned a value of 0.

5 SOFTWARE GURU RECOMMENDATION

In this section, we first introduce the overall architecture of our prediction approach. We then
describe in detail the key steps in the approach.

5.1 Approach Overview

Figure 3 shows the overview of our approach, which contains five major steps (candidate set cre-
ation, training set creation, feature extraction, classifier construction, and classifier application).
Our approach takes as input a keyword specifying a domain of interest and users in Twitter and
eventually produces a set of specialized software gurus.

In the first step, we select Twitter users that are potentially interested in software development
from hundreds of millions of users. This helps us reduce the search space of finding specialized
software gurus. We follow the approach used in [1, 42, 52], wherein initially we create a seed list of
popular Twitter users who are software developers, by collating developers who are mentioned on
technical blogs. We then expand this list by using the follow links of users present in the seed list.
Next, as we need to find users who are related to a domain, we filter Twitter users who post fewer
than 10 domain-related tweets for the month of December 2016. This gives us a candidate set of
specialized software gurus related to a domain. The process is described in detail in Section 6.1.

In the second step, among the candidates identified in the first set, we manually label some of
them as specialized software gurus or other users (details in Section 6.1), and this set of labeled
users forms the training set. In the third step, we extract various features (i.e., content, network,
profile, and GitHub features) described in Section 4 for all users in the candidate set. In the classifier
learning step, the features of the users in the training set are used to learn a discriminative model
(aka a classifier) that is able to differentiate specialized software gurus and other users based on
their features. In the classifier application step, we apply the classifier on other candidate users
who are not in the training set and predict those who are specialized software gurus. We describe
the detail of our classifier construction step in the next subsection.

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 4, Article 16. Pub. date: October 2018.

16:16 A. Sharma et al.

Fig. 3. Framework of our recommendation system.

5.2 Classifier Construction

To construct a classifier, our approach first processes thousands of profile features and then merges
them with the other features to construct a unified discriminative model. We describe the detailed
process below.

Processing Profile Features. Different from content, network, and GitHub features, the profile
features based on biodata and webpage are not metrics but thousands of preprocessed words. The
number of these profile features is large as compared with the number of features from the other
families. Therefore, to make profile features based on biodata and webpage more comparable to
other features, we convert these profile features into four probabilities that represent the likelihood
of a Twitter user being a specialized guru. These four probabilities include the probability of a Twit-
ter user to be a specialized guru given his or her biodata (i.e., P (Guru |Biodata)), the probability of a
Twitter user to be not a specialized guru given his or her biodata (i.e., P (¬Guru |Biodata)), the prob-
ability of a Twitter user to be a specialized guru given his or her webpage (i.e., P (Guru |Webpaдe)),
and the probability of a Twitter user to be not a specialized guru given his or her webpage (i.e.
P (¬Guru |Webpaдe)). We denote the four probabilities as PosBio, NegBio, PosWeb, and NegWeb,

respectively.
To obtain the four probabilities, we train two text classifiers from the biodata and webpages

of users in the training set. We then apply these classifiers on all candidate users to generate the
four probabilities for all users. By default, we use Naive Bayes Multinomial (NBM) as the default
classifier to transfer profile features to the four probabilities. The NBM classifier is fast and has
shown its discriminative power in similar situations, e.g., [63].

Constructing a Unified Discriminative Model. After we have processed the profile features, we
combine the four probabilities with the 10 content features, four other profile features, nine net-
work features, and five GitHub features to characterize a Twitter user. We then take the features of

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 4, Article 16. Pub. date: October 2018.

Recommending Who to Follow in the Software Engineering Twitter Space 16:17

users in the training data to learn a unified discriminative model (a classifier) that can differentiate
specialized gurus from other users based on all of their features. After combining all the features,
we again apply the NBM on the 32 features from the four families (i.e., content, network, profile,
and GitHub).

6 EXPERIMENTS AND RESULTS

In this section, we first describe our dataset and experiment settings. Next, we introduce our re-
search questions and present our experiment results that answer each of the research questions.
At the end of this section, we present the threats to validity.

6.1 Dataset

The input dataset for our experiments is a set of a few million tweets that we collected in Decem-
ber 2016. To collect these tweets, we first created a seed list of popular Twitter users of software
developers. To create this list, we first collected 100 Twitter users who are also popular software
developers as mentioned in a technical blog;6 this list of seed users was used by previous studies [1,
42, 52]. As this list is quite old, we also collected Twitter users who are popular software develop-
ers as mentioned in several other more recently published technical blogs.7,8,9,10 From these blogs,
we are able to extract 48 unique users. These 48 users were then merged with the previous 100
users, which results in a final set of 139 users (after removing duplicates), which we refer to as
uSeed .

We then expanded the seed set by adding Twitter users who follow or are followed by at least
N of the seed users in uSeed . In Twitter, if a user B follows another user A, it means any tweets
published by A will be available to B. If B follows N users in uSeed, intuitively B is likely to be
interested in software engineering content. Also, in case B is followed by N already identified
software developers present in uSeed, then B has a very high probability of being a user producing
content related to software engineering. We refer to this expanded set as uBase, and it contains
161,067 users. In our study, we pick the value of N to be 5. We then collect tweets that are generated
by the users in uBase over a 1-month period (i.e., December 1–31, 2016). We were then able to
download 5,517,878 tweets generated by 86,824 of the total 161,067 users in uBase for the month
of December 2016.

The approach that we use in this article of using a seed network and extending it based on follow
links helped us to expand our relevant user base (i.e., Twitter users who are likely to generate
software engineering contents) quickly. An alternative way of doing this might be to search for
LinkedIn pages, identify software developers based on their job titles, and search if their Twitter
handles are mentioned in those pages. This may result in a cleaner dataset, since we are sure that
those Twitter users are really corresponding to software developers. However, not all LinkedIn
pages contain Twitter handles. Additionally, software developers have different job titles. Most
importantly, LinkedIn restricts us from crawling its pages.11

We evaluated the effectiveness of our approach by recommending software gurus for four do-
mains: JavaScript, Android, Python, and Linux. Javascript and Python are programming languages,
while Android and Linux are operating systems. We chose these domains since among tweets in

6http://www.noop.nl/2009/02/twitter-top-100-for-softwaredevelopers.html.
7https://www.untapt.com/blog/2015/11/25/developers-to-follow-on-twitter/.
8https://www.thebalance.com/programmers-on-twitter-2072010.
9http://zartis.com/ten-software-developers-follow-twitter/.
10http://www.techworld.com/picture-gallery/social-media/people-all-developers-should-follow-on-twitter-3644265/.
11https://techcrunch.com/2016/08/15/linkedin-sues-scrapers/.

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 4, Article 16. Pub. date: October 2018.

http://www.noop.nl/2009/02/twitter-top-100-for-softwaredevelopers.html
https://www.untapt.com/blog/2015/11/25/developers-to-follow-on-twitter/
https://www.thebalance.com/programmers-on-twitter-2072010
http://zartis.com/ten-software-developers-follow-twitter/
http://www.techworld.com/picture-gallery/social-media/people-all-developers-should-follow-on-twitter-3644265/
https://techcrunch.com/2016/08/15/linkedin-sues-scrapers/

16:18 A. Sharma et al.

