
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

9-2018

API method recommendation without worrying about the task-API API method recommendation without worrying about the task-API

knowledge gap knowledge gap

Qiao HUANG

Xin XIA

Zhenchang XING

David LO
Singapore Management University, davidlo@smu.edu.sg

Xinyu WANG

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
HUANG, Qiao; XIA, Xin; XING, Zhenchang; LO, David; and WANG, Xinyu. API method recommendation
without worrying about the task-API knowledge gap. (2018). Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering (ASE 2018), Montpellier, France, 2018
September 3-7. 293-304.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4297

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4297&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4297&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

API Method Recommendation without Worrying about the
Task-API Knowledge Gap

Qiao Huang
Zhejiang University

China
tkdsheep@zju.edu.cn

Xin Xia
Monash University

Australia
xin.xia@monash.edu

Zhenchang Xing
Australian National University

Australia
zhenchang.xing@anu.edu.au

David Lo
Singapore Management University

Singapore
davidlo@smu.edu.sg

Xinyu Wang
Zhejiang University

China
wangxinyu@zju.edu.cn

ABSTRACT
Developers often need to search for appropriate APIs for their
programming tasks. Although most libraries have API reference
documentation, it is not easy to find appropriate APIs due to the
lexical gap and knowledge gap between the natural language de-
scription of the programming task and the API description in API
documentation. Here, the lexical gap refers to the fact that the same
semantic meaning can be expressed by different words, and the
knowledge gap refers to the fact that API documentation mainly
describes API functionality and structure but lacks other types of
information like concepts and purposes, which are usually the key
information in the task description. In this paper, we propose an API
recommendation approach named BIKER (Bi-Information source
based KnowledgE Recommendation) to tackle these two gaps. To
bridge the lexical gap, BIKER uses word embedding technique to
calculate the similarity score between two text descriptions. In-
spired by our survey findings that developers incorporate Stack
Overflow posts and API documentation for bridging the knowledge
gap, BIKER leverages Stack Overflow posts to extract candidate
APIs for a program task, and ranks candidate APIs by considering
the query’s similarity with both Stack Overflow posts and API doc-
umentation. It also summarizes supplementary information (e.g.,
API description, code examples in Stack Overflow posts) for each
API to help developers select the APIs that are most relevant to
their tasks. Our evaluation with 413 API-related questions confirms
the effectiveness of BIKER for both class- and method-level API rec-
ommendation, compared with state-of-the-art baselines. Our user
study with 28 Java developers further demonstrates the practicality
of BIKER for API search.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’18, September 3–7, 2018, Montpellier, France
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5937-5/18/09. . . $15.00
https://doi.org/10.1145/3238147.3238191

CCS CONCEPTS
• Software and its engineering → Software development tech-
niques;

KEYWORDS
API Recommendation, API Documentation, Stack Overflow, Word
Embedding
ACM Reference Format:
QiaoHuang, Xin Xia, ZhenchangXing, David Lo, andXinyuWang. 2018. API
Method Recommendation withoutWorrying about the Task-API Knowledge
Gap. In Proceedings of the 2018 33rd ACM/IEEE International Conference on
Automated Software Engineering (ASE ’18), September 3–7, 2018, Montpellier,
France. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3238147.
3238191

1 INTRODUCTION
Application Programming Interfaces (APIs) in software libraries
(e.g., Java SDK) play an important role in modern software de-
velopment. With the help of APIs, developers can complete their
programming tasks more efficiently. However, it is not easy to be
familiar with all APIs in a large library. Thus, developers often need
to check the API documentation to learn how to use an unfamiliar
API for a programming task, and the prerequisite is that they al-
ready know which API to use but are just unfamiliar with the API.
This situation can be referred to as “known unknowns”.

However, a more practical scenario is that developers only have
the requirement of a programming task, while they do not even
know which API is worth learning (i.e., “unknown unknowns”). A
possible solution is to use the natural language description of the
programming task as a query, and use Information Retrieval (IR)
approaches to obtain some candidate APIs whose documentation is
similar to the query. However, this solution may not work well due
to the lexical gap between the query and the API documentation.
For example, given the query “How to initialize all values in an
array to false?”, the description of the most appropriate Java API
method Arrays.fill is “Assigns the specified boolean value to each
element of the specified array of booleans.”, which does not contain
any important keywords like initialize or false in the query.

Recently, a neural network-based approach called word embed-
ding [27] has been proposed to capture the semantic meaning of
different words. It represents each word by a low dimensional vec-
tor, and semantically similar words (e.g., initialize and assign, false

292

https://doi.org/10.1145/3238147.3238191
https://doi.org/10.1145/3238147.3238191
https://doi.org/10.1145/3238147.3238191

ASE ’18, September 3–7, 2018, Montpellier, France Qiao Huang, Xin Xia, Zhenchang Xing, David Lo, and Xinyu Wang

and boolean) would be close in the vector space. Ye et al. [49] lever-
aged word embedding to bridge the lexical gap between the query
of programming task and Java API documentation. However, by
replicating their study, we observe two major problems, as listed
below.

The first problem is that they investigated API recommendation
at class-level only. Given the above query example, their approach
recommends only theArrays class and developers still have to check
about 50 methods to locate Arrays.fill if they check the methods
one by one in the default order in the Arrays documentation. While
their approach can be applied for method-level recommendation,
its effectiveness is unknown.

The second problem is that even if their approach could bridge
the lexical gap, it is still difficult to find the relevant API whose
description does not share semantically similar words with the
query. For example, given the query “How to check whether a class
exists?”, the most relevant Java API method recommended by Ye
et al.’s approach is org.omg.CORBA.Object._is_a, whose descrip-
tion is “Checks whether this object is an instance of a class that
implements the given interface.”, and the similarity score between
this description and the query is 0.669, since the two sentences
have semantically similar words (e.g., class and object) or exactly
the same words. However, the truly relevant API for the query is
java.lang.Class.forName, whose description is “Returns the Class
object associated with the class with the given string name.”; its simi-
larity score with the query is only 0.377, since its description does
not contain words similar to ‘check’, ‘whether’ or ‘exists’. However,
forName can be used to “check whether a class exists”. We call such
mismatches between a task description and the API documentation
as task-API knowledge gap, and our observation is also consistent
with previous studies [23, 28, 31, 39], which pointed out that API
documentation mainly describes API functionality and structure,
but lacks other types of information (e.g., concepts or purposes).

To bridge this task-API knowledge gap, we conduct a survey with
developers from two IT companies to understand how developers
search for APIs to resolve programming tasks and the developers’
expectations on automatic API recommendation techniques. From
47 responses, we find that when developers search APIs, a typical
information seeking process is to browse a number of Stack Over-
flow (SO) questions and pick out the APIs that seem to be useful
according to the discussions. Thus, SO is often exploited as a bridge
between the programming task and the needed API(s). This is fea-
sible because SO discussions are task centric and can complement
API documentation with the missing concepts and purposes [39].
However, the decision on which API(s) to use is often not purely
based on the SO discussions, and developers may further check API
documentation to confirm the relevance of API(s). Furthermore, in
the known unknowns setting, information like API description and
code examples is crucial for determining which API(s) to use.

Inspired by this information seeking process, we propose an
automatic approach named BIKER (Bi-Information source based
KnowledgE Recommendation) which leverages both SO posts and
API documentation to recommend APIs for a programming task.
To bridge the knowledge gap, BIKER retrieves the top-k questions
from SO that are semantically similar with the query. Since these
questions and the query share similar purposes, the APIs mentioned
in the questions are also likely to resolve the programming task

in the query. In this way, we can greatly narrow down the search
space of candidate APIs. To rank the relevance of a candidate API to
the query, we consider the query’s similarity with both the SO posts
in which the candidate API is mentioned and the candidate API’s
official description. In this way, we can balance the API information
from both the API designer and user perspectives. To bridge the
lexical gap between semantically similar texts that are expressed
by different words, we follow Ye et al. [49] to use word embedding
techniques to calculate the similarity score. In addition to recom-
mending APIs, BIKER also summarizes supplementary information
like official API description and code snippets in SO posts to help
developers better understand why these APIs are recommended so
that they can select the right API(s) more easily.

