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A B S T R A C T

Modern software systems are increasingly dependent on third-party libraries. It is widely recognized that using
mature and well-tested third-party libraries can improve developers’ productivity, reduce time-to-market, and
produce more reliable software. Today’s open-source repositories provide a wide range of libraries that can be
freely downloaded and used. However, as software libraries are documented separately but intended to be used
together, developers are unlikely to fully take advantage of these reuse opportunities. In this paper, we present a
novel approach to automatically identify third-party library usage patterns, i.e., collections of libraries that are
commonly used together by developers. Our approach employs a hierarchical clustering technique to group
together software libraries based on external client usage. To evaluate our approach, we mined a large set of over
6000 popular libraries from Maven Central Repository and investigated their usage by over 38,000 client sys-
tems from the Github repository. Our experiments show that our technique is able to detect the majority (77%)
of highly consistent and cohesive library usage patterns across a considerable number of client systems.

1. Introduction

Third-party software libraries have become an integral part of
modern software development. Today’s software systems increasingly
depend on external libraries, to reduce development time, and deliver
reliable and quality software. Developers can take the benefit of freely
reusing functionality provided by well-tested and mature third-party
libraries and frameworks through their Application Programming
Interfaces (APIs) (Robillard, 2009). Developers often reinvent the wheel
and spend effort and time on implementing functionality, already
provided by mature libraries. Automatically identifying existing library
usage patterns, can help developers to overcome the complexity of
writing their code from scratch, and avoid reinventing the wheel.

Much research efforts have been dedicated to the identification of
library API usage patterns (Wang et al., 2013; Uddin et al., 2012; Zhong
et al., 2009; Saied et al., 2015c; 2015a). The vast majority of existing
works focus on the method level within a single library. Indeed, these
approaches assume that the set of relevant libraries is already known to
the developer, and it is only the methods in these libraries that are
unknown. However, identifying relevant libraries and understand their

usage trend is a hard and time-consuming activity.
Today’s code repositories on the Internet provide an increasingly

large number of reusable software libraries with a variety of function-
alities. Automatically analyzing how software projects utilize these li-
braries, and understanding the extent and nature of software library
reuse in practice is a challenging task for developers. Indeed, software
developers can spend a considerable amount of time and effort to
manually identify libraries that are useful and relevant for the im-
plementation of their software. Worse yet, developers may even be
unaware of the existence of these libraries, in particular when they are
not popular. Developers tend to implement most of their features from
scratch instead of reusing functionalities provided by third-party li-
braries as pointed out by several researchers (Uddin et al., 2012; Zhong
et al., 2009; Duala-Ekoko and Robillard, 2011). Therefore, we believe
that identifying patterns of libraries commonly used together, can help
developers to discover and choose libraries that may be relevant for
their projects’ implementation.

In this paper, we propose a novel approach for mining Library Co-
Usage Patterns, namely LibCUP. We define a usage pattern of libraries
as a collection of libraries that are jointly used in client systems. Our
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approach is based on the analysis of the joint versus separate use of the
libraries. The pattern’s libraries are distributed on different usage co-
hesion levels/layers. Each layer reflects the co-usage frequency between
a set of libraries, while the distribution on the different levels demon-
strates the graduation in the degree of co-usage frequency. Our ap-
proach adopts a variant of DBSCAN, a widely used density-based
clustering algorithm, to detect candidate library usage patterns based
on the analysis of their frequency and consistency of usage within a
variety of client systems. Different client systems may use utility li-
braries (e.g., JUnit, log4j, etc.) as well as domain-specific libraries
(e.g., httpclient, groovy, spring-context, etc.). Thus, the ra-
tionale behind the distribution on different usage cohesion levels of
libraries in a pattern, is also to distinguish between the most specific
libraries and the less specific ones. Moreover, our approach is intended
to be used first to identify patterns of particular libraries that interest a
developer. These libraries could then be fed to existing approaches
(Uddin et al., 2012; Zhong et al., 2009; Saied et al., 2015c; 2015a) to
recommend particular methods to be used in different contexts. More-
over, LibCUP provides a user-friendly visualization tool to assist de-
velopers in exploring the different library usage patterns.

We evaluate our approach on a large dataset of over 6000 popular
libraries, collected from Maven Central repository1 and investigated
their usage from a wide range of over 38,000 client systems from Gi-
thub repository2, from different application domains. Furthermore, we
evaluated the scalability of LibCUP as compared to LibRec
(Thung et al., 2013), a state-of-the-art library recommendation tech-
nique based on association rule mining and collaborative filtering. We
also performed a ten-fold cross validation to evaluate the general-
izability of the identified usage patterns to potential new client systems.
Our results show that across a considerable variability of client systems,
the identified usage patterns by LibCUP remain more cohesive than
those identified by LibRec. The main contributions of the paper can be
summarized as follows:

1. We introduce a novel approach for mining multi-level usage pat-
terns of libraries using an adapted hierarchical clustering technique.
Our approach is supported by a user-friendly tool to visualize and
navigate through the identified library usage patterns3.

2. We mine a large dataset of over 6000 popular libraries from Maven
repository and investigated their usage from a wide range of over
38,000 client systems from Github.

3. We evaluate the effectiveness of our approach in terms of cohe-
siveness and generalizability of the identified patterns. Results show
that our approach was able to identify a larger number of usage
patterns, on different usage cohesion levels.

The remainder of the paper is organized as follows. Section 2 mo-
tivates the usefulness of LibCUP with two real-world examples.
Section 3 presents the related work. We detail our approach in
Section 4. We present our experimental study to evaluate the proposed
approach in Section 5, while providing discussions in Section 6. Finally,
we conclude and suggest future work in Section 7.

2. Motivation and challenges

In this section, we present two real-world scenarios to motivate the
usefulness of library co-usage patterns. In the first example, the goal is
to find a set of libraries that allow to meet the requirements of a given
software system. In the second example, the goal is to decide between
two libraries with similar functionalities to be used in a software
system. In this context, we assume that a library with more potential to

be used with other related libraries is preferred. The related libraries
are assumed to extend the features of the software system.

2.1. Learning-environment example

Let us consider a software development team responsible of the task
of maintaining a Web portal for a growing private university with around
4000 undergraduate and graduate students. The university is planing to
move from a simple Web portal to an advanced course management
system to provide adequate service to their students and faculty mem-
bers. As a first step, the development team decided to go through an
exploratory phase, during which they developed a situational application
to assess the turnout rate in the new learning environment. This appli-
cation allows students and faculty to schedule activities related to
courses and maintain deadlines related to projects. It should also allow
real-time conversations between course or project participants.

Based on these requirements, developers found that their applica-
tion requires some basic functionalities including a scheduling and an
emailing service that have to be integrated. In this situation, developers
can either implement the different features from scratch, or reuse fea-
tures provided by existing libraries. In both cases, they may spend a
considerable time and effort for either implementing the features or
finding compatible and useful libraries to be integrated in the appli-
cation.

The development team later finds out that they are required to use
the quartz library to implement the scheduler. With this new con-
straint, the developers have to solve the following challenges:

• What is the recommended emailing library that best complements the
library quartz? The selection should take into account assumed
compatibility with the quartz library as well as the effort needed to
integrate the library into the system.

• More generally, what related libraries can be used to implement the re-
maining features of their software system? The developers might be
interested in related libraries that are commonly used by similar
systems with the quartz library.

Addressing these two challenges could be a complex task for de-
velopers if done manually. Indeed, developers should check in open-
source code repositories to find similar projects, and investigate their
library usage. Manually finding libraries that are commonly used to-
gether in a particular scenario and understanding the current usage
practice for a particular library is unlikely to be effective.