Table 3. Dataset Statistics

Dataset Period #Tweets #TotalUsers #FilteredUsers

All December 2016 5,517,878 86,824 -
JavaScript December 2016 27,466 9,369 293
Android December 2016 20,655 6,951 247
Python December 2016 11,074 3,710 127
Linux December 2016 12,344 4,805 118

Fig. 4. Main page of our labeling system.

our dataset, these domains were well represented. Indeed, in our dataset, there are more JavaScript-
related tweets than any other domain-related tweets. Another consideration was that we were eas-
ily able to find people to label the data as gurus and nongurus for these domains. Since a domain-
related user that generates too few domain-related tweets may not be interesting to follow, as an
additional step, we filter Twitter users who have tweeted fewer than 10 domain-related tweets in a
month. We also chose only those users whose Twitter profile mentioned English as their preferred
language. We show the total number of filtered domain-related tweets and Twitter users in Table 3.
For these domain-related Twitter users we also crawled their biodata from their Twitter profiles
and downloaded the websites whose URLs are mentioned in the users’ Twitter profiles. Table 3
summarizes basic statistics of our dataset.

Next, we asked six PhD students majoring in Computer Science and two experienced software
developers to label our dataset, which contains 293 JavaScript-related, 247 Android-related, 127
Python-related, and 118 Linux-related Twitter users. Each of the participants had more than 5 years
of experience in programming and some experience in the respective technology domain whose
users they labeled. The participants were hired by word-of-mouth approach and email requests,
and none of them had any insights into how our algorithm works or the features that we used.
For each domain, the data was labeled by two to three persons independently. A participant was
assigned to a domain only if he or she had some experience in the domain whose users were to
be labeled. In the labeling task, each labeler had to answer some questions with respect to each
user in the given domain. Then, on the basis of the answers to these questions, it was determined
if the user is an expert in the domain under consideration. After the data for a domain was labeled
independently by the labelers, we computed the interrater agreement. For cases in which they
disagree, the labelers sat down together to discuss and decide final labels.

To better support the labeling process, we provided a web-based labeling system for the partic-
ipants. Figure 4 shows the main page of our labeling system, which contains a list of Twitter users
who need to be labeled. For each user, the participant had to click the “display” button to enter an
evaluation page. Figure 5 shows the evaluation page for a Twitter user. This page contained five
parts: (I) user account name; (II) details from the user’s Twitter profile, which include the user’s

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 4, Article 16. Pub. date: October 2018.

Recommending Who to Follow in the Software Engineering Twitter Space 16:19

Fig. 5. Evaluation page for a Twitter user.

biodata; (III) all domain-related tweets that were posted by the user in our dataset; (IV) contents
of the webpage whose URL is specified in the user’s account profile; and (V) evaluation questions.

We asked participants to answer five questions in part V based on the information shown in
parts I through IV. The first question asked a participant if the user shown on screen is a software
practitioner. The second question evaluated whether the user shown is a practitioner in the par-
ticular domain of interest, e.g., if he or she is a JavaScript practitioner. The third question asked
whether the Twitter user is an experienced software practitioner. Finally, the fourth question asked
whether the Twitter user is an experienced practitioner on the particular domain of interest. The
last question asked whether tweets posted by the user could be useful for developers who are
working on the specific domain of interest. For each question, a participant needed to provide one
of the three answers: “Yes,” “No,” or “Can’t Determine.”

The answers to questions 4 and 5 determined the label of a Twitter user (i.e., “Specialized gurus”
or “Others”). For Twitter users for which both questions 4 and 5 were answered as “Yes,” we labeled
them as “Specialized gurus.” These users are experienced developers in the domain of interest who
post contents in Twitter that potentially benefit other developers in the same domain. For users
who received an answer for question 4 as “Yes” and an answer for question 5 as “No,” we labeled
them as “Others.” For users who received an answer to question 4 as “No,” we labeled them also
as “Others.” We omitted the rest of the users from the final dataset, since their labels cannot be
reliably determined.

The interrater agreement scores for answers to questions 4 and 5 over all domains are shown
in Table 4. We used Cohen’s Kappa [11] to measure interrater reliability for the labeling task. A
Cohen’s Kappa score less than or equal to zero is considered as no agreement, between 0.01 and
0.20 is considered as none to slight agreement, between 0.21 and 0.40 as fair agreement, between

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 4, Article 16. Pub. date: October 2018.

16:20 A. Sharma et al.

Table 4. Interrater Agreement

Domain Users Q4 Q5

Cohen’s Kappa Agreement Cohen’s Kappa Agreement

Javascript 293 0.61 substantial 0.51 moderate
Android 247 0.53 moderate 0.67 substantial
Python 127 0.41 moderate 0.47 moderate
Linux 118 0.25 fair 0.33 fair

Table 5. Number of Specialized

Software Gurus

Domain #Guru #Others

JavaScript 98 87
Android 44 184
Python 26 65
Linux 38 72
All 206 408

0.41 and 0.60 as moderate agreement, between 0.61 and 0.80 as substantial agreement, and between
0.81 and 1.0 as almost perfect agreement [31, 59]. We can see from Table 4 that except for the Linux
dataset, the agreement is at least moderate. For the Linux dataset, the agreement is still fair.

Table 5 shows the results of our labeling process after all the initial labeling and disagreement
resolution. In the end, we have a total of 614 domain-related Twitter users who are labeled as “Spe-
cialized gurus” or “Others.” About 33.55% of the total users in our dataset were labeled as gurus.
The proportion of gurus is not very small as they are identified among Twitter users who post at
least 10 domain-related tweets in a 1-month period, and whose labels can be reliably determined.
For example, for the “Python” domain, initially a total of 3,710 Twitter users had posted at least one
tweet having the keyword “Python.” Out of these, only 127 users had posted at least 10 domain-
related tweets. Further, during annotation, labels were reliably determined only for 91 of these
users, out of which 26 were labeled as “Specialized gurus.” Thus, the two steps of filtering and la-
beling result in an increased proportion of gurus in our final dataset. For the “JavaScript” domain,
the number of “Specialized gurus” is more than 50% of the total users of that domain. This can be
explained by the fact that “JavaScript” is currently the most popular programming language,12 so
the number of “JavaScript” gurus on Twitter is also expected to be more. We use these 614 users to
evaluate the effectiveness of our approach in differentiating specialized domain gurus from other
domain-related users.

6.2 Experiment Setting

Implementation Details: We use the implementation of Multinomial Naive Bayes13 provided as part
of sklearn [7].

Evaluation Metrics: We use three standard metrics, namely, precision, recall, and F-Measure,
which have been used in many past studies, e.g., [53, 63]. They are calculated based on four possible
outcomes of a Twitter user in an evaluation set: the user is a specialized software guru and he or

12https://insights.stackoverflow.com/survey/2017#technology.
13http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes. MultinomialNB.html.

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 4, Article 16. Pub. date: October 2018.

https://insights.stackoverflow.com/survey/2017#technology
http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes. MultinomialNB.html

Recommending Who to Follow in the Software Engineering Twitter Space 16:21

she is correctly predicted as such (true positive, TP); the user is not a specialized software guru,
but he or she is wrongly predicted as a specialized software guru (false positive, FP); the user is a
specialized software guru, but he or she is not predicted as such (false negative, FN); or the user
is not a specialized software guru, and he or she is correctly predicted as such (true negative, TN).
Based on these possible outcomes, precision, recall, and F-Measure are defined as:

Precision is the proportion of correctly predicted specialized software gurus among those pre-
dicted as specialized software gurus, i.e., Precision = T P

T P+F P
.

