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ABSTRACT
Developers introduce bugs during software development which re-
duce software reliability. Many of these bugs are commonly occur-
ring and have been experienced by many other developers. Informing
developers, especially novice ones, about commonly occurring bugs
in a domain of interest (e.g., Java), can help developers comprehend
program and avoid similar bugs in the future. Unfortunately, infor-
mation about commonly occurring bugs are not readily available. To
address this need, we propose a novel approach named RFEB which
recommends frequently encountered bugs (FEBugs) that may affect
many other developers. RFEB analyzes Stack Overflow which is the
largest software engineering-specific Q&A communities. Among
the plenty of questions posted in Stack Overflow, many of them
provide the descriptions and solutions of different kinds of bugs.
Unfortunately, the search engine that comes with Stack Overflow is
not able to identify FEBugs well. To address the limitation of the
search engine of Stack Overflow, we propose RFEB which is an
integrated and iterative approach that considers both relevance and
popularity of Stack Overflow questions to identify FEBugs. To evalu-
ate the performance of RFEB, we perform experiments on a dataset
from Stack Overflow which contains more than ten million posts.
We compared our model with Stack Overflow’s search engine on 10
domains, and the experiment results show that RFEB achieves the
average 𝑁𝐷𝐶𝐺10 score of 0.96, which improves Stack Overflow’s
search engine by 20%.

ACM Reference Format:
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ternational Conference on Program Comprehension 2018 (ICPC’18). ACM,
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1 INTRODUCTION
During the software development process, developers may encounter
different kinds of bugs which would affect a program’s functionality,
cause the program to crash or freeze, and reduce software reliability.
Many bugs are commonly occurring and have been experienced by
many other developers [5, 12, 22, 39, 44, 50, 52]. We refer to these
bugs as frequently encountered bugs (FEBugs), i,e., generic bugs
that have been encountered frequently in many situations and may
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affect many developers. Informing developers about FEBugs may
help them avoid similar bugs and better comprehend program in
the future. This is especially so for novice developers who are in
the beginning of their learning process; understanding FEBugs in
their domain of interest can help them cultivate good coding habits,
improve the ability of program comprehension and avoid common
pitfalls. Unfortunately, information about FEBugs are not readily
available; people often do not know what are the FEBugs in a domain
they are interested in.

To help developers better find FEBugs, we propose a technique to
identify FEBugs from the many questions in Stack Overflow, which
is currently one of the most popular sites where software engineers
search, communicate, collaborate, and share their experience and
expertise with one another. In the past 8 years, Stack Overflow has
built up over 15 million questions (up to January 2018) along with
their corresponding answers that cover a wide range of topics and
has become a large knowledge repository. Among Stack Overflow
posts (i.e., questions and answers), many of them are related to bugs
in different domains – an example is shown in Figure 11. Many users
post descriptions of bugs that they encountered in Stack Overflow,
and some other users who know how these bugs can be fixed provide
solutions. Other users who encounter these bugs in the future may
search and view these posts, and vote whether they are helpful or not.
Many of these bug-related posts are submitted to Stack Overflow
daily, and thus one promising way to identify FEBugs is by analyzing
the large amount of data available in this knowledge repository.

To recover FEBugs in Stack Overflow, we initially try to use
its search engine. For example, we can search using the keyword
“bug” “⟨𝑑𝑜𝑚𝑎𝑖𝑛⟩”, where ⟨𝑑𝑜𝑚𝑎𝑖𝑛⟩ corresponds to a domain of
interest (e.g., Java). Unfortunately, we find that the current search
engine of Stack Overflow does not allow one to find FEBugs well.
Often, many of the top results are not what we want. The search
results can be ranked by “relevance” (best match to search terms),
“newest” (most recently posted), “votes” (highest number of votes),
and “active” (most recently edited). When ranked by “relevance”,
“newest” or “active”, many top results are related to bugs in the
specified domain, but often with low vote scores or receiving no
answer. These questions often describe highly specific bugs. On
the other hand, when we chose to rank by “votes”, although many
questions are generic ones, they are often irrelevant to the specified
domain of interest. For example, Figure 2 shows the top-5 results
when we searched using the keywords “bug” and “Java” and ranked
the search results by “votes”. We find that 4 of the 5 results are not
related to Java bugs.

To deal with the limitation of Stack Overflow’s search engine,
we propose a solution that can identify FEBugs more accurately.

1http://stackoverflow.com/questions/2194808, June 2016.
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We propose an approach named RFEB (Recommending Frequently
Encountered Bugs) which considers both the relevance and popu-
larity of questions in Stack Overflow. RFEB includes an iterative
query refinement process to improve the quality of the simple query
(i.e., “bug” “⟨𝑑𝑜𝑚𝑎𝑖𝑛⟩”) by adding additional terms so that more
relevant results can be retrieved. Moreover, RFEB embeds a number
of question popularity metrics in Stack Overflow (e.g., the votes
score and the number of views) in the retrieval process. The output
of RFEB are the top 𝑁 FEBugs of a specified domain.

Figure 1: A Frequently Encountered Bug (FEBug) in Stack
Overflow

Figure 2: A Stack Overflow Search Result

We compare our model RFEB with Stack Overflow’s search
engine, which we use as a baseline. As the evaluation metric, we
use the normalized discounted cumulative gain (NDCG), which
evaluates the quality of a search engine based on the graded relevance
of the entities in the result set. The value of NDCG varies from
0.0 to 1.0, while 1.0 means the ranking is ideal. NDCG is widely
used in text retrieval to evaluate the performance of a web search
engine [19, 33]. Since only the top few results matters, we focus on
the top-10 results and compute 𝑁𝐷𝐶𝐺10.