2.2. Web application frontend example

We now consider another scenario with Aaron, a freelance pro-
grammer, who seeks to implement an inventory management web ap-
plication. Aaron decided to develop his web applications in an in-
dustrial setting, where the back-end is implemented in Java and the
front-end is implemented in a Java/XML based framework. For the user
interfaces, several libraries can be used; the most popular ones are
primefaces the UI component library for Java Server Faces, and
gwt-user of the Google Web Toolkit.

Aaron has to decide which library to use: primefaces or gwt-
user. In other words:

• Which library is the best option in terms of future extension of the
software system’s functionalities? Aaron prefers libraries that are
usually used with many other libraries, which offer a large variety of
functionalities. This provides a high potential of extensions of his
software system.

In both examples, we consider that mining patterns of libraries used
jointly by many client systems may provide insights to make the best
decisions.

1 http://mvnrepository.com.
2 www.github.com.
3 https://saiedmoh.github.io/LibCUP/.
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2.3. Challenges: mining library usage

In this work, we mine the ‘wisdom of the crowd’ to discover usage
patterns of software libraries. Studying the current library usage within
similar systems may provide hints on compatibility and relevance be-
tween existing libraries. We assume that libraries that are commonly
used together are unlikely to have compatibility and integration issues.

The goal is to discover which sets of libraries are commonly used
together by similar systems. To this end, our approach is designed to
find multiple layers, i.e., levels, of relevant libraries according to their
usage frequency. For effective reuse, developers can go through the
different levels inside the usage patterns to discover relationships, with
different strengths, between the collection of related libraries.

For the first motivating example, we use the usage patterns to dis-
cover that commons-email library , which is a popular emailing li-
brary, complements the quartz library. Furthermore, by using the
multi-layers structure of our patterns, developers can then find related
libraries that would complement, at different degrees, both quartz
and commons-email.

For the second motivating example, we found that gwt-user li-
brary is part of a usage pattern with many other related libraries in-
cluding gwt-dev , gwt- servlet , gwt-incubator , and gin . This
collection of libraries covers different functionalities such as browser
support, widgets, optimization, data binding, and remote communica-
tion. All these features are opportunities for future extensions, and we
are confident that they can be integrated together as demonstrated by
the client systems that already used them. Conversely, Aaron found
that, although the primefaces library might be useful for his system,
it is not widely used with other libraries and, then, does not offer a
sufficient guarantee of future integration with other libraries.

These two examples show that the task of identifying library usage
patterns becomes more and more complex, especially with the ex-
ponentially growing number of libraries available in the Internet. This
motivates our proposal of automatically identify library usage patterns
to assist developers in reusing and integrating libraries and, then, in-
crease their productivity.

3. Background and related work

3.1. Background

In this paper, we evaluated our technique LibCUP as compared to
LibRec, a state-of-the-art library recommendation technique. Thus we
present in this subsection an overview of LibRec. LibRec combines as-
sociation rule mining and collaborative filtering. The association rule
mining component recommends libraries based on a set of inferred li-
brary usage patterns. The collaborative filtering component re-
commends libraries based on their usage on other similar client projects
(Thung et al., 2013).

Association rule mining: An association rule is an “if/then” rule that can
be written as: X⇒Y where X is the precondition event of the rule and Y is
the postcondition event of the rule. The precondition is a statement that
must be satisfied for the rule to be applied, whereas the postcondition is
the result if the precondition is met. For LibRec the rule’s events are li-
brary usage in client systems. The previous rule could be read, if Lib X is
used than Lib Y should be used. When the association rule is frequent and
has a high likelihood to be correct, the rule could be seen as a pattern.

Collaborative filtering: Collaborative filtering is an automatic tech-
nique to make predictions about an entity based on information col-
lected about other similar entities. A basic method to perform colla-
borative filtering is by finding the nearest neighbors of the target entity.
A target entity is compared with all other entities and a list of most
similar entities based on a distance metric is produced. The similarities
among the entities are used as a basis for making predictions about the
entity. In LibRec, an entity is a client project, and the prediction task is
the prediction of libraries that are useful for the project. To measure the

similarity of two projects, LibRec is based on the set of libraries that are
used in common between the two projects.

3.2. Related work

Recently, different aspects around library usage have gained con-
siderable attention. Existing contributions can be organized into dif-
ferent categories according to the purpose of their proposed techniques:
(i) third-party library usage, (ii) code completion, (iii) library API usage
example, (iv) API usage visualization, (v) exploration of API usage ob-
stacles, and (vi) mining API usage patterns.

Third-party usage at the library level. Several works were interested in
the third-party usage at the library level, but for different purposes such
as library refactoring (Penta et al., 2002), library recommendation
(Thung et al., 2013; Ouni et al., 2017) and library miniaturization
(Antoniol and Penta, 2003; Antoniol et al., 2003). The most related to
our work is the one by Thung et al. (2013). As mentioned previously the
authors proposed a hybrid approach that combines association rule
mining and collaborative filtering, to recommend libraries based on
their usage on similar client systems. This approach is most related to
our in the sense that it is also based on library usage through their client
systems dependency. However, both approaches have a different
purpose. Thung et al. (2013) are interested in the similarity between
client systems to recommend libraries based on the dependency of
similar clients, whereas in our case we are interested in the overall
libraries usage to discover multi-layers library patterns.

Code completion. Enhancing current completion systems to work more
effectively with large APIs has been investigated in
Nguyen et al. (2012), Bruch et al. (2009), Hou and Pletcher (2011),
McMillan et al. (2011) and Endrikat et al. (2014). This body of work
makes use of a database of API usage recommendation, type hierarchy,
context filtering and API methods functional roles for improving the
performance of API method call completion. Recently,
Asaduzzaman et al. (2014) proposed a context sensitive code
completion technique that uses, in addition to the aforementioned
information, the context of the method call.

API usage example. A similar body of work is interested in example
recommendation of API usage (Wang et al., 2011; Duala-Ekoko and
Robillard, 2011; Buse and Weimer, 2012; Montandon et al., 2013).
Existing contributions can be organized into two groups: IDE-based
recommendation systems and JavaDoc-based recommendation systems.
These contributions tried to instrument API documentation with usage
examples based on a static slicing, clustering and pattern abstraction.

API usage visualization. Other contributions tried to enhance
understanding API usage through explorative and interactive methods
(Moritz et al., 2013; Kula et al., 2014; Parnin et al., 2012; De Roover
et al., 2013; Saied et al., 2015d). This body of work described multi-
dimensional exploration of API usage. The explored dimensions are
related to the hierarchical organization of projects and APIs, metrics of
API usage and API domains. A visualization strategy would necessarily
enrich the usefulness of our approach.

Exploration of API usage obstacles. From another perspective, the work
in Hou and Li (2011), Wang and Godfrey (2013) and
Saied et al. (2015e) explored API usage obstacles through analyzing
developers questions in Q&A website. This allows API designers to
understand the problems faced while using their API, and to make
corresponding improvements.

Mining API usage patterns. Other contributions related to ours are those
interested in mining API usage patterns (Wang et al., 2013; Uddin et al.,
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2012; Zhong et al., 2009; Li and Zhou, 2005; Saied and Sahraoui,
2016). These contributions adopted different categories of API usage
patterns, different techniques for inferring patterns and different ways
to assess patterns correctness and usefulness. The most prominent
categories are temporal (Uddin et al., 2012; Huppe et al., 2017),
unordered (Li and Zhou, 2005; Saied et al., 2015b) and sequential
(Wang et al., 2013; Zhong et al., 2009) usage patterns. These categories
were assessed through consistency, coverage and succinctness of the
mined usage patterns. Zhong et al. (2009) developed the MAPO tool for
mining sequential API usage patterns. MAPO clusters frequent API
method call sequences extracted from code snippets, based on the
number of called API methods and textual similarity of class and
method names between different snippets. Our work considers a
different level of granularity from these existing works. Previous
approaches infer API usage patterns at the API element level (i.e.
methods call). In our case, we are interested in inferring usage pattern
at the granularity of the entire library. Past approaches assume that the
developer already selected the relevant library and he only needs to
learn how to use the methods in this library. Our work does not make
this assumption, and thus complements the existing studies. Indeed, our
approach could be used as an early phase to infer sets of libraries
consistently co-used together. Then existing approaches could be
applied to learn how to use particular methods within the patterns’
libraries.

