
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

7-2018

Deep specification mining Deep specification mining

Tien-Duy B. LE
Singapore Management University, btdle.2012@phdis.smu.edu.sg

David LO
Singapore Management University, davidlo@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
LE, Tien-Duy B. and LO, David. Deep specification mining. (2018). ISSTA 2018: Proceedings of the 27th
ACM SIGSOFT International Symposium on Software Testing and Analysis Amsterdam, Netherlands, July
16-18. 106-117.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4294

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4294&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4294&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Deep Specification Mining
Tien-Duy B. Le

School of Information Systems
Singapore Management University, Singapore

btdle.2012@smu.edu.sg

David Lo
School of Information Systems

Singapore Management University, Singapore
davidlo@smu.edu.sg

ABSTRACT
Formal specifications are essential but usually unavailable in soft-
ware systems. Furthermore, writing these specifications is costly
and requires skills from developers. Recently, many automated
techniques have been proposed to mine specifications in various
formats including finite-state automaton (FSA). However, more
works in specification mining are needed to further improve the
accuracy of the inferred specifications.

In this work, we propose Deep Specification Miner (DSM), a
new approach that performs deep learning for mining FSA-based
specifications. Our proposed approach uses test case generation to
generate a richer set of execution traces for training a Recurrent
Neural Network Based Language Model (RNNLM). From these
execution traces, we construct a Prefix Tree Acceptor (PTA) and
use the learned RNNLM to extract many features. These features
are subsequently utilized by clustering algorithms to merge similar
automata states in the PTA for constructing a number of FSAs.
Then, our approach performs a model selection heuristic to estimate
F-measure of FSAs and returns the one with the highest estimated F-
measure. We execute DSM to mine specifications of 11 target library
classes. Our empirical analysis shows that DSM achieves an average
F-measure of 71.97%, outperforming the best performing baseline
by 28.22%. We also demonstrate the value of DSM in sandboxing
Android apps.

CCS CONCEPTS
• Software and its engineering→ Dynamic analysis;

KEYWORDS
Specification Mining, Deep Learning

ACM Reference Format:
Tien-Duy B. Le and David Lo. 2018. Deep Specification Mining. In Pro-
ceedings of 27th ACM SIGSOFT International Symposium on Software Test-
ing and Analysis (ISSTA’18). ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3213846.3213876

1 INTRODUCTION
Due to rapid evolution to meet demands of clients, software ap-
plications and libraries are often released without documented

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5699-2/18/07. . . $15.00
https://doi.org/10.1145/3213846.3213876

specifications. Even when formal specifications are available, they
may become outdated as software systems quickly evolve [51] in a
short period of time. Finally, writing formal specifications requires
necessary skill and motivation from developers, as this is a costly
and time consuming process [23]. Furthermore, the lack of speci-
fications negatively impacts the maintainability and reliability of
systems. With no documented specifications, developers may find it
difficult to comprehend a piece of code and software is more likely
to have bugs due to mistaken assumptions. Furthermore, developers
cannot utilize state-of-the-art bug finding and testing tools that
need formal specifications as an input [10, 37].

Recently, many automated approaches have been proposed to
help developers reduce the cost of manually drafting formal speci-
fications [6, 13, 24, 26, 33]. In this work, we focus on the family of
specification mining algorithms that infer finite-state automaton
(FSA) based specifications from execution traces. Krka et al. [24]
and many other researchers have proposed various FSA-mining
approaches that have improved the quality of inferred FSA models
as compared to prior solutions. Nevertheless, the quality of mined
specifications is not perfect yet, and more works need to be done to
make specification mining better. In fact, FSA based specification
miners still suffer from many issues. For instance, if methods in
input execution traces frequently occur in a particular order or the
amount of input traces is too small, FSAs inferred by k-tails [7]
and many other algorithms are likely to return FSAs that are not
generalized and overfitted to the input execution traces.

To mine more accurate FSA models, we propose a new speci-
fication mining algorithm that performs deep learning on execu-
tion traces. We name our approach DSM which stands for Deep
Specification Miner. Our approach takes as input a target library
class C and employs an automated test case generation tool to gen-
erate thousands of test cases. The goal of this test case generation
process is to capture a richer set of valid sequences of invoked
methods of C . Next, we perform deep learning on execution traces
of generated test cases to train a Recurrent Neural Network Lan-
guage Model (RNNLM) [39]. After this step, we construct a Prefix
Tree Acceptor (PTA) from the execution traces and leverage the
learned language model to extract a number of interesting features
from PTA’s nodes. These features are then input to clustering al-
gorithms for merging similar states (i.e., PTA’s nodes). The output
of an application of a clustering algorithm is a simpler and more
generalized FSA that reflects the training execution traces. Finally,
our approach predicts the accuracy of constructed FSAs (generated
by different clustering algorithms considering different settings)
and outputs the one with highest predicted value of F-measure.

We evaluate our proposed approach for 11 target library classes
which were used before to evaluate many prior work [24, 26]. For
each of the input class, we first run Randoop to generate thousands
of test cases. Then, we use execution traces generated by running

106

https://doi.org/10.1145/3213846.3213876
https://doi.org/10.1145/3213846.3213876
https://doi.org/10.1145/3213846.3213876

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Tien-Duy B. Le and David Lo

these test cases to infer FSAs. Our experiments show that DSM
achieves an average F-measure of 71.97%. Compared to other exist-
ing specification mining algorithms, our approach outperforms all
baselines that construct FSAs from execution traces (e.g., k-tails [7],
SEKT [24], TEMI [24], etc.) by at least 28.22%. Some of the baselines
first use Daikon to learn invariants that are then used to infer a
better FSA. Our approach does not use Daikon invariants in the
inference of FSAs. Excluding baselines that use Daikon invariants,
our approach can outperform the remaining best performing miner
by 33.24% in terms of average F-measure.

Additionally, we assess the applicability of FSAs mined by DSM
in detecting malicious behaviors in Android apps. We propose a
technique that leverages a FSA output by DSM mining algorithm as
a behavior model to construct an Android sandbox. Our technique
outputs a comprehensive sandbox that considers execution context
of sensitive API methods to better protect app users. Our compar-
ative evaluation finds that our technique can increase the True
Positive Rate of Boxmate [21], a state-of-the-art sandbox mining
approach, by 15.69%, while only increasing False Positive Rate by
4.52%. Replacing DSM with the best performing applicable baseline
results in a sandbox that can achieve a similar True Positive Rate (as
DSM) but substantially worse False Positive Rate (i.e., False Positive
Rate increases by close to 10%). The results indicate it is promising
to employ FSAs mined by DSM to create more effective Android
sandboxes.

The contributions of our work are highlighted below:
(1) We propose DSM (Deep Specification Miner), a new specifica-

tion mining algorithm that utilizes test case generation, deep
learning, clustering, and model selection strategy to infer FSA
based specifications. To the best of our knowledge, we are the
first to use deep learning for mining specifications.

(2) We evaluate the effectiveness of DSM on 11 different target
library classes. Our results show that our approach outperforms
the best baseline by a substantial margin in terms of average
F-measure.

(3) We propose a technique that employs a FSA inferred by DSM
to construct a more comprehensive sandbox that considers
execution context of sensitive API methods. Our evaluation
shows that our proposed technique can outperform several
baselines by a substantial margin in terms of either True Positive
Rate or False Positive Rate.
The remainder of this paper is structured as follows. Section 2

highlights background materials. Sections 3 and 4 present DSM
and its evaluation. Section 5 presents our proposed technique that
employs a FSA inferred by DSM for detecting malicious behaviors
in Android apps, along with its evaluation. We discuss threats to
validity and related works in Section 6 and Section 7, respectively.
Finally, we conclude and mention future work in Section 8.

