
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

11-2018 

Using finite-state models for log differencing Using finite-state models for log differencing 

Hen AMAR 
Tel Aviv University 

Lingfeng BAO 
Zhejiang University 

Nimrod BUSANY 
Tel Aviv University 

David LO 
Singapore Management University, davidlo@smu.edu.sg 

Shahar MAOZ 
Tel Aviv University 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Software Engineering Commons, and the Theory and Algorithms Commons 

Citation Citation 
AMAR, Hen; BAO, Lingfeng; BUSANY, Nimrod; LO, David; and MAOZ, Shahar. Using finite-state models for 
log differencing. (2018). ESEC/FSE 2018: Proceedings of the 26th ACM Joint Meeting on European 
Software Engineering Con-ference and Symposium on the Foundations of Software Engineering, Lake 
Buena Vista, FL, November 4-9. 49-59. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4302 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4302&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4302&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4302&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Using Finite-State Models for Log Differencing
Hen Amar

Tel Aviv University

Israel

Lingfeng Bao
∗

Zhejiang University City College

China

Nimrod Busany

Tel Aviv University

Israel

David Lo

Singapore Management University

Singapore

Shahar Maoz

Tel Aviv University

Israel

ABSTRACT
Much work has been published on extracting various kinds of

models from logs that document the execution of running systems.

In many cases, however, for example in the context of evolution,

testing, or malware analysis, engineers are interested not only in a

single log but in a set of several logs, each of which originated from

a different set of runs of the system at hand. Then, the difference

between the logs is the main target of interest.

In this work we investigate the use of finite-state models for

log differencing. Rather than comparing the logs directly, we gen-

erate concise models to describe and highlight their differences.

Specifically, we present two algorithms based on the classic k-Tails

algorithm: 2KDiff, which computes and highlights simple traces

containing sequences of k events that belong to one log but not the

other, and nKDiff, which extends k-Tails from one to many logs,

and distinguishes the sequences of length k that are common to

all logs from the ones found in only some of them, all on top of a

single, rich model. Both algorithms are sound and complete modulo

the abstraction defined by the use of k-Tails.

We implemented both algorithms and evaluated their perfor-

mance on mutated logs that we generated based on models from

the literature. We conducted a user study including 60 participants

demonstrating the effectiveness of the approach in log differencing

tasks. We have further performed a case study to examine the use

of our approach in malware analysis. Finally, we have made our

work available in a prototype web-application, for experiments.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging;

KEYWORDS
log analysis, model inference

∗
Lingfeng Bao was affiliated with Singapore Management University, Singapore when

this work was performed.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5573-5/18/11. . . $15.00

https://doi.org/10.1145/3236024.3236069

ACM Reference Format:
Hen Amar, Lingfeng Bao, Nimrod Busany, David Lo, and Shahar Maoz.

2018. Using Finite-State Models for Log Differencing. In Proceedings of the

26th ACM Joint European Software Engineering Conference and Symposium

on the Foundations of Software Engineering (ESEC/FSE ’18), November 4–

9, 2018, Lake Buena Vista, FL, USA. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3236024.3236069

1 INTRODUCTION
Logs, which document the execution of running systems, contain

valuable information about their behavior. Much work has been

published on extracting various kinds of models from such logs,

from finite-state machines that approximate the behavior of the

system that generated the log to candidate temporal properties that

characterize their behavior over time (see, e.g., [8, 22, 28, 31, 39]).

These models and properties may provide useful information for

engineers, for tasks such as debugging, testing, and comprehension.

In many cases, however, engineers are interested not only in

a single log but in a set of several logs, each of which originated

from a different set of runs of the system at hand. For example,

in the context of evolution, an engineer may be interested in

the differences between logs generated by different versions of the

system. Such differences may highlight bugs or new functional-

ity that have been eliminated or introduced. As another example,

in the context of testing and deployment, an engineer may be

interested in the differences between logs generated by a system

when deployed in different environments, e.g., lab tests vs. field.

Then, the differences may highlight, e.g., behaviors that occur in

the field but not in the lab, and thus may call for updates to the lab

tests. As another example, in the context of malware analysis,
engineers may be interested in finding the differences between two

versions of a system, the original one and a suspected infected one,

and try to identify these differences based on logs produced by runs

of the two systems. In all these cases, one does not require an
analysis of each log alone, but rather a comparative analy-
sis, which focuses on the differences between a number of
available logs.

As logs are long, complex, and often very detailed, a direct com-

parison between them is neither feasible nor desired. Instead, one

would be interested in a concise, expressive, and engineer-friendly

representation of their differences. This motivates the use of models.

In this work, we investigate the use of finite-state machine (FSM)

models for log differencing. Rather than comparing the logs them-

selves, we generate concise models that describe and highlight their

differences. Specifically, we present two very different algorithms,

both based on the classic k-Tails algorithm [9]. k-Tails has been

49

https://doi.org/10.1145/3236024.3236069
https://doi.org/10.1145/3236024.3236069


ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA H. Amar, L. Bao, N. Busany, D. Lo, S. Maoz

implemented and used over the last two decades in several variants,

by many, e.g., [3, 8, 13, 24, 25, 28, 32]. Roughly, given a log and a

positive integer k , k-Tails extracts a FSM that over-approximates

the system that generated the log using k-sequences, i.e., event

sequences of length k or less.

One may suggest the following approach to compare logs using

models: build a model from each log alone, e.g., using k-Tails, and

then compare the models, e.g., by intersecting one with the com-

plement of the other, or by enumerating traces that are accepted by

one and not the other. Indeed this was recently suggested in [16].

However, this approach has a number of weaknesses in terms of

soundness, completeness, and performance. Since the models over-

approximate the logs, their comparison may yield spurious differ-

ences, which have no evidence in the logs. Moreover, a complete

comparison may become very costly for inferred models, which

typically include loops and non-determinism. Finally, this approach

does not scale to compare many logs because it requires combina-

torially many comparisons between subsets of logs. Our approach

is different.

First, we present 2KDiff, a basic algorithm to compare two logs.

2KDiff compares two logs by focusing on their k-differences, i.e., k-

sequences that belong to one log but not the other. 2KDiff computes

the set of k-differences and selects from the logs representative

traces containing them. Then, it computes the k-Tails FSM of each

log separately, and presents the selected traces on top of them, with

the k-differences highlighted. 2KDiff is limited to compare two logs.

Second, we present an advanced algorithm we call nKDiff, which

extends the classic k-Tails algorithm: it takes a set of n ≥ 2 logs

as input, and it outputs a single labeled FSM that represents their

differences. The labeling, consisting of subsets of {1, . . . ,n}, pro-
vides two-way traceability between the behaviors in the n input

logs and the behaviors induced by the labeled FSM. nKDiff is built

to compare many logs at once.

Most importantly, both algorithms, 2KDiff and nKDiff, guarantee

soundness and completeness modulo the k-Tails abstraction, i.e.,

their over-approximation is not worse than the over-approximation

induced by the use of k-Tails. They do not yield spurious differences,

and they do yield all differences. We present the two algorithms

and discuss their properties in Sect. 4.

To evaluate our work, we implemented the two algorithms, val-

idated the implementations, and evaluated their performance on

mutated logs generated based on publicly available, non-trivial

models from the literature. We conducted a user study including

60 participants, which were given log comparison tasks. We mea-

sured both the correctness and the time required to perform each

task using our approach and two alternative tools as baselines. The

results demonstrate the effectiveness of the approach in improving

both aspects. We have further performed a case study to examine

the use of our approach in Android malware analysis. Finally, we

have made our work available in a prototype web-application, for

experiments [1]. We present the evaluation in Sect. 5.