4. The proposed approach

In this section, we present our approach, LibCUP, for mining library
usage patterns. Before detailing the used algorithm, we provide a brief
prerequisite, an overview of our approach and describe our visualiza-
tion technique to explore the identified library usage patterns.

4.1. Prerequisites

Before delving into the details of our approach, we first provide the
basic concepts and terminology underlying the proposed approach in
this paper: library, client system, library dependency.

• Software library: A software library is a software system that pro-
vides its functionalities through a publicly defined API. In general,
most of software libraries are hosted in software ecosystems that
offer specialized dependency management systems such as
Maven4and Nuget5.

• Client system: We consider a client system as any software system
that is hosted in a repository and has at least one external de-
pendency with existing libraries. A library could be also considered
as a client system itself if it has dependencies with other libraries.
Note that not all libraries could be hosted in such ecosystems.

4.2. Approach overview

Our approach takes as input a set of popular libraries, and a wide
variety of their client systems extracted from existing open-source re-
positories. The output is a set of library usage patterns, each pattern is a
collection of libraries , organized within different layers according to
their co-usage frequency.

We define a library co-usage pattern (LCUP) as a collection of li-
braries that are commonly used together. A LCUP represents an ex-
clusive subset of libraries, distributed on different usage cohesion
layers. A usage cohesion layer reflects the co-usage frequency between
a set of libraries.

Indeed, similar client systems may share some domain specific

libraries, but they may at the same time share some utility libraries
which are more commonly used by a large number of systems. For this
reason, we seek a technique that can capture co-usage relationships
between libraries at different levels.

Our approach proceeds as follows. First, the input dataset is ana-
lyzed to identify the different client systems depending on each library.
Then, the dependency information is encoded using usage vectors.
Indeed, each library in the dataset is characterized with a usage vector
which encodes information about (1) their client systems and (2) the
other systems in the dataset that are not using it. Finally, we use
hierarchical clustering technique based on DBSCAN to group the li-
braries that are most frequently co-used together by clients. All libraries
that have no consistent usage through the client systems are isolated
and considered as noisy data.

4.3. Clustering algorithm

Our clustering is based on the algorithm DBSCAN (Ester et al.,
1996). DBSCAN is a density-based algorithm, i.e., the clusters are
formed by recognizing dense regions of points in the search space. The
main idea behind it, is that each point to be clustered must have at least
a minimum number of points in its neighbourhood. This property of
DBSCAN allows the clustering algorithm to filter out all points that are
not located in a dense region of points in the search space. In other
words, the algorithm clusters only relevant points and leaves out noisy
points.

This specific property explains our choice of the clustering algo-
rithm DBSCAN to detect usage patterns of libraries. Indeed, not all li-
braries of the dependency dataset are to be clustered because some are
simply not co-used with specific subsets of the libraries, while others
are co-used with almost all the subsets of libraries.

In our approach, each library is represented as a usage vector that
has constant length l. The vector length is the number of all client
programs which use the libraries in the dataset. Hence, we carry out the
library usage analysis on a specific set of client programs in a particular
snapshot in time. Fig. 1 shows that the considered dataset represents 8
client systems depending on 8 third-party libraries. For an external li-
brary, Libx, an entry of 1 (or 0) in the ith position of its usage vector,
denotes that the client system corresponding to this position depends
(or does not depend) on the considered library. Hence, summing the
entries in the library’s vector represents the number of its client pro-
gram in the dataset. For instance, in Fig. 1, the usage vector of Lib1
shows that the four client systems C1, C2, C3 and C6 depend on this
library. We can also see that these systems depend on other libraries
including Lib2, Lib3 but none of them depends on Lib5.

DBSCAN constructs clusters of libraries by grouping libraries that
are close to each other, thus forming a dense region (i.e., similar li-
braries) in terms of their co-usage frequency. For this purpose, we de-
fine the Usage Similarity, USim in Eq. (1), between two libraries Libi and
Libj, using the Jaccard similarity coefficient with regards to the client
programs, Cl sys_ , of Libi and Libj.

The rationale behind this is that two libraries are close to each other
(short distance) if they share a large subset of common client systems.

=
∩

∪
USim Lib Lib

Cl sys Lib Cl sys Lib
Cl sys Lib Cl sys Lib

( , )
_ ( ) _ ( )
_ ( ) _ ( )i j

i j

i j (1)

where Cl sys Lib_ ( ) is the set of client programs depending on the library
Lib. For example, the USim between the libraries Lib1 and Lib6 in Fig. 1
is 2

4
since these libraries have in total 4 client programs, and 2 of them

are common for Lib1 and Lib6. The distance between the points in the
search space corresponding to two libraries Libi and Libj is then com-
puted as = −Dist USim Lib Lib1 ( , )i j .

DBSCAN requires two parameters to perform the clustering. The
first parameter is the minimum number of points in a cluster, minP. We
set this parameter at 2, so that a usage pattern must include at least two

4 http://search.maven.org.
5 https://www.nuget.org.
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libraries of the studied dataset. The second parameter is, epsilon, the
maximum distance within which two points can be considered as
neighbor, each to other. In other words, epsilon value controls the
minimal density that a clustered region can have. The shorter is the
distance between libraries within a cluster the more dense is the cluster.

However, it is insufficient merely to apply a generic algorithm like
DBSCAN ‘out of the box’; we need to define problem-specific clustering
to provide usage patterns distributed into different levels of usage co-
hesion.

In the next subsection, we describe our adaptation of the standard
DBSCAN to support hierarchical clustering based on different values for
epsilon to identify different usage cohesion level in the inferred patterns.

4.4. Multi-layer clustering

We have introduced a variant of DBSCAN (which we call ϵ-DBSCAN)
specifically for the library usage patterns identification problem. In
DBSCAN, the value of the epsilon parameter influences greatly the re-
sulting clusters. A value of 0 for epsilon, means that each cluster must
contain only libraries that are completely similar (i.e., distance among
libraries belonging to the same cluster must be 0). Our idea is to “relax”
the epsilon parameter that controls the constraints on the requested
density within clusters.

On the one hand, if we set epsilon at fixed small value, e.g.,
=epsilon 0, this will produce patterns that are very dense.

Consequently, the resulted usage patterns will include only libraries
that exhibit a high co-usage score. On the other hand, an increase of the
epsilon value, e.g., =epsilon 0.3, will result in an additional external
layer of patterns that exhibit less co-usage score. Therefore, we itera-
tively apply the standard DBSCAN at different levels of epsilon in order
to have library usage patterns organised as multi-layers, each re-
presenting a particular co-usage score.

As a result, our ϵ-DBSCAN, builds the clusters incrementally by
relaxing the epsilon parameter, step by step. Algorithm 1 shows the
pseudo-code of our incremental clustering technique, ϵ-DBSCAN.
First, ϵ-DBSCAN takes as input a dataset containing all the libraries
and their client systems within a specific format, then it clusters them
using the standard DBSCAN algorithm with epsilon value of 0. This
step results in clusters of libraries that are always used together, as
well as multiple noisy points left out. For each produced cluster, we
aggregate the usage vectors of its libraries using the logical disjunction
in one usage vector. Then, a new dataset is formed which includes the
aggregated usage vectors and the usage vectors of noisy libraries from
the previous run. This dataset is then fed back to the DBSCAN algo-
rithm for clustering, but with a slightly higher value of epsilon, i.e.,

= +epsilon epsilon epsilonStep. This procedure is repeated in each step
until reaching maxEpsilon a maximum value for epsilon, given as a
parameter.