To evaluate BIKER, we manually selected 413 questions from SO
that are seeking APIs to resolve programming tasks and labelled
the ground-truth APIs for these questions based on their accepted
answers. For class-level recommendation, we enrich our dataset
with the dataset published by RACK [34] which contains 150 ques-
tions and corresponding class-level APIs. Note that RACK only
supports class-level recommendation. For class-level recommen-
dation, BIKER achieves a mean reciprocal rank (MRR) and mean
average precision (MAP) of 0.692 and 0.659 respectively, and this
outperforms Ye et al.’s approach and the two state-of-the-art API
recommendation approaches RACK [34] and DeepAPI [21] by at
least 42% in MRR and 57% in MAP. For method-level recommenda-
tion, BIKER achieves an MRR and MAP of 0.573 and 0.521, and this
outperforms Ye et al.’s approach and DeepAPI [21] by 205% in MRR
and 241% in MAP. Our evaluation also confirms the importance
of SO information in API recommendation and the usefulness of
incorporating SO information and API documentation. Finally, we
conduct a user study in which 28 Java developers are divided into
four groups using different tools to answer 10 API-method-related
questions randomly sampled from the 413 questions. On average,
compared with the other three groups (i.e., web search only, using
DeepAPI and using BIKER with only API recommendation but no
supplementary information), the group using the full version of
BIKER can improve answer correctness by at least 11% and save
answering time by at least 28%.

The main contributions of this paper are:
(1) We conduct a survey of developers’ API search behavior and

expectations, which suggests the necessity of incorporating SO
posts and API documentation for effective API search.

(2) Inspired by our survey results, we propose BIKER to recom-
mend API methods by exploiting SO posts to bridge task-API
knowledge gap, and by incorporating the information from both
SO posts and API documentation for measuring API relevance
and assisting developers in selecting recommended APIs.

(3) Both our quantitative evaluation and user study show that
BIKER can help developers find the correct APIs for Java pro-
gramming tasks more efficiently and accurately, compared with
state-of-the-art baselines.

(4) We release the source code of BIKER and the dataset of our
evaluation and user study1 to help other researchers replicate
and extend our study.

1The replication package can be downloaded at: https://github.com/tkdsheep/BIKER-
ASE2018

293

API Method Recommendation without Task-API Knowledge Gap ASE ’18, September 3–7, 2018, Montpellier, France

Paper Organization. The remainder of the paper is organized as
follows.We present the survey to investigate how developers search
for APIs and their expectations of an effective API recommendation
tool in Section 2. We describe the technical details of BIKER in
Section 3.We present our experimental setup and results in Section 4
and Section 5, respectively. We present the results of our user study
in Section 6. We discuss threats to validity in Section 7. We present
related work in Section 8. We conclude the paper and mention
future work in Section 9.

2 DEVELOPERS’ EXPECTATIONS ON API
RECOMMENDATION

To gain insights into how developers search for APIs to resolve
programming tasks and the developers’ expectations on automatic
API recommendation techniques, we conducted a survey with 130
Java developers from two IT companies (both are outsourcing com-
panies with more than 2,000 employees) and received 47 replies.
Our survey includes the following questions: 1) Do you often need
to search for appropriate APIs for your programming tasks? 2)
What tools and/or resources do you usually use to search APIs?
And why do you prefer these tools and/or resources? 3) Do you
feel searching APIs on the Internet is a time-consuming task? 4)
Which granularity of API recommendation (class or method or no
preference) do you prefer? 5) What feature(s) do you expect an API
recommendation tool to support?

According to the responses, we have the following findings:

• 87% of the respondents agreed or strongly agreed that they often
need to search for appropriate APIs to resolve different program-
ming tasks during development.

• 94% of the respondents chose search engines (e.g. Google) to
perform general search, because search engines can return infor-
mation from various sources like SO, Java API documentation
and technical blogs. 74% of the respondents chose to focus search
on Q&A website (e.g., SO), because they can find similar ques-
tions whose answers often contain relevant APIs to use. 45% of
the respondents chose to directly read Java API documentation,
when they have some candidate API classes in mind and they
want to further check the documentation to decide which API
method to use.

• 76% of the respondents agreed or strongly agreed that it is time-
consuming to find appropriate APIs by searching and browsing
resources on the Internet.

• 63% of the respondents preferred that the tool should recommend
APIs at method-level. 19% preferred class-level and 18% had no
preference.

• 85% of the respondents expect the tool to directly recommend
relevant APIs for a programming task described in natural lan-
guage. 90% of these respondents suggested that the tool should
provide additional information to explain why it recommends
certain APIs and how to use them.

The survey responses suggest that apart from API documenta-
tion, SO is also an important resource for developers to search APIs.
By interviewing with several respondents, we find that a typical
API search process they adopt is to first browse several relevant SO
questions and pick out the APIs that seem to be useful in the dis-
cussions. The interviewed developers suggest that SO discussions

are usually centered on some programming tasks, which makes
it easier for them to narrow down some candidate APIs that may
support their tasks. They also suggest that if they still cannot de-
cide which API is the right choice, they will further check the APIs’
documentation or code examples.

This API search process inspires us to design BIKER that exploits
SO posts to bridge task-API knowledge gap and incorporates the
information from both SO questions and API documentation tomea-
sure the relevance of an API to the programming task description.
As suggested by developers, BIKER also summarizes supplemen-
tary API information for each recommended API to help developers
better understand what an API can do and select the right API(s)
for their tasks more easily.

3 APPROACH
Fig. 1 shows the overall framework of BIKER, which consists of
three main components: building domain-specific language models
for similarity calculation (Section 3.1), searching for relevant APIs
based on SO posts and API documentation (Section 3.2), and sum-
marizing API supplementary information (Section 3.3). Since BIKER
recommends APIs at method level by default, we also introduce
how to adapt BIKER for class-level recommendation in Section 3.4.

3.1 Building Language Models for Similarity
Calculation

To measure a query’s similarity to a SO post or an API descrip-
tion, we need to build domain-specific language models. We first
build a text corpus by extracting the text content from SO posts in
HTML pages. We remove long code snippets enclosed in HTML tag
⟨pre⟩, but keep short code fragments in ⟨code⟩ in natural language
sentences. We use NLTK package [10] to tokenize the sentence.
Note that if one is interested in a particular language or library’s
APIs, he may use a subset of SO post tagged with that library (e.g.,
Java). Using the SO corpus, we train a word embedding model using
word2vec [27]. Word embedding model provides the basic model to
measure word similarity. Then we build the word IDF (inverse doc-
ument frequency) vocabulary. A word’s IDF represents the inverse
of the number of SO posts that contain the word. We reduce each
word in the corpus to its root form (aka. stemming) using the NLTK
package [10]. Thus, the words with the same root formwill have the
same IDF value. The more posts in which a word appears, the less
likely the word carries important semantic information, and thus
its IDF is lower. We use IDF as a weight on top of word embedding
similarity. Finally, the words in API documentation would directly
use this word embedding model and IDF vocabulary, since the text
volume of SO posts is much larger than API documentation.

3.2 Searching for Relevant APIs
Our API search component has three steps: retrieving similar SO
questions to the query, detecting API entities in the SO posts, and
calculating the query’s similarity with SO posts and API descrip-
tions for ranking the relevance of candidate APIs to the query.
3.2.1 Retrieving Similar Questions. Given a query describing a
programming task, the first step is to retrieve the top-k similar
questions from SO. BIKER first transforms the text of a question’s
title and the query into two bags of words, denoted as T and Q ,
respectively. Then an asymmetric similarity score from T to Q

294

ASE ’18, September 3–7, 2018, Montpellier, France Qiao Huang, Xin Xia, Zhenchang Xing, David Lo, and Xinyu Wang

Text Corpus

API-Related
Questions

Word
Embedding

Model

Word IDF
Vocabulary

Official API
Documentation

Similar
Questions
Retrieval

Top-k
Questions

API Entities
Detection

Candidate
APIs

Ranked
List of APIs

Similarity
Score

Calculation

Query

Offline
Processing

Summarizing API
Supplementation Information

Recommended
Results

Title of Similar Questions

Code Snippets from SO Posts

Official API description

Searching
Relevant APIs

Building
Language Model

1

2

3

Figure 1: Overall framework of BIKER

is computed as a normalized, IDF-weighted sum of similarities
between words in T and all words in Q :

sim(T → Q) =

∑
w ∈T sim(w,Q) ∗ id f (w)∑

w ∈T id f (w)
(1)

where sim(w,Q) is the maximum value of sim(w,w
′

) for each word
w

′

∈ Q , and sim(w,w
′

) is the cosine similarity of the word em-
bedding vectors of w and w

′

. The asymmetric similarity score
sim(Q → T) is computed analogously, by swapping T and Q in
Equation 1. Intuitively, a word with lower IDF value would con-
tribute less to the similarity score. Finally, the similarity score be-
tweenT andQ is computed as the harmonic mean of the two asym-
metric scores:

sim(T ,Q) =
2 ∗ sim(T → Q) ∗ sim(Q → T)

sim(T → Q) + sim(Q → T)
(2)

The retrieved top-k similar questions will be used to detect candi-
date APIs for recommendation. In this paper, BIKER only retrieves
the top-50 similar questions, since retrieving too many questions
may introduce noise to the recommendation process.
3.2.2 Detecting API Entities. After retrieving the top-k similar ques-
tions, BIKER uses several heuristic rules to extract API entities from
each question’s answers. These APIs are considered as candidate
APIs for recommendation. If an API is not mentioned in any of the
top-k similar questions, it is less likely to be the right API for the
query. Thus, we do not consider all APIs of a language or library
for recommendation. In this way, a lot of irrelevant APIs would be
filtered out.