While much work has been published on extracting various

kinds of models and temporal properties from logs, see, e.g., [8, 22,

28, 31, 39], almost no work has considered the problem of using

models for log differencing. We discuss related work in Sect. 6.

check -out check -out check -out check -out

valid -coupon invalid -coupon invalid -coupon invalid -coupon

reduce -price check -out check -out check -out

check -out valid -coupon valid -coupon get -credit -card

get -credit -card reduce -price reduce -price --

-- check -out check -out check -out

check -out get -credit -card get -credit -card valid -coupon

get -credit -card -- -- reduce -price

-- check -out check -out check -out

check -out invalid -coupon get -credit -card invalid -coupon

invalid -coupon reduce -price -- check -out

check -out check -out check -out get -credit -card

get -credit -card get -credit -card invalid -coupon --

-- -- reduce -price check -out

check -out check -out check -out valid -coupon

valid -coupon get -credit -card get -credit -card reduce -price

reduce -price -- -- check -out

check -out check -out check -out get -credit -card

invalid -coupon valid -coupon get -credit -card --

check -out reduce -price -- check -out

get -credit -card check -out check -out get -credit -card

-- get -credit -card invalid -coupon --

check -out -- reduce -price check -out

valid -coupon check -out check -out get -credit -card

reduce -price valid -coupon get -credit -card --

check -out reduce -price --

get -credit -card check -out check -out

-- invalid -coupon invalid -coupon

check -out check -out

get -credit -card valid -coupon

-- reduce -price

check -out check -out

get -credit -card get -credit -card

-- --

check -out

invalid -coupon

reduce -price

check -out

get -credit -card

--

Figure 1: Four logs of the shopping cart system in four columns, L1
to L4 (left to right), each consists of several traces, separated by ‘- -’.

2 EXAMPLE
In [8], Beschastnikh et al. use an example of a shopping cart. The

log used in their example contains a bug, where the user can use

an invalid coupon to reduce the price. Below we present a variant

of this example where an engineer has four logs, some of which

from a version of the shopping cart with the bug and some from

a version without it. We present the example semi-formally, for

illustration purposes. Formal definitions appear later in the paper.

Fig. 1 shows excerpts from four logs of the shopping cart system,

from left to right, L1 to L4, each containing several traces. Although

this is only an excerpt of traces from each of the four logs, it is

already difficult to identify any difference. Real-world logs are much

longer and more complex. How can the engineer find the bug that

is hidden in some of them?

The first algorithm we present, 2KDiff, allows the engineer to

compare two logs. Assume that the engineer is interested in com-

paring L1 and L3. 2KDiff visualizes the differences between the logs

by highlighting sequences of length k or less that appear only in one

of the two logs. The parameter k is set by the engineer; the higher

the k the more differences are expected to appear. For example, if

the engineer selects k=2, 2KDiff finds that the sequence ⟨invalid-
coupon, reduce-price⟩ appears only in L3. 2KDiff highlights this

k-sequence by superimposing a concrete trace from L3 that in-

cludes this k-sequence over the k-Tails model of L3, as illustrated in
Fig. 2, produced by our prototype implementation of 2KDiff, where

the trace is highlighted in red and the k-sequence is emboldened.

The model shows that the bug appears in L3 but not in L1.

50



Using Finite-State Models for Log Differencing ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

check-out

invalid-coupon

check-out

valid-coupon

check-out

invalid-coupon

reduce-price

TERMINAL

check-out
get-credit-card

INITIAL

INITIAL

Figure 2: The output of 2KDiff when comparing logs L1 and
L3. A trace visualizing the differences between the models is
superimposed over the K-FSM model of L3. Specifically, the third
trace from L3, ⟨I N IT IAL, check-out, invalid-coupon, r educe-
pr ice, check-out, дet -credit -card, T ERMINAL⟩, is highlighted,
to reflect the k-sequence ⟨invalid-coupon, r educe-pr ice ⟩, which
does not appear in any trace in L1. This k-sequence is emboldened
to emphasize the difference.

0 1

5

2

3

check-out

check-out

4

invalid-coupon [2, 3]

check-out
valid-coupon

reduce-price

INITIAL

6 7
get-credit-card TERMINAL

invalid-coupon

Figure 3: The output of nKDiff when comparing the four logs L1 to
L4. Note the red transition labeled [2,3], signifying that the transi-
tion invalid-coupon after which r educe-pr ice occurs, appears in
L2 and L3, but not in the two other logs.

The second algorithm we present, nKDiff, compares many logs

at once. Given all four logs, L1 to L4, as input, nKDiff outputs a

single model that highlights the difference in behaviors between

them. Specifically, Fig. 3 shows the output of our prototype imple-

mentation of nKDiff (with k=1), a finite-state machine extended

with colored and labeled transitions. Black transitions represent

behaviors that are common to all logs. Red transitions represent be-

haviors that occur in only some of the logs, whose numbers appear

as a label. In our example, the red transition labeled invalid-coupon,
after which reduce-price has occurred, appears only in L2 and L3.
Thus the model that nKDiff presents reveals and highlights the bug.

Note that the algorithms are complementary. 2KDiff highlights

concrete traces of discovered differences between two logs. nKDiff

identifies differences between many logs at once, but highlights no

concrete traces. One is not a generalization of the other.

3 PRELIMINARIES
Basic Definitions. A trace over an alphabet Σ is a finite word

tr = ⟨e1, e2, . . . , em⟩ where e1, . . . , em ∈ Σ. For j ≥ 1 we use tr (j)
to denote the jth element in tr . We use |tr | to denote the length of tr .
For a positive integer k , a k-sequence is a consecutive sequence of k
or less events, denoted bykseq . Σ≤k is the set of allk-sequences over
Σ. A log L over an alphabet Σ is a set of traces L = {tr1, . . . , trn }.

Definition 3.1 (Finite-State Machine (FSM)). A finite-state ma-

chine (FSM) is a structureM = ⟨Q,Qi ,Qs , Σ,δ⟩ where:Q is a set of

states; Qi ⊆ Q is a set of initial states; Qs ⊆ Q is a set of accepting

states; Σ is an alphabet; and δ : Q × Σ → P(Q) is a transition

relation, where P(Q) is the power set of the set of states Q.

Let M be an FSM over an alphabet Σ. We use L(M) ⊆ Σ∗ to
denote the set of all words accepted byM .

k-Tails. k-Tails, first introduced in [9], is a classic model inference

algorithm. Over the last two decades, k-Tails has been presented in

several variants and implemented in many works, e.g., [8, 13, 24,

25, 28]. We use a definition inspired by [7].

k-Tails takes a log and a parameter k as input. It starts by rep-

resenting the log as an FSM Ml in composed of linear sub-FSMs,

one per trace, which are joined by adding a single initial state qinit
transitioning to the start of each trace via a unique α label, and a

single terminal state qacc to which all traces transition to at the end

via a unique ω label. Notice that the language of Ml in equals the

set of traces in the log, given that each trace is encapsulated by α
andω events. We refer to this version of the log as the encapsulated

version, denoted by Len . k-Tails iteratively merges states in the

Ml in FSM: Two states are merged iff they are k-equivalent, i.e., if

their future of length k or less, is identical. When no two remaining

states are k-equivalent, the algorithm terminates and outputs the

resulting FSM, called a k-FSM.

More formally, we define a function future : QMl in → P(Σ≤k ),
mapping states inMl in to k-sequences. The k-equivalence relation

induces a partition of the states of the initial FSMMl in into equiva-

lence classes E = {e1, e2, . . . , em }, where each of the equivalence

classes in E is uniquely defined by its future sequences of length k
or less. Two states s1, s2 ∈ ei iff future(s1) = future(s2). When lifted

fromQMl in to E, the function future becomes the injective function

id : E → P(Σ≤k ). For all s ∈ ei , future(s) = id(ei ). Formally:

Definition 3.2 (k-FSM). k-FSM, the FSM computed by k-Tails for

a log L and a positive integer k , is an FSM ML = ⟨Q,Qi ,Qs , Σ,δ⟩
where: Q = E, where E is the set of equivalence classes defined

above; Σ is the alphabet of the log L; ∀e ∈ E,a ∈ Σ:
δ (e,a) =

⋃ {
e ′ |∃s, s ′ ∈ Ml in s.t. s ′ ∈ δMl in (s,a) ∧ s ∈ e ∧ s

′ ∈ e ′
}
;

Qi = {qinit } is an artificial initial state; and Qs = {qacc } is an
artificial terminal state.

When clear from the context, we write FSM instead of k-FSM.

For a given k-FSM ML , generated by running k-Tails on log

L, we use L(ML) to denote the set of all words accepted by ML .

Among other properties, the correctness of the k-Tails algorithm

implies thatML may over approximate the set of traces in L but may

not under approximate it, i.e., L ⊆ L(ML). Consequently, every k-

sequence included in any trace in L, is part of at least one accepting
word of ML . Additional useful properties of the k-FSM are that

all its states are reachable from the initial state qinit , and that the

accepting state qacc is reachable from all states.

4 USING MODELS FOR LOG DIFFERENCING
We present the main contributions of our work, 2KDiff, for differ-

encing of two logs, and nKDiff, for differencing of many logs. We

give formal definitions and examples, but omit the proofs, which

can be found in [1].