For example, Fig. 2 shows the incremental clustering of the libraries
in Fig. 1 using ϵ-DBSCAN. In this example, the initial dataset contains 8
libraries, Lib1, ... , Lib8. The epsilon parameter is incremented in each
step by =epsilonStep 0.25 with the epsilon maximum value set to

=maxEpsilon 0.55. The choice of the parameters’ values is for the sake
of the illustrative example. As shown in Fig. 2a, the first step produces
two clusters at =epsilon 0. The two clusters include respectively (Lib1,
Lib2, Lib3) and (Lib4, Lib5). These libraries are clustered at the most
dense level since, in each cluster, these libraries were co-used together
frequently (by the exact same clients). The second step is performed
with =epsilon 0.25 as illustrated in Fig. 2b. For this step, there is no
change in the dataset since the distances are larger than the current
epsilon value. Finally at =epsilon 0.5, as illustrated in Fig. 2c a new
cluster involving 2 density levels is generated. This cluster includes Lib7
in addition to (Lib1, Lib2, Lib3) since they share 2 out of the 4 common
client systems.

We can notice that Lib6 is a rarely used library and Lib8 is a utility
library used with almost all the considered client systems, showing no
particular usage trend. Thus at the last iteration of ϵ-DBSCAN illustrated
in Fig. 2d, the libraries Lib6 and Lib8 are left out as noisy points since
their distance from the clustered libraries is larger than the maximum
epsilon value, which is 0.55.

5. Empirical study

In this section, we present the results of our evaluation of the pro-
posed approach, LibCUP. Our study aims at assessing whether LibCUP
can detect usage patterns of libraries that are (i) cohesive enough to
provide valuable information to discover relevant libraries, and (ii)
generalizable for new client systems. We also compare the results of our
technique LibCUP to the available state-of-the-art approach, LibRec
(Thung et al., 2013). LibRec combines association rule mining and
collaborative filtering to recommend libraries based on their client
usage. For each experiment in this section, we present the research
questions to answer, the research method to address them, followed by
the obtained results.

All the material used to run our three experiments is publicly
available in a comprehensive replication package6.

1: ε-DBSCAN(DataSet, maxEpsilon, MinNbPts, epsilonStep){
2: epsilon <– 0
3: while epsilon < maxEpsilon do
4: DBSCAN(DataSet, maxEpsilon, MinNbPts, epsilonStep)
5: clusters <– DBSCAN.clusters
6: noisyPoints <– DBSCAN.noisyPoints
7: compositePoints <– constructPoints(clusters)
8: Dataset <– noisyPoints ∪ compositePoints
9: epsilon <– epsilon + epsilonStep

10: end while
11: }
12: constructPoints(clusters){
13: for each C in clusters do
14: compositePoints <– ∪(all points of C)
15: end for
16: }

Algorithm 1. ϵ-DBSCAN: Hierarchical DBSCAN algorithm.

6 https://saiedmoh.github.io/LibCUP/.
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5.1. Data collection

To evaluate the feasibility of our approach on real-world scenarios,
we carried out our empirical study on a large dataset of Open Source
Software (OSS) projects. As we described earlier, our study is based on
widely used libraries collected from the popular library repository
Maven and a large set of client systems collected from Github re-
pository. Since Github is the host of varying projects, we performed the
following filtering on the dataset, to limit the number of considered
Github projects:

• Commit size: We only included java projects that had more than
1000 commits. To remove toy projects that exist on GitHub, we
assume that real-world projects have more than 1000 commits over
time.

• Forks: We only include projects that are unique and not forks of
other projects.

• Maven dependent project: We only included projects that employ the
maven build process (use pom.xml configuration file).

Our data collection consists of crawling both Github and Maven
repositories. In particular, we track dependencies between a Maven
libraries and each unique system within each project in Github (i.e., a
project may contain multiple systems). Every project includes one or
multiple Project Object Model files (i.e., pom.xml) that describe the
project’s configuration meta-data including its compile and run time
library dependencies. We implemented this extraction method in our
in-house tool called PomWalker7 which is publicly available to the

Fig. 1. The usage vector representing the dependency between eight client programs and eight libraries.

Fig. 2. Resulting clusters of applying the incremental algorithm ϵ-DBSCAN to the library dataset presented in Fig. 1.

7 https://github.com/raux/PomWalker.
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research community. Our method is similar to other works on software
libraries (Kula et al., 2018; Raemaekers et al., 2014; 2012) which use
the same schema of having (sub)systems in the repository depending on
Maven libraries as managed through POM dependency management.

Note that for all data, we first downloaded an offline copy of the
original software projects (the source code) from Github and the li-
braries (the jar files) from Maven before extraction. Thereafter, for each
library, we selected the latest release. In the beginning we started with
40,936 dependent libraries. However, to remove noise, we filtered out
libraries having less than 50 identifiers based on methods, attributes,
and classes. This process removed libraries that we assume very small
or partial copies of their original libraries and thus are not relevant and
will not be a useful recommendation for other systems. As described in
Table 1, our dataset resulted in 6638 Maven libraries extracted from
unique 38,000 client systems from GitHub. Other filtering criteria and
threshold values could have led to a different dataset. However, we
believe that our assumption is a clear underestimation, which reduces
the chance of having toy projects and very small libraries.

The dataset is a snapshot of the projects procured as of 15th January
2015. Our dataset is very diversified as it includes a multitude of li-
braries and software systems from different application domains and
different sizes. Overall, the average number of used libraries per system
is 10.56, the median is 6.

5.2. Sensitivity analysis

As a first experiment, we evaluated the sensitivity of the pattern’s
quality, identified by LibCUP, with respect to different settings in-
cluding the dataset size and maxEpsilon values. We aim at addressing
the following research question.

RQ1. What is the impact of various experimental settings on the pattern’s
quality?

5.2.1. Analysis method
To address (RQ1), we need to evaluate whether the detected pat-

terns are cohesive enough to exhibit informative co-usage relationships
between specific libraries. Hence, we use a cohesion metric namely,
Pattern Usage Cohesion metric (PUC), to capture the cohesion of the
identified patterns.

PUC is inspired from Perepletchikov et al. (2007) and was originally
used to assess the usage cohesion of service interfaces. It evaluates the
co-usage uniformity of an ensemble of entities, which corresponds, in
our context, to a set of libraries in the form of a library usage pattern.
PUC values are in the range [0,1]. The larger the value of PUC is, the
better the usage cohesion, i.e., a usage pattern has an ideal usage co-
hesion (PUC = 1) if all the library patterns are always used together.
Let p be a library usage pattern, then its PUC is defined as follows:

=
∑

∈PUC p
ratio used Libs p cp

C p
( )

_ _ ( , )

( )
[0, 1]cp

(2)

where cp denotes a client system of the pattern p, ratio_used_Libs(p, cp) is
the ratio of libraries that belong to the pattern p and that are used by
the client system cp, and C(p) is the set of all client systems of all li-
braries in p.

To answer our first research question (RQ1), we perform two stu-
dies.

• Study 1.A. We apply LibCUP to our collected dataset described in
Section 5.1. Then, we investigate the impact of different maxEpsilon
values on the PUC results of the detected patterns.

• Study 1.B. We investigate the scalability of our technique. We fix
the maxEpsilon value and we run LibCUP several times while varying
the dataset size to observe the patterns cohesion and the time effi-
ciency.