Recall is the proportion of specialized software gurus that are correctly predicted as specialized
software gurus, i.e., Recall = T P

T P+F N
.

F-Measure is the harmonic mean of precision and recall, and it is used as a summary measure
to evaluate if an increase in precision (recall) outweighs a reduction in recall (precision), i.e., F-
Measure = 2×Pr ecision×Recall

Pr ecision+Recall
.

Evaluation Procedure: We apply 10-fold cross-validation on each of the four datasets. In this
way, a dataset of size n will be partitioned into 10 folds each of size n/10. Nine folds are used for
training a classification model, which is then evaluated on the rest one-fold data. The training and
evaluation processes are repeated 10 times and a mean score is taken for precision, recall, and
F-Measure.

Baseline Approaches: We consider the following two baselines approaches:

• Our first baseline is the approach proposed by Pal and Counts [33] as the baseline approach.
Their approach uses only content features. They employ the Gaussian mixture model to
cluster Twitter users into two groups and then pick one of the two groups as experts. They
also rank Twitter users in this group based on their likelihood to be an expert. The Python
package Gaussian Mixture14 [34] is used for clustering in our experiments. We consider the
following settings with respect to this baseline approach:
* (PCEv): In this setting, we run Pal and Counts’s approach to cluster all users in the evalu-

ation data (the test data in our supervised approach) by ignoring the training data in the
clustering process.

* (PCT r+Ev): In this setting, we run Pal and Counts’s approach to cluster all users in the
training and evaluation data (basically the complete dataset used in our supervised ap-
proach).

• Our second baseline is based on Klout.15 Klout is a system that calculates the influence score
of social accounts across multiple social networks [38]. It uses a hierarchical combination
of various feature scores aggregated over multiple social networks to calculate an influence
score of a user, known as KloutScore. Klout offers a web API16 through which we can obtain
the KloutScore of a given Twitter user for a specific topic or domain. The score calculation is
based on the approach outlined in [38, 47] and is an estimate of the percentile rank of a user’s
expertise for a given topic or domain. In this work, we consider any user with a KloutScore

greater than 0.99 as an expert for that domain. These are users rated as those among the
top 1% Twitter users with expertise in the domain. We refer to this baseline as KL.

6.3 Research Questions and Results

RQ1: How effective is our specialized software guru recommendation approach?

14http://scikit-learn.org/stable/modules/mixture.html.
15https://klout.com/home.
16https://klout.com/s/developers/research.

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 4, Article 16. Pub. date: October 2018.

http://scikit-learn.org/stable/modules/mixture.html
https://klout.com/home
https://klout.com/s/developers/research

16:22 A. Sharma et al.

Table 6. Precision, Recall, and F-Measure

of Our Approach

Domain Precision Recall F-Measure

JavaScript 0.759 0.905 0.820
Android 0.655 0.755 0.681
Python 0.750 0.533 0.602
Linux 0.550 0.566 0.522
Average 0.678 0.690 0.656

Motivation and Approach: The more accurate a recommendation system is, the more bene-
ficial it will be. To answer this research question, we investigate the effectiveness of our approach
following the experiment setting described in Section 6.2.

Results: Table 6 shows the precision, recall, and F-Measure of our approach on four different
domains. From Table 6, we observe that our approach can achieve an average F-Measure of 0.656
on the four domains. The average precision, recall, and F-Measure of our approach are 0.678, 0.690,
and 0.656, respectively.

Also from Table 6, we can see that the F-Measure for the Linux domain is low, achieving a value
of 0.522. To identify the reasons for a low F-Measure for Linux, we discussed with the labelers
of our data and found that Linux experts are harder to identify than other experts. The reason is
the people who are Linux experts share tweets across a wide range of topics, e.g., Linux kernel,
Linux/Unix administration, Linux security, and so forth, and their scope is wider than those of
other domains (e.g., JavaScript, etc.). This can be seen from the fact that the agreement among
labelers, although still being fair, is lower for Linux than for other domains.

There have been many past studies that show results with F-Measure in the range of 0.5 to
0.7 [10, 40, 55, 56, 66]. The F-scores of our solution are also in this range. Higher F-Measures
for domains such as JavaScript indicate better recommendation with less false positives and false
negatives. Different users would have different tolerance for recommendation quality. Our results
suggest that users would be happier when they use our approach for JavaScript than Linux. In any
case, our results are better for all domains than those of baselines (as seen in RQ2).

RQ2: Can our approach outperform existing Twitter expert recommendation approaches?

Motivation and Approach: Our approach extends Pal and Counts’s work [33] by proposing
new features (i.e., nine network, eight profile features, and five GitHub features) and by using
a two-stage classification process instead of a clustering technique. Since we extend this prior
work, we need to demonstrate that our approach outperforms it. Also, we have compared our
approach against Klout, which is a system that recommends users to follow given a particular
topic or domain. To answer this research question, we follow the experimental settings described in
Section 6.2 to compute the precision, recall, and F-Measure of Pal and Counts’s approach [33] and
Klout’s approach [38]. We then compare and contrast their evaluation scores with those of ours.

Results: Table 7 shows the performance of the two variants of Pal and Counts’s approach and
the Klout baseline on the four different domains. From Table 7, we observe that our approach
(shown in Table 6) can consistently achieve a better F-Measure than the baseline variants. In
terms of F-Measure, which is a summary measure to evaluate if an increase in recall (precision)
outweighs a reduction in precision (recall), our approach outperforms the Pal and Counts baseline
variants for all domains by 7.63% to 166.10%. The Klout baseline is also outperformed by our
approach on all domains by 18.79% to 31.47%.

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 4, Article 16. Pub. date: October 2018.

Recommending Who to Follow in the Software Engineering Twitter Space 16:23

Table 7. Precision, Recall, and F-Measure of the Baseline Approach Variants

Domain Approach Precision Recall F-Measure Improvement

JavaScript

PCEv 0.740 0.465 0.563 45.61%
PCT r+Ev 0.366 0.451 0.379 116.35%
KL 0.898 0.561 0.690 18.79%

Android

PCEv 0.870 0.181 0.297 129.68%
PCT r+Ev 0.202 0.354 0.256 166.10%
KL 0.659 0.426 0.518 31.47%

Python

PCEv 0.933 0.278 0.423 42.33%
PCT r+Ev 0.577 0.322 0.372 61.89%
KL 0.808 0.356 0.494 21.86%

Linux

PCEv 0.925 0.332 0.485 7.63%
PCT r+Ev 0.211 0.469 0.270 93.33%
KL 0.500 0.339 0.404 29.21%

Improv. = Improvement in F-measure.

Table 8. Average F-Measure for Various

Feature Combinations

Feature Setting F-Measure Performance Loss

ALL 0.656 -
ALL-GitHub 0.638 2.74%
ALL-Content 0.608 7.32%
ALL-Network 0.606 7.62%
ALL-Profile 0.451 31.25%
Only GitHub 0.180 72.56%
Only Content 0.167 74.54%
Only Network 0.271 58.69%
Only Profile 0.585 10.82%

RQ3: What are important features that better differentiate specialized software gurus from

nongurus?