51



ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA H. Amar, L. Bao, N. Busany, D. Lo, S. Maoz

Algorithm 1 2KDiff Algorithm

1: procedure 2KDiff(L1, L2, k)
2: k-seqsL1 ←find_ks(L1,k); k-seqsL2 ←find_ks(L2,k)
3: k-seqsL1\L2 = k-seqsL1 \ k-seqsL2
4: GenModel(L1,k-seqsL1\L2 )

5: procedure GenModel(L, k-seqs)
6: traces2ks ← SelectTraces(L,k-seqs)
7: M←k-Tails(L,k)
8: hiдhliдht(M, traces2ks) ▷ displays the model marking the

selected traces and k-sequences

9: procedure SelectTraces(L, k-seqs) ▷ returns a mapping of

traces in L covering the k-sequences in k-seqs
10: traces2ks ←map()
11: while ¬k-seqs .empty() do
12: tr , seqs ←find_top_coverinд_trace(k-seqs,L) ▷ returns

a trace in L (tr ) covering the max. num. of k-sequences (seqs) in
k-seqs

13: k-seqs .remove(seqs)
14: traces2ks[tr ] ← seqs ▷ map the trace to the k-sequences

that it covers

15: return traces2ks

4.1 2KDiff: Differencing Two Logs
Given a positive integer k , 2KDiff compares two logs by focusing

on k-differences, i.e., k-sequences that appear in one log but not

the other, and presenting them in the context they appear in.

The 2KDiffAlgorithm. First, 2KDiff computes the sets of k-sequen-

ces included in each of the logs, and compares the two sets to

find the k-sequences that are unique to each log, i.e., the set of

k-differences (if there are any, Alg. 1, lines 2-3). Second, in order

to present the k-differences in their context, over concrete traces,

for each of the two logs the algorithm looks for a (locally) minimal

set of traces such that every k-sequence is included in at least one

trace (Alg. 1, lines 9-15). The set of traces is computed in a greedy,

iterative manner: in each step, the algorithm goes over the traces

of the logs and selects the trace with the highest coverage of k-

differences that have not yet been covered. The iteration terminates

when all the k-differences are covered. Finally, 2KDiff computes the

k-FSM for each log. It replays the selected traces from the previous

step over these k-FSMs and highlights transitions visited during

the replay in red (Alg. 1, lines 4-8). Transitions that belong to a

k-difference are emboldened. When there are multiple traces, the

engineer can iterate over them, one trace at a time.

Example 4.1. Consider running 2KDiff on L1 and L3 from Sect. 2,

with k = 2. First, 2KDiff searches for the k-differences between the

logs. It finds that while all k-sequences in L1 appear in L3, L3 con-
tains a single k-sequence that does not appear in L1: kseq=⟨invalid-
coupon, reduce-price⟩. Next, 2KDiff searches for a trace contain-

ing kseq and finds the third trace in L3: tr=⟨α , check-out , invalid-
coupon, reduce-price, check-out ,дet-credit-card,ω⟩. Finally, 2KD-
iff computes the K-FSM for L3, and highlights the trace tr over it,
while emboldening the transitions in kseq , as we show in Fig. 2.

It is important to note that 2KDiff is sound and complete mod-

ulo the k-sequences abstraction. Specifically, any k-sequence that

appears in one log and not the other is included in at least one

highlighted trace on the k-FSM of the respective log, and any such

highlighted trace contains at least one such k-sequence. Roughly,

these strong notions of soundness and completeness are guaranteed

thanks to properties of k-FSM built by the k-Tails algorithm.

Theorem 4.2 (2KDiff Soundness and Completeness). Let k
be a positive integer and let L1, L2 be two logs compared using 2KDiff

with k-FSM1 and k-FSM2 their corresponding k-FSM models. Then,

any trace highlighted by 2KDiff over k-FSM1 is a trace from L1 that
includes at least one k-sequencemissing from L2; and every k-sequence
that appears in L1 and does not appear in L2 is highlighted by at least
one accepted trace in k-FSM1. The same holds for k-FSM2.

In search for a small set of traces that covers the k-differences, as

described above, we chose to implement a greedy algorithm, which

ensures that we find a locally minimal covering set: removing any

trace from this set will reduce coverage. Still, there may exist a

smaller covering set of traces. As finding a globally minimal set may

require the enumeration of all possible subsets of traces from the

log, we chose a greedy algorithm to ensure reasonable performance.

Time and Space Complexity. To construct the k-Tails model,

2KDiff uses the k-Tails variant from [6], which yields quadratic

time complexity with respect to the number of events in the log.

Searching for k-differences and highlighting traces over the result-

ing FSM is linear in the number of events in the logs. Hence, k-Tails

model construction dominates the time complexity of 2KDiff. Its

space complexity is linear in the number of events in the log.

4.2 nKDiff: Differencing Many Logs
2KDiff is limited to comparing two logs. We now present nKDiff, a

sound and complete extension of k-Tails, from one to many logs.

Roughly, given a set of n logs, {L1, . . . ,Ln }, and a positive integer k ,
our goal is to compute a single model, an FSM labeled with subsets

of log indexes, which will be sound and complete: its projection on

any given indexwill result in the k-FSMwe could have computed for

the log with that index (soundness), and any behavior that appears

in at least one of the logs will be included in it (completeness).

This labeled FSM is inspired by a similar model named featured

transition system (FTS), which has been presented for the purpose

of model-checking of software product lines [11] (see related work

in Sect. 6).

Labeled FSM (LFSM) and k-DiffLFSM. To formalize the above,

we first extend the basic definition of FSM from Def. 3.1 to a Labeled

FSM (LFSM). The extension is made by labeling each of the FSM

transitions with a subset of log indexes. Formally:

Definition 4.3 (Labeled Finite-State Machine (LFSM)). A labeled

FSM is a structure M = ⟨Q,Qi ,Qs , Σ, I ,δ , label⟩ where: Q , Qi , Qs ,

Σ, and δ , are defined as in an FSM; I is a set of indexes (for us, log
indexes); and label : Q ×Σ×Q → P(I ) is a labeling function, which
maps every transition in δ to a subset of indexes from I .

A trace tr is accepted by an LFSM M iff there exists an index

ind ∈ I s.t. tr reaches an accepting state on a path whose all tran-

sition labels include ind . More formally, a path = (s1, . . . , sm ) is
accepting for a trace tr in an LFSMM iff ∃ind ∈ I s.t. s1 ∈ Qi ∧sm ∈
Qs ∧ ∀i, j s.t. j = i + 1 ∧ 1 ≤ i < |tr |, sj ∈ δ (si , tr (i)) ∧ ind ∈
label(si , tr (i), sj ). As in an FSM, the language of the LFSM is the set

of all traces it accepts.

52



Using Finite-State Models for Log Differencing ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

An LFSM induces a projection operation proj: LFSM× I → FSM :

Given an index i ∈ I , proj removes from the LFSM all transitions

whose set of labels does not include i , removes all states that become

unreachable from the initial state, and then removes all labels from

the remaining transitions. The result of proj is an FSM.

Example 4.4. The model presented in Fig. 3 represents an LFSM

over the set of logs {L1,L2,L3,L4}. The transition invalid-coupon
from state 2 to state 3 is labeled with a set of log indexes, in this

case, the set {2, 3} (to avoid clutter in Fig. 3, we do not show the

label for transitions labeled with all log indexes). When applying

proj to this LFSM, with index 1 or 4, the result is an FSM that does

not include the transition invalid-coupon from state 2 to state 3.

Theorem 4.5. The language of an LFSMM is equal to the union

of the languages of all projections ofM to indexes from I . Formally:

L(M) =
⋃
i ∈I L(proj(M, i)).

We now extend the definition of k-FSM from Def. 3.2 to a k-

DiffLFSM. Roughly, the k-DiffLFSM is a labeled k-FSM, which ac-

cepts all traces from all logs (inclusion) and whose projection to any

label j results in the k-FSM generated by running k-Tails only on

Lj (projection). Inclusion and projection (soundness and complete-

ness) are important. Inclusion is important, as it guarantees that

just like the k-FSM for each log, the k-DiffLFSM accepts all traces

from all logs (no under approximation). Projection is important,

as it guarantees that the over approximation in the k-DiffLFSM is

exactly like that of the k-FSM for each log, not worse.

More formally, let L =
⋃ {

Li |1 ≤ i ≤ n
}
. L is a union of sets of

traces, so it is a valid log. Recall the k-Tails algorithm from Sect. 3

LetM
j
l in denote the FSM of linear sub-FSMs of Lj . Let future

j
be

the mapping of states to their future(s) of length k or less inM
j
l in .