5.2.2. Results for RQ1
The obtained results are as follows.
Study 1.A: Sensitivity to maxEpsilon parameter. Figs. 3, 6, and 7 report

the effect of different maxEpsilon values. Our experiments show that the
maxEpsilon parameter influences different characteristics of the inferred
patterns including the pattern usage cohesion, the number of inferred
patterns, and the pattern size. Fig. 3 shows that the average PUC ranges
from 1 to 0.5, while varying the maxEpsilon in the range [0,0.95]. We
notice that even when the maxEpsilon reaches high values (0.95), the
inferred patterns maintain cohesion values greater than 50.

When maxEpsilon is set to 1 the pattern cohesion drops down to 0.
This is because in the last step all the libraries are clustered into one
usage pattern as depicted in Fig. 6. Moreover, we can clearly see from
this figure that the number of inferred patterns increases to reach a
peak of 1061 when maxEpsilon is set to 0.80.

To get a more qualitative sense, we illustrate , in Fig. 4, an example
of patterns inferred using LibCUP. The example consists of a pattern
having in his core layer some libraries of the Spring framework such as
spring-context, spring-beans, and spring-orm . Then, in the
second layer, LibCUP identified some libraries of the Hibernate fra-
mework such as the hibernate- entitymanager and hibernate-
annotations, while in the third layer, LibCUP identified some json
libraries such us jackson- databind. The pattern continues growing
until adding some utility libraries of logging and testing such as SLF4J
API and JUnit API. Thereafter, some other libraries for basic utilities
are added to the pattern including commons-pool, commons-col-
lections, commons-lang, and commons-io. Looking at the dataset,
we observe that these libraries have been co-used in a set of hundreds of
client systems.

For a more detailed analysis, we illustrate in Fig. 5 the evolution of
the considered pattern through the different clustering iteration while
relaxing maxEpsilon. We observe that:

• Before the peak of maxEpsilon = 0.80, some of the existing patterns
are enriched with new libraries to add new external layers to the
original usage pattern such as hibernate-entitymanager, hi-
bernate-annotations and jackson-databind. Moreover, we
noticed that some new patterns are enriched with libraries that were
considered as noisy such as commons-lang and commons-io. This
could be justified by the fact that our DBSCAN adaptation tolerates
less density within clusters when maxEpsilon increases. We observe
that this has an effect to increase the global number of inferred
patterns.

• After the peak, some of the existing patterns are merged without
losing their internal structure as can be seen in Fig. 5. This result, in
turn has an effect to reduce the overall number of inferred patterns.

To get more qualitative sense of the obtained results, we noticed
that for the low values of maxEpsilon and up to intermediate values (i.e.,
0.5, 0.6), the inferred patterns tend to mainly cover domain specific
libraries (e.g., program analyzers jdepend , graphics manipulation
batik , etc.). Those patterns are characterized with an average number
of client systems that do not exceed 50 clients per pattern. The more the
maxEpsilon parameter is relaxed, the more the patterns are enriched
with other libraries. Starting with specific libraries, the patterns reach a
step in which they become enriched with utility or more generic li-
braries such as JUnit and log4j . For sake of simplicity, we do not
present in Fig. 7 the last step where all the libraries are clustered into

Table 1
Dataset used in the experiment.

Dataset

Snapshot Date 15th January 2015
# of github systems 38,000
# of unique dependent libraries 6638
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Fig. 3. Effect of varying maxEpsilon parameter on the average cohesion of the identified patterns.

Fig. 4. Example of pattern visualization. The libraries index are: 1:spring-context, 2:spring-beans, 3:spring-orm, 4:hibernate-entitymanager,
5:hibernate-annotations, 6:jackson-databind, 7:SLF4J, 8:JUnit, 9:commons-pool, 10:commons-collections, 11:commons-lang, 12:commons-io.
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one single usage pattern with a larger number of client systems.
Study 1.B: Sensitivity to the dataset size. To carry out this experiment,

we set the maxEpsilon value to 0.5. This is a proactive choice to ensure
that libraries appearing in the same pattern are used more frequently
together than separately. Thereafter, we run LibCUP with different
dataset sizes. In each run, we augmented the previously used dataset
with 1000 libraries, and we observed the average cohesion of patterns
as well as the execution time taken to infer them. All experiments were
carried out on a computer with an Intel core i7-4770 CPU 3.40 GHz,
with 32 GB RAM.

Fig. 8 depicts the obtained results for this experiment. We noticed
from the figure, that the shape of the graph is consistent for the dif-
ferent dataset size. The PUC score slightly increases from 0.79 to sta-
bilize at 0.82 for the last three runs. In more details, we found that there
is an increase in terms of the number of inferred patterns from 62 in the
first run with an average size of 3 libraries per pattern, to reach the bar
of 500 patterns at the last run with an average size of 5.5 libraries per
pattern. These results confirm that when considering more libraries,
LibCUP is able to enrich the inferred patterns with new libraries while
detecting new patterns.

Our algorithm executes DBSCAN multiple times; thus we have the
same order of complexity of the original DBSCAN. The nearby neigh-
bors’ identification step mainly influences the time complexity of
DBSCAN. DBSCAN have an overall average runtime complexity of
� n n( log ) and the worst case run time complexity is � n( )2

(Schubert et al., 2017). As a proof of concept, we are not using an in-
dexing structure for the identification of nearby neighbors, and we are
using distance matrices of size −n n( )/22 thus we fall in the worst case
quadratic runtime and memory complexity. More details on the com-
plexity of DBSCAN could be found in Schubert et al. (2017). To get a
more quantitative sense, we assess the scalability of our approach with
respect to time efficiency.

Fig. 9 depicts the influence of the dataset size on the execution time.
As it can be seen on the figure, the execution time of LibCUP is sensitive
to the dataset size, as expected. At the first run, LibCUP took less than 7

min to mine a set of 1000 libraries, while reaching 159 min of ex-
ecution time to mine the large set of 6000 libraries with their 38,000
client systems. However, it is worth saying that even with 159 min of
execution time, LibCUP can be considered time efficient, since the in-
ference process is done off-line once, then the identified patterns can be
easily explored using our interactive visualization tool.

In summary, the obtained PUC results of the identified usage pat-
terns provide evidence that LibCUP exhibits consistent cohesion using
our adopted ϵ-DBSCAN technique. Using a default =maxEpsilon 0.5, we
found that at least 50%, and up to 100%, of the patterns’ libraries are
co-used together with high PUC. Moreover, our technique is stable and
time efficient when varying the size of the mined library set.

5.3. Evaluation of patterns cohesion

As a second experiment, we conduct a comparative study to eval-
uate the cohesiveness of the identified library usage patterns against the
state-of-the-art approach LibRec (Thung et al., 2013). To the best of our
knowledge, LibRec (Thung et al., 2013) is the only existing approach
that has addressed this problem. We aim at addressing the following
research question.

RQ2. To which extent are the identified library usage patterns cohesive as
compared to those inferred with LibRec?

5.3.1. Analysis method
To address our second research question (RQ2) we conducted a

comparative evaluation of our approach with LibRec in order to better
position our approach and characterize the obtained results.

To infer usage patterns, LibRec is based on mining association rules
obtained from closed itemsets and generators using the Zart algorithm
(Szathmary et al., 2006). We applied both LibCUP and LibRec to all the
selected libraries of our dataset (cf. Section 5.1). Then, we compare the
identified usage patterns of both approaches in terms of PUC. More
specifically, we compare the average PUC values for all detected

Fig. 5. Evolution of a pattern while relaxing
maxEpsilon.

Fig. 6. Effect of varying maxEpsilon parameter on the number of identified patterns.
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patterns of each approach. For LibCUP, we fixed the maxEpsilon value to
0.5 as explained earlier. For LibRec we fixed the Minconf to 0.8 , the
Minsup to 0.002 and the Number ofNearestNeighbors to 25 (Thung et al.,
2013).