We evaluate RFEB on a Stack Overflow data dump considering
10 domains, and compare it with the search engine of Stack Overflow.

The experiment results show that RFEB is more effective than Stack
Overflow’s search engine on all 10 domains when evaluated in terms
of 𝑁𝐷𝐶𝐺10. Among the 10 domains, the 𝑁𝐷𝐶𝐺10 scores of
RFEB range from 0.908 to 0.992, and the average 𝑁𝐷𝐶𝐺10 score
of RFEB is 0.96, which are very high. Furthermore, in terms of
the average 𝑁𝐷𝐶𝐺10 score, RFEB outperforms Stack Overflow’s
search engine by 19.701%.

The main contributions of this paper are listed as follows:

(1) To our best knowledge, we are the first to recommend fre-
quently encountered bugs from Stack Overflow, and we pro-
pose a novel model named RFEB which could output the top
𝑁 FEBugs given a specific domain of interest.

(2) We evaluate RFEB on 10 domains, and demonstrate that
RFEB performs better than Stack Overflow’s search engine
in terms of 𝑁𝐷𝐶𝐺10.

Paper structure. In Section 2, we present the overall framework
and the details of RFEB. In Section 3, we present our experimental
results. Section 4 discusses some issues about the performance,
efficiency, and threats to validity of RFEB. In Section 5, we briefly
review the related work. In Section 6, we conclude and mention
future work.

2 PROPOSED APPROACH
In this section, we first provide a birds-eye-view of various steps of
RFEB in Section 2.1. The steps are elaborated in the subsequent
subsections.

2.1 Overview
The overall framework of RFEB is presented in Figure 3. Our frame-
work takes as input the ⟨𝑑𝑜𝑚𝑎𝑖𝑛⟩ and a Stack Overflow dataset.
The ⟨𝑑𝑜𝑚𝑎𝑖𝑛⟩ corresponds to a particular programming topic that
interests a developer, e.g., Java, Android, etc. The Stack Overflow
dataset contains information of historical questions and answers
in Stack Overflow such as the id, title, body, tags, vote score, and
view times. We make use of a data dump of Stack Overflow which
has been made publicly available.2 In our framework, RFEB first
preprocesses the textual contents of questions in Stack Overflow,
to convert the questions to the form of “bag of words” (Step 1).
Then, when a user gives a domain of interest (Step 2), RFEB creates
and analyzes the preprocessed dataset to find a number of questions
that are likely to describe bugs or defects in the domain based on a
simple keyword matching strategy. We refer to these questions as
the candidate domain-specific bug dataset (CDB) (Step 3). RFEB
ranks the questions in CDB in descending order of their vote scores
multiplied by view times, and chooses the top 𝐾 questions for a
query refinement step (Step 4). These top 𝐾 questions are popular
ones that are likely to be generic questions that affect many develop-
ers. Next, RFEB performs an iterative query refinement process to
improve the relevance of the top 𝐾 questions to bugs in the given
domain. It expands the query using additional terms (i.e., words)
from the top 𝐾 questions to find more relevant questions (Step 5),
re-ranks the questions in the domain-specific bug dataset according
to the new query (Step 6), and then judges if the ordering of the
re-ranked questions is stable (Step 7). If it is stable, then RFEB

2https://archive.org/details/stackexchange
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Figure 3: Overall Framework of RFEB

outputs the top 𝑁 questions as FEBugs (Step 8), if not, it repeats
Steps 5-7 until the ordering is stable. We elaborate the steps of the
framework in the next subsections.

2.2 Step 1: Preprocessing
In the preprocessing step, we extract the title and body texts from
the questions in the data set. Then, we tokenize the extracted texts,
remove the stop words, and do stemming. Stop words refer to the
widely used words, e.g., “a”, “the”, “and”, “he”. The stop words are
of little help in distinguishing different questions as they are used
too often. Stemming refers to the process of reducing the words to
their root forms. For instance, after stemming, “marks”, “marked”,
“marking” are all reduced to the same root word “mark”. We apply
the popular Porter stemming algorithm3, which has been used in
many other studies [26, 38]. We perform the stemming process to
standardize words which keep the same meaning but are presented
in different forms. Finally, we create a bag of words to represent
each question, and forward the preprocessed questions to the next
step.

2.3 Steps 2 and 3: Construction of Candidate
Domain-Specific Bug Dataset (CDB)

In step 2, a developer needs to provide a keyword or a number of
keywords that describe a domain of interest (e.g., Java, Android,
etc.). Next, in step 3, we filter the preprocessed questions based
on two criteria: (1) they need to contain all the keywords that the
user has provided or being tagged with the keywords, (2) they need
to contain the keyword “bug” or “defect”. Questions that satisfy
these criteria are selected to form the candidate domain-specific bug
dataset (CDB).

2.4 Step 4: Question Ranking
After the CDB is built, we rank the questions in the CDB to identify
the generic ones that interest many people. These questions are
likely to be FEBugs. We integrate two popularity metrics in Stack
Overflow, namely the vote score and the number of views, to rank
the questions. For post 𝑝, we calculate its score (denoted as 𝑅𝑎𝑛𝑘𝑝)
as follows:

𝑅𝑎𝑛𝑘𝑝 = 𝑉 𝑜𝑡𝑒𝑆𝑐𝑜𝑟𝑒𝑝 × 𝑉 𝑖𝑒𝑤𝑒𝑑𝑇 𝑖𝑚𝑒𝑠𝑝 (1)

3http://tartarus.org/martin/PorterStemmer/

Next, we rank the questions in the domain-specific bug dataset
in descending order of their 𝑅𝑎𝑛𝑘 scores, and forward the top 𝐾
questions to the next step.