Definition 4.6 (k-DiffLFSM). For set of logs {L1, . . . ,Ln } and a

positive integer k , a k-DiffLFSMML1 ...Ln is an

LFSM ⟨Q,Qi ,Qs , Σ, I ,δ , label⟩ where: Q = E, the set of equiv-

alence classes of states from the k-FSM ML ; I is the set of in-

dexes {1 . . .n}; Σ is the union of the alphabets of the logs L1 to

Ln ; ∀e, e ′ ∈ E,a ∈ Σ: label(e,a, e ′) = {j |∃s, s ′ ∈ M
j
l in s.t. s ′ ∈

δM j
l in
(s,a) ∧ f uture j (s) = id(e) ∧ f uture j (s ′) = id(e ′)

}
; ∀e, e ′ ∈

E,a ∈ Σ: e ′ ∈ δ (e,a) iff label(e,a, e ′) , ∅; Qi = {qinit } is an arti-

ficial initial state; and Qs = {qacc } is an artificial terminal state.

We now formally define k-DiffLFSM’s soundness (inclusion) and

completeness (projection), and illustrate them with our example.

Theorem 4.7 (nKDiff Soundness and Completeness). Let

ML1 ...Ln be the k-DiffLFSM for a set of logs {L1, . . . ,Ln } and a pos-
itive integer k . Then, for all 1 ≤ i ≤ n, Li ⊆ L(ML1 ...Ln ); and for

all 1 ≤ i ≤ n, proj(ML1 ...Ln , i) is identical to the k-FSMMLi , gener-

ated by running k-Tails only on Li . In particular, for all 1 ≤ i ≤ n,
L(proj(ML1 ...Ln , i)) = L(MLi ).

Example 4.8. Consider the four logs shown in Fig. 1, and their

corresponding k-DiffLFSM model shown in Fig. 3, resulting by exe-

cuting nKDiff on these logs. One can check that inclusion (sound-

ness) holds, as every trace in any of the four input logs is part of

L(ML). Projection (completeness) holds too, since, e.g., for i , 2, 3,

Algorithm 2 nKDiff Algorithm

1: procedure nKDiff(logs = {L1, L2, . . . , Ln }, k)
2: Σ = FindAlphabet(loдs)
3: I = FindLoдLabels(loдs)
4: ML

lin = GenerateLabeledLinearFSM(loдs)

5: eqv_cls2states = MapEquivalenceClassesToStates(ML
lin ,k)

▷ maps each equivalence class to its states in ML
lin according

to their future of length k or less

6: Q = eqv_cls2states .keys()
7: Qi = FindInit(eqv_cls2states,ML

lin )

8: Qs = FindTerminal(eqv_cls2states,ML
lin )

9: δ =map(); label =map()
10: for e, e ′ ∈ eqv_cls2states .keys() do
11: a = дetConnectinдEvent(e, e ′) ▷ returns null if none

exists

12: labels = GetLoдLabels(e, e ′,a, eqv_cls2states,ML
lin ) ▷

computes si = {j |∃s ∈ e, s ′ ∈ e ′ s.t. s ′ ∈ δML
lin
(s,a) ∧ j ∈

labelML
lin
(s,a, s ′)

13: if labels , ∅ then
14: label[(e,a, e ′)] = label ; δ [(e,a)] = e ′

15: returnML = ⟨Q,Qi ,Qs , Σ, I ,δ , label⟩

removing the only transition t whose label is {2, 3}, will result in
the exact k-FSM generated by running k-Tails on L1 or L4 alone.
The nKDiff Algorithm. nKDiff takes as input a set of logs L =
{L1, . . . ,Ln } and a positive integer k ; it outputs a k-DiffLFSMML

.

First, nKDiff computes alphabet of the logs and the logs’ labels

(Alg.2, lines 2-3). Then, instead of an unlabeled initial FSMMl in , it

builds an initial LFSMML
lin , where each trace’s linear sub-FSM is

labeled with the single index of the log from which it came from

(Alg.2, line 4).

Second, it merges all states in ML
lin into a set of equivalence

classes E based on the states’ futures of length k or less (Alg.2,

line 5). E is defined as the set of states of the output k-DiffLFSM

ML
. Further, the equivalence classes holding the dummy initial and

terminal states are defined accordingly (Alg.2, lines 6-8).

Third, to construct the transition function δ of ML
, and the

transitions’ labeling function label , for each ordered pair of states

e, e ′ ∈ E. The algorithm checks if the future of e is succeeded by e ′,
and if so, finds the next eventa. Then, it computes themaximal set of

indexes si s.t. for each j ∈ si , ∃s ∈ e, s ′ ∈ e ′ s.t. s ′ ∈ δML
lin
(s,a)∧ j ∈

labelML
lin
(s,a, s ′). If si , ∅, nKDiff adds the transition and label to

ML
(Alg.2, lines 10-14).

Time and Space Complexity. nKDiff uses the k-Tails variant

of [6] to construct a model from all logs. Its time complexity is

dominated by states merging phase of k-Tails (Alg. 2, line 5) and is

quadratic in the number of events in all logs. The additional steps in

nKDiff of denoting transitions with labels and computing the label
function (Alg. 2, line 4, 12-14), require a linear time in the number

of events in all logs. Space complexity is linear in the number of

events in all logs.

4.3 Implementation and Validation
Implementation.We have implemented 2KDiff and nKDiff by ex-

tending the k-Tails implementation used in [8]. The implementation

53



ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA H. Amar, L. Bao, N. Busany, D. Lo, S. Maoz

includes all steps, from parsing the logs, to computing the model,

to visualizing it. We made the implementation publicly available as

a prototype web application that allows review and experiments.

We encourage the interested reader to check it out, see [1].

Validation. To validate 2KDiff, we implemented unit tests covering

the steps of the algorithm, k-sequences extraction (from log), k-

differences coverage (by traces from the logs), and trace highlighting

over the generated model. Further, we implemented an integration

test: run the algorithm over pairs of manually constructed example

logs, and manually compare the output with the expected results.

To validate nKDiff , we have created and executed automated

validation. The validation code runs k-Tails on each log in the input

set and runs nKDiff on the set of logs. It then checks that the output

models satisfy the inclusion and projection (soundness and com-

pleteness) requirements by comparing the generated models. We

repeated the automated validation many times with many different

logs generated from models.

The above procedures provide evidence that our implementa-

tions are correct.

5 EVALUATION
We present an evaluation in three parts. The first evaluates the

performance of 2KDiff and nKDiff. The second is a controlled user

study to examine the potential use of 2KDiff and nKDiff by engi-

neers. The third is a case study in malware analysis.

5.1 Performance Evaluation
We conducted a preliminary evaluation of the performance of 2KD-

iff and nKDiff, guided by the following research questions:

RQA1 How is the performance of 2KDiff and nKDiff affected by

the number of k-differences between the compared logs?

RQA2 How is nKDiff performance affected by the number of logs?

5.1.1 Models Used. We used 15 finite-state machine models in our

evaluation, all taken from Lo et al. [24] and from Pradel et al. [30].

Themodels vary in size and complexity, i.e., the alphabet size ranges

from 7 to 42, the number of states ranges from 6 to 24, and the

number of transitions ranges from 15 to 209. The complete list of

models and their statistics are available in supporting materials [1].

5.1.2 Experiment Design and Setup. We generated logs from the

15 models described above, using a publicly available trace genera-

tor [24], configured to provide state coverage and yielding logs of

roughly thousand traces each.

For 2KDiff and nKDiff, in all experiments we used k = 2, a value

of k that is commonly used in the literature on k-Tails.

To introduce k-differences into the logs, we used the following

log mutation procedure: clone a randomly selected trace and flip

a random pair of consecutive events in it; if the modified trace

consists of a k-sequence missing from the log, add it to the mutated

log; Otherwise, repeat the procedure.

In measuring computation times we included all steps, from

parsing the logs, to computing the models, to exporting to DOT for-

mat for visualization. We executed all experiments on an ordinary

laptop computer, Intel i5 CPU 2.4GHz, 8GB RAM with Windows

8 64-bit OS, Java 1.8.0_45 64-bit. We executed all runs 10 times, to

average out measurement noise from the Java execution.