2 BACKGROUND
Statistical Language Model: A statistical language model is an
oracle that can foresee how likely a sentence s = w1,w2, . . . ,wn
to occur in a language. In a nutshell, a statistical language model
considers a sequence s to be a list of words w1,w2, ...,wn and as-
signs probability to s by computing joint probability of words:
P(w1, . . . ,wn) =

∏n−1
i=1 P(wi |w1, . . . ,wi−1). As it is challenging to

i0

o0

i1

o1

i2

o2

i3

o3

<START> STN NT HMTF

Output Layer

Hidden Layer

Input Layer

STN NT HMTF <END>

t0 t1 t2 t3time

Figure 1: An unrolled Recurrent Neural Network from time
t0 to t3 for predicting the next likely method given a se-
quence of invoked methods for java.util.StringTokenizer.
“STN” : StringTokenizer(), “NT” : nextToken(), and
“HMTF” : hasMoreTokens()==false.

compute conditional probability P(wi |w1, . . . ,wi−1), each differ-
ent language model has its own assumption to approximate the
calculation. N-grams model, a popular family of language mod-
els, approximates in a way that a wordwk conditionally depends
only on its previous N words (i.e., wk−N+1, . . . ,wk−1). For exam-
ple, unigram model simply estimates P(wi |w1, . . . ,wi−1) as P(wi),
bigram model approximates P(wi |w1, . . . ,wi−1) as P(wi |wi−1), etc.
In this work, we utilize the ability of language models to compute
P(wi |w1, . . . ,wi−1) for estimating features of automaton states. We
consider every method invocation as a word and an execution trace
of an object as a sentence (i.e., sequence of method invocations).
Given a sequence of previously invokedmethods, we use a language
model to output the probability of a method to be invoked next.

Recurrent Neural Network Based Language Model: Recently,
a family of language models that make use of neural networks is
shown to be more effective than n-grams [38]. These models are
referred to as neural network based language models (NNLM). If
a NNLM has many hidden layers, we refer to the model as a deep
neural network language model or deep language model for short.
Among these deep language models, Recurrent Neural Network
Based Language Model (RNNLM) [39] is well-known with its ability
to use internal memories to handle sequences of words with arbi-
trary lengths. The underlying network architecture of a RNNLM
is a Recurrent Neural Network (RNN) that stores information of
input word sequences in its hidden layers. Figure 1 demonstrates
how a RNN operates given the sequence <START>, STN, NT, HMTF,
<END>. In the figure, a RNN is unrolled to become four connected
networks, each of which is processing one input method at a time
step. Initially, all states in the hidden layer are assigned to zeros. At
time tk , a methodmk is represented as an one-hot vector ik by the
input layer. Next, the hidden layer updates its states by using the
vector ik and the states previously computed at time tk−1. Then, the
output layer estimates a probability vector ok across all methods for
them to appear in the next time step tk+1. This process is repeated
at subsequent time steps until the last method in the sequence is
handled.

107

Deep Specification Mining ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

3 PROPOSED APPROACH
Figure 2 shows the overall framework of our proposed approach.
In our framework, there are three major processes: test case gener-
ation and traces collection, Recurrent Neural Network Based Lan-
guage Model (RNNLM) learning, and automata construction. Our
approach takes as input a target class and signatures of methods.
Then, DSM runs Randoop [42] to generate a substantial number of
test cases for the input target class. Then, we record the execution
of these test cases, and retain traces of invocations of methods of
the input target class as the training dataset. Next, our approach
performs deep learning on the collected traces to infer a RNNLM
that is capable of predicting the next likely method to be executed
given a sequence of previously called methods. We choose RNNLM
over traditional probabilistic language models since past studies
show its superiority [39, 44].

Subsequently, we employ a heuristic to select a subset of traces
that best represents the whole training dataset. From these traces,
we construct a Prefix Tree Acceptor (PTA); we refer to each PTA’s
node as an automaton state. We select the subset of traces in
order to optimize the performance when constructing PTA, but
still maintaining accuracy of inferred FSAs. Utilizing the inferred
RNNLM, we extract a number of features from automaton states,
and input the feature values to a number of clustering algorithms
(i.e., k-means [35] and hierarchical clustering [43]) considering
different settings (e.g., different number of clusters). The output of
a clustering algorithm are clusters of similar automaton states. We
use these clusters to create a new FSA by merging states that belong
to the same cluster. Every application of a clustering algorithm with
a particular setting results in a different FSA. We propose a model
selection strategy to heuristically select the most accurate model
by predicting values of Precision, Recall, and F-measure. Finally,
we output the FSA with highest predicted F-measure.

3.1 Test Case Generation and Trace Collection
This process plays an important role to our approach as it decides
the quality of RNNLM inferred by the deep learning process. Previ-
ous research works in specification mining [24, 26, 27] collect traces
from the execution of a program given unit test cases or inputs
manually created by researchers. In this work, we utilize deep learn-
ing for mining specification. Deep learning requires a substantially
large and rich amount of data. The more training inputs, the more
patterns the resultant RNNLM can capture. In general, it is difficult
to follow previous works to collect a rich enough set of execution
traces for an arbitrary target library class. Firstly, it is challenging
to look for all projects that use the target library class, especially
for classes from new or unreleased libraries. Secondly, existing unit
test cases or manually created inputs may not cover many of the
possible execution scenarios of methods in a target class.

We address the above issues by following Dallmeier et al. [11, 12]
to generate as many test cases as possible for mining specifications,
and collect the execution traces of these test cases for subsequent
steps. Recently, many test case generation tools have been proposed
such as Randoop1 [42], EvoSuite2 [16], etc. Among the state-of-
the-art test case generation tools, we choose Randoop because

1https://randoop.github.io/randoop/
2http://www.evosuite.org/

it is widely used and lightweight. Furthermore, Randoop is well
maintained and frequently updated with new versions. As future
work, we plan to integrate many other test case generation methods
into our approach.

Randoop generates a large number of test cases, which is pro-
portional to the time limit of its execution. In order to improve
the coverage of possible sequences of methods under test, we pro-
vide class-specific literals aside from default ones to Randoop. For
example, for java.net.Socket, we create string and integer liter-
als which are addresses of hosts (e.g., “localhost”, “127.0.0.1”, etc.)
and listening ports (e.g., 8888, etc.). Furthermore, we create dri-
ver classes that contain static methods that invoke constructors
of the target class to initialize new objects. That helps speed up
Randoop to create new objects without spending time to search for
appropriate input values for constructors.

3.2 Learning RNNLM for Specification Mining
3.2.1 Construction of Training Method Sequences. Our set of

collected execution traces is a series of method sequences. Each of
these sequences starts and ends with two special symbols: <START>
and <END>, respectively. These symbols are used for separating two
different sequences. We gather all sequences together to create data
for training Recurrent Neural Networks. Furthermore, we limit the
maximum frequency of a method sequence MAX_SEQ_FREQ to 10
to prevent imbalanced data issue where a sequence appears much
more frequently than the other ones.

3.2.2 Model Training. We perform deep learning on the train-
ing data to learn a Recurrent Neural Network Based Language
Model (RNNLM) for every target library class. By default, we use
Long Short-Term Memory (LSTM) network [20], one of the state-
of-the-art RNNs, as the underlying architecture of the RNNLM.
Compared to the standard RNN architecture, LSTM is better in
learning long-term dependencies. Furthermore, LSTM is scalable
for long sequences [44].

3.3 Automata Construction
In this processing step, our approach takes as input the set of train-
ing execution traces and the inferred RNNLM (see Section 3.2). The
output of this step is a FSA that best captures the specification of
the corresponding target class. The construction of FSA undergoes
several substeps: trace sampling, feature extraction, clustering, and
model selection.

At first, we use a heuristic to select a subset of method sequences
that represents all training execution traces. The feature extrac-
tion and clustering steps use these selected traces, instead of all
traces, to reduce computation cost. We construct a Prefix Tree Ac-
ceptor (PTA) from the selected traces and extract features for every
PTA nodes using the inferred RNNLM. We refer to each PTA node
as an automaton state. Figure 3 shows an excerpt of an example
PTA constructed from sequences of invocations of methods from
java.security.Signature. Our goal is to find similar automaton
states and group them into one cluster. In the clustering substep, we
run a number of clustering algorithms on PTA nodes with various
settings to create many different FSAs. Finally, in the model selec-
tion substep, we follow a heuristic to predict the F-measure (see
Section 4.2.1) of constructed FSAs and output the one with highest

108

https://randoop.github.io/randoop/
http://www.evosuite.org/

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Tien-Duy B. Le and David Lo

Traces RNN Based
Language Model

Deep LearningRandoop Clustering

Target Class
& Methods

FSA
Test Cases Features

Feature
ExtractionExecution

Model
Selection

FSA
Candidates

Figure 2: DSM’s Overall Framework

Algorithm 1: Selecting Subset of Execution Traces
Input :S = {Si | 1 ≤ i ≤ N }: Collection of execution traces

where N is the number of traces
Output :O : Selected execution traces

1 Sort S in ascending order of trace length
2 D ← initialization of dictionary type
3 P ← empty set
4 for Si ∈ S do
5 for (a,b) where a ∈ Si ∧ b ∈ Si ∧ a < b do
6 D[(a,b)]+=[Si]
7 Include (a,b) to P
8 end
9 end

10 O ← empty set
11 while ∃(a,b) ∈ P do
12 Select (a,b) ∈ P such that D[(a,b)] has the least number

of elements
13 Find Si ∈ D[(a,b)] such that Si is shortest ∧ Si < O
14 Include Si to O and remove all pairs (a,b) from P where

a ∈ Si ∧ b ∈ Si ∧ a < b
15 end
16 return O

predicted F-measure. The full set of traces is used in this model
selection step. In the following paragraphs, we describe details of
each substep in this processing step:

Trace Sampling: Our training data contains a large number of
sequences. Thus, it is expensive to use all of them for constructing
FSAs. Therefore, the goal of trace sampling is to create a smaller
subset that is likely to represent the whole set of all traces reason-
ably well. We propose a heuristic to find a subset of traces that
covers all co-occurrence pairs3 of methods in all training traces.