Motivation and Approach: In our approach, we use 32 different features to characterize
a Twitter user, i.e., 10 content features, nine network features, eight profile features, and five
GitHub features. In this research question, we want to evaluate the importance of each of the
feature categories in predicting whether a Twitter user is a specialized software guru or not. To
answer this research question, we take the dataset that we use to evaluate the performance of
our approach in RQ1. We initially start with all the feature categories used in our dataset and
ran experiments using our approach on various subsets of features. After that we removed one
feature category at a time and repeated the experiments.

Results: Table 8 shows the various feature combinations that we have evaluated. The
F-Measure scores shown in the table are averaged across all domains. Each row in the table
corresponds to a set of features that is evaluated. The first row corresponds to the setting ALL,
where we used all the features, namely, Content, Profile, Network, and GitHub features. Profile,
Network, and GitHub features are the new categories of features that we propose in this work.
Content features are the ones that were proposed by Pal and Counts [33]. Next, to measure the

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 4, Article 16. Pub. date: October 2018.

16:24 A. Sharma et al.

strength of each category of features, we remove one category at a time and then calculate the
corresponding F-Measures. The ALL-GitHub row refers to the setting where we use all features
except those belonging to the GitHub category. Similarly, the rows ALL-Content, ALL-Network,
and ALL-Profile refer to the settings where Content, Network, and Profile features were dropped
and the remaining features evaluated. In order to evaluate the performance of using only a single
category of features, we also add settings where features from only a single category are used for
evaluation. The last four rows in Table 8 are related to it.

The results show that using a combination of all features achieves the maximum F-Measure
of 0.656. Of the new categories of features we propose in this work, Profile features have the
strongest predictive power. When we remove this feature, the F-Measure drops down by 31.25%
to 0.451. Also, when we consider each feature category independently, the Profile features can
achieve the highest F-Measure (i.e., 0.585), which shows its importance in predicting experts.
The Content and Network features cause a drop of 7.32% and 7.62%, respectively, when removed.
Individually, Network and Content features achieve an F-Measure of 0.271 and 0.167, respectively.
GitHub features have a positive but very small contribution as removing them causes a drop
of only 2.74%. Also, when we use GitHub features alone, only an F-Measure of 0.180 can be
achieved.

The results above show that Profile features have the strongest discriminative power in
discerning accounts of software gurus from others. As Profile features are based on text from
external profile pages and Twitter bios of users, they contain words that can be used to identify
experts. Also, in the Profile category, there are features that capture how long an account is
present on Twitter and if it is a verified account. Such information is expected to strengthen the
discriminative performance of Profile features and makes it perform better than other features.
We also notice that GitHub features have the weakest performance as compared to all other
feature categories. This is the case since in many cases developers do not share their GitHub

profile links on Twitter, resulting in the value of GitHub features being zero.

RQ4: Which feature values have the best predictive power across each domain?

Motivation and Approach: In our approach, we use 32 different features to characterize
a Twitter user, i.e., 10 content features, nine network features, eight profile features, and five
GitHub features. In this research question, we want to evaluate the importance of each of the
feature values in predicting whether a Twitter user is a specialized software guru or not. To
answer this research question, we take the dataset that we use to evaluate the performance of
our approach in RQ1. We use the procedure similar to what has been used in RQ3. We initially
started with all the features used in our dataset and ran the experiments using our approach.
After that we removed one feature at a time and repeated the experiments using our approach.
For each domain, the F-Measure we obtained after removing each feature was compared to the
domain’s F-Measure obtained in Table 6 and the percentage drop was computed. The features that
on removal cause the highest percentage drop in F-Measure are considered the most important.
These top 10 features for each domain are shown in Table 9.

Results: In Table 9, for each domain, we report the top 10 features identified based on the
percentage drop in F-Measure caused when the feature is removed. We also construct another list
of important features based on the frequency in which they appear in the top 10 lists of the four
domains. Table 10 shows the features that have appeared in the top 10 lists of at least two domains.

From Table 10, we can note that features across the four families, i.e., Network, Content, Profile,
and GitHub, are important in differentiating specialized software gurus from others. The features
PosBio, SS(Signal Strength), NExpertFollowers, GhRepos, and NegWeb are present across at least

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 4, Article 16. Pub. date: October 2018.

Recommending Who to Follow in the Software Engineering Twitter Space 16:25

Table 9. Top 10 Most Important Features for Each Domain

Rank JavaScript Android Python Linux

1 NegBio PosBio NCS PosBio
2 CosSimWeb PosWeb NExpertsFollowed NegBio
3 PageRank NExpertsFollowed IsGhMentioned GhGists
4 AccountAge SelfS GhUserType SS
5 PosBio NCS OutDegree Centrality GhFollowers
6 GhRepos CosSimTweetText Degree Centrality NExpertFollowers
7 LR IsVerified SS CosSimTweetText
8 NExpertFollowers NegWeb NExpertFollowers NegWeb
9 NegWeb SS NS GhRepos
10 Friends PageRank GhRepos Friends

Table 10. Most Important Features across

the Four Domains

#Top 10 Lists Feature Name Dimension

3 PosBio Profile
3 SS Content
3 NExpertFollowers Network
3 GhRepos GitHub
3 NegWeb Profile
2 NegBio Profile
2 NExpertsFollowed Network
2 NCS Content
2 CosSimTweetText Profile
2 PageRank Network
2 Friends Network

three domains. However, only the Profile feature PosBio is present in the top 5 ranks across the
three domains. In addition to Pos Bio and NegWeb, other important Profile features are NegBio
and CosSimTweetText. Network features NExpertsFollowed and Friends are also present in the
list for at least two domains.

From Table 9, it can be observed that the Profile features are the most frequent among the top 10
features and at relatively higher ranks. This is in line with the results observed in Table 8, where re-
moving the Profile category had caused the highest drop in F-Measure. The probabilities extracted
from users’ webpage and biodata seem to have more discriminative power as compared to other
features. Among Network features, NExpertFollowers has the strongest impact. This makes sense
as a user who is followed by other experts is expected to have a high probability of being an expert.

RQ5: What is the cross-domain performance of our approach?

Motivation and Approach: There are many other software engineering domains aside from
the four considered in this work. Thus, we need to check if a model learned from one domain can
possibly be used to identify experts from another domain. To answer this research question, we
perform experiments in which we train our model based on training data from one domain and
then use this model to identify gurus in other domains.

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 4, Article 16. Pub. date: October 2018.

16:26 A. Sharma et al.

Table 11. F-Measure of our Approach When Evaluated

on Cross-Domain Setting

Test Domain Setting Train Domain F-Measure

JavaScript
cross-domain

Android 0.777
Python 0.784
Linux 0.742
Average 0.768

within-domain JavaScript 0.820

Android
cross-domain

JavaScript 0.658
Python 0.615
Linux 0.588
Average 0.620

within-domain Android 0.681

Python
cross-domain

JavaScript 0.616
Android 0.604
Linux 0.479
Average 0.566

within-domain Python 0.602

Linux
cross-domain

JavaScript 0.485
Android 0.388
Python 0.466
Average 0.446

within-domain Linux 0.522

Average
cross-domain - 0.600
within-domain - 0.656

Results: Table 11 shows the performance of our model when trained on each domain and
tested on each of the other three domains. We refer to this setting as the cross-domain setting. On
average, we are able to achieve an F-Measure of 0.600 in the cross-domain setting. Note that our
approach was able to achieve an average F-Measure of 0.656 when the test and train data is from
the same domain—see Table 6 (we refer to as within-domain setting). Thus, there is only a small
drop in F-Measure (i.e., 0.056), which shows that our approach is effective for the cross-domain

setting. Labeled data from one domain can be used to build an effective model to predict experts
from other domains with only a small penalty in performance. In order to check if the F-Measure
obtained in the cross-domain result is significantly different from the F-Measure obtained in the
within-domain setting, we performed the Mann-Whitney U test [29] on the means of F-Measures
obtained in the cross-domain setting and within-domain setting. The test gave a p-value of 0.055,
which is greater than 0.05, based on which we can say that there is no statistical difference
between the within-domain and cross-domain results.