To detect API entities, we first manually checked a large num-
ber of API-related questions. We observe that an important API
mentioned by developers is often highlighted with the HTML tag
⟨code⟩ or referenced by a hyperlink to the API’s corresponding
documentation page. Thus, BIKER detects API entities using the
following two heuristics:

• BIKER checks every hyperlink in each answer and uses regular
expressions to identify the hyperlink to a library’s official API
documentation site, for example, https://docs.oracle.com for Java
API documentation. Then it uses regular expressions to detect the
full name of the corresponding API method from the hyperlink
and mark this method as a candidate API. For example, given the
hyperlink https://docs.oracle.com/javase/8/docs/api/java/lang/C
lass.html#forName(java.lang.String), it extracts the API method
java.lang.Class.forName.

• BIKER first builds a dictionary that stores the names of all APIs of
a language or library crawled from the language or library’s offi-
cial documentation site. Then it checks the plain text contained in
every HTML tag ⟨code⟩ in each answer. If the text fully matches
any API method in the dictionary, it is marked as a candidate
API. Note that in most cases, developers would omit the package
name of an API. For example, java.lang.Class.forName is usually
written as Class.forName. Thus, our dictionary only stores the
partially-qualified name of an API for string matching.

3.2.3 Calculating Similarity Score for Ranking Candidate APIs. Af-
ter obtaining a list of candidate APIs from the top-k similar ques-
tions, BIKER calculates the similarity score between each candidate
API and the query. Given an API and a query Q , their similarity
score is a combination of two scores, namely SimSO and SimDoc .
Specifically, SimSO measures the similarity between the query and
the question title T of a top-k similar question in which the API is
mentioned, and SimDoc measures the similarity between the query
and the API’s description in official API documentation.

Suppose that among all the top-k similar questions, the API is
mentioned in n questions, then SimSO is computed as:

SimSO(API ,Q) =min(1,
∑n
i=1 sim(Ti ,Q)

n
× log2 n) (3)

where sim(Ti ,Q) represents the similarity score between the query
and the title of the i-th question thatmentions theAPI, and sim(Ti ,Q)
is calculated based on Equation 2. SimSO considers two aspects.
First, the score should be related to the similarity between each
question and the query. Thus, it calculates the average of the simi-
larity score between each question’s title and the query. Second, if
the API is mentioned in multiple questions, it is more likely to be
the right API for the query. Thus, the score is further boosted based
on the number of questions. We add a logarithm transformation
log2 n to control the scale of boosting. For example, the score would
be boosted by 20% if the API is detected in 4 questions. We also
restrict that the boosted score should not exceed 1.

The SimDoc is also calculated based on Equation 2 given the
query Q and the API description D. Finally, the similarity score
between the query and the API is the harmonic mean of the corre-
sponding SimSO and SimDoc .

3.3 Summarizing API Supplementary
Information

After obtaining the ranked list of candidate APIs, BIKER summa-
rizes supplementary information for each API in the list. We do

295

https://docs.oracle.com
https://docs.oracle.com/javase/8/docs/api/java/lang/Class.html#forName(java.lang.String)
https://docs.oracle.com/javase/8/docs/api/java/lang/Class.html#forName(java.lang.String)

API Method Recommendation without Task-API Knowledge Gap ASE ’18, September 3–7, 2018, Montpellier, France

Table 1: An example of API summary

Query: run linux commands in java code
API1: java.lang.Runtime.exec
JavaDoc: Executes the specified string command in a separate process
Similar Questions
1. Run cmd commands through java
2. use cmd commands in java program
3. Unable to execute Unix command through Java code
Code Snippets
/**********code snippet 1 **********/
Process p = Runtime.getRuntime().exec(command);
/**********code snippet 2 **********/
Runtime.exec(-whatever cmd command you need to execute-)
/**********code snippet 3 **********/
String command1 = “mv $FileName /bgw/feeds/ibs/incoming/”;
Runtime.getRuntime().exec(command1);

this because our survey responses and interviews with developers
suggest that developers usually need to check more information
about API description and API usage examples to decide which
API should be chosen for their tasks. Thus, the supplementary in-
formation summarized by BIKER considers three aspects, as listed
below:
• Official API description: It presents the API designer’s official
description of an API so that API users can quickly check the
API’s functionality.

• Title of similar questions: Based on the top-k similar ques-
tions, it extracts the title of all the questions whose answers
mention the API. Then it ranks these questions by their titles’
similarity scores with the query in descending order and present
these questions titles (with hyperlinks to the corresponding web-
page). To reduce information overloading, it only presents the
top-3 questions. Thus, developers can compare question titles
with their tasks.

• Code Snippets: Based on the top-k similar questions, it checks
each question’s answers and extracts the code snippets contain-
ing the API. Specifically, given an API (e.g., Math.round), a code
snippet is extracted if it satisfies both the following conditions:
1) The number of lines of code is no more than five; 2) The API’s
class name (i.e., Math) and method name (i.e., round) are both
contained in the code snippet. The extracted code snippets are
ranked by their corresponding questions’ similarity scores with
the query in descending order. To reduce information overload-
ing, it presents only the top-3 code snippets. Thus, developers
can check these code snippets to understand how to use the API.
To better illustrate the outcome of this summarization step, Ta-

ble 1 presents an example of the summary results for the top-1
recommended API “java.lang.Runtime.exec”, given the query “run
linux commands in java code”.

3.4 Adapting BIKER for Class-Level
Recommendation

By default, BIKER recommends APIs at method-level. However,
it can be easily adapted to support class-level recommendation.
First, we need to revise the heuristic rules for detecting API en-
tities. Specifically, we change the regular expressions so that it
only extracts the API’s class name (with full path of its package)
from the hyperlink to an API documentation page. We also change
the dictionary to store all APIs’ class names for string matching.
Second, we need to change the way of calculating SimDoc in the
step of similarity score calculation. Although an API class has its
own description like an API method, we do not use it since we

observe that the description of an API class is rather long in most
cases and it usually does not contain much useful information for
specific task requirements. Thus, BIKER calculates the similarity
score between the query and the description of each method in the
class, and chooses the maximum score as the result of SimDoc for
this API class.

4 EXPERIMENTAL SETUP
In this section, we describe the experimental setup that we follow to
evaluate BIKER. The experimental environment is a laptop equipped
with Intel(R) Core(TM) i7-6700HQ CPU and 16GB RAM, running
Ubuntu 16.04 LTS (64-bit).

4.1 Data Collection and Tool Implementation
4.1.1 SO Text Corpus. We downloaded the official data dump [2]
of SO (published in: Dec 9th, 2017). As our current tool focuses on
Java API, we extracted 1,347,908 questions that are tagged with
“java”. Based on these questions and their answers, we built a text
corpus using the plain text in each post to train the word embed-
ding model and build the IDF vocabulary. We used Gensim [35]
(a python package which implements word2vec [27]) to train the
word embedding model.
4.1.2 SO Question Base. To create the knowledge base of API-
related questions for similar questions retrieval, we selected only
the questions satisfying the following criteria: 1) the question
should have positive score; and 2) at least 1 answer to the question
contains API entities and the answer’s score should be positive.
Note that the API entities mentioned in a post were automatically
detected by the heuristics described in Section 3.2.2. In this way, we
collected 125,847 questions as the knowledge base of API-related
SO questions.
4.1.3 Experimental Queries and Ground-Truth APIs. To create ex-
perimental queries for the evaluation of BIKER, we followed Ye et
al. [49] to select a small number of API-related questions satisfying
the following criteria: 1) the score of the question itself should be
at least 5. Ye et al. set this threshold to 20 but this leaves only 604
candidate questions which is too few; 2) the question’s accepted
answer should contain API entities and the answer’s score should
be positive.

In this way, we collected 3,395 questions in total. Among these
questions, we randomly selected 1,000 questions. We manually
checked each selected question’s title to remove the questions that
do not aim to search APIs for programming tasks. We examine
only the question titles because we assume that developers would
use BIKER like a search engine, and thus BIKER is not likely to
receive a query with too many words. The first author and another
PhD student independently labelled the questions to be removed.
Typical examples of questions being removed are shown below:
• The question seeks for comparison of multiple APIs (e.g., Differ-
ence between HashSet and HashMap?).