2.5 Step 5: Query Refinement
We use query refinement to get a good set of words that can be
used as a good query to retrieve FEBugs from the candidate domain-
specific bug dataset (CDB). FEBugs need to be questions that are
generic and relevant. In Step 4, we can get the generic bugs by
looking into the popularity metrics. In this step, we would like
to improve the relevance of the top-K results. This step is done
many times initially with the input query “bug” and “⟨𝑑𝑜𝑚𝑎𝑖𝑛⟩”.
This query is refined at the end of the subsequent query refinement
steps, by adding additional words to the query. The query refinement
process has been proved to be an effective way to improve the quality
of a search engine, and it has been used in many previous software
engineering studies [8, 14, 21].

The query refinement process in RFEB can be broken down in-
to three steps: candidate expansion terms generation and ranking,
expansion terms selection, and the query reformation. Query re-
finement is based on pseudo-relevance feedback, which considers
the top 𝐾 questions ranked in the domain-specific bug dataset as
likely relevant questions to the query. Then we rank the terms in
the top 𝐾 questions by their Dice similarity [14] with the terms in
the initial query, and select the ones with high similarity scores for
query refinement. The common assumption in text retrieval is that
if two terms co-occur in the same questions, they are semantically
related [8]. Given a term 𝑚 from the query and a term 𝑛 from the
top 𝐾 questions, the Dice similarity score of 𝑚 and 𝑛 is defined as:

𝐷𝑖𝑐𝑒𝑆𝑖𝑚 =
2𝑑𝑓𝑚∧𝑛

𝑑𝑓𝑚 + 𝑑𝑓𝑛
(2)

Where 𝑑𝑓𝑚∧𝑛 means the number of questions in the dataset which
contain both 𝑚 and 𝑛, and 𝑑𝑓𝑚, 𝑑𝑓𝑛 are the number of questions
containing 𝑚 and 𝑛, respectively.

The score of 𝐷𝑖𝑐𝑒𝑆𝑖𝑚 ranges from 0 to 1, and the higher the
score, the more similar the two terms are. For a term 𝑣 from the
top 𝐾 questions that does not appear in the input query, we sum
up its 𝐷𝑖𝑐𝑒𝑆𝑖𝑚 scores with all terms from the input query and get
the average score. Then we rank the terms from the top 𝐾 posts in
descending order of their average dice similarity scores.
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After ranking, we remove all terms in the top 𝐾 questions whose
average dice similarity score is smaller than the query refinement
threshold 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑒. Next, we choose the top-10 terms as the
expansion terms. If there are less than 10 terms remaining, we use
all of them as the expansion terms. These terms would be added to
the input query.

2.6 Step 6: Re-ranking
After a new query is generated by Step 5, we re-rank the question-
s in the candidate domain-specific bug dataset. We integrate the
similarities between the refined query and the questions and the pop-
ularity metrics of the questions (i.e., the vote score and the number
of views).

We use cosine similarity [29] to measure the similarity between
a query and a question. For a question 𝑝 and a query 𝑞, their vector
representations are PostVecp and QueryVecq. The cosine similarity
between 𝑝 and 𝑞 is calculated as follows:

𝐶𝑜𝑠𝑆𝑖𝑚(PostVecp,QueryVecq) =
PostVecp · QueryVecq

| PostVecp || QueryVecq |

The numerator of Equation (3) – the dot product of the two
vectors PostVecp = ⟨𝑤𝑡𝑝,1, 𝑤𝑡𝑝,2, . . . , 𝑤𝑡𝑝,𝑣⟩ and QueryVecq =

⟨𝑤𝑡𝑞,1, 𝑤𝑡𝑞,2, . . . , 𝑤𝑡𝑛𝑞,𝑣⟩ is computed as follows:

PostVecp · QueryVecq = 𝑤𝑡𝑝,1 × 𝑤𝑡𝑞,1 + 𝑤𝑡𝑝,2 × 𝑤𝑡𝑞,2

+ . . .+ 𝑤𝑡𝑝,𝑣 × 𝑤𝑡𝑞,𝑣

The terms | PostVecp | and | QueryVecq | in the denominator of
Equation (3) refer to the sizes of the two vectors. The size of a vector
PostVecp is computed as follows:

| PostVecp |=
√︁

𝑤𝑡2𝑝,1 + 𝑤𝑡2𝑝,2 + . . .+ 𝑤𝑡2𝑝,𝑣

The computed cosine similarities are combined with popularity
metrics (i.e., the vote score and the number of views) to re-rank the
questions. For question 𝑝, we calculate its score as follows:

𝑅𝑒𝑅𝑎𝑛𝑘𝑝 = 𝐶𝑜𝑠𝑆𝑖𝑚𝑝 × 𝑉 𝑜𝑡𝑒𝑆𝑐𝑜𝑟𝑒𝑝 × 𝑉 𝑖𝑒𝑤𝑒𝑑𝑇 𝑖𝑚𝑒𝑠𝑝 (3)

Then we rank the questions in the candidate domain-specific bug
dataset in descending order of their 𝑅𝑒𝑅𝑎𝑛𝑘 scores, and forward
the top 𝐾 questions to the next step.

2.7 Steps 7 and 8: Stability Check
After the re-ranking step, we get a new set of top 𝐾 questions based
on the new query. Then we judge the stability of the top 𝐾 list by
comparing the new set of top 𝐾 questions with the previous one.
We compute the intersection and union of the two sets of top 𝐾
questions, and calculate a stability score as follows:

𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑆𝑖𝑧𝑒𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝑆𝑖𝑧𝑒𝑢𝑛𝑖𝑜𝑛
(4)

Given a suitable stability threshold 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠, we decide if the
ordering is stable by the following equation:

𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =

{︃
𝑆𝑡𝑎𝑏𝑙𝑒, 𝑖𝑓 𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠

𝑁𝑜𝑡 𝑆𝑡𝑎𝑏𝑙𝑒, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(5)

Table 1: Dataset.