5.3.2. Results for RQ2
Table 2 reports the obtained results for RQ2. On average, LibCUP

achieves an average PUC score of 0.82 which outperforms LibRec that

was only able to achieve 0.72 of PUC. We also notice that the standard
deviation values are very low. The achieved PUC values by LibCUP
reflect high co-usage relationships between the pattern’s libraries
making them more cohesive. The box plots of Fig. 11 confirm this ob-
servation.

In terms of number of inferred patterns, we observe that our multi-
layer clustering technique allows detecting a reasonable number of
patterns of 531, with a medium size of libraries distributed on the

Fig. 7. Effect of varying maxEpsilon parameter on the average number of clients per pattern.

Fig. 8. Effect of varying the dataset size on the average pattern cohesion =maxEpsilon 0.5.

Fig. 9. Effect of varying the dataset size on the time efficiency with =maxEpsilon 0.5.
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different layers (i.e., 5.5). On the other hand, LibRec inferred an
abundant number of patterns up to 3,952, even though it relies on
closed itemsets and generators to construct a compact set of association
rules (Thung et al., 2013). Indeed, the set of patterns obtained from the
closed itemsets and generators is supposed to be much smaller than the
complete set of rules. However, in practice the inferred patterns with
LibRec tend to be many but with smaller size (on average, it generates 2
libraries per pattern). We believe that this large number of small size
library patterns will in turn limit the practical adoption and usefulness
of the LibRec approach.

As we can see in Table 2, LibRec tends to be more efficient than
LibCUP in term of execution time. To push further the execution time
comparison, we illustrate in Fig. 10 the influence of the dataset size on
the execution time of LibRec. As it can be seen in Fig. 10, the execution
time of LibRec is also sensitive to the dataset size. Based on Figs. 9 and
10, we observe that for up to 2000 considered libraries, LibCUP is more
efficient than LibRec. Thereafter, the order is reversed and LibRec be-
come more efficient. In terms of execution time, LibCUP requires 159
min of execution time to mine the 6000 libraries and their 38,000 client
systems, whereas LibRec only need 93 min. We believe that LibCUP is
struggling with large datasets because in our proof of concept we are
not using an indexing structure for the identification of nearby neigh-
bors. Indeed, while a faster version of DBSCAN exists to solve this
problem, the problem of mining library usage patterns is not a real-time
problem. Indeed, the patterns are identified once off-line and shows the
patterns to the user. A re-execution of the algorithm is required only
when the dataset of clients and libraries changes.

To get a more qualitative sense, we studied the number of clients
per pattern. We observe from the results of Table 2, that the patterns
inferred by LibCUP are used on average with 30 client systems. By
manually investigating these client systems, we found that they gen-
erally share common domain specific features. An example of those
patterns, can fulfil the requirements of the case scenario discussed in
Section 2.1 that provide useful libraries for potential extensions of the
system. The developer would use scheduler-api and mailsender-
api rather than the quartz and commons-email. This pattern has

different cohesion layers, and provides at the first layer, the libraries
sakai -calendar-api and sakai-presence-api . In the second
layer, we find three libraries that are added to the pattern, namely
portal-chat , messageforums-tool and mailsender-api . At
the external usage cohesion layer the scheduler-api is added to the
pattern. Indeed, these libraries have been frequently co-used in a set of
18 client systems at least in our dataset. It is worth noticing that we
found a trade-off between the usage cohesion of the detected patterns
and their generalization. Indeed, an example of more generalizable
patterns that was inferred when maxEpsilon parameter reached a re-
latively high value is the one based on the Spring framework presented
in Study 1.A.

For LibRec, the inferred patterns are used within an excessive
number of client systems that share pairs or triplets of libraries which
are, in most of the cases, utility libraries such as JUnit, log4j,
slf4j-api, commons-lang and several others. These libraries are
likely to be used by several unrelated client systems. Examples of in-
ferred patterns with LibRec are: { commons-collections, com-
mons-lang} {log4j, slf4j -api} {log4j, commons -logging,
slf4j -api}.

LibCUP is then able to infer both domain-specific patterns as well as
more generalizable patterns for standard application. Whereas LibRec is
meant for mining frequent patterns and thus is only able to infer generic
utility pattern which in most of the cases do not add much to non-
novice developers.

5.4. Evaluation of patterns generalization

In this study, we aim at evaluating whether the identified library
usage patterns with LibCUP can be generalizable in comparison with

Table 2
Average cohesion and overview of the inferred usage patterns for LibCUP and
LibRec.

LibCUP LibRec

Avg PUC 0.82 0.72
StdDev 0.07 0.09
Nb Patterns 531 3952
Avg pattern size 5.5 2.0
Nb Clients per Pattern 30 2269
Execution time (minutes) 159 93

Fig. 10. Effect of varying the dataset size on the time efficiency of LibRec.

Fig. 11. PUC results of the identified library usage patterns.
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those of LibRec. We aim at addressing the following research question.

RQ3. To which extent are the detected usage patterns generalizable to other
“new” client systems, that are not considered in the training dataset?

5.4.1. Analysis method
To answer RQ3, we investigate whether the detected patterns will

have similar PUC values in the context of new client systems. We as-
sume that detected patterns are said “generalizable” if they remain char-
acterized by a high usage cohesion degree in the contexts of various client
systems.

To evaluate the generalizability of the detected patterns, we per-
form a ten-fold cross-validation on all the client systems in the dataset.
We randomly distribute the dataset into ten equal-sized parts. Then, we
perform ten independent runs of both approaches, LibCUP and LibRec.
Each run uses nine parts as training client systems to detect possible
patterns, and leaves away the remaining part as a validation dataset.

The results are sorted in ten runs, where each run has its associated
patterns, and its corresponding training and validation client systems.
Then, we address (RQ3) through two experimental studies as follows.

Study 3.A. We evaluate the cohesion of the detected patterns (as
measured by PUC) in the context of validation datasets. In a given run,
it is possible that some detected patterns contain only libraries that are
never used in the validation client systems. Consequently, to evaluate
the generalizability of the detected patterns in each run, we consider
only the patterns that contain at least one library that is actually used
by the run’s validation client systems.

We call such patterns the ‘eligible patterns’ for the validation client
systems. An eligible pattern will have a low PUC if only a small subset
of its libraries is used by the validation client systems, while the other
libraries have not been used. As a consequence, it will be considered as
“non-generalizable”. This study aims at comparing the PUC results
obtained for the training client systems context and validation client
systems context for both LibCUP and LibRec.

Study 3.B. In this study, we push further the comparison, as LibRec
is specifically designed for library recommendation. We attempt to
evaluate whether our approach is also useful in a recommendation
context. To this end, we define for the library patterns inferred by
LibCUP an ad-hoc ranking score based on the pattern cohesion and the
library usage similarity.

For each fold, we identify a recommendation set of useful libraries
for the validation client systems. For each system, we drop half of its
libraries and use them as the ground truth. The remaining half is used as
input to the recommendation process. This methodology was also used
in Thung et al. (2013) and mimics the scenario where a developer
knows some of the useful libraries but needs assistance to find other
relevant libraries.

For each system that should receive library recommendation, we
first identified potentially useful patterns containing at least one library
from the ground truth set. Thereafter, we rank the libraries of these
patterns according to their recommendation score as defined below:

= ∈RecScore L USim L Lib Lib GT( ) max{ ( , )/ }
i

i i (3)

where USim is the Usage Similarity in Eq. (1), and GT is the set of li-
braries conserved as ground truth of the client system that should re-
ceive library recommendations.

We evaluate the ranking for both LibCUP and LibRec using two
metrics commonly used in recommendation systems for software en-
gineering (Avazpour et al., 2014; Tantithamthavorn et al., 2013b;
2013a): (i) the recall rate@k, and (ii) the Mean reciprocal rank (MRR)
as follows. To measure the recall@k, we consider N target systems Sthat
should receive library recommendations. For each system Si∈ S, if any
of the dropped libraries is found in the top-k list of recommended li-
braries, we count it as a hit. The recall rate@k is measured by the ratio
of the number of hits over the total number N of considered systems.