• The question seeks for the theories or algorithms behind an API
(e.g., why HashMap Values are not cast in List?)

• The question’s title contains the word like ‘this’, ‘that’ or ’it’,
which makes its purpose unclear (e.g., how to parse this string in
java?).

• The question describes an error or a bug (e.g., IP Address not
obtained in java).

296

ASE ’18, September 3–7, 2018, Montpellier, France Qiao Huang, Xin Xia, Zhenchang Xing, David Lo, and Xinyu Wang

We use Fleiss Kappa [18] to measure the agreement between
the two labelers. The Kappa value is 0.85, which indicates almost
perfect agreement. After completing the manual labeling process,
the two labelers and another post-doc discussed together their
disagreements to reach a common decision. In this way, we collected
469 questions for further inspection.

By default, for each question, all the API entities in the accepted
answer are considered as relevant APIs to resolve the question.
However, some of the API entities may not be truly helpful and some
truly helpful APIs may not be detected by our heuristic rules. Thus,
the first author and the same PhD student manually checked each
question’s title, body and its accepted answer to fix this issue. The
overall kappa value is 0.78, which indicates a substantial agreement,
and the two labelers also discussed their disagreements with the
same postdoc to reach a common decision.

Specifically, a small number of questions were removed since
they cannot be easily resolved by Java APIs. For example, in the
question “How can I set the System Time in Java?”, the accepted
answer clearly stated that Java does not have an API to do this.
For most questions, we mainly relied on each question’s accepted
answer to decide the ground truth APIs. However, since both the
two labelers have at least 3 years of Java development experience,
if the question is asking a common programming task, we also
checked the other answers to add other APIs that are also helpful
but not mentioned in the accepted answer. For example, for the
question “How to round a number to n decimal places in Java”, the
accepted answer only mentioned DecimalFormat.setRoundingMode,
but the other two APIs (i.e., Math.round and BigDecimal.setScale)
mentioned in other answers are also helpful.

After this manual labeling process, we got 413 questions along
with their ground truth APIs as the testing dataset for the evaluation
of BIKER.We use the title of these 413 questions as the query for API
search. Note that these 413 questions and their duplicate questions
were excluded from the SO question base.
4.1.4 Java API Dictionary and API Description. We downloaded the
Java SE 8 API documentation [1] and parsed the html file of each
API class to extract all API methods, along with their descriptions.
For simplicity, Java interfaces were also treated as Java classes. In
total, we extracted 4,216 classes and 31,736 methods and built a Java
API dictionary with the name of these API classes and methods.

4.2 Baseline Approaches
We compare the performance of BIKER with two baseline methods,
as listed below:

Baseline 1 (RACK): Rahman et al. [34] proposed RACK, which
constructs a keyword-API mapping database where the keywords
are extracted from SO questions and the mapped APIs are col-
lected from corresponding accepted answers. Based on this data-
base, RACK recommends a ranked list of API classes for a given
natural language query. Note that we only compare BIKER with
RACK at class-level, since RACK does not support recommendation
at method-level. Although RACK also leverages SO to bridge the
knowledge gap, it does not consider API documentation and its
technique is different from BIKER.

Baseline 2 (DeepAPI): Gu et al. [21] proposed DeepAPI, which
adapts a Recurrent Neural Network (RNN) Encoder-Decoder model.
DeepAPI encodes a word sequence (user query) into a fixed-length

context vector, and generates an API-method sequence based on
the context vector. For example, given the query “open a url”, its
first recommended result is “URL.new→URL.openConnection”. Deep-
API’s technique is different from BIKER and their knowledge base
is a large corpus of annotated API sequences extracted from code
repositories.

Note that we do not choose Ye et al.’s approach [49] as our
baseline, since it can be considered as part of BIKER. If BIKER uses
only Java API documentation, then BIKER is reduced to be the same
as Ye et al.’s approach. We also have a research question (RQ2 in
Section 5.2) to discuss the effectiveness of BIKER when using Java
API documentation only.

4.3 Evaluation Metrics
We evaluate BIKER and other baselines using MRR and MAP, which
are classical evaluation metrics for information retrieval [25]. MRR
measures how far we need to check in the recommended list to find
the first correct answer, whileMAP considers the ranks of all correct
answers. MRR and MAP are also widely used in previous software
engineering studies [24, 34, 37, 40, 45–48, 50]. In addition, we run
theWilcoxon signed-rank test [41] with Bonferroni correction [6] to
check if the differences between the performance of BIKER and the
baselines are statistically significant. We consider that one approach
performs significantly better than the other one at the confidence
level of 95% if the corresponding Wilcoxon signed-rank test result
(i.e., p-value) is less than 0.05. We also use the Cliff’s delta (δ) [15]
to quantify the amount of difference between two approaches. The
amount of difference is considered negligible (| δ |< 0.147), small
(0.147 ≤| δ |< 0.33), moderate (0.33 ≤| δ |< 0.474), or large
(| δ |≥ 0.474), respectively.

5 EXPERIMENT RESULTS
5.1 RQ1: How effective is BIKER? How much

improvement can it achieve over the
baseline methods?

Motivation. BIKER aims to automatically recommend appropriate
APIs for programming tasks described in natural language queries.
Thus, for the approach to be useful, we need to see how accurate it
is in API recommendation and how it compares with existing API
recommendation methods.
Approach. To answer this research question, we compare BIKER
with the two baselines (i.e., RACK and DeepAPI) using our testing
dataset including 413 queries and ground-truth APIs. Since RACK’s
authors have published an executable tool [4] for replication, we
directly use this tool to compare with BIKER. For DeepAPI, the
authors have deployed an online demo tool [3], which receives a
user query and presents the recommendation results on the web-
page. Thus, to compare with DeepAPI, we wrote a web-crawler to
automatically send all queries in the testing dataset one by one and
retrieve the recommendation results through HTTP requests. We
also carefully checked the JavaScript code behind the webpage to
make sure that we did the same text preprocessing for each query.
Since DeepAPI recommends API sequence, we consider an API
sequence is correct if any one of the APIs in the sequence is the
ground truth API. This makes the fair comparison with DeepAPI.
Finally, RACK’s authors also published their testing dataset, which

297

API Method Recommendation without Task-API Knowledge Gap ASE ’18, September 3–7, 2018, Montpellier, France

Table 2: Performance of BIKERand the baselinemethods for
class-level recommendation

Appraoch
Class-Level Recommendation

Our Dataset RACK’s Dataset
MRR MAP MRR MAP

BIKER 0.692 0.659 0.428 0.271
RACK 0.296 0.266 0.302 0.171

DeepAPI 0.462 0.420 0.276 0.149

Improve. RACK
134% 148% 42% 58%

p<0.001 p<0.001 p<0.001 p<0.001
| δ |=0.57 | δ |=0.59 | δ |=0.12 | δ |=0.17

Improve. DeepAPI
50% 57% 55% 82%

p<0.001 p<0.001 p<0.001 p<0.001
| δ |=0.33 | δ |=0.35 | δ |=0.28 | δ |=0.30

Table 3: Performance of BIKER and DeepAPI for method-
level recommendation

Appraoch Method-Level Recommendation (Our Dataset)
MRR MAP

BIKER 0.573 0.521
DeepAPI 0.188 0.153
Improve. 205% (p<0.001, | δ |=0.57) 241% (p< 0.001, | δ |=0.59)

contains 150 code search queries randomly chosen from several
Java tutorial sites. Thus, we also evaluate all approaches using this
dataset, which only supports class-level evaluation.
Results. Table 2 presents the performance of BIKER and the two
baselines for class-level recommendation. The results show that
BIKER significantly outperforms RACK and DeepAPI in terms of
MRR and MAP for both datasets, with an improvement of at least
42% in MRR and at least 57% in MAP.We also note that the MRR and
MAP achieved by BIKER for RACK’s dataset are relatively lower
than those achieved for our dataset. By manually checking RACK’s
dataset, we find that about 19% of its questions include ground-truth
APIs from third-party packages (e.g., MongoDB, Apache Commons,
etc.) or Java EE, which is beyond the knowledge based of our current
tool (i.e., we only consider APIs from Java SE). Except for the MRR
and MAP comparison with RACK on our dataset and for the MAP
comparison with DeepAPI on our dataset, the amount of difference
between the compared methods for other comparisons is either
small or negligible.