5.1.3 Experiment I: varying mutation type. We aim to investigate

how the performance of 2KDiff and nKDiff depends on the number

of k-differences between the logs. First, we selected a model and

generated a log from it. Second, we created a mutated version of

the log by following the mutation procedure described above. In

our experiments, we consider three types of log mutation policies:

no mutation (N), one mutation (O), and multiple mutations (M). No
mutation means we compare two identical logs. One mutation

means that the mutated log includes a new trace, with at least one

new k-sequence. Multiple mutations (M) means that we repeat the

process of mutating each log 10 times, effectively adding 10 new

traces to the mutated log. Lastly, we run both methods, 2KDiff and

nKDiff, over the original log and the mutated log, and measured

their running times. We repeated each combination of model and

mutation policy 10 times.

5.1.4 Experiment II: varying the number of logs. We aim to check

the effect of the number of logs on the performance of nKDiff. For

each model and for each mutation policy, we generated a varying

number of logs: 2, 4, 6, 8. For experiments with the (N) mutation

policy, all logs were kept identical; for experiments with the (O)
mutation policy, n-1 logs were kept identical, and one log contained
a single mutation; and, for experiments with the (M) mutation policy,

for each 1 ≤ i ≤ n, the i-th log included a single additional mutation

over the i-1 log. We repeated each combination of model, number

of logs, and mutation policy 10 times.

5.1.5 Results. We run 2KDiff and nKDiff on the mutated logs gen-

erated from the 15 models, using each of the three mutation policies.

For each model, we measured the average number of traces, aver-

age trace length (in the generated logs), and the average running

times of 2KDiff and nKDiff, per mutation policy. The results show

acceptable average running times for logs of realistic sizes originat-

ing from different models with an average running time below 10

seconds for 11 out of the 15 models, and where the longest average

running time did not exceed 200 seconds for both methods.

Furthermore, while running times of both methods vary much

across different models, the mutation policy seems to have no signif-

icant effect. nKDiff requires twice the time of 2KDiff, a phenomena

which is consistent across all models. This is not surprising as

nKDiff constructed a model from both logs, while 2KDiff only con-

structed a model from the mutated version of the logs, due to the

nature of the mutation, which makes one of the logs contain all

k-sequences of the other. As a result, 2KDiff only constructed the

model for the log containing the additional k-sequence. For identi-

cal logs (i.e., the N mutation policy), 2KDiff constructed a single

model without superimposing any of the traces.

Detailed performance results are available in [1].

To answer [RQA1], we have evidence that 2KDiff and nKDiff are

applicable to systems of different size and complexity and logs of

varying similarities. Both methods generate models from large

logs in acceptable times.

The results of experiment II, considering average running times

of four selected models, with different mutation policies, when

growing the number of logs from 2 to 8, reveal that in all mutation

54



Using Finite-State Models for Log Differencing ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

policies, nKDiff running times show a quadratic growth with re-

spect to the number of logs. This is consistent with the complexity

analysis in Sect. 4.2, as the logs (and their mutations) were kept

on roughly equal sizes. To further investigate, we run the variant

of k-Tails [6] over the logs used in our experiments, and observed

the same quadratic trend. This indicates that nKDiff’s performance

is dominated by and similar to that of k-Tails. Detailed results of

experiment II are available in [1].

To answer [RQA2], we have evidence showing that nKDiff run-

ning time is quadratically dependent on the number of logs,

when the logs are kept in similar sizes. This phenomenon is

evident across models and the three mutation policies.

5.1.6 Threats to Validity. First, the selection of models in our eval-

uation may not represent typical systems. To mitigate this, we used

15 publicly available models with non-trivial size and complexity,

taken from two previous works (see Sect. 5.1.1). Yet, we do not

know to what extent these are representative of real-world sys-

tems and do the mutations that we performed are representative of

real-world changes.

Second, to generate logs from the 15 publicly available mod-

els and their mutations we used a publicly available trace genera-

tor [24], as described above. It is possible that one may get different

results if a different trace generator or a different coverage criterion

is used.

5.2 Controlled User Study
We conducted a controlled user study to quantitatively measure the

benefit that 2KDiff and nKDiff can provide to their potential users.

We choose to conduct a controlled study to focus on evaluating

pertinent features of the algorithms.

The research questions guiding our user study are:

RQB1 Can using 2KDiff and nKDiff help participants more accu-

rately identify behavioral differences between different versions

of the same system?

RQB2 Do 2KDiff and nKDiff shorten the time required for partic-

ipant in identifying if and when a behavioral difference was

introduced into a system?

5.2.1 Experiment Setup. To answer the research questions, we

capture a scenario where a behavioral difference is introduced into

a system. A participant is given access to logs of different runs of

five versions of the system. The participant is tasked to identify

a behavioral difference and when it was first introduced into the

system, by answering a set of questions.

To capture this scenario, we generated a log with 20 traces pro-

duced by a trace generator for a model. We copied the log five times

and numbered the copies to represent consecutive versions of the

system. Then, we randomly chose a trace from the first log and

mutated it by flipping two consecutive events, i.e., a 2-sequence. To

guarantee that the flip added a new behavior, we checked that the

new pair of consecutive events does not appear in any of the traces

in the log. We then randomly chose one of the versions (apart from

the first version) and replaced the original trace with the mutated

trace in this version and in all the following versions.

Independent and Dependent Variables. The experiment’s pur-

pose is to examine whether 2KDiff and nKDiff provide participants

with support in finding log differences better than some alternatives

(baselines), while considering a number of different logs and usage

scenarios. Thus, our experiment has three independent variables,

the tool used to find log differences, the log set, and the usage sce-

nario, and two dependent variables, correctness of the task solution

(i.e., answers given by participants) and completion time.

We consider three tools, i.e., 2KDiff & nKDiff, a popular web-

based text differencing tool [2], and k-Tails; six sets of logs, i.e.,

Columba, cruiseControl.net, ctas.net, cvs.net, java.util.StringTokenizer,

and roomcontroller.net, generated as above from models found in

existing literature [24, 30]; and two usage scenarios, i.e., Regression

Test and User Interaction. The Regression Test scenario simulates

a case when an engineer runs a test suite on multiple versions of

a software system, while the User Interaction scenario simulates

a case when a user tries various features of multiple versions of

a system. To capture the Regression Test scenario, we randomly

applied a mutation according to the procedure described above

while maintaining similar trace order between different logs. To

capture the User Interaction scenario, we shuffled the traces mim-

icking different interactions with the application. In both scenarios,

a single random mutation in the form of a new 2-sequence was the

only behavioral difference between the logs.

Participants and Task Assignments. We invited 60 graduate

students with background in software engineering from two uni-

versities. We divided the 60 participants into six groups of 10 partici-

pants each. One factor that could have an impact on the participants’

performance is experience level. We collect participants’ personal

information (e.g., the year they start their post-graduate program,

their prior experience in industry, etc.) and use it to categorize

the 60 participants into junior and senior participants. The ratio

of junior and senior participants for each group was kept approx-

imately 3:2. Every participant is required to perform six tasks by

analyzing six log sets. He/she needs to use a log differencing tool

twice, one for the User Interaction scenario and another for the Unit

Test scenario. The participants in all groups were presented with

the log sets in a similar order. To avoid biases, we designed the

experiment such that each log was analyzed by each of the tools in

each of the usage scenarios, covering all different orders.

Detailed Procedure. At the beginning of the study, participants
are required to read a tutorial and watch a video explaining the

three log differencing tools and how they can be used to complete

the tasks. Participants typically spend 20 to 30 minutes doing this.

Then, they attempted each of the six tasks one by one. To complete

each task, participants are required to analyze a log set using a

specified tool and eventually answer a several questions through a

web interface. The following are the four questions that we asked

participants for each task: (1) Is there a log that contains any 2-

sequence that does not appear in its preceding log? (2) What is the id

of the earliest log that introduces a new 2-sequence? (3) What is the

2-sequence that appears in the new version but not in the old version?

and (4) What is the trace that shows the 2-sequence difference?

Note that if a participant answers ‘No’ to the first question, they

will not be asked the subsequent questions. Our web interface

55



ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA H. Amar, L. Bao, N. Busany, D. Lo, S. Maoz

0

5

10

0

5

10

0

5

10

0

5

10

0

5

10

0

5

10

0

5

10

0

5

10

0

5

10

0

5

10

0

5

10

0

5

10

User Interaction Unit Test

Columba

cruiseControl

ctas

cvs

StringTokenizer

roomcontroller

Q2 Q3 Q4 Q2 Q3 Q4

Text k-Tails 2KDiff&nKDiff

Figure 4: Number of participants who answer questions correctly
for different tasks, scenarios, and tools.

recorded participants’ answers and the amount of time they used

to complete each task.