Inspired by the previous studies (Avazpour et al., 2014;
Tantithamthavorn et al., 2013b; 2013a), we choose the k value to be 1,
3, 5, 7, and 10. Formally, the recall rate@k is defined as follows:

=
∑∀ ∈Recall rate k S

isCorrect S k

N
@ ( )

( , Top- )S S ii

(4)

where the function isCorrect(Si, Top-k) returns a value of 1 if at least one
of the top-k recommended libraries is in the ground truth set, or 0
otherwise.

The MRR is a statistic measure that is commonly used to evaluate
recommendation systems. Let N be the number of systems that should
receive recommendations, and ranki is the rank of the first relevant
recommendation for the ith system. MRR reflects the overall ranking
performance, it shows on average the rank of the first relevant re-
commendation. A score of 1 indicates that the recommendation system
provides a relevant recommendation in the first rank, whereas a score
of 0.5 indicates that on average the first relevant recommendation is in
the second rank. The MRR score is calculated as follows:

∑=
=

MRR
N rank
1 1

i

N

i1 (5)

5.4.2. Results for RQ3
The obtained results are as follows.
Study 3.A: Patterns generalizability. To assess the PUC score variation

between the training and validation client systems, we first analyze the
average value of their corresponding scores collected from all cross-
validation runs. Then, we analyze the distribution of the collected va-
lues using the box plots. The results of this study are summarized in
Table 3 and Fig. 12.

Table 3 summarizes the PUC results of the detected patterns in the
contexts of training and validation client systems. In the training con-
text, we notice that the average values are high for both LibCUP and
LibRec with respectively 77% and 72% of the patterns libraries that are
co-used together. For LibCUP, a slight degradation of the PUC value is
observed in the context of validation client systems. We also notice that
the standard deviation values are very low (0.01 and 0.05). These re-
sults reflect that, overall, the detected patterns had good PUC in the
context of both validation and training client systems. However, for
LibRec the achieved average PUC values are significantly lower in the
validation context compared to the training context.

In more details, the distribution of PUC values for all detected usage
patterns in Fig. 12 confirms the above-mentioned finding. Indeed, the
medians and lower quartiles in the context of validation clients remain
larger than 66%. Fig. 12 also provides evidence that the degradation of
cohesion values for each inferred pattern is much more visible for Li-
bRec.

Moreover, to compare the distributions of LibCUP and LibRec, we
used the Wilcoxon Signed Rank test in a pairwise fashion (Cohen, 1988)
in order to detect significant performance differences between the va-
lidation and training client systems in both approaches. The Wilcoxon
test does not require that the data sets follow a normal distribution
since it operates on values ranks instead of operating on the values

Table 3
Average Training and Validation Cohesion of identified usage patterns for
LibCUP and LibRec.

LibCUP LibRec

Training Validation Training Validation
PUC context context context context

Avg 0.77 0.69 0.72 0.54
Max 0.78 0.78 0.88 0.89
StdDev 0.01 0.05 0.06 0.27
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themselves. We set the confidence limit, α, at 0.01. The Wilcoxon sta-
tistical tests show that LibCUP has no statistical difference (α= 0.009)
when comparing the validation and training client systems. These re-
sults indicate that LibCUP preserves the generalizability. Whereas, the
statistical test show that LibRec exhibits a statistical difference with α=
0.027 when comparing the validation and training client systems which
indicate that it does not preserve the generalizability.

In summary, we can say that almost all detected usage patterns
achieved by LibCUP retain their informative criteria. Precisely, 75% of
detected usage patterns, according to the boxplot’s lower quartile, are
characterized with a high usage cohesion in both training and valida-
tion contexts.

Study 3.B: Library recommendation. Table 4 reports the recall rate@k
for both LibCUP and LibRec while varying the value of k∈ {1, 3, 5, 7,
10}. We notice that, as expected, larger k values achieve higher recall
rates for both approaches. More specifically, we can see that when
comparing the recall rate, LibCUP performs clearly better in terms of
recall@1 and recall@3. However, the starting from =k 5, LibRec tends
to achieve better results. This indicates that LibCUP is more efficient in
recommending correct libraries in the top ranks within the re-
commendation list when using LibCUP. The MRR results support this
observation with a score of 0.15 for LibCUP.

Conversely, good recommendations are achieved for more targeted
client systems when using LibRec. This is mainly due to the fact that
LibRec’s patterns are mainly composed of utility libraries, unlike the
LibCUP’s patterns which are mainly composed of domain specific li-
braries. However, one can notice that recommending utility libraries
that are commonly used is less useful in practice. It is also worth
mentioning that for each fold, due to the large number of systems
(38,000 validation client systems) that require library recommenda-
tions, the recall values achieved by both LibCUP and LibRec are still low
as reported in Table 4.

6. Discussion and threats to validity

We applied our approach to over 6000 popular third-party libraries
in order to detect possible library usage patterns. The detected patterns
should be informative to help developers in automatically discovering
complementary libraries sets and therefore relieve the developers from
the burden of doing so manually.

The evaluation of our approach took into account the potential
generalization of the identified patterns to other client systems and
showed that these usage patterns remain informative for other clients.
However, several factors can bias the validity of our studies, Some
threats to validity may arise from our evaluation metrics. Although
these metrics are well known measures that are widely used in evalu-
ating recommendation systems, we believe that there is a little bias
towards using these measures. That is, a common assumption when
evaluating recommendation systems using such metrics is that items
that the user has not selected are uninteresting, or useless, to other
users. Hence, in the library recommendation problem, a system might
not adopt a specific library for many reasons mainly if the systems
developers are not aware of such a library. We are thus planning to
further evaluate our technique with developers in an industrial setting
to assess its effect on code quality as well as developers productivity.

Although we studies libraries hosted in Maven ecosystem which is
the largest Java library ecosystem, it is worth notice that Maven is not
inclusive for all existing Java libraries. That is, it is possible that some
libraries might be used/imported directly in a client system without
using the Maven dependency system (pom file). In our data collection,
when a used library is not referenced in the pom file, we are unable to
consider its dependency which might be a possible threat to validity.
Moreover, to better generalize the results of our approach, it is im-
portant to consider other programming languages and other library
ecosystems.

Third-party libraries that are declared without using Maven are not
the only missed dependencies. There may be cases where the tool
PomWalker suffers from the limitation of static detection of de-
pendencies. For instance, PomWalker is able to collect managed de-
pendencies (i.e., inherited) within systems, but is unable to summarize
all subsystems within a repository, and thus may fail to resolve some
dependencies. To mitigate this issue for each repository, we extract
systems and subsystems with their dependencies.

As each Github repository may contain multiple projects, each
having potentially several systems. Each of these systems is dependent
on a set of maven libraries, which are defined in a pom.xml file within

Fig. 12. PUC results of the identified library usage patterns in the contexts of training (T) and validation (V) clients achieved by each of LibCUP and LibRec.

Table 4
Recommendation recall rate results achieved by both LibCUP and LibRec.

LibCUP LibRec

Recall@1 0.12 0.01
Recall@3 0.14 0.11
Recall@5 0.15 0.19
Recall@7 0.17 0.27
Recall@10 0.22 0.34
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the project. When the pom files are stored hierarchically, and referen-
cing the same library, this will count as different client dependency to
the considered library. We are unable to resolve this duplicated de-
pendency which is a potential threat to validity.

One of the key contributions of this work is the adaptation of our
variant ϵ-DBSCAN algorithm for mining library usage patterns. We have
opted for this DBSCAN-based technique rather than a standard clus-
tering technique since DBSCAN has the notion of noise, and it is widely
considered robust to outliers. Our variant ϵ-DBSCAN also shows high
scalability and performance even with the large dataset used in this
work.