Table 3 presents the performance of BIKER and DeepAPI for
method-level recommendation using our dataset. RACK and RACK’s
dataset are not used since RACK only supports class-level recom-
mendation. The MRR and MAP achieved by BIKER is 0.573 and
0.521, respectively, which significantly outperforms DeepAPI by
205% in MRR and 241% in MAP. The amount of difference between
the two approaches are large for both MRR and MAP.

To sum up, BIKER significantly outperforms the two state-of-
the-art baseline methods for both class- and method-level API rec-
ommendation. The advantage of BIKER is more evident for method-
level API recommendation.

5.2 RQ2: How effective is BIKER when using
the two different information sources
individually?

Motivation. BIKER leverages both SO posts and Java API docu-
mentation to calculate the similarity score between an API and the
query. However, BIKER can still work if we only use one of the two
information sources individually. Thus, we would like to investigate
whether the combination of the two information sources results in
better or poorer performance.

Table 4: Performance of BIKER for our dataset when using
one or both information sources

Info Source Class-Level Method-Level
MRR MAP MRR MAP

Stack Overflow 0.559 0.529 0.524 0.476
Java Documentation 0.287 0.265 0.097 0.079
Both 0.692 0.659 0.573 0.521
Improve. SO 24% 25% 9% 9%
Improve. JavaDoc 141% 149% 491% 559%

Approach. To answer this research question, we evaluate the per-
formance of BIKER when using either SO posts or Java API docu-
mentation for calculating the query-API similarity score, and com-
pare that performance with the performance of BIKER using both
information sources. When using only SO, the candidate APIs are
extracted from top-k similar questions, and the similarity score of
each candidate API with the query is calculated based on only SO
questions (i.e., SimSO). When using only Java API documentation,
the list of candidate APIs is the list of all API methods (or classes) in
Java API documentation, and the similarity score of each candidate
API with the query is calculated based on Java API documentation
(i.e., SimDoc). Note that the only-Java-API-documentation setting
is essentially Ye et al.’s approach [49].
Results. Table 4 presents the performance of BIKER when using
each information source individually. In general, when combining
both information sources together, BIKER performs better than
using each information source individually. Comparing the im-
provement ratio over SO or Java documentation, we can see the
importance of SO information in BIKER. Using only SO information,
the performance is only 24% worse in MRR and 25% worse in MAP
than using both information sources for class-level recommenda-
tion, and only 9% worse in both MRR and MAP for method-level
recommendation. However, using only Java documentation, the per-
formance becomes significantly worse than using two information
sources. But using Java documentation as an additional information
source can further improve the recommendation performance than
using only SO information.

5.3 RQ3: How efficient is BIKER for practical
use?

Motivation. During the model building process, BIKER needs to
train word embedding model and build IDF vocabulary using the
corpus extracted from more than one million SO questions. This
would require substantial computational time, especially for the
word embedding model. Another time-consuming process is to
transform the title of all the 125,847 questions in question knowl-
edge base and the description of all the 31,736 API methods into
matrix representation based on each word’s embedding vector and
IDF value, so that we can compute the similarity score between the
query and the documents efficiently. During the recommending pro-
cess, given a query, BIKER needs to calculate the similarity between
this query and each question in the question base, which could also
be time-consuming. If BIKER cannot run with a reasonable runtime
performance, developers may not be willing to use it in practice.
Approach. To answer this research question, we record model
training time and query processing time of BIKER and the two
baselines using our testing dataset for class-level API recommenda-
tion. The time cost for BIKER and DeepAPI do not change under
method-level recommendation.

298

ASE ’18, September 3–7, 2018, Montpellier, France Qiao Huang, Xin Xia, Zhenchang Xing, David Lo, and Xinyu Wang

Table 5: Time cost for model training and query processing
of BIKER and the baseline methods

Approach Model Training Time Query Processing Time
BIKER 36 minutes 2.8s / query
DeepAPI 240 hours 2.6s / query
RACK unknown 12.8s / query

Results. Table 5 presents the model training time and the average
query processing time of BIKER and the two baseline methods.
As reported by DeepAPI’s authors [21], their approach takes 240
hours of model training, since their approach is based on RNN
(i.e., a deep neural network), which is computationally expensive
during training [20]. The training time cost of RACK is unknown
since it is not reported by the authors and it is not easy to replicate
the training process without RACK’s source code. BIKER takes
36 minutes to train, which is also relatively slow, and almost the
whole time cost is due to training word embedding model. The
word embedding model only needs to be trained once and it does
not need to be updated frequently since the text corpus is already
very large (i.e., extracted from 1.3 million questions). If we use pre-
trained word embedding model, we just need about 10 seconds to
transform text into matrix representation.

For the average query processing time, RACK is slowest (12.8
seconds) to process each query, while DeepAPI is the fastest (2.6
seconds). BIKER (2.8 seconds) is slightly slower than DeepAPI. The
major computation cost of BIKER for query processing is due to
the step of similar questions retrieval, where we need to compare
the query with the titles of about 120 thousand questions. To im-
prove the time efficiency, we can reduce the size of questions to be
compared with some heuristic rules (e.g., only comparing with the
question whose score is larger than k) or accelerate similarity score
computation by GPU [17].

6 USER STUDY
In this section, we conduct a user study to investigate how devel-
opers interact with BIKER and whether it can help developers find
correct APIs more efficiently and accurately.

6.1 Study Design
6.1.1 Experimental Queries and Ground-Truth APIs. To conduct
our user study, we randomly selected 10 questions from our testing
dataset, as shown in Table 6. The last column shows the ground-
truth answers, which refer to the APIs extracted from each ques-
tion’s accepted answer. Three questions (i.e., Q1, Q3 and Q10) re-
quire multiple APIs (i.e., an API sequence) to complete the program-
ming task.
6.1.2 Participants. We recruited 28 participants from both uni-
versity and IT companies. 16 of them (2 postdocs, 9 PhDs and 5
graduate students) are from the first author’s university, and 12 of
them are from two IT companies. All of them have Java developing
experience in either commercial or open source projects, and the
years of their developing experience vary from 1 year to 5 years,
with an average of 2.9 years.
6.1.3 Experimental Groups. Next, we divided the participants uni-
formly based on years of development experience into four groups,
with the following settings: 1)WSO: Find appropriate API methods
by searching and browsing resources on the Internet (i.e., Web
Search Only); 2) DeepAPI: Use DeepAPI’s online tool; 3) BIKER-
Simple:Use a simplified version of BIKER, which only recommends

the name of APIs; 4) BIKER-Full: Use the fully-featured version
of BIKER.

RACK is not evaluated since it does not support method-level rec-
ommendation and it runs much slower than DeepAPI and BIKER.
The DeepAPI, BIKER-Simple and BIKER-Full groups are also al-
lowed to search any resources on the Internet if the participants
deem the information provided by the tool is not enough to answer
the questions. Since the 10 questions were extracted from SO, to be
fair across different techniques, we instructed the participants to
ignore the 10 questions on SO when searching the Web.
6.1.4 Procedure. We deployed a simple website with 10 pages,
each corresponding to one question. When a participant clicked the
webpage of a question, a timer in the background would collect how
much time he/she spent until submitting the answer. Participants
were encouraged to complete each question without interruption
and they would explicitly inform us if there was interruption.

6.2 Results Analysis
We analyze twometrics with the user study results, as shown below:
• Correctness: This metric evaluates whether a participant can
find the correct APIs. For the question that only needs one API
method, correctness is 1 if the participant submitted the cor-
rect API, otherwise 0. For the question that needs an API se-
quence, correctness is the proportion of the correct APIs submit-
ted by the participant among all APIs in the correct API sequence.
Some questions can also be resolved using other APIs different
from the ground-truth APIs. For example, BigDecimal.setScale
or Math.round are also the correct answers for Q10. Thus, we
manually check each participants’ answers to make sure the
correctness is also 1 if they submitted the correct but not ground-
truth APIs.