Domain Number of questions related to bugs

Android 50829
css 10100

html 10408
ios 12169

Java 52971
Javascript 45825

jquery 24737
mysql 7324

php 27613
Python 19620

In the above equation, an ordering is classified as Stable, if
𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 is larger than or equal to 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠; otherwise it is
classified as Not Stable. When the top 𝐾 list is stable, RFEB out-
puts it; otherwise, RFEB repeats the query refinement process again
until it is stable.

3 EXPERIMENT AND ANALYSES
In this section, we evaluate the performance of RFEB and compare it
with the baseline approach. We use an Intel(R) Core(TM) i7-4710HQ
2.50 GHz CPU, 16GB RAM server to run the experiments.

3.1 Experiment Setup
We evaluate RFEB on historical questions of Stack Overflow from
a Stack Exchange Data Dump4. The dataset contains more than
11 million questions from 2008 to 2016 on Stack Overflow. From
this large question repository, we extract questions related to bugs
on 10 domains: Android, css, html, ios, Java, javascript, jquery,
mysql, php, and Python. Notice that the domains we chose are hot
topics in Stack Overflow and plenty of posts are related to them;
developers frequently discuss solutions for bugs in these 10 domains.
For example, there are more than 40,000 questions which are related
to fixing bugs in Java code in our collected dataset5.

For each domain, we build a domain-specific bugs dataset which
contains all the questions related to bugs, we extract the information
such as id, title, body, tags, vote score, and view times of each
question from Stack Overflow. Notice we remove the questions
which are marked as “Closed”, and the questions which have no
answers. Table 1 shows the numbers of questions related to bugs of
the 10 domains after extraction process. When a question is created,
we just need to analyze which domain it belongs to and if it is
describing a bug, if in case, add it to corresponding domain dataset,
and there is no need to repeat the extraction process again.

Our approach has several parameters: 𝐾 (i.e., number of ques-
tions used in the query refinement step), 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑒 (i.e., query
refinement threshold), 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠 (i.e., stability check threshold),
and 𝑁 (i.e., number of questions to be output). We set 𝐾 to 20
following Carpineto et al. [8], while 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑒, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠, and
𝑁 are set to 0.3, 1, and 10 respectively.

4https://archive.org/download/stackexchange
5These questions include the word Java and bug in their title, description or tags
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Figure 4: Approach of computing the final score of the labeled
questions.
3.2 Baseline
The baseline approach in our experiment is the search engine of Stack
Overflow. We use the query “bug” and “⟨𝑑𝑜𝑚𝑎𝑖𝑛⟩” (e.g., “bug Java”
for domain “Java”) to search on the Stack Overflow website6, and
rank the results by “votes”. In Stack Overflow, the search results
can be ranked by “relevance”, “newest”, “votes”, and “active”, we
choose to rank by “votes” as a question with high vote score means
it was useful and clear to many users, and is more likely to be a
frequently encountered bug.

3.3 User Study
A user study is performed to evaluate the top-10 questions produced
by our approach RFEB and Stack Overflow’s search engine on the
10 domains. We invited 16 programmers for the user study, who are
PhD students in the lab and developers in industrial companies, and
all of them have programming experience of more than 4 years. Each
domain was manually labeled by two programmers. To ensure a high
level of rigour in our manual annotation process, all participants are
at least moderately familiar with the domains they labeled and have
good English reading skills.

For each domain, the evaluation process contains two steps. First,
we ask the two participants to independently label the 20 questions
for this domain (10 from RFEB and 10 from Stack Overflow’s search
engine). Second, the two annotators discuss their disagreements to
make a common decision; for questions that the two annotators
cannot reach an agreement, the other participants were involved in
the decision process.

The purpose of labeling the questions is to judge whether each
of the questions is a frequently encountered bug in the domain. For
each question, participants need to answer 3 questions:

(1) Is this question related to the domain?
(2) Does this question describe a bug?
(3) Is this question generic, rather than very specific?
The first question assesses whether a retrieved question is relevant

to the domain of interest. The second question assesses whether a
retrieved question is about a bug rather than other concerns. The
third question assesses whether a retrieved question is likely to be
6http://stackoverflow.com/

frequently asked by many. Based on the three answers, we assign a
score ranging from 1 to 5 to each retrieved question according to the
criteria shown in Figure 4.

In the labeling process, we randomly mix the top-10 questions
generated by our approach RFEB and the top-10 questions generated
by Stack Overflow’s search engine – participants do not know which
result is produced by which approach. We used Fleiss Kappa [13]
to evaluate the agreement between the two annotators. The overall
Kappa value between the two participants considering all domains
is 0.613, which indicates substantial agreement7 between them.

3.4 Evaluation Metrics
The normalized discounted cumulative gain (NDCG) is used to
evaluate the effectiveness of our model and the baseline approach.
NDCG is a measure of search engine quality, which is widely used
to evaluate the performance of search engine algorithms or other
related applications. The value of NDCG varies from 0.0 to 1.0,
while 1.0 means the ranking is ideal. NDCG is commonly used
in text retrieval and to measure the performance of a web search
engine [19, 33]. Two assumptions are made in using NDCG:

(1) The documents with high relevance are more useful than the
documents with marginal relevant.

(2) The relevance document with low rank position is useless for
the user as it is less likely to be examined.