For the cross-domain setting, it can be observed that the performance of our approach for
domain Linux when it is trained using data from domain Android is quite low, despite both being
operating systems. To understand the reason behind this observation, we compare the contents
of tweets in our Linux and Android datasets. We find that the vocabulary used by Linux experts
is rather different than that used by Android experts. Most Android tweets are at the application
level (e.g., how to validate Android in-app subscription purchase), while Linux tweets are at the
system level (e.g., how to enable AES-NI advanced encryption on the Linux system).

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 4, Article 16. Pub. date: October 2018.

Recommending Who to Follow in the Software Engineering Twitter Space 16:27

6.4 Threats to Validity

Threats to internal validity relate to errors in our experiments and our labeling. We have checked
our code multiple times; still there could have been errors that we did not notice. At times it is
hard for our user study participants to decide whether someone is an experienced domain-specific
practitioner or whether a set of tweets is helpful for others or not. To deal with such cases, we
allow participants to choose the “Can’t Determine” option and omit those cases from our dataset
to improve the quality of the ground-truth labels. We also measure the agreement rate among
the participants. To do this, we have computed interrater agreement for the labeling task using
the measure of Cohen’s Kappa [11]. As can be seen from Table 4, except for the Linux dataset, the
agreement is at least moderate. For the Linux dataset, the agreement is still fair. These results show
that the raters in general agree with one another; thus, the threat introduced due to disagreement
among raters is minimal. Our strategy of omitting “Can’t Determine” cases may bias the evaluation
to easier cases. To investigate this threat, we have relooked into these “Can’t Determine” cases.
We found that many of these cases are less interesting ones; e.g., such users often only post a few
domain-related tweets, include little information in their profile, and so forth. They are less likely
to be interesting domain experts to be followed.

Threats to external validity relate to the generalizability of our approach. To mitigate this threat,
in this article, we have evaluated our approach on Twitter users belonging to two domain types,
i.e., programming languages (which include JavaScript and Python domains) and operating systems

(which include Android and Linux domains). We have also run experiments to check for cross-
domain performance to evaluate the generalizability of our approach. In the future, to further
reduce the threats to external validity, we plan to evaluate our approach on even more domains
and domain types.

The generalizability of our results may also be impacted by the use of GitHub features. Some
developers may not be using GitHub and for them we will not have their GitHub features. For such
cases the performance of our approach may be slightly lower, as removing the GitHub features
causes a drop of about 2.74% (see Table 8). It is possible to extract similar features from other
coding websites such as BitBucket, which we leave as future work. We focus on GitHub in our
work as it is currently the most popular social coding platform and is also growing fast.17 In our
dataset of Twitter users used for experiments, 18.89% (116/614) of them have GitHub links in their
profiles. On the other hand, only 1.14% (7/614) of users have BitBucket links in their profiles. Note
that the collection of users in our dataset is not biased in any way toward GitHub.18 Many past
studies have also focused on GitHub due to its popularity [41, 45, 48, 49, 57, 58].

Another factor that may impact the generalizability of our results may be the use of threshold
values that are used to determine domain experts. As mentioned in Section 6.1, in this work we
identify gurus among users who post more than 10 domain-related tweets. To check the impact
of this number, we evaluated the performance of our expert identification approach among users
who post more than 20 or 30 domain-related tweets. We find that there is only a small change
in the F-Measure (an increase in F-Measure by 0.5% to 4.3% when we increase the threshold to a
higher number) provided that the remaining number of data points left after filtering at higher
threshold levels is at least 50. If we have few data points left after filtering, then the classifier is not
able to learn a good model—which is as expected. Also, by default, for Klout we use a KloutScore
threshold of 0.99. We checked for change in its performance if the threshold is decreased below

17https://octoverse.github.com/.
18The users in our dataset are collected by initially merging several seed lists of popular software developers present on
Twitter. The resultant combined set is then expanded to include users who are followed or follow a certain number of users
in the combined set; c.f. Section 5.

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 4, Article 16. Pub. date: October 2018.

https://octoverse.github.com/

16:28 A. Sharma et al.

Table 12. Feature Strength versus Classification Approach

Classification Approach
Features

All Features Content Only

2-Stage Classification 0.656 0.167
PCEv 0.497 0.452
PCT r+Ev 0.403 0.304

0.99. We found little change in performance (a decrease in F-Measure by 0% to 1.21%) when we
vary the threshold from 0.75 to 0.99 (using a step of 0.03).

Threats to construct validity relate to the suitability of our evaluation metric. In this article, we
use precision, recall, and F-Measure. These metrics are well known and have been used in many
past studies, e.g., [23, 63, 67]. To further investigate the effectiveness of our proposed approach,
we perform a user study among some Android developers, to check if they accept the recom-
mendations generated by our approach and the baselines. The details of the study are discussed
in Section 7.2. The study finds that the recommendations provided by our approach are at least
25.93% more accurate than the baselines.

7 DISCUSSION

7.1 Benefits of Adding New Features and Employing Our New Classification Method

In our work, we have proposed three new categories of features as well as a two-stage classifi-
cation approach. Here, we perform experiments to evaluate the individual contribution of the set
of new features and the new classification approach in achieving better performance over base-
lines. Specifically, we check the performance of our two-stage classification approach on only the
Content features, and also the performance of the baseline approach on all features combined.

Table 12 shows the results of our experiments. From Table 12, we observe that a combination
of our two-stage classification approach and all the features can achieve an F-Measure of 0.656.
However, when we run our two-stage classification approach on only Content features, the F-
Measure drops down to 0.167. This shows that without the new category of features our two-stage
classification approach is not able to achieve good performance. Next, we evaluate the performance
of two variants of the Pal and Counts [33] approach using features from all categories. Table 12
shows that the F-Measure drops down to 0.497 for the PCEv baseline variant and 0.403 for the
PCT r+Ev variant. This shows that our two-stage classification approach is able to achieve better
performance over the baseline approach of Pal and Counts [33] when all the features are used.

7.2 Do Developers Follow Recommendations Provided by Our Approach?

We conduct a user study to compare the performance of our approach with the baseline ap-
proaches. For this purpose, we use a dataset of Twitter users belonging to the “Android” domain
that we collected earlier—see Table 5. We divide this dataset into two approximately equal-sized
subsets. We randomly choose one of them for training and the other one to generate recommen-
dations from. We ran our proposed approach and the baselines, i.e., Klout, PCEv , and PCT r+Ev , on
this dataset.