5.2.2 Results. We report experiment results by answering the re-

search questions mentioned earlier as follows:

RQB1: Correctness. After all participants completed the experi-

ments, we evaluated the correctness of the participant answers. If

a participant chose “No” option for the first question of a task, the

other three questions are labeled as incorrect. Figure 4 shows the

number of participants who gave correct answers for questions 2, 3,

and 4 for the different tasks. Note that we don’t show the count for

the first question since a “Yes” answer for the first question does

not mean that the participant found the difference among the logs.

From the figure, we observe the following:

• Most participants who use 2KDiff & nKDiff answered the ques-

tions correctly. Only three did not answer the questions correctly;

these happen when they use 2KDiff & nKDiff for the first time to

complete a task. We talked with them and found that they were

not very familiar with the tool the first time they used it.

• For the text differencing tool, the correctness for tasks in User

Interaction scenario is much lower than that for tasks in Unit Test

scenario. Note that for the User Interaction scenario, traces in logs

are shuffled. For such logs, the text differencing tool often returns

a large number of syntactic differences, which make it difficult

for participants to identify the 2-sequence difference. For the

Unit Test scenario, the number of returned syntactic difference

is much lower. Hence, the correctness of participants who use

the text differencing tool in Unit Test scenario is close to that of

participants who use 2KDiff&nKDiff.

• For k-Tails, the difference in correctness between the two sce-

narios is minor. However, we find that the complexity of the log

set impacts correctness. For example, the model used to generate

cruiseControl log set is much more complex than that used to

generate Columba log set. Comparing the results for these two

Table 1: Aggregated correctness results for the different tools con-
sidering each scenario.

User Interaction Unit Test
Average
Correctness

Text 17.20% 77.80%

k-Tails 58.30% 61.10%

2KDiff
&nKDiff 97.80% 97.20%

p-value | δ Text ≤0.01 | 1.00 (large) ≤0.01 | 0.86 (large)

k-Tails ≤0.01 | 0.85 (large) ≤0.01 | 0.79 (large)

log sets, we find that using k-Tails, participants produced substan-

tially fewer correct answers for cruiseControl than for Columba.

We also find that some participants who performed tasks with

Columba using k-Tails answered the second question correctly

but the next two questions incorrectly. This might be because

participants found that the two models generated by k-Tails are

different but they could not identify which transitions are the

new 2-sequences by comparing two k-Tails models manually.

We further compute the average correctness for the different

tools when used to complete tasks in each of the two scenarios

(see Table 1). The average correctness for tasks completed using

2KDiff & nKDiff is very high – more than 97% for each scenario. On

the other hand, the average correctness for tasks in User Interaction

scenario completed using the text differencing tool is the lowest

– only 17.2%. To measure whether the differences on correctness

between 2KDiff & nKDiff and baselines were statistically significant

for the two scenarios, we apply Wilcoxon signed-rank test with

Bonferroni Correction. The corrected p-values are all smaller than

0.01, which indicates that the difference is statistically significant at

a confidence level of 99%. We also calculated Cliff’s delta
1
, which

is a non-parametric effect size measure, to show the effect sizes

of the correctness difference between 2KDiff & nKDiff and each

of the baselines. The Cliff’s deltas are all large, demonstrating the

effectiveness of our proposed tool in helping participants produce

correct results for the tasks.

2KDiff & nKDiff can help participants accurately identify behav-

ioral differences among different logs. The differences in average

correctness between tasks completed using our tool and those

using a baseline are statistically significant with large effect sizes.

RQB2: Completion time. Table 2 shows the average participant
completion time for each task using our tool and the baselines.

From the table, we can note the following:

• The average completion time for tasks performed using 2KD-

iff & nKDiff is lower than that of the two baselines, except for two

tasks: one uses the cvs log set considering the Unit Test scenario,

and the other uses the StringTokenizer log set considering the

Unit Test scenario.

• For the first of the two tasks mentioned above, the average com-

pletion time of participants using k-Tails is slightly lower but

close to that of participants using 2KDiff & nKDiff (173.3 vs. 177.1

seconds). For the second, the average completion time of par-

ticipants using the text differencing tool is slightly lower but

close to that of participants using 2KDiff & nKDiff (230.0 vs. 244.7

seconds). Note that a participant with the baseline tools might

quit the tasks in a short time if they believed that it was very hard

1
Cliff defines a delta of less than 0.147, between 0.147 to 0.33, between 0.33 and 0.474,

and above 0.474 as negligible, small, medium, and large effect size, respectively [12].

56



Using Finite-State Models for Log Differencing ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA
0

20
0

40
0

60
0

80
0

10
00

12
00

Text k-Tails 2KDiff&nKDiff

0
20
0

40
0

60
0

80
0

10
00

12
00

Text k-Tails 2KDiff&nKDiff

(a)	User	Interaction (b)	Unit	Test

Co
m
pl
et
io
n	
tim

e	
(s
ec
on

ds
)

Figure 5: Box-plots of completion time for different tools consid-
ering the two scenarios.

Table 2: Completion time for 2KDiff & nKDiff and the baselines.
UI UT UI UT UI UT

Columba cruiseControl ctas
Average
Completion
Time
(seconds)

Text 542.1 381.2 541.2 281.6 823.7 225.4

k-Tails 371.1 227.5 662.1 435.4 303.1 422.6

2KDiff
&nKDiff 205.3 173.9 282.5 233.9 242.4 208.4

cvs StringTokenizer roomcontroller
Average
Completion
Time
(seconds)

Text 382.6 218.7 718.1 230.0 466.1 382.9

k-Tails 193.4 173.3 599.7 351.7 375.8 480.0

2KDiff
&nKDiff 202.9 177.1 207.7 244.7 210.7 238.9

Table 3: P-values and Cliff’s deltas for completion time differences
between participants using 2KDiff & nKDiff and a baseline consid-
ering each scenario.

User Interaction Unit Test

p-value Text ≤0.01 ≤0.05

k-Tails ≤0.01 ≤0.01

δ Text 0.70 (large) 0.23 (small)

k-Tails 0.36 (medium) 0.31 (small)

for them to find the difference. This could make the average time

for these tasks performed using the baseline tools lower. This

hypothesis is supported by the fact that the average accuracy

in completing these two tasks using the two baselines are lower

than when 2KDiff & nKDiff is used (see Figure 4).

• Participants using text differencing tool spend much less time for

Unit Test tasks than for User Interaction tasks. This is because it is

difficult for participants to identify 2-sequence difference among

the large number of syntactic differences produced by the text

differencing tool when applied to User Interaction logs. This is

also reflected by the high variance in the completion time, as can

be viewed in the corresponding box-plot.

• The completion times of both k-Tail and 2KDiff & nKDiff are influ-

enced by the model. To investigate this, we run linear regression,

using the number of transitions as an independent variable and

the completion time as the dependent variable. The coefficient,

p-value , and adjusted R-squared for k-Tails and 2KDiff & nKDiff

are (2.91, 0.017, 0.05) and (0.79, 0.1, 0,017) resp. This shows that

k-Tails significantly depends on the model complexity while 2KD-

iff & nKDiff has a weaker statistical dependence with a smaller

effect (i.e., coefficient).

Figure 5 shows the box-plots of completion times for differ-

ent tools considering each of the two scenarios. We performed

Wilcoxon signed-rank test with Bonferroni Correction and find

that the differences are all statistically significant at a confidence

level of 95% (see Table 3). The effect sizes of the differences on

completion time for User Interaction scenario are medium and large,

while the effect sizes for Unit Test scenario are both small.

2KDiff&nKDiff can shorten the time required for participants to

identify behavior differences between logs. The average differ-

ences in task completion time between participants using our

proposed approach and those using a baseline are statistically

significant with small to large effect sizes.

5.2.3 Threats to Validity. Several threats may affect the validity

of our findings. First, there may be errors in the tools and web

interface that we provide to user study participants. We have tried

to reduce possibility of error by performing a thorough check and

by conducting a pilot study with a few participants whose results

we have excluded from the ones reported above. Second, all our

user study participants are students; it is possible that the findings

would be different if professional engineers are used as participants

instead. To mitigate this threat, we did not invite undergraduates

but rather graduate students with substantial years of programming

experiences. Many of our participants have worked in the indus-

try prior to joining the graduate program. Additionally, a number

are currently still working on industrial projects while completing

their master degree. Students are used as participants in many past

software engineering studies, e.g., [17, 36, 38]. Moreover, a recent

work by Salman et al. highlights that there are only minor differ-

ences between students and professionals in their user study [33].