Algorithm 1 shows our heuristic to select execution traces from
the whole set of execution traces S . At first, we determine all pairs
(a,b) where a and b are methods that occur together in at least one
trace in S and store them in P (lines 4 to 9). Next, we create a set
O that contains selected traces – initially O is an empty set (line
10). Then, we iteratively choose a pair (a,b) which does not appear
in any trace in O and occur in the least number of input traces
in S (line 12). Given a selected pair (a,b), we look for the shortest
trace Si < O where a,b ∈ Si (line 13). Once the trace is found, we

3(m1,m2) is a co-occurrence pair ifm1 andm2 appear together in at least one trace.

S9

S1

<START>

S2

<init> S6
update

S7 S8
initVerify <END>

S12S10
initVerify <END>

S11
initVerify

S5S3 S4
verify <END>

…

…

Figure 3: An Example Prefix Tree Acceptor (PTA)
include Si to O . We mark the pair (a,b) as processed by removing
it from P (line 15). We keep searching for sequences until O covers
all co-occurrence pairs (a,b) in the input execution traces.

Table 1: Extracted Features for An Automata State

Feature ID Value
Type I: Previously Invoked Methods

Fm
1 if m is invoked before the automaton state.
Otherwise, 0.

Type II: Next Methods to Invoke

Pm

Probability computed by the learned Recur-
rent Neural Network based Language Model
for methodm to be called after a particular au-
tomaton state is reached (0 ≤ Pm ≤ 1).

Feature Extraction: From method sequences of the sampled exe-
cution traces, we construct a Prefix Tree Acceptor (PTA). A PTA is
a tree-like deterministic finite automaton (DFA) created by putting
all the prefixes of sequences as states, and a PTA only accepts the
sequences that it is built from. The final states of our constructed
PTAs are the ones have incoming edges with <END> labels (see Sec-
tion 3.2). Figure 3 shows an example of a Prefix Tree Acceptor (PTA).
Table 1 shows information of the extracted features. For each state
S of a PTA, we are particularly interested in two types of features:
(1) Type I: This type of features captures information of previously

invoked methods before the state S is reached. The values of
type I features for state S is the occurrences of methods on
the path between the starting state (i.e., the root of the PTA)
and S . For example, according to Figure 3, the values of Type I
features corresponding to node S3 are: F<START> = F<init> =
FinitVerify = 1 and Fupdate = Fverify = F<END> = 0.

(2) Type II: This type of features captures the likely methods
to be immediately called after a state is reached. Values of
these features are computed by the inferred RNNLM in the

109

Deep Specification Mining ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

Algorithm 2: Predicting Precision of a finite-state automa-
ton given a set of method sequence.
Input :M : an finite-state automaton

Data: a set of training method sequences
Output :Predicted Precision ofM

1 PData ← empty set
2 for seq ∈ Data do
3 for 0 ≤ i < length(seq) − 1 do
4 Include (seq[i], seq[i + 1]) to PData
5 end
6 end
7 PM ← empty set
8 EM ← the set of transitions inM

9 for s1
m1
−−→ s2 ∈ EM ∧ s2

m2
−−→ s3 ∈ EM do

10 Include (m1,m2) to PM
11 end

12 precision ←
|PData |

|PData ∪ PM |
13 return precision

deep learning step (see Section 3.2). For example, at node S3
in Figure 3, initVerify and <END> have higher probabili-
ties than the other methods to be called afterward. Exam-
ples of type II features and their values for node S3 output
by a RNNLM are as follows: PinitVerify = P<END> = 0.4 and
P<START> = P<init> = Pverify = Pupdate = 0.15.

Our intuition of extracting different types of features is to provide
sufficient information for clustering algorithms in the subsequent
substep to better merge PTA nodes.

Clustering: We run k-means [35] and hierarchical clustering [43]
algorithms on the PTA’s states with their extracted features. Our
goal is to create a simpler and more generalized automaton that cap-
tures specifications of a target library class. Since both k-means and
hierarchical clustering require the predefined inputC for number of
clusters, we try with many values ofC from 2 to MAX_CLUSTER (refer
to Section 4.2.2) to search for the best FSA. Overall, the execution
of clustering algorithms results in 2 × (MAX_CLUSTER − 1) FSAs.

Model Selection: We propose a heuristic to select the best FSA
among the ones output by the clustering algorithms. Algorithm 2
describes our strategy to predict precision of an automatonM given
the set of all traces Data (see Section 3.1).

We predict Precision by first constructing a set PData containing
all pairs (m1,m2), wherem1 andm2 appear consecutively (i.e.,m1
is called right beforem2) in an execution trace in Data. Then, we
construct another set PM containing all pairs (m1,m2) that appear
consecutively in a trace generated by the automaton M . In Algo-
rithm 2, lines 1 to 6 compute all pairs (m1,m2) occurring in Data,
and lines 7 to 11 collect those pairs occurring in traces generated
by the input automatonM . To find all pairs occurring in traces gen-
erated byM , we look for two transitions s1

m1
−−→ s ′1 and s2

m2
−−→ s ′2 of

M , where s ′1 = s2. We take labels of the two transitions (i.e.,m1 and
m2) and add a pair of methods (m1,m2) to the set PM . Line 12 com-
putes the predicted value of Precision, which is the ratio between
of number of all pairs in PM and all pairs in PData ∪ PM . We input

FSA 1: #clusters = 6

…

S2

<START>

S0
<init>

FSA 2: #clusters = 3

S1

initVerify

initVerify

S4
initVerify

initVerify

verify

S3

S5

<END>

S0
<START> <init>

S3 S5
<END>

initVerify verify

update

initVerify

update

update

<END>

initVerify verify

verify

update

Figure 4: Example FSAs output by clustering algorithms
from PTA shown in Figure 3.
all FSAs created by clustering algorithms and all execution traces
to Algorithm 2 for estimating the FSAs’ Precision.

Next, we approximate the values of Recall by computing the
percentage of all execution traces accepted by a given automaton
M . Once all precision and recall of FSA models are predicted, we
compute the expected value of F-measure (i.e., harmonic mean of
precision and recall) for each of the automata. Finally, our approach
returns the FSA with highest expected F-measure.

Example: From the PTA partially shown in Figure 3, we conduct
feature extraction on each state of the PTA. Then, we input these
states with extracted features to clustering algorithms (i.e., k-means
and hierarchical clustering) to merge similar states. If MAX_CLUSTER
is identified to be 20, in total, there would be 38 FSAs constructed
by the two clustering algorithms. Figure 4 shows 2 out of 19 FSAs
output by k-means. Next, we performmodel selection on these FSAs
to select the one with highest predicted F-measures.

4 EMPIRICAL EVALUATION
4.1 Dataset

4.1.1 Target Library Classes. In our experiments, we select 11
target library classes as the benchmark to evaluate the effectiveness
of our proposed approach. These library classes were investigated
by previous research works in specification mining [24, 26]. Table 2
shows further details of the selected library classes including infor-
mation of collected execution traces. Among these library classes,
9 out of 11 are from Java Development Kit (JDK); the other two
library classes are DataStructure.StackAr (from Daikon project)
and NumberFormatStringTokenizer (from Apache Xalan). For
every library class, we consider methods that were analyzed by
Krka et al. [24].