• Completion time: This metric evaluates how fast a participant
can answer the question. One problem is that in some cases, the
recorded completion timemay not reflect the true effort needed to
answer the question. For example, for the DeepAPI group, while
6 participants needed at least 30 seconds to answer Q9, there is 1
participant who only spent 12 seconds. By consulting with this
participant, we found that he is a senior Java developer and he can
directly answer this question without any tool’s support. On the
other hand, we recorded more than 20 minutes completion time
for a single question for a few participants. They explained that
they were interrupted by urgent tasks or bad network condition.
To avoid the effect of outliers, for each question, we report the
median value of the time spent for each group.
Table 7 presents the results of user study. In general, participants

in BIKER-Full group performed as well as or better than the other
three groups for every question in terms of correctness, and they
were the fastest to solve six out of the ten questions. On average, the
full version of BIKER can improve correctness by at least 11% and
save the time cost by at least 28%. We also note that the correctness
of different groups vary a lot for several questions (e.g., Q3 and
Q7). By manually checking the participants’ answers, we have the
following two findings:

First, although BIKER does not recommendAPI sequences, partic-
ipants can find the necessary sequence by themselves with the help
of code snippets provided by BIKER. For example, in Q3, all partici-
pants in BIKER-Simple group only chose the first recommended API

299

API Method Recommendation without Task-API Knowledge Gap ASE ’18, September 3–7, 2018, Montpellier, France

Table 6: Ten questions and their standard answers for user study

PID StackOverflow ID Query Answers
Q1 15788453 Resolving ip-address of a hostname? InetAddress.getByName→InetAddress.getHostAddress
Q2 29259201 How to make a list thread-safe for serialization? Collections.synchronizedList
Q3 11284938 Remove trailing zeros from double? BigDecimal.stripTrailingZeroes→BigDecimal.toPlainString
Q4 33773708 How to check whether a class exists? Class.forName
Q5 10383688 Is there any way to find os name using java? System.getProperty
Q6 19486077 Java Fastest way to read through text file with 2 million lines? BufferedReader.readLine
Q7 4584541 Check if a class is subclass of another class in Java? Class.isAssignableFrom
Q8 5505927 How to generate a random permutation in Java? Collections.shuffle
Q9 10078867 How to initialize all the elements of an array to any specific value in java? Arrays.fill
Q10 153724 How to round a number to n decimal places in Java? DecimalFormat.setRoundingMode→DecimalFormat.format

Table 7: Results of user study
Metrics Group Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Average

Correctness

WSO 0.79 0.79 0.86 1.0 0.71 0.71 0.57 0.79 0.71 1.0 0.79
DeepAPI 0.79 0.86 0.64 0.86 0.86 1.0 1.0 0.86 0.86 1.0 0.87

BIKER-Simple 0.64 0.86 0.50 1.0 0.71 1.0 1.0 0.86 1.0 1.0 0.86
BIKER-Full 0.79 1.0 0.93 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.97

Completion Time

WSO 132s 74s 91s 76s 57s 97s 146s 33s 53s 82s 84s
DeepAPI 104s 93s 72s 87s 49s 44s 41s 73s 68s 21s 65s

BIKER-Simple 113s 52s 43s 72s 53s 86s 61s 59s 45s 19s 60s
BIKER-Full 81s 28s 65s 42s 44s 51s 32s 35s 29s 26s 43s

“BigDecimal.stripTrailingZeroes” as their answers, possibly because
the API’s name seems to be the right choice and the key phrase in
its documentation (i.e., with any trailing zeros removed) also seems
to meet the task requirement. However, as shown in SO post, this
API would transform a number like 600.0 into scientific notation.
To fix this issue, developers need to call BigDecimal.toPlainString
after stripping the trailing zeros. In BIKER-Full group, six out of the
seven participants chose both the two APIs as their answers, since
the code snippets with stripTrailingZeroes has clearly showed that
toPlainString should be called before printing. Such phenomenon
also appeared in the answers for Q1.

Second, in some cases, participants can find the correct APIsmore
easily or with more confidence if they have tool support. For exam-
ple, both DeepAPI and BIKER recommended Class.isAssignableFrom
as the top-1 or top-2 answer for Q7, which may help participants
narrow down the search space. On the other hand, three out of
the seven participants in WSO group submitted Class.isInstance or
instanceof (not an API but Java operator), which are both incorrect.
Actually, many developers are confused about the difference [5]
between Class.isInstance and Class.isAssignableFrom. Thus, it is not
surprising that these participants submitted Class.isInstance, which
is also “relevant” to the question, but cannot directly solve the task.

To sum up, BIKER can help developers find appropriate APIs
more efficiently and accurately. This can be attributed to its capa-
bility of effectively narrowing down candidate APIs and providing
supplementary information for understanding and selecting recom-
mended APIs.

6.3 Participants’ Comments
We encouraged the participants in BIKER-Full group to write their
comments and suggestions for BIKER after the experiment. For
the participants in the other three groups, we also showed them
the results recommended by the full version of BIKER after they
finished their tasks, and invited them to provide comments and
feedbacks too. Among all the 28 participants, 13 participants pro-
vided some comments and suggestions. Based on these comments,
we summarized several major aspects of BIKER that are liked or
disliked by participants, as shown below:

• Positive Opinions
– “Given the Javadoc and code snippets, I can easily decide whether this API is useful. I don’t

need to Google for more information in most cases, this saves me a lot of time.”
– “Since the tool recommended 5 APIs, there must be some APIs not helpful to solve the question.

However, I especially appreciate the fact that some of these unrelated APIs also inspired me
a lot. For example, in Q2, it also recommended the API for unmodifiable list and map, which
would be useful if the scenario or requirement is broadened.”

– “The code snippets is very useful. It gives memore confidence to make the final choice and
shows me how to use the API.”

• Negative Opinions
– “Although I can easily judge which API is correct with the information (like Javadoc) provided,

sometimes I still don’t know how to use it. Yes, your tool can provide code snippets for most
APIs, but some APIs are not and sometimes they are just the exact APIs I want to further check!
Is this a bug? For example, in Q6, you recommended BufferedReader.readLine as the first result,
but no code snippet provided and the javadoc is also too simple...”

– “The layout is not ideal. Sometimes it just looks like a mess, especially when every recom-
mended API has multiple code snippets with many lines.”

– “Sometimes the API name is already enough for me to judge. Why don’t youmake additional
information folded up and let me to decide read it or not by myself?”

From these comments, we can see that participants can benefit
from the supplementary information provided for each API. How-
ever, sometimes BIKER may fail to extract code snippets for some
APIs, because we only scanned the top-k similar questions. We
could improve this component by building a mapping database
which stores the API and its code snippets extracted from more
questions. Finally, as pointed out by the participants, we need to
carefully design the layout or the way we present the supplemen-
tary information to make the useful informationmore usable, which
is an important aspect of user experience to be improved.

7 THREATS TO VALIDITY
Threats to internal validity relates to the errors in the imple-
mentation of BIKER and the baseline methods. We have double
checked our code to make sure that the questions in testing dataset
are not included in the question base. For the baseline methods, we
directly used their published tools. Thus, there is little threat to the
approach implementation. The degree of participants’ carefulness
and effort spent in our user study may also affects the validity of our
user study results. To reduce this threat, we recruited participants
who express interests in our research and made the average years
of development experience in each group as uniform as possible.
Threats to external validity relates to the quality of our dataset
and generalizability of our results. To ensure the quality of our
dataset, we had two labelers to label the data and we relied on
the accepted answer to label the ground-truth APIs. Although our

300

ASE ’18, September 3–7, 2018, Montpellier, France Qiao Huang, Xin Xia, Zhenchang Xing, David Lo, and Xinyu Wang

dataset contains only 413 questions, most of these questions have a
large number of view count. Among these 413 questions, about 70%
of the questions in our dataset have their view count ranked within
top-5% and 45% of the questions are ranked within top-1% among
the 1.3 million java-tagged questions on SO. This indicates that if
BIKER can solve these questions, it can benefit a large number of
developers. We also used the dataset published by RACK to demon-
strate the effectiveness of BIKER. Another threat is that BIKER
only supports Java API recommendation. But this is an implemen-
tation limitation, rather than a methodological threat. It would not
be difficult to adapt BIKER to support API recommendation for
other programming languages, as long as we can obtain related SO
questions and API documentation.
Threats to construct validity relates to the suitability of our eval-
uation measures. We use MRR and MAP, which are classical evalu-
ation measures for information retrieval [25] and are also widely
used in previous studies in software engineering [24, 34, 37, 40, 50].