The application of our technique to detect library usage patterns
requires the setting of thresholds that may impact its output. For in-
stance, the maxEpsilon parameter in the clustering algorithm controls
the cohesion (PUC) strength of the detected patterns. A small value
leads to highly cohesive clusters which means that the detected patterns
are more informative. Hence, decreasing the value of this parameter
would result in an improvement in cohesion of the detected patterns.
However, in this case the number and the consistency (generality) of
the detected patterns could decrease because the highly cohesive de-
tected patterns may not be shared by a large number of clients. To avoid
bothering potential users of our approach with tuning epsilonStep and
maxEpsilon parameters, we set default values as follows. The value of
epsilonStep is set to 0.05. The lower the epsilonStep value is, the more
precise the distribution of libraries across the different layers will be.
However, this value may impact the execution time of the algorithm,
since very low values may increase the number of clustering iteration in
which the patterns are not evolved. We also set the maxEpsilon para-
meter to a default value of 0.5 which ensures that the libraries within
patterns are at least used more frequently together than separately.
Note that in our approach, the patterns were mined with a maxEpsilon
value that is set to 1, which allows capturing all possible co-usage le-
vels. Thus, the user can fix epsilon at low values and investigate only
highly cohesive patterns. He can also fix epsilon at high values and
examine less cohesive patterns.

Our approach mines the ’wisdom of the crowd’, to discover library
co-usage patterns which allows developers and especially non-experi-
enced ones to have higher confidence in their choice for potential li-
braries. They are already sure that the chosen libraries have been
commonly used together in other projects. Hence, developers will have
more confidence regarding the integrality and compatibility of the se-
lected libraries. However, the practical value of our approach needs to
be evaluated through a user study, to assess its usefulness for developers
to make better choices than without the tool, and when compared to the
baseline technique LibRec. Although this is part of our future work, we
attempted to mitigate this limitation in RQ3 Study 3.B to provide in-
sights about the usefulness of our technique in a recommendation
context where we mimic a developer who knows subset of useful li-
braries but needs assistance to find other relevant libraries.

In our visualization tool, we considered the popularity of libraries as
a criterion to help the developer in exploring the jungle of libraries.
However, different other characteristics could be considered by devel-
opers when selecting the most appropriate libraries for their needs.
When a developer ignores aspects such as the quality of the library and
the activity of the library development team, he will take the risk of
using unstable and poor quality libraries. In our future work, we will
consider other relevant characteristics for library selection.
Nevertheless, we believe that our visualization tool can still mitigate
this issue. The user of our tool can filter libraries according to their
popularity and focus on a subset of libraries and patterns of popular
libraries. Since we are mining the ‘wisdom of the crowd’, the popularity
of libraries could be seen as a proxy heuristic for other quality char-
acteristics unless the popularity of the library in the dataset snapshot
was only a trend effect.

We are currently based on a specific set of client systems in a par-
ticular snapshot in time to infer library usage patterns. However, a

potential threat to validity can be related to the robustness of our
analysis to changes in the snapshot date as library usage trends is by
nature dynamic and changes over time. To mitigate this issue, we will
consider periodical updates of the snapshots through a Web service, and
also provide the patterns evolution through different snapshots to better
support developers in selecting appropriate libraries.

Another important issue is whether a tool like LibCUP is a kind of
“self-fulfilling prophecy” where more popular libraries are more likely
to be recommended by the tool. In addition, due to the phenomenon of
“preferential attachment,” popular libraries will become more used by
developers and thus more popular with a higher chance to be re-
commended in the future. In such a way, less popular libraries, that
may even be more appropriate, are at risk of not being recommended.
We can avoid this phenomenon, thanks to the used metrics for pattern
inference and library recommendation. The pattern inference is not
based on the libraries popularity; It is rather based on the analysis of the
joint versus separate use of the libraries. We can infer patterns also for
non-popular libraries. When a set of libraries are not popular (are used
just in few clients) but they are used together in their clients, these
libraries could be considered as a pattern. Moreover, the library re-
commendation is not based on the library popularity. It is rather based
on the patterns’ cohesion and the library usage similarity. The popu-
larity of libraries is only used in our visualization tool as a filtering
criterion to help the developer in exploring the jungle of libraries. For
these reasons, the preferential attachment phenomenon (Wang et al.,
2008) is a negligible risk for our technique. However, the users of the
tool should be aware of this issue to avoid neglecting patterns of less
popular libraries when exploring the jungle of libraries and selecting
the appropriate ones. In the future work, we will also investigate the
possibility of recommending and showing equivalent and alternative
libraries based on the provided functionality and their used vocabulary.

7. Conclusions and future work

Third-party library reuse has become vital in modern software de-
velopment. The number of libraries provided on the Internet is ex-
ponentially growing which would provide several reuse opportunities.
In this paper, we introduced an automated approach to detect multi-
level library usage patterns – a collection of libraries that are commonly
used together by client systems, distributed through multiple levels of
cohesion. To this end, we adopted a variant of the standard clustering
algorithm DBSCAN, namely ϵ-DBSCAN especially for the library usage
patterns detection. We evaluated our approach on large dataset of 6638
popular libraries from Maven repository, and a large population of
38,000 client systems from Github, and we compared its results to those
of a state-of-the-art approach. The results indicate that our approach
gives a comprehensive overview on third-party library usage patterns.
The obtained usage patterns exhibit high usage cohesion with an
average of 77% , and could be generalizable to other other systems.
Automatically detecting library usage patterns would support devel-
opers in enhancing the library space discovery, and attract their at-
tention the missed reuse opportunities.

As future work, we are planning to consider the library usage over
time while mining usage pattern. We plan to conduct an empirical study
to investigate how usage patterns evolve when they are mined through
different snapshots in time. We will also examine the evolution of li-
braries popularity over time and how this information could be in-
corporated in an automated recommendation system. This will also be
an occasion to consider more recent data. Furthermore, we are inter-
ested in exploring how other techniques that have been applied as an
alternative to hierarchical clustering in the domain of software en-
gineering, could support the library usage patterns inference. We are
specifically interested in adapting Formal Concept Analysis (Ganter and
Wille, 2012) for our problem. Considering that concept lattices are
hierarchies, we believe the structure of the lattice could have a po-
tential for analyzing libraries co-usage at multiple levels.
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In addition, we are interested in exploring how other techniques
that have been applied as an alternative to hierarchical clustering in the
domain of software engineering, could support the library usage pat-
terns inference. We are specifically interested in adapting Formal
Concept Analysis (Ganter and Wille, 2012) for our problem. Con-
sidering that concept lattices are hierarchies, we believe the structure of
the lattice could have a potential for analyzing libraries co-usage at
multiple levels.

As future work, we will consider other sources of information for
libraries pattern inference and recommendation. In fact, a co-usage
based approach such as LibCUP would not be able to recommend li-
braries to projects that only use a small number of libraries or do not
use any libraries at all. In such situation, vocabulary based semantic
similarity of libraries and client systems could be considered. We spe-
cifically plan to investigate Relational Topic Modeling (RTM)
(Chang and Blei, 2009) which can be used to summarize a network of
documents and can provide clusterings of nodes based on their voca-
bulary.

Our visualization tool is meant for the early stage of the project
lifecycle when the developer needs to decide on the required libraries
for his project. Furthermore, we are working towards an on-the-fly in-
teractive library recommendation tool as an Eclipse Plug-in that re-
commends useful libraries to the developer while he is writing his code.
Such tool would be interesting during advanced stages of the project
lifecycle. We will also evaluate the usability of the tools through a
controlled user study. Furthermore, we are planing to unify our library-
level usage pattern detection with method-level usage pattern detection
techniques in order to provide a comprehensive package for developers
supporting them in understanding and reusing third-party libraries.
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