4.1.2 Ground Truth Models. We utilize ground truth mod-
els created by Krka et al. [24]. Among the investigated library
classes, we refine ground truth models of five Java’s Collec-
tion based library classes (i.e., ArrayList, LinkedList, HashMap,
HashSet, and Hashtable) to capture “empty” and “non-empty”

110

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Tien-Duy B. Le and David Lo

Table 2: Target Library Classes. “#M” represents the num-
ber of class methods that are analyzed, “#Generated Test
Cases” is the number of test cases generated by Ran-
doop, “#Recorded Method Calls” is the number of recorded
method calls in the execution traces, “NFST” stands for
NumberFormatStringTokenizer.

Target Library #M #Generated #Recorded
Class Test Cases Method Calls
ArrayList 18 42,865 22,996
HashMap 11 53,396 67,942
Hashtable 8 79,403 89,811
HashSet 8 23,181 257,428
LinkedList 7 13,731 4,847
NFST 5 15,8998 95,149
Signature 5 79,096 205,386
Socket 21 80,035 130,876
StringTokenizer 5 148,649 336,924
StackAr 7 549,648 13,2826
ZipOutputStream 5 162,971 43,626

states of Collection objects. We also revise ground truth mod-
els of NumberFormatStringTokenizer and Socket by including
missing transitions of the original models.

4.2 Experimental Settings
4.2.1 Evaluation Metrics. We follow Lo and Khoo’s method [32]

to measure precision and recall for assessing the effectiveness of
our proposed approach. Lo and Khoo’s method has been widely
adopted by many prior specification mining works [24, 27]. Their
proposed approach takes as input a ground truth and an inferred
FSA. Next, it generates sentences (i.e., traces) from the two FSAs
to compute their similarities. Precision of an inferred FSA is the
percentage of sentences accepted by its corresponding ground truth
model among the ones that are generated by that FSA. Recall of
an inferred FSA is the percentage of sentences accepted by itself
among the ones that are generated by the corresponding ground
truth model. In a nutshell, precision reflects the percentage of sen-
tences produced by an inferred model that are correct, while recall
reflects the percentage of correct sentences that an inferred model
can produce. We use F-measure, which is the harmonic mean of
precision and recall, as a summary metric to evaluate specification
mining algorithms. F-measure is defined as follows:

F-Measure = 2 ×
Precision × Recall

Precision + Recall
(1)

To accurately compute precision, recall and F-measure, sentences
generated from a FSA must thoroughly cover its states and transi-
tions. To achieve that goal, we set the maximum number of gener-
ated sentences to 10,000 with maximal length of 50, and minimum
coverage of each transition equals to 20. Similar strategies were
adopted in prior works [24, 26].

4.2.2 Experimental Configurations & Environments.

Randoop Configuration. In test case generation step, for each
target class, we repeatedly execute Randoop (version 3.1.2) with
a time limit of 5 minute with 20 different initial seeds. We set the

time limit to 5 minutes to make sure subsequent collected execution
traces are not too long as well as not too short. We repeat execu-
tion of Randoop 20 times to maximize the coverage of possible
sequences of program methods in Randoop generated test cases.
Furthermore, we turn off Randoop’s option of generating error-
revealing test cases (i.e., --no-error-revealing-tests is set to
true) as executions of these test cases are usually interrupted by
exceptions or errors, which results in incomplete method sequences
for subsequent deep learning process. We find that with this setup
the generated traces cover 100% of target API methods; also, on
average, 96.97% and 98.18% of edges and states in each target class’
ground-truth model are covered.

RNNLM. We use a publicly available implementation of RNNLM
based on TensorFlow4. We execute this implementation on a
NVIDIA DGX-1 Deep Learning system. We use the default con-
figuration included as part of the implementation.

Clustering Configuration. In clustering step, we run k-
means and hierarchical clustering with the setting of
number of clusters from 2 to MAX_CLUSTER = 20 for ev-
ery target class. We use sklearn.cluster.KMeans and
sklearn.cluster.AgglomerativeClustering of scikit-learn
(version 0.18) with default settings.

4.2.3 Baselines. In the experiments, we compare the effective-
ness of DSM with many previous specification mining works .
Krka et al. propose a number of algorithms that analyze execu-
tion traces to infer FSAs [24]. These algorithms are k-tails, CON-
TRACTOR++, SEKT, and TEMI. CONTRACTOR++, TEMI, and SEKT
infer models leveraging invariants learned using Daikon. On the
other hand, k-tails construct models only from ordering of methods
in execution traces. Despite the fact that DSM is not processing
likely invariants, we include CONTRACTOR++, SEKT, and TEMI
as baselines to compare the applicability of deep learning and likely
invariant inference in specification mining. For k-tails and SEKT,
we choose k ∈ {1, 2} following Krka et al. [24] and Le et al. [26]’s
configurations. In total, we have six different baselines: Traditional
1-tails, Traditional 2-tails, CONTRACTOR++, SEKT 1-tails. SEKT
2-tails, and TEMI

We use the implementation of provided by Krka et al.5 [24].
We utilize Daikon [14] to collect execution traces from Randoop
generated test cases and inferred likely invariants from all of the
traces. Originally, Krka et al.’s implementation uses a 32-bit version
of Yices 1.0 Java Lite API6, which only works with 32-bit Java
Virtual Machine and limited to use up to 4 GB heap memory. Since
the amount of execution traces is large, we follow two experimental
schemes to run Krka et al.’s code:
(1) Scheme I: Krka et al.’s implementation is updated to work

with the 64-bit libraries of Yices 1 SMT solver7. Then, we input
execution traces of all generated test case as well as Daikon
invariants inferred by these traces to all baselines. For each
application of Krka et al.’s code, we set the maximum allocated
memory to 7 GB and time limit to 12 hours.

4https://github.com/hunkim/word-rnn-tensorflow
5http://softarch.usc.edu/wiki/doku.php?id=inference:start
6http://atlantis.seidenberg.pace.edu/wiki/lep/Yices_Java_API_Lite
7http://yices.csl.sri.com/old/download-yices1.shtml

111

https://github.com/hunkim/word-rnn-tensorflow
http://softarch.usc.edu/wiki/doku.php?id=inference:start
http://atlantis.seidenberg.pace.edu/wiki/lep/Yices_Java_API_Lite
http://yices.csl.sri.com/old/download-yices1.shtml

Deep Specification Mining ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

Table 3: Effectiveness of DSM. “F” is F-measure.

Class F (%) Class F (%)
ArrayList 22.21 Signature 100.00
HashMap 86.71 Socket 54.24
HashSet 76.84 StackAr 74.38
Hashtable 79.92 StringTokenizer 100.00
LinkedList 30.98 ZipOutputStream 88.82
NFST 77.52% Average 71.97

(2) Scheme II:We use the original Krka et al.’s implementation and
a set of execution traces corresponding to test cases generated
by Randoop with one specific seed.

4.3 Research Questions
RQ1: How effective is DSM? In this research question, we com-
pute precision, recall, and F-measure of FSAs inferred by our ap-
proach for the 11 target library classes.
RQ2: How does DSM compare to existing specification min-
ing algorithms? In this research question, we compare DSM with
a number of existing specification mining algorithms proposed by
Krka et al. [24] in various experimental schemes.
RQ3: Which Recurrent Neural Network (RNN) is best for
DSM? By default, DSM trains RNNLMs using Long-Short Term
Memory (LSTM) networks from execution traces. In this research
question, we first adapt DSM to use the standard RNN and Gated
Recurrent Units (GRU) [9] networks for constructing language mod-
els with the same learning configuration as LSTM (see Section 3.2).
Then, we analyze the effectiveness of DSM for each neural network
architecture (i.e., Standard RNN, LSTM, and GRU).

4.4 Findings
RQ1: DSM’s Effectiveness. Table 3 shows the F-measure of DSM
for the eleven target library classes (Section 4.1). From the table, our
approach achieves an average F-measure of 71.97%. Noticeably, for
StringTokenizer and Signature, DSM infers models that exactly
match ground truth models (i.e., F-measure of 100%). There are
other 6 out of the 11 library classes where our approach achieves
F-measure of 70% or greater.