The NDCG at a particular rank position 𝑝 is defined as follows:

𝑁𝐷𝐶𝐺𝑝 =
𝐷𝐶𝐺𝑝

𝐼𝐷𝐶𝐺𝑝
(6)

where

𝐷𝐶𝐺𝑝 =

𝑝∑︁
𝑖=1

2𝑟𝑒𝑙𝑖 − 1

𝑙𝑜𝑔2(𝑖+ 1)
(7)

𝐼𝐷𝐶𝐺𝑝 is the maximum possible (ideal) DCG through position
𝑝 for a given set of queries, documents, and relevances, and 𝑟𝑒𝑙𝑖 is
the graded relevance of the result at position 𝑖. Note in a excellent
ranking algorithm, the 𝐷𝐶𝐺𝑝 will be the same as the 𝐼𝐷𝐶𝐺𝑝

producing an NDCG of 1.0 [7].

3.5 Research Questions
This paper addresses the following research questions:

Research Question 1: How effective is RFEB?
Motivation. In this research question, we investigate whether R-
FEB can be used to identify FEBugs in Stack Overflow. Also, it is
necessary to compare the performance of RFEB with the standard
search engine of Stack Overflow. Answer to this research question
could shed light to whether and to what extent RFEB improves over
the baseline approach.

Approach. To address this research question, we build the experi-
ments on 10 domains: Android, css, html, ios, Java, javascript, jquery,
mysql, php, and Python. We compute NDCG at rank position 10
(𝑁𝐷𝐶𝐺10) of RFEB when performing experiments on the Stack

7Kappa values of < 0, [0.01, 0.20], [0.21, 0.40], [0.41, 0.60], [0.61, 0.80], [0.81, 1.00]
are considered as poor agreement, slight agreement, fair agreement, moderate agreement,
substantial agreement, almost perfect agreement, respectively
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Table 2: 𝑁𝐷𝐶𝐺10 scores of RFEB compared with the standard
search engine of Stack Overflow (SO).

Domain RFEB SO’s search engine Improvement

Android 0.991 0.912 8.662%
Css 0.992 0.771 28.664%

Html 0.965 0.701 37.66%
Ios 0.97 0.853 13.716%

Java 0.908 0.648 40.123%
Javascript 0.944 0.939 0.532%

Jquery 0.979 0.675 45.037%
mysql 0.951 0.886 7.336%

php 0.955 0.698 36.819%
Python 0.946 0.939 0.745%

Average 0.96 0.802 19.701%

Overflow dataset, and compare the results with the 𝑁𝐷𝐶𝐺10 scores
of Stack Overflow’s default search engine.

Results. Table 2 presents the experiment results of 𝑁𝐷𝐶𝐺10 scores
of RFEB and the standard search engine of Stack Overflow, and
shows the relative improvements that RFEB achieves over Stack
Overflow’s search engine. The relative improvement is calculated
by dividing the difference of the 𝑁𝐷𝐶𝐺10 scores of RFEB and
Stack Overflow’s search engine with the 𝑁𝐷𝐶𝐺10 scores of Stack
Overflow’s search engine. We also report the average results of the
10 domains in the last row. The results demonstrate that RFEB
is more effective than Stack Overflow’s search engine on all 10
domains. The average 𝑁𝐷𝐶𝐺10 score of RFEB is 0.96, which
outperform Stack Overflow’s search engine by 19.701%. Among
the 10 domains, 𝑁𝐷𝐶𝐺10 scores of RFEB range from 0.908 to
0.992, the 𝑁𝐷𝐶𝐺10 scores of Stack Overflow’s search engine range
from 0.648 to 0.939, and the improvement RFEB made of Stack
Overflow’s search engine range from 0.532% to 45.037%. Thus,
we can draw the conclusion that RFEB performs better than Stack
Overflow’s search engine in terms of 𝑁𝐷𝐶𝐺10.

RFEB outperforms Stack Overflow’s default search engine on all 10
domains when evaluated in terms of 𝑁𝐷𝐶𝐺10.

Research Question 2: In terms of NDCG, how effective are R-
FEB and Stack Overflow’s search engine at different rank posi-
tions in search result lists?
Motivation. In RQ1, we compute NDCG at rank position 10 (𝑁𝐷𝐶𝐺10)
of RFEB and Stack Overflow’s search engine. In this RQ, we in-
vestigate the performance of these two approaches at different rank
positions. Answer to this research question can shed light as to
whether RFEB outperforms Stack Overflow’s search engine when
other rank positions are considered.

Approach. To address this RQ, we calculate NDCG scores of RFEB
and Stack Overflow’s search engine when they are applied to the
Stack Overflow question dataset on the 10 domains mentioned in
RQ1. We investigate different rank positions in the search result list,
from 1 to 10, at 1 interval. Next, we plot the NDCG graphs of the 10
domains that show the performance of RFEB and Stack Overflow’s
search engine when evaluated by 𝑁𝐷𝐶𝐺1 to 𝑁𝐷𝐶𝐺10.

Results. Figure 5 presents the NDCG graphs of RFEB and Stack
Overflow’s search engine for Android, css, html, ios, Java, javascript,

jquery, mysql, php, and Python domains. From the graphs, for most
of the domains, for most rank positions, we notice that RFEB per-
forms better than Stack Overflow’s search engine. Notice the graphs
of Android, css, html, ios, Java, jquery, mysql, and php, RFEB ob-
viously achieves better performance than Stack Overflow’s search
engine at all rank position from 1 to 10. For the domain javascript,
RFEB performs better at the rank position from 4 to 10, and Stack
Overflow’s search engine performs better at the rank position from
1 to 3. For the domain Python, RFEB performs better at the rank
position 4-7, 10, and Stack Overflow’s search engine performs better
at the rank position 2, 3, 8, 9.

When evaluated in terms of NDCG at rank position 1 to 10, for most
cases, RFEB outperforms Stack Overflow’s search engine.