8 RELATEDWORK
API Recommendation: In addition to RACK and DeepAPI, there
are other approaches for API recommendation. McMillan et al. [26]
proposed Portfolio to find relevant functions for a code search
query from a large archive of C/C++ source code. Chan et al. [13]
further improved Portfolio by employing graph search approach.
Raghothaman et al. [33] proposed SWIM, a tool that learns common
API usage patterns from open-source code repositories and syn-
thesize idiomatic code describing the use of these APIs. In general,
these methods do not leverage information from Q&A websites
like SO or do not incorporate information from SO and API doc-
umentation. We do not choose them as baselines since they have
been reported as less optimal than RACK or DeepAPI. On the other
hand, a number of previous studies (e.g., [7, 12, 14, 22, 29, 51] have
proposed different approaches to recommend code snippets for
a programming task described in natural language. We did not
compare BIKER with these approaches since we focus more on
the recommendation of a specific API, which is different from the
granularity of code snippet recommendation.
Empirical Studies on Developers’ Behaviors: In this paper, we
conducted a survey to investigate developers’ API search behav-
iors and expectations. A number of previous studies also focused
on developers’ behaviors and some of their findings are relevant
to ours [8, 11, 16, 36, 43, 44]. For example, in a study involving
twenty developers, Duala-Ekoko and Robillard [16] identified dif-
ferent types of questions that are commonly asked by developers
when working with unfamiliar APIs and they analyzed the cause
of the difficulties when answering questions about the use of APIs.
Sadowski et al. [36] investigated how developers search for code
through a case study at Google. They found that developers search
for code very frequently and generally seek answers to questions
about how to use an API. Brandt et al. [11] observed that developers
mostly leverage online resources for just-in-time learning of new
skills, and to clarify or remind themselves of existing knowledge.
Our survey serves as a complement to these studies, since we focus
on developers’ API search behaviors and we reveal the information
seeking process when developers perform API search.
Mining API Usages: Many studies focused on mining API usages
to help developers learn how to use an API. Moreno et al. [28]

proposed MUSE for mining and ranking actual code examples that
show how to use a specific method. MUSE combines static slicing
with clone detection, and uses heuristics to select and rank the code
examples in terms of reusability, understandability, and popularity.
Petrosyan et al. [31] proposed an approach to discover tutorial
sections that explain a given API type. Treude et al. [39] proposed an
approach to automatically augment API documentation with usage
insights extracted from SO. Jiang et al. [23] proposed FRAPT, an
unsupervised approach for discovering relevant tutorial fragments
for APIs. Nguyen et al. [30] proposed API2VEC which uses word
embedding to infer the semantic relations between APIs. Our work
is a complement to these studies, since they assume that developers
already know the name of an API for further investigation. These
approaches could be integrated in BIKER to improve the quality of
the supplementary information for the recommended APIs.
Mining Developer Forums: Researchers leveraged the rich re-
sources in developer forums to build tools for software engineering.
Barua et al. [9] used topic model to discover main topics discussed
in SO, as well as their relationships and trends over time. Treude
et al.’s study [38] on how programmers ask and answer questions
on the web found that Q&A websites are particularly effective at
code reviews and conceptual questions. Gao et al. [19] proposed an
approach to automatically fix recurring crash bugs by retrieving a
list of Q&A pages to generate edit scripts. Wong et al. [42] proposed
an approach to automatically generate code comments by mining
comments extracted from Q&A sites. Ponzanelli et al. [32] proposed
Prompter to automatically generate queries based on code context,
and retrieve pertinent discussions from SO. Our work also leverages
developer discussions in SO, but we focus on recommending APIs
for programming tasks.

9 CONCLUSION AND FUTUREWORK
In this paper, we propose BIKER to automatically recommend rele-
vant APIs for a programming task described in natural language.
Inspired by the information seeking process of developers, we lever-
age both Stack Overflow posts and API documentation to improve
the effectiveness of BIKER, and summarize supplementary infor-
mation for each recommended API to help developers better under-
stand the API usage and determine their relevance to the query task.
The evaluation with both our dataset and RACK’s dataset confirms
the effectiveness of BIKER. Our user study demonstrates that BIKER
can help developers find the appropriate APIs more efficiently and
accurately in practice. In the future, we will develop an automatic
tool (e.g., a plugin in a web browser or IDE) to enable developers to
use BIKER to search APIs for programming tasks. We will further
improve the performance of BIKER and the interaction design of
our tool as suggested by the participants in user study. Finally, we
will extend BIKER to support more programming languages.

ACKNOWLEDGMENTS
We would like to thank Rahman et al. and Gu et al. for sharing their
tools and dataset. We also appreciate the reviewers for their insight-
ful comments to help us improve this paper. Xin Xia and Xinyu
Wang are the corresponding authors. This research was partially
supported by the National Key Research and Development Program
of China (2018YFB1003904) and NSFC Program (No. 61602403).

301

API Method Recommendation without Task-API Knowledge Gap ASE ’18, September 3–7, 2018, Montpellier, France

REFERENCES
[1] 2017. Java SE 8 API documentation downloading site. http://www.oracle.com/t

echnetwork/java/javase/documentation/jdk8-doc-downloads-2133158.html.
[2] 2017. Stack Overflow Data Dump. https://archive.org/download/stackexchange.
[3] 2018. DeepAPI’s online demo. http://www.cse.ust.hk/~xguaa/deepapi/tooldemo.

html.
[4] 2018. RACK’s dataset and tool demo. http://homepage.usask.ca/~masud.rahman/

rack/.
[5] 2018. Stack Overflow question: Class.isInstance vs Class.isAssignableFrom.

https://stackoverflow.com/questions/3949260/java-class-isinstance-vs-class-i
sassignablefrom.

[6] Hervé Abdi. 2007. Bonferroni and Šidák corrections for multiple comparisons.
Encyclopedia of measurement and statistics 3 (2007), 103–107.

[7] Miltos Allamanis, Daniel Tarlow, Andrew Gordon, and Yi Wei. 2015. Bimodal
modelling of source code and natural language. In International Conference on
Machine Learning. 2123–2132.

[8] Lingfeng Bao, Zhenchang Xing, Xin Xia, David Lo, and Ahmed E Hassan. 2018.
Inference of development activities from interaction with uninstrumented appli-
cations. Empirical Software Engineering 23, 3 (2018), 1313–1351.

[9] Anton Barua, Stephen W Thomas, and Ahmed E Hassan. 2014. What are devel-
opers talking about? an analysis of topics and trends in stack overflow. Empirical
Software Engineering 19, 3 (2014), 619–654.

[10] Steven Bird and Edward Loper. 2004. NLTK: the natural language toolkit. In
Proceedings of the ACL 2004 on Interactive poster and demonstration sessions.
Association for Computational Linguistics, 31.

[11] Joel Brandt, Philip J Guo, Joel Lewenstein, Mira Dontcheva, and Scott R Klemmer.
2009. Two studies of opportunistic programming: interleaving web foraging,
learning, and writing code. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 1589–1598.

[12] Brock Angus Campbell and Christoph Treude. 2017. NLP2Code: Code snippet
content assist via natural language tasks. In Software Maintenance and Evolution
(ICSME), 2017 IEEE International Conference on. IEEE, 628–632.

[13] Wing-Kwan Chan, Hong Cheng, and David Lo. 2012. Searching connected API
subgraph via text phrases. In Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering. ACM, 10.

[14] Shaunak Chatterjee, Sudeep Juvekar, and Koushik Sen. 2009. Sniff: A search en-
gine for java using free-form queries. In International Conference on Fundamental
Approaches to Software Engineering. Springer, 385–400.

[15] Norman Cliff. 2014. Ordinal methods for behavioral data analysis. Psychology
Press.

[16] EkwaDuala-Ekoko andMartin P Robillard. 2012. Asking and answering questions
about unfamiliar APIs: An exploratory study. In Software Engineering (ICSE), 2012
34th International Conference on. IEEE, 266–276.

[17] Kayvon Fatahalian, Jeremy Sugerman, and Pat Hanrahan. 2004. Understanding
the efficiency of GPU algorithms for matrix-matrix multiplication. In Proceedings
of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware. ACM,
133–137.

[18] Joseph L Fleiss. 1971. Measuring nominal scale agreement among many raters.
Psychological bulletin 76, 5 (1971), 378.

[19] Qing Gao, Hansheng Zhang, Jie Wang, Yingfei Xiong, Lu Zhang, and Hong Mei.
2015. Fixing recurring crash bugs via analyzing q&a sites (T). In Automated
Software Engineering (ASE), 2015 30th IEEE/ACM International Conference on.
IEEE, 307–318.

[20] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. 2016. Deep
learning. Vol. 1. MIT press Cambridge.

[21] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2016. Deep
API learning. In Proceedings of the 2016 24th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering. ACM, 631–642.

[22] Tihomir Gvero and Viktor Kuncak. 2015. Interactive synthesis using free-form
queries. In Software Engineering (ICSE), 2015 IEEE/ACM 37th IEEE International
Conference on, Vol. 2. IEEE, 689–692.

[23] He Jiang, Jingxuan Zhang, Zhilei Ren, and Tao Zhang. 2017. An unsupervised
approach for discovering relevant tutorial fragments for APIs. In Proceedings of
the 39th International Conference on Software Engineering. IEEE Press, 38–48.