By taking a closer look into DSM intermediary results, we find
that across the 11 classes, DSM performs 26 - 1,072merge operations
(with an average of 303.45 operations) to construct the final FSAs
from the PTAs. Also, the differences in the predicted F-measures of
the FSAs produced in the clustering step range between 22.05% -
68.32% (with an average of 39.13%). These shows that DSM com-
ponents need to perform substantial amount of work to bring the
PTAs to the final FSAs.
RQ2: DSM vs. Previous Works.
Scheme I: The first part of Table 4 highlights the F-measure of
6 baselines proposed by Krka et al. [24] following Scheme I. In
this experimental scheme, we use all of execution traces that we
collect from generated test cases and likely invariants inferred from
these traces as input data to the baselines. According to the figure,
CONTRACTOR++ is the most effective baseline in terms of average
F-measure (i.e., 55.22%) in this experimental scheme; Traditional
1-tails is the best performing baseline that only uses execution
traces to construct FSAs (i.e., average F-measure of 33.42%). DSM

is more effective than all of the baselines in terms of average pre-
cision, recall, and F-measure. In terms of average F-measure, we
outperform CONTRACTOR++ (i.e., the best performing baseline)
and Traditional 1-tails (i.e., the best baseline that only use execution
traces) by 30.33% and 115.35%, respectively. Furthermore, we note
many baselines have no available results for precision, recall, and F-
measure. This is because these baselines are not able to return FSAs
mostly due to out of heap memory errors or time limit exceeded
errors.
Scheme II. The second part of Table 4 shows the F-measure of 6
baselines proposed by Krka et al. [24] following Scheme II. Opti-
mistic TEMI is the best performing baseline in terms of average
F-measure; Traditional 1-tails is the best baseline that constructs
models from execution traces with the average F-measure of 53.97%.
In comparison with DSM, we note that the average recall, and F-
measure of our approach is higher than those of all the six baselines.
That indicates our inferred models are more generalized and less
overfitted. In terms of average F-measure, our approach outper-
forms the best baseline (i.e., Optimistic TEMI) by 28.22%. DSM is
also more effective than Traditional 1-tails (i.e., the best baseline
that infers FSAs only from method orderings in traces) by 31.57%.
Noticeably, compared to the baselines that construct automata from
execution traces (i.e., Traditional 1-tails and Traditional 2-tails),
DSM’s F-measures are higher for all target library classes. For the
other baselines that use likely invariants, our approach is more
effective in terms of F-measures for 7 out of 11 target library classes
except ArrayList, LinkedList, Hashtable, and Socket.
RQ3: Best RNN Architecture. Table 5 shows the effectiveness of
DSM configured with the three different RNN architectures. We
can note that DSMLSTM (our default configuration) and DSMGRU

outperform DSMRNN in terms of F-measure by 7.92% and 6.88%
respectively. DSMGRU performs almost equally as well as DSMLSTM.

5 MINING FSA FOR DETECTING ANDROID
MALICIOUS BEHAVIORS

Nowadays, Android is the most popular mobile platform with mil-
lions of apps and supported devices. As the matter of fact, An-
droid users easily become targets of attackers. Recently, several
approaches have been proposed to protect users from potential
threats of malware. Among state-of-the-art approaches, Jamrozik
et al. propose Boxmate that mines rules to construct Android sand-
boxes by exploring behaviors of target benign apps [21]. The key
idea of Boxmate is it prevents a program to change its behaviour; it
can prevent hidden attacks, backdoors, and exploited vulnerabili-
ties from compromising the security of an Android app. Boxmate
works on two phases: monitoring and deployment. In the moni-
toring phase, Boxmate employs a test case generation tool, named
Droidmate [22], to create a rich set of GUI test cases. During the ex-
ecution of these test cases, Boxmate records invocations of sensitive
API methods (e.g., methods that access cameras, locations, etc.), and
use them to create sandbox rules. The rules specify what sensitive
API methods are allowed to be invoked during deployment. During
deployment, when an app accesses a sensitive API method that is
not recorded in the above rules, the sandbox immediately inter-
cepts that operation and raises warning messages to users about
the suspicious activity.

112

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Tien-Duy B. Le and David Lo

Table 4: F-measure (%): Scheme I vs. Scheme II. “T1” is Traditional 1-tails, “T2” is Traditional 2-tails, “C+” is CONTRACTOR++,
“S1” is SEKT 1-tails, “S2” is SEKT 2-tails, “OT” is Optimistic TEMI, “NFST” is NumberFormatStringTokenizer, “-”means that the
result is not available.

Target Scheme I Scheme II
Library Class T1 T2 C+ S1 S2 OT T1 T2 C+ S1 S2 OT
ArrayList 13.96 13.13 36.03 13.86 13.07 16.87 5.61 3.08 36.03 4.34 3.08 35.82
HashMap 25.41 8.71 68.94 - - - 37.35 21.93 68.94 37.35 21.93 68.94
HashSet 20.88 21.27 52.22 20.88 21.27 23.34 22.96 15.35 52.22 22.96 15.35 55.62
Hashtable 42.39 33.58 92.78 - - - 78.42 73.37 92.78 81.69 65.47 92.78
LinkedList 27.15 25.72 86.02 26.67 24.52 7.51 26.03 8.07 86.02 18.45 6.59 86.02
NFST 24.57 25.52 30.40 24.56 25.78 11.80 68.72 51.04 30.40 66.58 49.51 33.40
Signature 61.54 64.25 66.88 62.05 63.98 39.06 100 95.41 66.88 95.41 89.78 66.88
Socket 35.89 31.52 55.15 34.73 28.37 - 37.30 21.98 55.15 35.32 20.87 55.62
StackAr 16.54 16.54 34.91 16.54 16.54 - 42.57 42.57 34.91 42.57 42.57 -
StringTokenizer 52.88 52.97 21.30 52.15 - - 100 89.69 21.30 92.21 84.77 0.00
ZipOutputStream 46.36 47.42 62.80 47.91 - - 82.51 78.08 62.08 86.47 67.84 66.20
Average 33.42 30.97 55.22 33.26 27.65 19.72 54.70 45.50 55.22 53.03 42.52 56.13

Table 5: F-measure (%): DSM with standard RNN (DSMRNN),
LSTM (DSMLSTM), and GRU (DSMGRU).

Target Library
DSMLSTM DSMRNN DSMGRU

Class
ArrayList 22.21 4.95 9.39
HashMap 86.71 97.76 100.00
HashSet 76.84 68.86 73.88
Hashtable 79.92 87.94 87.94
LinkedList 30.98 32.29 34.86
NFST 77.52 70.09 73.31
Signature 100.00 65.31 95.41
Socket 54.24 51.31 58.34
StackAr 74.38 71.79 77.67
StringTokenizer 100.00 95.88 100.00
ZipOutputStream 88.82 87.36 73.29
Average 71.97 66.69 71.28
Boxmate’s mined sandbox rules constitute a behavior model that

accepts a sensitive API method as input and predicts its invocation
as benign or malicious. Nevertheless, we find that attackers can
bypass Boxmate’s models if they can perform malicious activities
by invoking the same sensitive APIs as those used by the apps
during their normal operations. Therefore, we propose a technique
to employ FSAs inferred by DSM to construct more comprehensive
sandboxes that consider the context of sensitive API invocations –
namely series of methods called prior to the sensitive API invoca-
tions – that can better protect Android users from attackers. For
each sensitive API method M , we selectW 8 previously executed
non-sensitive API methods beforeM to create training traces. Then,
we group all of the training traces into one single set and input
it to DSM. The output of DSM is a FSA that captures interactions
between sensitive and non-sensitive API methods. The FSA is then
leveraged as an automaton based behavior model to build a sandbox
for more effective protection.

8By default, we setW = 3.