Third, results of our controlled experiment may differ from a field

study. We choose controlled experiments to allow us to control

study variables. This enables us to investigate the performance of

our approach and the baselines when some of these variables are

varied. We can also prevent unwanted variables from affecting the

results. Basili has highlighted these and many other benefits of

controlled experiments [5]. Many prior software engineering work

have also chosen to perform controlled experiments [26, 37, 40].

5.3 Case Study
We conducted a case study to examine the potential of 2KDiff and

nKDiff on malware analysis in practice. Due to the popularity of An-

droid platform, a large amount of Android malware are produced by

attackers. Most Android malware are generated by infecting benign

apps with malicious code, which results in a different behavior from

the original benign apps, e.g., accessing privacy or security data.

Therefore, in this study, we want to investigate whether 2KDiff and

nKDiff can identify malicious behavior by comparing the API logs

of malware with those of the original benign apps.

We use the log dataset from the study of Bao et al. [4] in which

they use five automated test case generation tools to generate log

traces by running more than 100 pairs of malware and benign apps

it infects. They instrumented the tested apps to record the API calls

and the format of each record is caller → callee . The app pairs

are from a real life malicious piggybacked Android app dataset

collected by Li et al. [20]. The malicious piggybacked apps are built

by attackers by unpacking benign apps and then grafting some

malicious code to them.

57



ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA H. Amar, L. Bao, N. Busany, D. Lo, S. Maoz

INITIAL FolderListActivity-><init>

SudokListActivity-><init>

TelephonyManager->getSimSerialNumber

URLConnection->connect

TelephonyManager->getLineNumber

URL->openConnection

SudokPlayActivity-><init> TERMINAL

[1, 2]

[2]

[2]

[2]

[2] [2]
[2]

[1]

[1, 2]

[1, 2]

Figure 6: Example malicious behavior identified by nKDiff when
applied to a pair of logs from a real life piggybacked Android app
dataset collected by Li et al. [20]. Log 1 was generated from the orig-
inal, benign app. Log 2 was generated from the infected app.

Since the generated logs in [4] are very long (average of more

than a million events), we automatically filtered each app log as

follows: we extract all activity classes that refer to the windows of

the app from the APK file of the app; we iterate all the records in

the log file and only keep the callees that belong to sensitive API

calls (i.e., API calls that access sensitive resources) and callers that

are constructors of the activity classes; we use the invocations of

constructors of the main activity class to segment the filtered logs,

because the main activity is the start entry of the app; and if several

consecutive records are duplicated API calls, we only keep one API

call. Then, we used 2KDiff and nKDiff to generate a model based

on the filtered logs of benign and malicious apps.

Figure 6 shows an example result. In this example, the logs were

generated by running a pair of sudoku game apps using the test case

generation tool Droidbot [21]. Based on the generated model, the

malicious behavior can be easily observed, i.e., stealing the phone

number of the device, then sending it by network. Moreover, we

can also identify the context of the malicious behavior, i.e., during

the initialization of FolderListActivity.

2KDiff and nKDiff can be used to identify malicious behavior for

Android apps, which indicates one of the potential applications

of the tool in practice.

6 RELATEDWORK
Much literature deals with inferring models from systems’ execu-

tion logs (e.g., [3, 8, 14, 15, 18, 19, 22, 23, 25, 28, 31, 34, 39]). The

works differ in the kinds of input logs and output models. However,

almost no work has considered logs comparison.

Recently, Wang et al. [35] used log comparison, specifically com-

paring sets of inferred temporal invariants, as one of several ap-

proaches to examine whether tests are representative of field be-

havior. Unlike our work, [35] uses the sets of temporal invariants

to compute metrics for the difference between the logs, but neither

builds the actual model nor shows the concrete differences that were

found. Comparing lab and field logs is one potential application of

our work, which we view as complementary to [35].

Also recently, Goldstein et al. [16] published an experience re-

port on log-based behavioral differencing, focusing on visualizing

anomalies. Roughly, given two logs, they use k-Tails to build a

model for each log, and then compare the two models. The method

involves the enumeration of paths from the two models. Their mod-

els are enriched with quantitative data, which they use as another

comparison criteria. Their work is limited to comparing two logs

while our nKDiff algorithm compares many logs at once. Unlike our

work, [16] provides no soundness and completeness guarantees.

Other literature has dealt with behavior model comparison, but

not in the context of logs. Most relevant is [27], which presents se-

mantic differencing between two activity diagrams, using selected

traces that are possible in one but not the other. Due to complexity

considerations, [27] is limited to comparing deterministic models.

Our work may be viewed as a form of semantic differencing for ex-

ecution logs. Its complexity is independent of the non-determinism

in the models we construct. We compare logs, not models.

Finally, not in the context of logs or differencing, Classen et

al. [11] presented the featured transition systems (FTS), a variant of

transition systems for a software product line, designed to describe

the combined behavior of an entire system family consisting of

many features. Our labeled FSM syntax and semantics are similar

to that of FTS. It allows us to concisely describe many logs using a

single model. Unlike [11], we build this model from given logs.

7 CONCLUSION AND FUTUREWORK
We investigated the use of models for log differencing, to present

sound and complete, concise log comparisons. In particular, we

introduced, formally defined, and implemented two algorithms.

2KDiff takes two logs as input, and highlights k-difference between

the logs by superimposing corresponding traces as paths on the

two k-Tails FSMs. nKDiff extends the classic k-Tails algorithm: it

takes a set of n logs as input, and it outputs a single labeled FSM

that represents their differences.

We implemented both algorithms, validated them, and evaluated

their performance using logs generated from models from the liter-

ature. We conducted a user study including 60 participants, which

were given log comparison tasks. Wemeasured both the correctness

and the time required to perform each task using our approach and

two alternative tools as baselines. We have further performed a

case study to examine the use of our approach in malware analysis.

The results show that both algorithms scale well, and demonstrate

the effectiveness of the approach for the task of log comparison.

Our work is part of a larger project aiming to build tools that

help engineers make better use of execution logs. In this context, we

envision the following challenges ahead. First, our present work is

limited to identifying k-differences. It may be useful to investigate

additional notions of behavior differences that we can infer from

the logs, e.g., temporal invariants or other, extra-functional proper-

ties [29]. Second, our current approach reports all differences, but in

many cases some differences may be more important than others. A

quantitative extension that takes frequencies into consideration and

applies a statistical approach [10], may help engineers to rigorously

distinguish between significant and insignificant differences.

ACKNOWLEDGMENT
This work is partly supported by the Len Blavatnik and the Blavat-

nik Family Foundation, Blavatnik Interdisciplinary Cyber Research

Center at Tel Aviv University, and Singapore National Research

Foundation’s National Cybersecurity Research & Development Pro-

gramme (award number: NRF2016NCR-NCR001-008).

58



Using Finite-State Models for Log Differencing ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

REFERENCES
[1] Tool and supporting materials website. http://smlab.cs.tau.ac.il/xlog/#FSE18.

[2] Diffchecker. http://www.diffchecker.com.

[3] M. Acharya, T. Xie, J. Pei, and J. Xu. Mining API patterns as partial orders from

source code: from usage scenarios to specifications. In Proceedings of the 6th joint

meeting of the European Software Engineering Conference and the ACM SIGSOFT

International Symposium on Foundations of Software Engineering (ESEC/FSE),

pages 25–34, 2007.

[4] L. Bao, T.-D. B. Le, and D. Lo. Mining sandboxes: Are we there yet? In Proceedings

of the 25th IEEE International Conference on Software Analysis, Evolution and

Reengineering (SANER), pages 445–455, 2018.

[5] V. Basili. The role of controlled experiments in software engineering research. In

V. Basili, D. Rombach, K. Schneider, B. Kitchenham, D. Pfahl, and R. Selby, editors,

Empirical Software Engineering Issues. Critical Assessment and Future Directions.

Springer, Berlin, Heidelber, 2007.

[6] I. Beschastnikh, Y. Brun, J. Abrahamson, M. D. Ernst, and A. Krishnamurthy. Uni-

fying FSM-inference algorithms through declarative specification. In Proceedings

of the 35th ACM/IEEE International Conference on Software Engineering (ICSE),

pages 252–261, 2013.

[7] I. Beschastnikh, Y. Brun, J. Abrahamson, M. D. Ernst, and A. Krishnamurthy.