After we have the results from all four approaches, we chose the top 3 users returned by each ap-
proach and randomly mixed them together and removed duplicates. These users were then shown
to some Android developers. For each user, the user’s Twitter profile as well as latest tweets were
shown to the developers. A single question was asked about each user to each developer: “Are you
interested in following the above Twitter account, so that following it may help you in getting

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 4, Article 16. Pub. date: October 2018.

Recommending Who to Follow in the Software Engineering Twitter Space 16:29

Table 13. Converting Answers to Ratings

Answer Chosen Rating

NO, I am not interested to follow the account shown above 0
I already follow the account shown above 1
YES, I am interested to follow the account shown above 1

Table 14. User Study

Results

Approach NDCG@3

KL 0.43
PCEv 0.54
PCT r+Ev 0.54
Our 0.68

updated information related to Android programming?” As an answer to this question, each de-
veloper was asked to choose one out of the following three options: “(A) NO, I am not interested
to follow the account shown above,” “(B) YES, I am interested to follow the account shown above,”
and “(C) I already follow the account shown above.” To get Android developers as participants of
our user study, we randomly browsed for relevant accounts on Twitter. Next, the first author of
the article personally contacted each of them through Twitter messaging service. This process is
similar to the process used for contacting developers for the initial survey as described in Section 3.
We managed to attract 10 developers who agreed to participate in our user study.

The answers provided by each user were converted into binary ratings following the conversion
table shown in Table 13. To evaluate the results of our user study, we make use of Normalized
Discounted Cumulative Gain (NDCG) [19]. NDCG is commonly used to measure the performance
of information retrieval and recommendation systems [25]. The value of the NDCG metric varies
from 0 to 1, with 1 representing the ideal ordering. The following equation is used to compute
NDCG, where reli is the rating assessment provided by a user at position i in the ranking:

NDCG@3 =
1

IDCG

3∑

i=1

reli
loд(i + 1)

.

Table 14 shows the results of our user study for each of the four approaches (ours and the
three baselines). We can see from Table 14 that the NDCG score of our proposed approach is 0.68,
which is the highest when compared to baselines. In terms of NDCG, our approach outperforms
Klout, PCT r+Ev , and PCEv by 58.14%, 25.93%, and 25.93%, respectively. The results of the user study
further highlight the effectiveness of our proposed approach in recommending domain experts.

7.3 Lessons Learned

We share some points below that may be helpful to researchers interested in exploring problems
similar to what has been done in this work:

• Design effective and comprehensive features: Every dataset, platform, and problem is differ-
ent. To recommend experts on Twitter, we designed a comprehensive set of features by
analyzing the nature of the problem and data that we have. This results in the construc-
tion of a more effective recommendation system. Based on this experience, we recommend

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 4, Article 16. Pub. date: October 2018.

16:30 A. Sharma et al.

future studies, especially those that build recommendation systems for a new dataset or
problem, to look into unique characteristics of the data and problem. A good understand-
ing of these characteristics is needed to create new features that would be instrumental
in the construction of effective recommendation systems. Having effective features can be
more important than deploying more powerful machine-learning algorithms in terms of
their impact on recommendation quality.

• Incorporate external resources: In our study, we find that features extracted from linked ex-
ternal resources such as personal web pages of users and GitHub profiles help in improving
recommendation quality. Thus, researchers interested in solving similar problems may want
to go beyond data coming from one source. Linked external resources can provide additional
insights into the problem at hand.

• Disseminate survey strategically: Researchers often email their surveys to developers present
on GitHub [45, 49, 65]. While this method may work well and can result in response rates
greater than 15%, sometimes in cases where the study focus is a specific software engineer-
ing community, the response rates may go down. This is the case of a recent study focusing
on Slack [24], where the response rate was 7.84% (51/650). In our initial survey, we received
a poor response rate of less than 10% when we contacted GitHub developers randomly
sampled from GHTorrent [15]. This may have happened as the sample chosen from GitHub
may not have been representative of developers who use Twitter. Based on this outcome, we
started a brand new survey and contacted developers who were actually present on Twit-
ter, using personalized Twitter messages. The procedure is described in Section 3. This time
the response rate improved to 17.84%. Thus, one of the takeaways from our work is that if
the research problem being addressed caters to a specific software engineering community,
sampling should be done from a population of that specific community only. Additionally,
instead of mass-mailing developers, personally contacting developers using channels often
used by members of the target community, e.g., Twitter direct messaging in our case, also
helps in achieving more responses.

8 CONCLUSION AND FUTURE WORK

Twitter is becoming increasingly popular and has changed the way people share information and
collaborate with one another. Singer et al. report that software developers use Twitter to get aware-
ness of people and trends, extend their technical knowledge, and build connections with other
developers. They also report that it is challenging for developers to find interesting users to fol-
low [45]. To better understand developers’ needs, we first conduct an online survey with 38 devel-
opers. For those who use Twitter in their software development activities, we ask about the kinds
of users they would like to follow to help in their software development activities. The results of
our survey show that most developers would like to follow specialized software gurus, e.g., ex-
perts in Python. Based on the survey result, we propose a new approach that can automatically
recommend software gurus of a specialized domain (e.g., Python).

Our approach makes use of 32 features from four dimensions (i.e., Content, Network, Profile,
and GitHub) to characterize a Twitter user. It then uses a two-stage classification technique that
analyzes a set of labeled training data to create a discriminative model that can differentiate spe-
cialized software gurus from other domain-related Twitter users. In our experiment, we have eval-
uated our approach to classify domain-related Twitter users from four domains, i.e., JavaScript,
Android, Python, and Linux, into two categories (specialized gurus and others). The experiment
results show that our approach can achieve F-Measure scores of 0.522 to 0.820 on the four do-
mains. Our approach can improve the F-Measures achieved by baseline approaches [33, 38] by at
least 7.63%.

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 4, Article 16. Pub. date: October 2018.

Recommending Who to Follow in the Software Engineering Twitter Space 16:31

As a future work, we plan to consider more tweets and domain-related users and evaluate our
model on more domains in addition to the four considered in this work. We also plan to build and
deploy a live system (e.g., as a website or an Android app) that can continuously extract data from
Twitter and recommend domain-specific experts and promote this system to developers. We also
plan to do studies to understand what kind of Twitter accounts developers tend to unfollow after
following them for some time. Understanding characteristics of such accounts can help us build a
system to recommend potential accounts to unfollow and thus better help developers in carefully
curating the list of accounts they follow.

REFERENCES

[1] Palakorn Achananuparp, Ibrahim Nelman Lubis, Yuan Tian, David Lo, and Ee-Peng Lim. 2012. Observatory of trends
in software related microblogs. In Proceedings of the 27th IEEE/ACM International Conference on Automated Software

Engineering. ACM, 334–337.
[2] Maurício Aniche, Christoph Treude, Igor Steinmacher, Igor Wiese, Gustavo Pinto, Margaret-Anne Storey, and Marco

Aurélio Gerosa. 2018. How modern news aggregators help development communities shape and share knowledge. In
Proceedings of the 40th International Conference on Software Engineering (ICSE’18). ACM, New York, NY, USA, 499–510.