APPS
Behavioral

Model Inference

Benign Apps
DSM

Monitoring Phase

Deployment Phase

Execution traces of
sensitive & relevant

APIs

Finite State
Automata

APPS

Apps

Suspicious Malicious
Behaviors

S
A
N
D
B
O
X

Execution traces of
sensitive & relevant

APIs
Rejected

LOG

LOG

Figure 5: Malware detection framework leveraging behavior
models inferred by DSM

Figure 5 demonstrates the proposed framework of our malware
detection system. According to the figure, our framework has two
phases:

• Monitoring Phase: This phase accepts as input a benign ver-
sion of the target Android app. We first leverage GUI test case
generation tools (i.e., Monkey [1], GUIRipper [2], PUMA [18],
Droidmate [22], and Droidbot [30]) to create a diverse set of test
cases. Next, we execute the input app with generated test cases
and monitor API methods called. In particular, every time the
app invokes a sensitive API methodX , we select a sequence ofW
previously executed API methods before X and include them to
the training traces. Then, we employ DSM’s mining algorithm on
the gathered traces to construct a FSA based behavior model BM .
The constructed model reflects behaviors of the app when calling
sensitive API methods. Subsequently, we employ BM to guide an

113

Deep Specification Mining ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

automaton based sandbox in the deployment phase for malware
detection.
• Deployment Phase: In this phase, our framework leverages the
inferred model BM to build an automaton based sandbox. The
sandbox is used to govern and control execution of an Android
app. Every time an app invokes a sensitive API X , the sandbox
selects the sequence ofW previously executed methods before
X , and input them to the behavior model BM to classify the
invocation of X as malicious or benign. If execution of X is pre-
dicted as malicious by model BM , the sandbox informs users by
raising warning messages about suspicious activities. Otherwise,
the sandbox allows the app to continue its executions without
notifying users.
We evaluate our proposed malware detection framework using a

dataset of 102 pairs of Android apps that were originally collected
by Li et al. [29]. Each pair of apps contains one benign app and
its corresponding malicious version. The malicious apps are cre-
ated by injecting malicious code to their corresponding unpacked
benign apps [29]. All these apps are real apps that are released to
various app markets. Recently, Bao et al. [4] used the above 102
pairs to assess the effectiveness of Boxmate’s mined rules with 5
different test case generation tools (i.e., Monkey [1], GUIRipper [2],
PUMA [18], Droidmate [22], and Droidbot [30]). In our evaluation,
we utilize execution traces of the 102 Android app pairs collected
by Bao et al. [4]9. We setW (i.e., number of selected methods before
an invoked sensitive API method) to 3, and employ these traces to
infer several behavior models by using Boxmate, DSM as well as
k-tails (k = 1). We include k-tails (k = 1) since according to Table 4
this is the best baseline mining algorithm that infers FSAs from raw
traces of API invocations. We let the comparison between DSM
and invariant based miners (i.e., CONTRACTOR++ and TEMI) for
future work as Daikon is currently unable to mine invariants for
Android apps. Next, we evaluate the effectiveness of inferred be-
havior models in detecting malware using the following evaluation
metrics:
• True Positive Rate (TPR): Percentage of apps that are correctly
classified as malicious. TPR is computed as follows

TPR =
TP

TP + FN
(2)

• False Positive Rate (FPR): Percentage of apps that are incor-
rectly classified as malicious. FPR is computed as follows

FPR =
FP

FP +TN
(3)

In the above equations, TP (true positives) refers to the number of
malicious apps that are classified as malicious, TN (true negatives)
refers to the number of benign apps that are classified as benign,
FP (false positives) refers to the number of benign apps are classi-
fied as malicious, and FN (false negatives) refers to the number of
malicious apps that are classified as benign. Both TPR and FPR are
important; TPR is important as otherwise malicious behaviors are
permitted, while FPR is as important as otherwise users would be
annoyed with false warnings. The two metrics are well-known and
widely adopted by state-of-the-art approaches in Android malware
detection (e.g., [3, 50]).

9https://github.com/baolingfeng/SANER2018Sandboxes

Table 6: DSM vs. Baselines. “APR” stands for “Approach”,
“TP” is True Positives, “FN” is False Negatives, “TN” is True
Negatives, “FP” is False Positives, “TPR” is “True Positive
Rate”, and “FPR” is “False Positive Rate”.

APR TP FN TN FP TPR FPR
DSM 93 9 398 112 91.18% 21.97%
k-tails 94 8 350 160 92.16% 31.37%
Boxmate 77 25 421 89 75.49% 17.45%

To compute True Positives and False Negatives, for each pair of
benign and malicious app we employ DSM, k-tails, and Boxmate to
construct behavior models using training traces of the benign apps,
and deploy these models on traces of the corresponding malicious
app. Following Equation 2, we use the values of True Positives and
False Negatives to estimate True Positive Rates (TPR). The higher
the values of TPR, the more malicious activities are detected. On the
other hand, to calculate True Negatives and False Positives, for each
benignAndroid appwe perform cross-validation among the five test
case generation tools (i.e., Monkey [1], GUIRipper [2], PUMA [18],
Droidmate [22], and Droidbot [30]). In particular, we use execution
traces of 4 tools as training data to learn behavior models by DSM, k-
tails and Boxmate. Then, we deploy the inferred models on traces of
the remaining tool to check whether the models detect benign apps
as malicious (i.e., false positive). In total, we analyze 5 × 102 = 510
combinations between benign apps and test case generation tools.
Then, we utilize values of True Negatives and False Positives to
compute False Positive Rate (FPR) (see Equation 3). The smaller the
values of FPR, the smaller the number of false alarms.

Table 6 shows results for DSM, k-tails, and Boxmate. Boxmate
can detect 75.49% of the malicious apps as such while suffering
a false positive rate of 17.43%.10 We note that DSM outperforms
Boxmate in terms of True Positive Rate by 15.69% while only losing
in terms of False Positive Rate by 4.52%. Comparing DSM with k-
tails, we note that they have similar True Positive Rate (difference
is less than 1%), but the latter has substantially higher False Positive
Rate (difference is close to 10%). Clearly, DSM achieves the best
trade-off considering both True Positive Rate and False Positive
Rate.

6 THREATS TO VALIDITY
Threats to internal validity.We have carefully checked our im-
plementation, but there are errors that we did not notice. There are
also potential threats related to correctness of ground truth models
created by Krka et al. [24] that we used. To mitigate this threat, we
have compared their models against execution traces collected from
Randoop generated test cases as well as textual documentations
published by library class writers (e.g., Javadocs). We revised the
ground truth models accordingly.

Another threat to validity is related to parameter values of tar-
get API methods. We use traces collected by Bao et al. [4] which
exclude all parameter values. This is different from Jamrozik et al.’s

10This is inline with results that were reported in Boxmate’s original paper [21]. They
reported that for the 18 use cases considered, two false alarms were raised (see Table
2 of their paper) – this results in a False Positive Rate of 11.11%. In our experiment,
we consider many more use cases with the aid of different test case generation tools.
Jamrozik et al. did not report true positive rate since no malicious apps are considered
in the study.

114

https://github.com/baolingfeng/SANER2018Sandboxes

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Tien-Duy B. Le and David Lo

work [21] that excludes most (but not all) parameter values. We
decide to exclude all parameter values since all specification mining
algorithms considered in this paper (including DSM) produce FSAs
that have no constraints on values of parameters. As future work,
we plan to extend DSM to generate models that include constraints
on parameter values.
Threats to External Validity. These threats correspond to the
generalizability of our empirical findings. In this work, we have
analyzed 11 different library classes. This is larger than the number
of target classes used to evaluate many prior studies, e.g., [24, 33, 34].
As future works, we plan to reduce this threat by analyzing more
library classes to infer their automaton based specifications.
Threats to Construct Validity. These threats correspond to the
usage of evaluation metrics. We have followed Lo and Khoo’s ap-
proach that uses precision, recall, and F-measure to measure the
accuracy of automata output by a specification mining algorithm
against ground truth models [32]. Furthermore, Lo and Khoo’s
approach is well known and has been adopted by many previous re-
search works in specification mining e.g., [5, 6, 8, 13, 24, 27, 31, 33].
Additionally, True Positive Rate and False Positive Rate are well-
known metrics and widely adopted by state-of-the-art approaches
in Android malware detection (e.g., [3, 50]).

7 RELATEDWORK

Mining Specifications. Aside from the state-of-the-art baselines
considered in Section 4, there are other related works that mine
FSA-based specifications from execution traces. Lo et al. propose
SMArTIC that mines a FSA from a set of execution traces [13] using
a variant of k-tails algorithm that constructs a probabilistic FSA.
Mariani et al. propose k-behavior [36] that constructs an automaton
by analyzing one single trace at a time. Walkinshaw and Bogdanov
propose an approach that allows users to input temporal properties
to support a specification miner to construct a FSA from execution
traces [45]. Lo et al. further extend Walkinshaw and Bogdanov’s
work to automatically infer temporal properties from execution
traces, and use these properties to automatically support model
inference process of a specification miner [33]. Synoptic infers three
kinds of temporal invariants from execution traces and uses them to
generate a concise FSA [6]. SpecForge [26] is a meta-approach that
analyzes FSAs inferred by other specification miners and combine
them together to create a more accurate FSA. None of the above
mentioned approaches employs deep learning.