Research Question 3: What is the effect of varying the threshold
in the query refinement step of RFEB?
Motivation. In the query refinement step, terms whose average dice
similarity scores are higher than 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑒 are selected to refine
the query. In RQ1 and RQ2, we set the query refinement threshold
as 0.3, which means the terms with dice similarity scores equal or
higher than 0.3 will be added to the query (i.e., 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑒 in Sec-
tion 2.5). In this research question, we investigate the performance
of RFEB with different query refinement thresholds. Answer to this
research question can shed light to the effect of query refinement
threshold in RFEB.

Approach. To address this question, we conduct an experiment with
five different query refinement thresholds (i.e., 0.1, 0.2, 0.3, 0.4, and
0.5). We set the threshold up to 0.5 as we noticed that few terms’
dice similarity scores are larger than 0.5. If the threshold is too high,
there may be no terms could add to the query. As manually data
labeling is a time-consuming work, we choose 2 domains in this
experiment, the one achieves the highest 𝑁𝐷𝐶𝐺10 score in RQ1 –
css and the one achieves the lowest 𝑁𝐷𝐶𝐺10 score in RQ1 – Java.
We then compare the results achieved by RFEB using these different
query refinement thresholds in terms of NDCG at rank position 10.

Results. Table 3 presents the experiment results. We report the
𝑁𝐷𝐶𝐺10 scores of RFEB with different query refinement thresh-
olds. From the table, we can see that for css, RFEB achieves the
same 𝑁𝐷𝐶𝐺10 score when threshold equals to 0.1, 0.2, and 0.3,
and 𝑁𝐷𝐶𝐺10 is a bit low when threshold equals to 0.4 and 0.5,
RFEB achieves the lowest 𝑁𝐷𝐶𝐺10 score when threshold equals
to 0.5. For Java, RFEB achieves the same 𝑁𝐷𝐶𝐺10 score when
threshold equals to 0.3 and 0.4, which is better than other three, R-
FEB achieves the lowest 𝑁𝐷𝐶𝐺10 score when threshold equals to
0.1. When considering the average scores of the 2 domains, RFEB
performs best when threshold=0.3, and the performance of other
threshold settings do not differ a lot, which are close to the result
of threshold=0.3. RFEB performs relatively low 𝑁𝐷𝐶𝐺10 score
with the threshold as 0.1 and 0.5 when compared to the other three
thresholds (i.e., 0.2, 0.3, and 0.4).

RFEB with threshold=0.3 performs better than RFEB with other 4
threshold settings in terms of 𝑁𝐷𝐶𝐺10. The results of the 5 threshold
do not vary much, which means query refinement threshold do not
affect much to the performance of RFEB.
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(a) Android (b) Css

(c) Html (d) Ios

(e) Java (f) Javascript

(g) Jquery (h) Mysql

(i) Php (j) Python

Figure 5: Graphs of NDCG at rank positions from 1 to 10.
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Table 3: 𝑁𝐷𝐶𝐺10 scores of RFEB with different query refinement thresholds.

Domain threshold=0.1 threshold=0.2 threshold=0.3 threshold=0.4 threshold=0.5

Css 0.992 0.992 0.992 0.961 0.946
Java 0.863 0.89 0.908 0.908 0.901

Average 0.928 0.941 0.95 0.935 0.924

Research Question 4: What is the effect of varying the threshold
in the stability check step of RFEB?
Motivation. In the stability check step, a model is deemed stable
if its stability is larger than or equal to 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠. In RQ1 and
RQ2, we set the stability check threshold as 1 (i.e., 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠 in
Section 2.7), which means the top 𝐾 questions produced by RFEB
in this iteration are the same as the top 𝐾 question produced in last
iteration. In this research question, we investigate the performance
of RFEB with different stability check thresholds. Answer to this
research question can shed light to the effect of stability check
threshold in RFEB.

Approach. To address this RQ, we conduct an experiment with five
different stability check thresholds (i.e., 0.2, 0.4, 0.6, 0.8, and 1).
As manually data labeling is a time-consuming work, we choose
2 domains in this experiment, the one that achieves the highest
𝑁𝐷𝐶𝐺10 score in RQ1 – css and the one that achieves the low-
est 𝑁𝐷𝐶𝐺10 score in RQ1 – Java. We then compare the results
achieved by RFEB using these different stability check thresholds
in terms of NDCG at rank position 10.

Results. The experiment results are shown in Table 4. We report the
𝑁𝐷𝐶𝐺10 scores of RFEB with different stability check thresholds.
From the table, we can see that for css, RFEB achieves the best
𝑁𝐷𝐶𝐺10 score when threshold equals to 1, and 𝑁𝐷𝐶𝐺10 scores
are the same when threshold equals to 0.8 and 0.6, RFEB achieves
the lowest 𝑁𝐷𝐶𝐺10 score when threshold equals to 0.2. For Java,
RFEB achieves the same 𝑁𝐷𝐶𝐺10 score when threshold equals
to 1 and 0.8, which is better than other three, the results of RFEB
are also the same when take threshold 0.6 and 0.4, RFEB achieves
the lowest 𝑁𝐷𝐶𝐺10 score when threshold equals to 0.2. When
considering the average scores of the 2 domains, RFEB performs
best when threshold=1. We also notice that the higher the threshold
is, the better performance RFEB could achieve, so if time permits,
it’s better to take a high stability check threshold.

RFEB with threshold=1 performs better than RFEB with other 4
threshold settings in terms of 𝑁𝐷𝐶𝐺10. RFEB performs better with
higher stability check threshold (no more than 1).