[3] John Anvik, Lyndon Hiew, and Gail C. Murphy. 2006. Who should fix this bug? In Proceedings of the 28th International

Conference on Software Engineering. ACM, 361–370.
[4] John Anvik and Gail C. Murphy. 2007. Determining implementation expertise from bug reports. In Proceedings of the

4th International Workshop on Mining Software Repositories. IEEE Computer Society, 2.
[5] Gargi Bougie, Jamie Starke, Margaret-Anne Storey, and Daniel M. German. 2011. Towards understanding Twitter

use in software engineering: Preliminary findings, ongoing challenges and future questions. In Proceedings of the 2nd

International Workshop on Web 2.0 for Software Engineering. 31–36.
[6] Ulrik Brandes. 2008. On variants of shortest-path betweenness centrality and their generic computation. Social Net-

works 30, 2 (2008), 136–145.
[7] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller, Olivier Grisel, Vlad Niculae, Peter

Prettenhofer, Alexandre Gramfort, Jaques Grobler, Robert Layton, Jake VanderPlas, Arnaud Joly, Brian Holt, and Gaël
Varoquaux. 2013. API design for machine learning software: Experiences from the Scikit-learn project. In ECML PKDD

Workshop: Languages for Data Mining and Machine Learning. 108–122.
[8] John L. Campbell, Charles Quincy, Jordan Osserman, and Ove K. Pedersen. 2013. Coding in-depth semistructured

interviews: Problems of unitization and intercoder reliability and agreement. Sociological Methods & Research 42, 3
(2013), 294–320.

[9] Shuo Chang and Aditya Pal. 2013. Routing questions for collaborative answering in community question answering.
In Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining.
ACM, 494–501.

[10] Morakot Choetkiertikul, Daniel Avery, Hoa Khanh Dam, Truyen Tran, and Aditya Ghose. 2015. Who will answer my
question on stack overflow? In 2015 24th Australasian Software Engineering Conference (ASWEC’15). IEEE, 155–164.

[11] Jacob Cohen. 1960. A coefficient of agreement for nominal scales. Educational and Psychological Measurement 20, 1
(1960), 37–46.

[12] Juliet Corbin, Anselm Strauss, and Anselm L Strauss. 2014. Basics of Qualitative Research. Sage.
[13] Linton C. Freeman. 1979. Centrality in social networks conceptual clarification. Social Networks 1, 3 (1979), 215–239.
[14] GitHub. 2015. About GitHub Inc. Retrieved from https://github.com/about/press. Accessed August 27, 2015.
[15] Georgios Gousios. 2013. The GHTorrent dataset and tool suite. In Proceedings of the 10th Working Conference on

Mining Software Repositories (MSR’13). IEEE Press, Piscataway, NJ, 233–236.
[16] Emitza Guzman, Rana Alkadhi, and Norbert Seyff. 2016. A needle in a haystack: What do Twitter users say about

software?. In 2016 IEEE 24th International Requirements Engineering Conference (RE’16). IEEE, 96–105.
[17] Chaoran Huang, Lina Yao, Xianzhi Wang, Boualem Benatallah, and Quan Z. Sheng. 2017. Expert as a service: Software

expert recommendation via knowledge domain embeddings in stack overflow. In 2017 IEEE International Conference

on Web Services (ICWS’17). IEEE, 317–324.
[18] William Hudson. 2013. Card sorting. In The Encyclopedia of Human-Computer Interaction. 2nd ed.
[19] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation of IR techniques. ACM Transactions

on Information Systems (TOIS) 20, 4 (2002), 422–446.
[20] Miryung Kim, Thomas Zimmermann, Robert DeLine, and Andrew Begel. 2016. The emerging role of data scientists

on software development teams. In Proceedings of the 38th International Conference on Software Engineering. ACM,
96–107.

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 4, Article 16. Pub. date: October 2018.

https://github.com/about/press

16:32 A. Sharma et al.

[21] Miryung Kim, Thomas Zimmermann, Robert DeLine, and Andrew Begel. 2017. Data scientists in software teams:
State of the art and challenges. IEEE Transactions on Software Engineering 1 (2017), 1–1.

[22] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue B. Moon. 2010. What is Twitter, a social network or a news
media? In Proceedings of the 19th International Conference on World Wide Web (WWW’10). 591–600.

[23] Alina Lazar, Sarah Ritchey, and Bonita Sharif. 2014. Improving the accuracy of duplicate bug report detection using
textual similarity measures. In Proceedings of the 11th Working Conference on Mining Software Repositories. ACM,
308–311.

[24] Bin Lin, Alexey Zagalsky, Margaret-Anne Storey, and Alexander Serebrenik. 2016. Why developers are slacking off:
Understanding how software teams use slack. In Proceedings of the 19th ACM Conference on Computer Supported

Cooperative Work and Social Computing Companion. ACM, 333–336.
[25] Tie-Yan Liu. 2011. Learning to Rank for Information Retrieval. Springer Science & Business Media.
[26] David Lo, Nachiappan Nagappan, and Thomas Zimmermann. 2015. How practitioners perceive the relevance of soft-

ware engineering research. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering. ACM,
415–425.

[27] David Ma, David Schuler, Thomas Zimmermann, and Jonathan Sillito. 2009. Expert recommendation with usage
expertise. In IEEE International Conference on Software Maintenance, 2009 (ICSM’09). IEEE, 535–538.

[28] Laura MacLeod, Margaret-Anne Storey, and Andreas Bergen. 2015. Code, camera, action: How software developers
document and share program knowledge using YouTube. In Proceedings of the 2015 IEEE 23rd International Conference

on Program Comprehension. IEEE Press, 104–114.
[29] Henry B. Mann and Donald R. Whitney. 1947. On a test of whether one of two random variables is stochastically

larger than the other. The Annals of Mathematical Statistics 18 (1947), 50–60.
[30] Christopher D. Manning, Prabhakar Raghavan, and Hinrich SchÃijtze. 2008. Introduction to Information Retrieval.

Cambridge University Press.
[31] Mary L. McHugh. 2012. Interrater reliability: The kappa statistic. Biochemia Medica 22, 3 (2012), 276–282.
[32] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The PageRank citation ranking: Bringing

order to the web. Technical Report 1999-66. Stanford InfoLab.
[33] Aditya Pal and Scott Counts. 2011. Identifying topical authorities in microblogs. In Proceedings of the 4th ACM Inter-

national Conference on Web Search and Data Mining. ACM, 45–54.
[34] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,

V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research 12 (Oct. 2011), 2825–2830.

[35] Luca Ponzanelli, Gabriele Bavota, Andrea Mocci, Massimiliano Di Penta, Rocco Oliveto, Mir Hasan, Barbara Russo,
Sonia Haiduc, and Michele Lanza. 2016. Too long; didn’t watch!: Extracting relevant fragments from software devel-
opment video tutorials. In Proceedings of the 38th International Conference on Software Engineering. ACM, 261–272.

[36] Martin F. Porter. 1980. An algorithm for suffix stripping. Program 14, 3 (1980), 130–137.
[37] Philips Kokoh Prasetyo, David Lo, Palakorn Achananuparp, Yuan Tian, and Ee-Peng Lim. 2012. Automatic classifica-

tion of software related microblogs. In Proceedings of the 28th IEEE International Conference on Software Maintenance

(ICSM’12). IEEE, 596–599.
[38] Adithya Rao, Nemanja Spasojevic, Zhisheng Li, and Trevor DSouza. 2015. Klout score: Measuring influence across

multiple social networks. In 2015 IEEE International Conference on Big Data (Big Data’15). IEEE, 2282–2289.
[39] Johnny Saldaña. 2015. The Coding Manual for Qualitative Researchers. Sage.
[40] Gustavo Santos, Klérisson V. R. Paixão, Nicolas Anquetil, Anne Etien, Marcelo de Almeida Maia, and Stéphane

Ducasse. 2017. Recommending source code locations for system specific transformations. In 2017 IEEE 24th Inter-

national Conference on Software Analysis, Evolution and Reengineering (SANER’17). IEEE, 160–170.
[41] Abhishek Sharma, Ferdian Thung, Pavneet Singh Kochhar, Agus Sulistya, and David Lo. 2017. Cataloging Github

repositories. In Proceedings of the 21st International Conference on Evaluation and Assessment in Software Engineering.
ACM, 314–319.