Deep Learning for Software Engineering Tasks. Recently,
deep learning methods are proposed to learn representations of
data with multiple levels of abstraction [28]. Researchers have been
utilizing deep learning to solve challenging tasks in software engi-
neering [17, 25, 47–49]. For example, Gu et al. propose DeepAPI that
takes as input queries in natural languages and outputs sequences
of API methods that developers should follow [17]. In the nutshell,
DeepAPI replies on a RNN basedmodel that can translate a sentence
in one language to a new sentence in another language. Different
from DeepAPI, DSM takes as input method sequences of an API or
library and outputs a finite-state automaton that represents behav-
iors of that API or library. Prior to our work, deep learning models
have not been employed to effectively mine specifications.

Language Models for Software Engineering Tasks. Statistical
language models have been utilized for many software engineering
tasks. For example, Hindle et al. employ n-gram model on code to-
kens to demonstrate a high degree of local repetitiveness in source
code corpora and leverage it to improve Eclipse’s code completion
engine [19]. Several other works have extended Hindle et al. work
to build more powerful code completion engines; for example, Ray-
chev et al. leverage n-gram and recurrent neural network language
model to recommend likely sequences of method calls to a program
with holes [41], while Nguyen et al. leverage Hidden Markov Model
to learn API usages from Android app bytecode for recommending
APIs [40]. Beyond code completion, Wang et al. use n-gram model
to detect bugs by identifying low probability token sequences [46].
Our work uses language model for a different task.

8 CONCLUSION AND FUTUREWORK
Formal specifications are helpful for many software processes. In
this work, we propose DSM, a new approach that employs Recur-
rent Neural Network Based Language Model (RNNLM) for mining
FSA-based specifications. We apply Randoop, a well-known test
cases generation approach, to create a richer set of execution traces
for training RNNLM. From a set of sampled execution traces, we
construct a Prefix Tree Acceptor (PTA) and extract many features
of PTA’s states using the learned RNNLM. These features are then
utilized by clustering algorithms to merge similar automata states
to construct many FSAs using various settings. Then, we employ a
model selection heuristic to select the FSA that is estimated to be the
most accurate and output it as the final model. We run our proposed
approach to infer specifications of 11 target library classes. Our
results show that DSM achieves an average F-measure of 71.97%,
outperforming the best performing baseline by 28.82%. Addition-
ally, we propose a technique that employs a FSA mined by DSM
to detect malicious behaviors in an Android app. In particular, our
technique uses the inferred FSA as a behavior model to construct
a more comprehensive sandbox that considers execution context
of sensitive API methods. Our evaluation shows that the proposed
technique can improve the True Positive Rate of Boxmate by 15.69%
while only increasing the False Positive Rate by 4.52%.

As future work, we plan to improve DSM’s effectiveness further
by integrating information of likely invariants into our deep learn-
ing based framework. We also plan to employ EvoSuite [16] and
many other test case generation tools to generate an even more
comprehensive set of training traces to improve the effectiveness of
DSM. Furthermore, we plan to improve DSM by considering many
more clustering algorithms aside from k-means and hierarchical
clustering, especially the ones that require no inputs for the number
of clusters (e.g., DBSCAN [15], etc.). Finally, we plan to evaluate
DSM with more classes and libraries in order to reduce threats to
external validity.

Additional Resources and Acknowledgement. Our dataset,
DSM’s implementation, and a technical report that includes
additional results are publicly available at: https://github.com/
lebuitienduy/DSM. This research was supported by the Singapore
National Research Foundations National Cybersecurity Research &
Development Programme (award number: NRF2016NCR-NCR001-
008).

115

https://github.com/lebuitienduy/DSM
https://github.com/lebuitienduy/DSM

Deep Specification Mining ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

REFERENCES
[1] Last accessed on February 25, 2017. In https://github.com/linkedin/camus.
[2] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatore De

Carmine, and Atif M. Memon. 2012. Using GUI ripping for automated testing
of Android applications. In IEEE/ACM International Conference on Automated
Software Engineering, ASE’12, Essen, Germany, September 3-7, 2012. 258–261.

[3] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, and Konrad
Rieck. 2014. DREBIN: Effective and Explainable Detection of Android Malware in
Your Pocket. In 21st Annual Network and Distributed System Security Symposium,
NDSS 2014, San Diego, California, USA, February 23-26, 2014.

[4] Lingfeng Bao, Tien-Duy B. Le, and David Lo. 2018. Mining sandboxes: Are we
there yet?. In 25th International Conference on Software Analysis, Evolution and
Reengineering, SANER 2018, Campobasso, Italy, March 20-23, 2018. 445–455.

[5] Ivan Beschastnikh, Yuriy Brun, Jenny Abrahamson, Michael D. Ernst, and Arvind
Krishnamurthy. 2015. Using Declarative Specification to Improve the Under-
standing, Extensibility, and Comparison of Model-Inference Algorithms. IEEE
Trans. Software Eng. 41, 4 (2015), 408–428.

[6] Ivan Beschastnikh, Yuriy Brun, Sigurd Schneider, Michael Sloan, and Michael D
Ernst. 2011. Leveraging existing instrumentation to automatically infer invariant-
constrained models. In Proceedings of the 19th ACM SIGSOFT symposium and the
13th European conference on Foundations of software engineering. ACM, 267–277.

[7] Alan W Biermann and Jerome A Feldman. 1972. On the synthesis of finite-state
machines from samples of their behavior. IEEE Trans. Comput. 100, 6 (1972),
592–597.

[8] Zherui Cao, Yuan Tian, Tien-Duy B Le, and David Lo. [n. d.]. Rule-based specifi-
cation mining leveraging learning to rank. Automated Software Engineering ([n.
d.]), 1–30.

[9] Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio. 2014.
Empirical Evaluation of Gated Recurrent Neural Networks on SequenceModeling.
CoRR abs/1412.3555 (2014).

[10] EdmundM. Clarke, Jr., Orna Grumberg, and DoronA. Peled. 1999.Model Checking.
MIT Press, Cambridge, MA, USA.

[11] Valentin Dallmeier, Nikolai Knopp, Christoph Mallon, Gordon Fraser, Sebas-
tian Hack, and Andreas Zeller. 2012. Automatically Generating Test Cases for
Specification Mining. IEEE Trans. Software Eng. 38, 2 (2012), 243–257.

[12] Valentin Dallmeier, Nikolai Knopp, Christoph Mallon, Sebastian Hack, and An-
dreas Zeller. 2010. Generating test cases for specification mining. In Proceedings
of the Nineteenth International Symposium on Software Testing and Analysis, ISSTA
2010, Trento, Italy, July 12-16, 2010. 85–96.

[13] David Lo and Siau-Cheng Khoo. 2006. SMArTIC: towards building an accu-
rate, robust and scalable specification miner. In Proceedings of the 14th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, FSE
2006, Portland, Oregon, USA, November 5-11, 2006. 265–275.

[14] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos
Pacheco, Matthew S. Tschantz, and Chen Xiao. 2007. The Daikon system for
dynamic detection of likely invariants. Sci. Comput. Program. 69, 1-3 (2007),
35–45.

[15] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A Density-
Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.
In Proceedings of the Second International Conference on Knowledge Discovery and
Data Mining (KDD-96), Portland, Oregon, USA. 226–231.

[16] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: automatic test suite generation
for object-oriented software. In SIGSOFT/FSE’11 19th ACM SIGSOFT Symposium
on the Foundations of Software Engineering (FSE-19) and ESEC’11: 13th European
Software Engineering Conference (ESEC-13), Szeged, Hungary, September 5-9, 2011.
416–419.

[17] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2016. Deep
API learning. In Proceedings of the 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November
13-18, 2016. 631–642.

[18] Shuai Hao, Bin Liu, Suman Nath, William G. J. Halfond, and Ramesh Govindan.
2014. PUMA: programmable UI-automation for large-scale dynamic analysis
of mobile apps. In The 12th Annual International Conference on Mobile Systems,
Applications, and Services, MobiSys’14, Bretton Woods, NH, USA, June 16-19, 2014.
204–217.