4 DISCUSSION
4.1 Qualitative Analysis
Here, we perform a brief qualitative analysis on RFEB and Stack
Overflow’s search engine outputs. In Table 5 and Table 6, we present
the top-5 questions returned by RFEB and Stack Overflow’s search
engine in the domain Python, respectively. We post the question
ids, titles, short descriptions and the labelled results of the questions
in the two tables. From the tables, we can see that all 5 questions
returned by RFEB are related to Python, and the second, the third,

and the forth questions are FEBugs; 2 of the 5 questions returned
by Stack Overflow’s search engine are not related to Python, and
only the second one is a FEbug. From the example, we notice that
the results returned by RFEB are of higher quality and are more
likely to be FEBugs than those returned by Stack Overflow’s search
engine.

4.2 Time Complexity
We analyze the time complexity of RFEB in this section. Given a
domain as an input, RFEB first finds a set of questions that are likely
to describe bugs or defects in the domain. The time complexity of
this step is 𝑂(𝑚), where 𝑚 indicates the number of questions in
Stack Overflow. Then RFEB re-ranks this set of questions several
times with expanded queries until the output is stable. For this step,
the time complexity is 𝑂(𝑛2), where 𝑛 indicates the number of
questions RFEB selected in the previous step. Considering that
RFEB re-ranks the questions 𝑘 times, the total time complexity of
RFEB is 𝑂(𝑚+ 𝑘𝑛2). In our experiments, using an Intel(R) Core
i7 2.5 GHz server with 16GB RAM running Windows 7 (64-bit),
the time taken to return a query is between 1-3 minutes. We did not
index the documents and the run time needed would have been much
shorter if an index had been used. To improve the response time
further, as a deployment strategy, query results can be cached, and
only new documents need to be analyzed when the same query is
asked again by another user of RFEB. We leave these and additional
optimization strategies for future work.

4.3 Threats to Validity
Threats to internal validity refer to errors in our experiments. We
have double checked our implementations and all the experiment re-
sults. Hence, we believe there are minimal threats to internal validity.
Still, there could be errors that we did not notice.

Threats to external validity refer to the generalizability of our
results. We tried to mitigate this threat by evaluating our approach on
millions of questions on Stack Overflow. We performed a user study
to evaluate whether the retrieved questions are actually describing
FEBugs or not. To reduce this threat, we invited 16 programmers
for the user study. All participants are moderately familiar with the
domain they labeled and have basic English reading skills. Finally,

7http://stackoverflow.com/questions/5082452, June 2016.
8http://stackoverflow.com/questions/1132941, June 2016.
9http://stackoverflow.com/questions/2988017, June 2016.
10http://stackoverflow.com/questions/191010, June 2016.
11http://stackoverflow.com/questions/5178416, June 2016.
12http://stackoverflow.com/questions/394809, June 2016.
13http://stackoverflow.com/questions/1132941, June 2016.
14http://stackoverflow.com/questions/49547, June 2016.
15http://stackoverflow.com/questions/4113299, June 2016.
16http://stackoverflow.com/questions/231767, June 2016.
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Table 4: 𝑁𝐷𝐶𝐺10 scores of RFEB with different stability check thresholds.

Domain threshold=0.2 threshold=0.4 threshold=0.6 threshold=0.8 threshold=1

Css 0.924 0.948 0.981 0.981 0.992
Java 0.826 0.88 0.88 0.908 0.908

Average 0.875 0.914 0.931 0.945 0.95

Table 5: Top-5 questions returned by RFEB for the domain Python.

Question
ID

Title Short Description Domain?Bug?Generic?

50824527 Python string formatting: % vs. .format Ask questions about str.format() method. Yes No Yes
11329418 “Least Astonishment” in Python: The

Mutable Default Argument
Describe “a dramatic design flaw” of Python on
binding the default argument at function defini-
tion.

Yes Yes Yes

29880179 String comparison in Python: is vs. == Describe a problem in python that ’==’ and ’is’
sometimes produce a different result when used
to compare strings.

Yes Yes Yes

19101010 How to get a complete list of object’s
methods and attributes?

Describe a problem in Python that the function
“dir()” does not return a complete list.

Yes Yes Yes

517841611 pip install lxml an error Describe a error when installing a package lxml
using pip.

Yes No No

Table 6: Top-5 questions returned by Stack Overflow’s search engine for the domain Python.

Question
ID

Title Short Description Domain?Bug?Generic?

39480912 Does Python have a ternary conditional
operator?

Ask if Python supports a ternary conditional op-
erator.

Yes No No

113294113 “Least Astonishment” in Python: The
Mutable Default Argument

Describe “a dramatic design flaw” of Python on
binding the default argument at function defini-
tion.

Yes Yes Yes

4954714 Making sure a web page is not cached,
across all browsers

A question about web page caching. No No No

411329915 Ruby on Rails Server options Question about setting up a development server
for Ruby on Rails applications.

No No No

23176716 What does the yield keyword do in
Python?

Question about how the Python’s ”yield” key-
word should be used and what does it do.

Yes No No

our choice of baseline clearly impacts the results. As future work, we
plan to study more baselines. We only investigate one query format
“bug ⟨𝑑𝑜𝑚𝑎𝑖𝑛⟩”. Other query format could have been used. Due to
the cost involved in performing the user study8, we can only afford
to investigate one query format. We leave investigation into other
query formats for future work.

Threats to construct validity mean the suitability of the proposed
evaluation metrics. We use NDCG which is also used by many
software engineering studies to evaluate the quality of web search
engines [20, 40]. Thus, the threat to validity is mitigated.

8In our user study, participants need to spend around one hour to label the 20 questions
for a domain.

5 RELATED WORK
Studies on Online Social Media. Durning the process of software
development and maintenance, developers frequently use online
social media such as Stack Overflow to improve their efficiency [42,
46–48]. We highlight some of this research below.