[42] Abhishek Sharma, Yuan Tian, and David Lo. 2015. NIRMAL: Automatic identification of software relevant tweets
leveraging language model. In 2015 IEEE 22nd International Conference on Software Analysis, Evolution and Reengi-

neering (SANER’15). IEEE, 449–458.
[43] Abhishek Sharma, Yuan Tian, and David Lo. 2015. What’s hot in software engineering Twitter space? In 2015 IEEE

International Conference on Software Maintenance and Evolution (ICSME’15). IEEE, 541–545.
[44] Abhishek Sharma, Yuan Tian, Agus Sulistya, David Lo, and Aiko Fallas Yamashita. 2017. Harnessing Twitter to sup-

port serendipitous learning of developers. In 2017 IEEE 24th International Conference on Software Analysis, Evolution

and Reengineering (SANER’17). IEEE, 387–391.
[45] Leif Singer, Fernando Marques Figueira Filho, and Margaret-Anne D. Storey. 2014. Software engineering at the speed

of light: How developers stay current using Twitter. In 36th International Conference on Software Engineering (ICSE’14).
211–221.

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 4, Article 16. Pub. date: October 2018.

Recommending Who to Follow in the Software Engineering Twitter Space 16:33

[46] Edward K. Smith, Christian Bird, and Thomas Zimmermann. 2015. Build it yourself!: Homegrown tools in a large
software company. In Proceedings of the 37th International Conference on Software Engineering - Volume 1. IEEE Press,
369–379.

[47] Nemanja Spasojevic, Jinyun Yan, Adithya Rao, and Prantik Bhattacharyya. 2014. Lasta: Large scale topic assignment
on multiple social networks. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining. ACM, 1809–1818.
[48] Margaret-Anne Storey, Leif Singer, Brendan Cleary, Fernando Figueira Filho, and Alexey Zagalsky. 2014. The (r)

evolution of social media in software engineering. In Proceedings of the Future of Software Engineering. ACM, 100–
116.

[49] Margaret-Anne Storey, Alexey Zagalsky, Fernando Figueira Filho, Leif Singer, and Daniel M. German. 2017. How so-
cial and communication channels shape and challenge a participatory culture in software development. IEEE Trans-

actions on Software Engineering 43, 2 (2017), 185–204.
[50] Anselm Strauss and Juliet M. Corbin. 1997. Grounded Theory in Practice. Sage.
[51] Yuan Tian, Palakorn Achananuparp, Ibrahim Nelman Lubis, David Lo, and Ee-Peng Lim. 2012. What does software

engineering community microblog about? In MSR. 247–250.
[52] Yuan Tian and David Lo. 2014. An exploratory study on software microblogger behaviors. In MUD.
[53] Yuan Tian, David Lo, and Julia Lawall. 2014. Automated construction of a software-specific word similarity database.

In 2014 Software Evolution Week-IEEE Conference on Software Maintenance, Reengineering and Reverse Engineering

(CSMR-WCRE’14). IEEE, 44–53.
[54] Twitter. 2017. About Twitter Inc. Retrieved from https://about.twitter.com/company. Accessed July 26, 2017.
[55] Gias Uddin and Foutse Khomh. 2017. Automatic summarization of API reviews. In 2017 32nd IEEE/ACM International

Conference on Automated Software Engineering (ASE’17). IEEE, 159–170.
[56] Harold Valdivia Garcia and Emad Shihab. 2014. Characterizing and predicting blocking bugs in open source projects.

In Proceedings of the 11th Working Conference on Mining Software Repositories. ACM, 72–81.
[57] Bogdan Vasilescu, Kelly Blincoe, Qi Xuan, Casey Casalnuovo, Daniela Damian, Premkumar Devanbu, and Vladimir

Filkov. 2016. The sky is not the limit: Multitasking on GitHub projects. In International Conference on Software Engi-

neering (ICSE’16). ACM, 994–1005. Retrieved from DOI: https://doi.org/10.1145/2884781.2884875.
[58] Bogdan Vasilescu, Vladimir Filkov, and Alexander Serebrenik. 2013. StackOverflow and GitHub: Associations be-

tween software development and crowdsourced knowledge. In 2013 International Conference on Social Computing

(SocialCom’13). IEEE, 188–195.
[59] Anthony J. Viera and Joanne M. Garrett. 2005. Understanding interobserver agreement: The kappa statistic. Family

Medicine 37, 5 (2005), 360–363.
[60] Xiaofeng Wang, I. Kuzmickaja, K.-J. Stol, P. Abrahamsson, and B. Fitzgerald. 2014. Microblogging in open source

software development: The case of Drupal and Twitter. IEEE Software 31, 4 (2014), 72–80.
[61] Scott White and Padhraic Smyth. 2003. Algorithms for estimating relative importance in networks. In Proceedings of

the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 266–275.
[62] Xin Xia, David Lo, Ying Ding, Jafar M. Al-Kofahi, Tien N. Nguyen, and Xinyu Wang. 2017. Improving automated bug

triaging with specialized topic model. IEEE Transactions on Software Engineering 43, 3 (2017), 272–297.
[63] Xin Xia, David Lo, Emad Shihab, Xinyu Wang, and Xiaohu Yang. 2015. ELBlocker: Predicting blocking bugs with

ensemble imbalance learning. Information and Software Technology 61 (2015), 93–106.
[64] Xin Xia, David Lo, Xinyu Wang, and Bo Zhou. 2015. Dual analysis for recommending developers to resolve bugs.

Journal of Software: Evolution and Process 27, 3 (2015), 195–220.
[65] Yangyang Zhao, Alexander Serebrenik, Yuming Zhou, Vladimir Filkov, and Bogdan Vasilescu. 2017. The impact of

continuous integration on other software development practices: A large-scale empirical study. In Proceedings of the

32nd IEEE/ACM International Conference on Automated Software Engineering. IEEE Press, 60–71.
[66] Pingyi Zhou, Jin Liu, Zijiang Yang, and Guangyou Zhou. 2017. Scalable tag recommendation for software information

sites. In 2017 IEEE 24th International Conference on Software Analysis, Evolution and Reengineering (SANER’17). IEEE,
272–282.

[67] Yu Zhou, Yanxiang Tong, Ruihang Gu, and Harald Gall. 2014. Combining text mining and data mining for bug report
classification. In 2014 IEEE International Conference on Software Maintenance and Evolution (ICSME’14). IEEE, 311–320.

Received June 2016; revised March 2018; accepted July 2018

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 4, Article 16. Pub. date: October 2018.

https://about.twitter.com/company
https://doi.org/10.1145/2884781.2884875

	Recommending who to follow in the software engineering Twitter space
	Citation

	TOSEM2704-16