Using declarative specification to improve the understanding, extensibility, and

comparison of model-inference algorithms. IEEE Transation on Software Engi-

neering, 41(4):408–428, 2015.

[8] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan, and M. D. Ernst. Leveraging

existing instrumentation to automatically infer invariant-constrained models. In

Proceedings of the 19th ACM SIGSOFT Symposium on the Foundations of Software

Engineering and the 13th European Software Engineering Conference (ESEC/FSE),

pages 267–277, 2011.

[9] A. W. Biermann and J. A. Feldman. On the synthesis of finite-state machines

from samples of their behavior. IEEE Transactions on Computers, 21(6):592–597,

June 1972.

[10] N. Busany and S. Maoz. Behavioral log analysis with statistical guarantees. In

Proceedings of the 38th ACM/IEEE International Conference on Software Engineering

(ICSE), pages 877–887. ACM, 2016.

[11] A. Classen, P. Heymans, P. Schobbens, A. Legay, and J. Raskin. Model checking

lots of systems: efficient verification of temporal properties in software product

lines. In Proceedings of the 32nd ACM/IEEE International Conference on Software

Engineering (ICSE), pages 335–344, 2010.

[12] N. Cliff. Dominance statistics: Ordinal analyses to answer ordinal questions.

Psychological Bulletin, 114(3):494, 1993.

[13] J. E. Cook and A. L. Wolf. Discovering models of software processes from event-

based data. ACM Transactions on Software Engineering and Methodology (TOSEM),

7(3):215–249, 1998.

[14] M. El-Ramly, E. Stroulia, and P. G. Sorenson. From run-time behavior to usage

scenarios: an interaction-pattern mining approach. In Proceedings of the 8th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

(KDD), pages 315–324. ACM, 2002.

[15] D. Fahland, D. Lo, and S. Maoz. Mining branching-time scenarios. In Proceedings

of the 28th IEEE/ACM International Conference on Automated Software Engineering

(ASE), pages 443–453. IEEE, 2013.

[16] M. Goldstein, D. Raz, and I. Segall. Experience report: Log-based behavioral

differencing. In Proceedings of the 28th IEEE International Symposium on Software

Reliability Engineering (ISSRE), pages 282–293. IEEE Computer Society, 2017.

[17] M. Hammoudi, B. Burg, G. Bae, and G. Rothermel. On the use of delta debugging

to reduce recordings and facilitate debugging of web applications. In Proceedings

of the 10th Joint Meeting on Foundations of Software Engineering (ESEC/FSE), pages

333–344, 2015.

[18] S. Kumar, S.-C. Khoo, A. Roychoudhury, and D. Lo. Mining message sequence

graphs. In Proceedings of the 33rd ACM/IEEE International Conference on Software

Engineering (ICSE), pages 91–100, 2011.

[19] C. Lee, F. Chen, and G. Rosu. Mining parametric specifications. In Proceedings

of the 33rd ACM/IEEE International Conference on Software Engineering (ICSE),

pages 591–600, 2011.

[20] L. Li, D. Li, T. F. Bissyandé, J. Klein, Y. Le Traon, D. Lo, and L. Cavallaro. Under-

standing Android app piggybacking: A systematic study of malicious code graft-

ing. IEEE Transactions on Information Forensics and Security (T-IFS), 12(6):1269–

1284, 2017.

[21] Y. Li, Z. Yang, Y. Guo, and X. Chen. Droidbot: a lightweight UI-guided test

input generator for android. In Proceedings of the 39th ACM/IEEE International

Conference on Software Engineering Companion, pages 23–26. IEEE Press, 2017.

[22] D. Lo and S. Maoz. Scenario-based and value-based specification mining: better

together. Automated Software Engineering, 19(4):423–458, 2012.

[23] D. Lo, S. Maoz, and S.-C. Khoo. Mining modal scenario-based specifications

from execution traces of reactive systems. In Proceedings of the 22nd IEEE/ACM

International Conference on Automated Software Engineering (ASE), pages 465–468,

2007.

[24] D. Lo, L. Mariani, and M. Santoro. Learning extended FSA from software: An

empirical assessment. Journal of Systems and Software, 85(9):2063–2076, 2012.

[25] D. Lorenzoli, L. Mariani, and M. Pezzè. Automatic generation of software behav-

ioral models. In Proceedings of the 30th ACM/IEEE international Conference on

Software Engineering (ICSE), pages 501–510, 2008.

[26] M. Mäntylä, K. Petersen, T. O. A. Lehtinen, and C. Lassenius. Time pressure:

a controlled experiment of test case development and requirements review. In

Proceedings of the 33rd ACM/IEEE International Conference on Software Engineering

(ICSE), pages 83–94, 2014.

[27] S. Maoz, J. O. Ringert, and B. Rumpe. ADDiff: Semantic Differencing for Activity

Diagrams. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th

European conference on Foundations of software engineering (ESEC/FSE), pages

179–189, 2011.

[28] L. Mariani, F. Pastore, and M. Pezzè. Dynamic analysis for diagnosing integration

faults. IEEE Transactions on Software Engineering, 37(4):486–508, 2011.

[29] T. Ohmann, M. Herzberg, S. Fiss, A. Halbert, M. Palyart, I. Beschastnikh, and

Y. Brun. Behavioral resource-aware model inference. In Proceedings of the

ACM/IEEE International Conference on Automated Software Engineering (ASE),

pages 19–30, 2014.

[30] M. Pradel, P. Bichsel, and T. R. Gross. A framework for the evaluation of specifica-

tion miners based on finite state machines. In Proceedings of the IEEE International

Conference on the Software Maintenance (ICSM), pages 1–10, 2010.

[31] M. Pradel and T. R. Gross. Automatic generation of object usage specifications

from large method traces. In Proceedings of the IEEE/ACM International Conference

on Automated Software Engineering (ASE), pages 371–382. IEEE Computer Society,

2009.

[32] S. P. Reiss and M. Renieris. Encoding program executions. In Proceedings of the

23rd ACM/IEEE International Conference On Software Engineering (ICSE), pages

221–230, 2001.

[33] I. Salman, A. T. Misirli, and N. J. Juzgado. Are students representatives of profes-

sionals in software engineering experiments? In Proceedings of the 37th IEEE/ACM

International Conference on Software Engineering (ICSE), pages 666–676, 2015.

[34] N. Walkinshaw and K. Bogdanov. Inferring finite-state models with temporal

constraints. In Proceedings of the 23rd IEEE/ACM International Conference on

Automated Software Engineering (ASE), pages 248–257. IEEE, 2008.

[35] Q. Wang, Y. Brun, and A. Orso. Behavioral execution comparison: Are tests

representative of field behavior? In Proceedings of the IEEE International Confer-

ence on Software Testing, Verification and Validation (ICST), pages 321–332. IEEE

Computer Society, 2017.

[36] Q. Wang, C. Parnin, and A. Orso. Evaluating the usefulness of IR-based fault

localization techniques. In Proceedings of the 24th International Symposium on

Software Testing and Analysis (ISSTA), pages 1–11, 2015.

[37] R. Wettel, M. Lanza, and R. Robbes. Software systems as cities: a controlled

experiment. In Proceedings of the 33rd ACM/IEEE International Conference on

Software Engineering (ICSE), pages 551–560, 2011.

[38] X. Xie, Z. Liu, S. Song, Z. Chen, J. Xuan, and B. Xu. Revisit of automatic debug-

ging via human focus-tracking analysis. In Proceedings of the 38th ACM/IEEE

International Conference on Software Engineering (ICSE), pages 808–819, 2016.

[39] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das. Perracotta: mining temporal

API rules from imperfect traces. In Proceedings of the 28th ACM/IEEE International

Conference on Software Engineering (ICSE), pages 282–291, 2006.

[40] D. Zayan, M. Antkiewicz, and K. Czarnecki. Effects of using examples on struc-

tural model comprehension: a controlled experiment. In Proceedings of the 36th

ACM/IEEE International Conference on Software Engineering (ICSE), pages 955–966,

2014.

59


	Using finite-state models for log differencing
	Citation

	Abstract
	1 Introduction
	2 Example
	3 Preliminaries
	4 Using Models for Log Differencing
	4.1 2KDiff: Differencing Two Logs
	4.2 nKDiff: Differencing Many Logs
	4.3 Implementation and Validation

	5 Evaluation
	5.1 Performance Evaluation
	5.2 Controlled User Study
	5.3 Case Study

	6 Related Work
	7 Conclusion and Future Work
	References