[24] An Ngoc Lam, Anh Tuan Nguyen, Hoan Anh Nguyen, and Tien N Nguyen. 2015.
Combining deep learning with information retrieval to localize buggy files for
bug reports (n). In Automated Software Engineering (ASE), 2015 30th IEEE/ACM
International Conference on. IEEE, 476–481.

[25] Christopher D Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008. Intro-
duction to Information Retrieval. Cambridge University Press.

[26] Collin McMillan, Mark Grechanik, Denys Poshyvanyk, Qing Xie, and Chen Fu.
2011. Portfolio: finding relevant functions and their usage. In Proceedings of the
33rd International Conference on Software Engineering. ACM, 111–120.

[27] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems. 3111–3119.

[28] Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and
Andrian Marcus. 2015. How can I use this method?. In Software Engineering

(ICSE), 2015 IEEE/ACM 37th IEEE International Conference on, Vol. 1. IEEE, 880–
890.

[29] Anh Tuan Nguyen, Peter C Rigby, Thanh Van Nguyen, Mark Karanfil, and Tien N
Nguyen. 2017. Statistical translation of English texts to API code templates.
In Software Engineering Companion (ICSE-C), 2017 IEEE/ACM 39th International
Conference on. IEEE, 331–333.

[30] Trong Duc Nguyen, Anh Tuan Nguyen, Hung Dang Phan, and Tien N Nguyen.
2017. Exploring API embedding for API usages and applications. In Software
Engineering (ICSE), 2017 IEEE/ACM 39th International Conference on. IEEE, 438–
449.

[31] Gayane Petrosyan, Martin P Robillard, and Renato De Mori. 2015. Discovering
information explaining API types using text classification. In Software Engineering
(ICSE), 2015 IEEE/ACM 37th IEEE International Conference on, Vol. 1. IEEE, 869–
879.

[32] Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and
Michele Lanza. 2014. Mining StackOverflow to turn the IDE into a self-confident
programming prompter. In Proceedings of the 11th Working Conference on Mining
Software Repositories. ACM, 102–111.

[33] Mukund Raghothaman, Yi Wei, and Youssef Hamadi. 2016. SWIM: Synthesizing
What I Mean-Code Search and Idiomatic Snippet Synthesis. In Software Engineer-
ing (ICSE), 2016 IEEE/ACM 38th International Conference on. IEEE, 357–367.

[34] Mohammad Masudur Rahman, Chanchal K Roy, and David Lo. 2016. Rack:
Automatic api recommendation using crowdsourced knowledge. In Software
Analysis, Evolution, and Reengineering (SANER), 2016 IEEE 23rd International
Conference on, Vol. 1. IEEE, 349–359.

[35] Radim Řehůřek and Petr Sojka. 2010. Software Framework for Topic Modelling
with Large Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges
for NLP Frameworks. ELRA, Valletta, Malta, 45–50. http://is.muni.cz/publication
/884893/en.

[36] Caitlin Sadowski, Kathryn T Stolee, and Sebastian Elbaum. 2015. How developers
search for code: a case study. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering. ACM, 191–201.

[37] Ripon K Saha, Matthew Lease, Sarfraz Khurshid, and Dewayne E Perry. 2013.
Improving bug localization using structured information retrieval. In Automated
Software Engineering (ASE), 2013 IEEE/ACM 28th International Conference on. IEEE,
345–355.

[38] Christoph Treude, Ohad Barzilay, and Margaret-Anne Storey. 2011. How do
programmers ask and answer questions on the web?: Nier track. In Software
Engineering (ICSE), 2011 33rd International Conference on. IEEE, 804–807.

[39] Christoph Treude and Martin P Robillard. 2016. Augmenting api documentation
with insights from stack overflow. In Software Engineering (ICSE), 2016 IEEE/ACM
38th International Conference on. IEEE, 392–403.

[40] MingWen, RongxinWu, and Shing-Chi Cheung. 2016. Locus: Locating bugs from
software changes. In Automated Software Engineering (ASE), 2016 31st IEEE/ACM
International Conference on. IEEE, 262–273.

[41] Frank Wilcoxon. 1945. Individual comparisons by ranking methods. Biometrics
bulletin 1, 6 (1945), 80–83.

[42] Edmund Wong, Jinqiu Yang, and Lin Tan. 2013. Autocomment: Mining question
and answer sites for automatic comment generation. In Automated Software
Engineering (ASE), 2013 IEEE/ACM 28th International Conference on. IEEE, 562–
567.

[43] Xin Xia, Lingfeng Bao, David Lo, Pavneet Singh Kochhar, Ahmed E Hassan, and
Zhenchang Xing. 2017. What do developers search for on the web? Empirical
Software Engineering 22, 6 (2017), 3149–3185.

[44] Xin Xia, Lingfeng Bao, David Lo, Zhenchang Xing, Ahmed E Hassan, and Shan-
ping Li. 2017. Measuring program comprehension: A large-scale field study with
professionals. IEEE Transactions on Software Engineering (2017).

[45] Xin Xia and David Lo. 2017. An effective change recommendation approach for
supplementary bug fixes. Automated Software Engineering 24, 2 (2017), 455–498.

[46] Bowen Xu, Zhenchang Xing, Xin Xia, and David Lo. 2017. AnswerBot: automated
generation of answer summary to developersź technical questions. In Proceedings
of the 32nd IEEE/ACM International Conference on Automated Software Engineering.
IEEE Press, 706–716.

[47] Bowen Xu, Zhenchang Xing, Xin Xia, David Lo, Qingye Wang, and Shanping Li.
2016. Domain-specific cross-language relevant question retrieval. In Proceedings
of the 13th International Conference on Mining Software Repositories. ACM, 413–
424.

[48] Xinli Yang, David Lo, Xin Xia, Lingfeng Bao, and Jianling Sun. 2016. Combining
word embedding with information retrieval to recommend similar bug reports.
In 2016 IEEE 27th International Symposium on Software Reliability Engineering
(ISSRE). IEEE, 127–137.

[49] Xin Ye, Hui Shen, Xiao Ma, Razvan Bunescu, and Chang Liu. 2016. From word
embeddings to document similarities for improved information retrieval in soft-
ware engineering. In Proceedings of the 38th international conference on software
engineering. ACM, 404–415.

[50] Motahareh Bahrami Zanjani, Huzefa Kagdi, and Christian Bird. 2016. Automati-
cally recommending peer reviewers in modern code review. IEEE Transactions
on Software Engineering 42, 6 (2016), 530–543.

302

http://www.oracle.com/technetwork/java/javase/documentation/jdk8-doc-downloads-2133158.html
http://www.oracle.com/technetwork/java/javase/documentation/jdk8-doc-downloads-2133158.html
https://archive.org/download/stackexchange
http://www.cse.ust.hk/~xguaa/deepapi/tooldemo.html
http://www.cse.ust.hk/~xguaa/deepapi/tooldemo.html
http://homepage.usask.ca/~masud.rahman/rack/
http://homepage.usask.ca/~masud.rahman/rack/
https://stackoverflow.com/questions/3949260/java-class-isinstance-vs-class-isassignablefrom
https://stackoverflow.com/questions/3949260/java-class-isinstance-vs-class-isassignablefrom
http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en

ASE ’18, September 3–7, 2018, Montpellier, France Qiao Huang, Xin Xia, Zhenchang Xing, David Lo, and Xinyu Wang

[51] Hongyu Zhang, Anuj Jain, Gaurav Khandelwal, Chandrashekhar Kaushik, Scott
Ge, and Wenxiang Hu. 2016. Bing developer assistant: improving developer
productivity by recommending sample code. In Proceedings of the 2016 24th ACM

SIGSOFT International Symposium on Foundations of Software Engineering. ACM,
956–961.

303

	API method recommendation without worrying about the task-API knowledge gap
	Citation

	Abstract
	1 Introduction
	2 Developers' Expectations on API Recommendation
	3 Approach
	3.1 Building Language Models for Similarity Calculation
	3.2 Searching for Relevant APIs
	3.3 Summarizing API Supplementary Information
	3.4 Adapting BIKER for Class-Level Recommendation

	4 Experimental Setup
	4.1 Data Collection and Tool Implementation
	4.2 Baseline Approaches
	4.3 Evaluation Metrics

	5 Experiment Results
	5.1 RQ1: How effective is BIKER? How much improvement can it achieve over the baseline methods?
	5.2 RQ2: How effective is BIKER when using the two different information sources individually?
	5.3 RQ3: How efficient is BIKER for practical use?

	6 User Study
	6.1 Study Design
	6.2 Results Analysis
	6.3 Participants' Comments

	7 Threats to Validity
	8 Related Work
	9 Conclusion and Future Work
	Acknowledgments
	References