Storey et al. [37] and Begel et al. [4] present the viewpoint of
study in social media for software engineering in two papers and
research the effect of social media at team, project, and community
levels in software engineering. Zhang et al. proposed an approach
named DupPredictor to detect the duplicate questions in Stack Over-
flow which considers multiple factors from the questions [53]. Hong
et al. made a research on developer social networks, and compare
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it with other social networks [17]. Prasetyo et al. propose an auto-
matic approach to judge whether a microblog is software-related or
not [27].

Xia et al. proposed an approach which automatic recommend
tags to users by analyze the information in Freecode and Stack
Overflow [43]. In a later work, Wang et al. proposed a better rec-
ommendation approach by integrating Bayesian inference and fre-
quentists [41]. Barua et al. proposed an approach to explore the
central topic of questions in Stack Overflow by leveraging LDA
topic modeling [3]. Correa et al. propose a model to predict whether
a question posted in Stack Overflow will be deleted or not [10]. And
they also built a model to predict closed questions in Stack Overflow
by machine learning techniques [9]. Duijn et al. proposed a method
to better predict the quality the questions in Stack Overflow by an-
alyzing the code fragments posted [11]. Romano et al. proposed a
weighted votes metric to distinguish high quality answers from low
quality ones in Stack Overflow, which can give different weights
to the votes of the answers in Stack Overflow and tend to empha-
size the answer that receives most of the votes when most of the
answers were already posted [30]. Xu et al. propose an approach,
named AnswerBot, that can automatically generate an answer sum-
mary to a developer’s technical question [45]. Ahasanuzzaman et al.
performed a manual investigation to understand why users submit
duplicate questions in Stack Overflow, and based on the manual
investigation, they proposed a classification technique that uses a
number of carefully chosen features to identify duplicate question-
s [1]. Beyer et al. presented an approach to group tag synonyms to
meaningful topics [6]. The synonyms are represented as a directed
and weighted graph and several community detection algorithms are
used to identify meaningful groups of tags from the graph.

Our work is different from the above mentioned researches: we
focus on recommending frequently encountered bugs in Stack Over-
flow. We propose a new approach named FEBugs to help developers
improve work efficiency.

Studies on Query Refinement. In the text retrieval field, query
refinement has been assured to be an effective method to improve
the quality of results returned by a text retrieval engine [28, 32].
A considerable amount of strategies have been proposed, which
classified in two main categories: query expansion [8] and query
reduction [2, 49]. In software engineering field, some works also
use query refinement strategies to improve effectiveness of software
engineering tasks. We introduce some of these studies below.

Petrenko et al. investigated query refinement using ontology frag-
ments in the context of concept location [25]. Starke et al. conducted
a formative study in how users searched source code on an unfamiliar
system using query refinement strategy [36]. Marcus et al. performed
a query expansion process by adding the most similar words from
the source code to the query [23]. Yang et al. proposed a general
technique which uses the context of words in source code and com-
ments to automatically inferred synonyms, antonyms, abbreviations
and related words, then add them to the refined query [51]. Hill et
al. perform a query refinement process by expand possible terms
which searched from source code by contextual search method [16].
Shepherd et al. developed a semi-automated code search tool which
using selective terms drawn from verb-direct object pairs to refine
starting queries [34]. Sisman et al. proposed an automatic query

Reformulation framework which expand users’s queries by specific
terms learned from top-ranked documents searched by the initial
query [35]. In this paper, we also apply automatic query refinement
in our model, which expand the query by terms similar or related to
the initial query terms.

Studies on Frequently Asked Questions. Frequently Asked Ques-
tions (FAQs) refers to a documentation format which contains ques-
tions and answers, as they are supposed to be asked frequently in
some context. There are various research on question answering
systems, in order to find the most appropriate answer to the question.
Henbeta et al. proposed an automatic approach to collect frequently
asked questions from software development discussions using nat-
ural language processing and text mining [15]. Hu et al. perform a
semi-automatic approach to find frequently asked questions, which
could help forum managers to construct the FAQs [18]. Romero et
al. built a system beyond classic FAQ retrieval algorithms which
integrates a tag cloud generation module and a FAQ retrieval model
to help users better understand the retrieved information [31]. Ng
and al. applied data-mining techniques to FAQs, and they built a
system which is able to predict user questions by information mining
from FAQ lists [24]. Similar to FAQs, the bugs we recommended in
this paper are also in the format which lists questions and answers,
and these bugs are commonly encountered in some context.

However, these prior works have not identified frequently encoun-
tered bugs from the many questions in Stack Overflow. The concern
addressed by many of these prior works (e.g., a question being asked
many times) has been addressed in Stack Overflow by a community
filtering process (i.e., the marking of duplicate questions).

6 CONCLUSION AND FUTURE WORK
In this paper, we propose RFEB to recommend frequently encoun-
tered bugs (FEBugs) in Stack Overflow. Given a target domain,
RFEB considers both relevance and popularity of Stack Overflow
questions, and employs an iterative refinement process to improve
relevance. RFEB eventually outputs a ranked list of questions for
the input domain of interest. We conduct experiments on 10 domains
using the dataset of Stack Overflow, which includes more than ten
million questions. Our experiment finds that: (1) RFEB outperforms
Stack Overflow’s search engine on all the 10 domains when evalu-
ated in terms of 𝑁𝐷𝐶𝐺10; (2) When evaluated in terms of NDCG
at rank position from 1 to 10, RFEB achieves better performance
than Stack Overflow’s default search engine for most cases; (3) The
query refinement threshold do not affect the performance of RFEB
much; (4) RFEB performs better with higher stability check thresh-
old. Overall, our experiment shows that our proposed model RFEB
is more effective compared with Stack Overflow’s search engine
when identifying FEBugs.

In the future, we plan to evaluate RFEB on more domains, using
datasets from other software question and answer sites or forums or
repository hosting sites (e.g., GitHub).
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