[19] Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar T. De-
vanbu. 2012. On the naturalness of software. In 34th International Conference on
Software Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland. 837–847.

[20] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[21] Konrad Jamrozik, Philipp von Styp-Rekowsky, and Andreas Zeller. 2016. Min-
ing sandboxes. In Proceedings of the 38th International Conference on Software
Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016. 37–48.

[22] Konrad Jamrozik and Andreas Zeller. 2016. DroidMate: a robust and extensible
test generator for Android. In Proceedings of the International Conference onMobile
Software Engineering and Systems, MOBILESoft ’16, Austin, Texas, USA, May 14-22,
2016. 293–294.

[23] John C. Knight, Colleen L. DeJong, Matthew S. Gibble, and LuÃŋs G. Nakano.
1997. Why Are Formal Methods Not Used More Widely?. In Fourth NASA Formal
Methods Workshop. 1–12.

[24] Ivo Krka, Yuriy Brun, and Nenad Medvidovic. 2014. Automatic mining of specifi-
cations from invocation traces and method invariants. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
(FSE-22), Hong Kong, China, November 16 - 22, 2014. 178–189.

[25] An Ngoc Lam, Anh Tuan Nguyen, Hoan Anh Nguyen, and Tien N. Nguyen. 2015.
Combining Deep Learning with Information Retrieval to Localize Buggy Files
for Bug Reports (N). In 30th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2015, Lincoln, NE, USA, November 9-13, 2015. 476–481.

[26] Tien-Duy B. Le, Xuan-Bach D. Le, David Lo, and Ivan Beschastnikh. 2015. Syn-
ergizing Specification Miners through Model Fissions and Fusions (T). In 30th
IEEE/ACM International Conference on Automated Software Engineering, ASE 2015,
Lincoln, NE, USA, November 9-13, 2015. 115–125.

[27] Tien-Duy B. Le and David Lo. 2015. Beyond support and confidence: Exploring
interestingness measures for rule-based specification mining. In 22nd IEEE Inter-
national Conference on Software Analysis, Evolution, and Reengineering, SANER
2015, Montreal, QC, Canada, March 2-6, 2015. 331–340.

[28] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature
521, 7553 (2015), 436–444.

[29] Li Li, Daoyuan Li, Tegawendé F. Bissyandé, Jacques Klein, Yves Le Traon, David
Lo, and Lorenzo Cavallaro. 2017. Understanding Android App Piggybacking: A
Systematic Study of Malicious Code Grafting. IEEE Trans. Information Forensics
and Security 12, 6 (2017), 1269–1284.

[30] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2017. DroidBot: a
lightweight UI-guided test input generator for Android. In Proceedings of the
39th International Conference on Software Engineering, ICSE 2017, Buenos Aires,
Argentina, May 20-28, 2017 - Companion Volume. 23–26.

[31] David Lo, Hong Cheng, Jiawei Han, Siau-Cheng Khoo, and Chengnian Sun. 2009.
Classification of software behaviors for failure detection: a discriminative pattern
mining approach. In Proceedings of the 15th ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM, 557–566.

[32] David Lo and Siau-Cheng Khoo. 2006. QUARK: Empirical Assessment of
Automaton-based Specification Miners. In 13th Working Conference on Reverse
Engineering (WCRE 2006), 23-27 October 2006, Benevento, Italy. 51–60.

[33] David Lo, Leonardo Mariani, and Mauro Pezzè. 2009. Automatic steering of
behavioral model inference. In Proceedings of the 7th joint meeting of the European
Software Engineering Conference and the ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2009, Amsterdam, The Netherlands, August
24-28, 2009. 345–354.

[34] David Lo, Leonardo Mariani, and Mauro Santoro. 2012. Learning extended FSA
from software: An empirical assessment. Journal of Systems and Software 85, 9
(2012), 2063–2076.

[35] James MacQueen et al. 1967. Some methods for classification and analysis of
multivariate observations. In Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability, Vol. 1. Oakland, CA, USA., 281–297.

[36] Leonardo Mariani, Fabrizio Pastore, and Mauro Pezzè. 2011. Dynamic Analysis
for Diagnosing Integration Faults. IEEE Trans. Software Eng. 37, 4 (2011), 486–508.

[37] Weikai Miao and Shaoying Liu. 2012. A Formal Specification-Based Integration
Testing Approach. In SOFL. 26–43.

[38] Tomas Mikolov, Anoop Deoras, Stefan Kombrink, Lukás Burget, and Jan Cer-
nocký. 2011. Empirical Evaluation and Combination of Advanced Language
Modeling Techniques. In INTERSPEECH 2011, 12th Annual Conference of the In-
ternational Speech Communication Association, Florence, Italy, August 27-31, 2011.
605–608.

[39] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev Khu-
danpur. 2010. Recurrent Neural Network Based Language Model. In Eleventh
Annual Conference of the International Speech Communication Association.

[40] Tam The Nguyen, Hung Viet Pham, Phong Minh Vu, and Tung Thanh Nguyen.
2016. Learning API usages from bytecode: a statistical approach. In Proceedings
of the 38th International Conference on Software Engineering, ICSE 2016, Austin,
TX, USA, May 14-22, 2016. 416–427.

[41] Veselin Raychev, Martin T. Vechev, and Eran Yahav. 2014. Code completion
with statistical language models. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’14, Edinburgh, United Kingdom - June
09 - 11, 2014. 419–428.

[42] Brian Robinson, Michael D. Ernst, Jeff H. Perkins, Vinay Augustine, and Nuo
Li. 2011. Scaling up automated test generation: Automatically generating main-
tainable regression unit tests for programs. In ASE 2011: Proceedings of the 26th
Annual International Conference on Automated Software Engineering. Lawrence,
KS, USA, 23–32.

[43] Lior Rokach and Oded Maimon. 2005. Clustering Methods. In The Data Mining
and Knowledge Discovery Handbook. 321–352.

[44] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to Sequence
Learning with Neural Networks. In Advances in Neural Information Processing
Systems 27: Annual Conference on Neural Information Processing Systems 2014,
December 8-13 2014, Montreal, Quebec, Canada. 3104–3112.

116

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Tien-Duy B. Le and David Lo

[45] Neil Walkinshaw and Kirill Bogdanov. 2008. Inferring Finite-State Models with
Temporal Constraints. In 23rd IEEE/ACM International Conference on Automated
Software Engineering (ASE 2008), 15-19 September 2008, L’Aquila, Italy. 248–257.

[46] Song Wang, Devin Chollak, Dana Movshovitz-Attias, and Lin Tan. 2016. Bugram:
bug detection with n-gram language models. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering, ASE 2016, Singapore,
September 3-7, 2016. 708–719.

[47] Song Wang, Taiyue Liu, and Lin Tan. 2016. Automatically learning semantic
features for defect prediction. In Proceedings of the 38th International Conference
on Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016. 297–308.

[48] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk.
2016. Deep learning code fragments for code clone detection. In Proceedings of
the 31st IEEE/ACM International Conference on Automated Software Engineering,

ASE 2016, Singapore, September 3-7, 2016. 87–98.
[49] Martin White, Christopher Vendome, Mario Linares Vásquez, and Denys Poshy-

vanyk. 2015. Toward Deep Learning Software Repositories. In 12th IEEE/ACM
Working Conference on Mining Software Repositories, MSR 2015, Florence, Italy,
May 16-17, 2015. 334–345.

[50] Mu Zhang, Yue Duan, Heng Yin, and Zhiruo Zhao. 2014. Semantics-Aware
Android Malware Classification Using Weighted Contextual API Dependency
Graphs. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, Scottsdale, AZ, USA, November 3-7, 2014. 1105–1116.

[51] Hao Zhong and Zhendong Su. 2013. Detecting API documentation errors. In
Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications, OOPSLA 2013, part of SPLASH
2013, Indianapolis, IN, USA, October 26-31, 2013. 803–816.

117

	Deep specification mining
	Citation

	Abstract
	1 Introduction
	2 Background
	3 Proposed Approach
	3.1 Test Case Generation and Trace Collection
	3.2 Learning RNNLM for Specification Mining
	3.3 Automata Construction

	4 Empirical Evaluation
	4.1 Dataset
	4.2 Experimental Settings
	4.3 Research Questions
	4.4 Findings

	5 Mining FSA for Detecting Android Malicious Behaviors
	6 Threats to Validity
	7 Related Work
	8 Conclusion and Future Work
	References

