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ABSTRACT

Locating bugs in industry-size software systems is time consuming

and challenging. An automated approach for assisting the process

of tracing from bug descriptions to relevant source code benefits

developers. A large body of previous work aims to address this

problem and demonstrates considerable achievements. Most exist-

ing approaches focus on the key challenge of improving techniques

based on textual similarity to identify relevant files. However, there

exists a lexical gap between the natural language used to formu-

late bug reports and the formal source code and its comments. To

bridge this gap, state-of-the-art approaches contain a component

for analyzing bug history information to increase retrieval per-

formance. In this paper, we propose a novel approach TraceScore

that also utilizes projects’ requirements information and explicit

dependency trace links to further close the gap in order to relate a

new bug report to defective source code files. Our evaluation on

more than 13,000 bug reports shows, that TraceScore significantly

outperforms two state-of-the-art methods. Further, by integrating

TraceScore into an existing bug localization algorithm, we found

that TraceScore significantly improves retrieval performance by

49% in terms of mean average precision (MAP).
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1 INTRODUCTION

Encountering unintended or unexpected software system behavior

is a common phenomena in the development life-cycle. After defect

discovery, a bug report is filed and handed to a developer for bug

fixing. The bug report provides information about the abnormal
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behavior and initially guides the developer in retrieving source code

files to be modified for removing the defect. Manually scanning the

projects code base is time consuming and prone to errors. Extensive

project knowledge is required to establish a semantic connection

between a reported bug and related source code files. Therefore, it

is desirable to automate this process.

Ideally, bug reports should guide a developer in efficiently fixing

a program misbehavior. However, the provided information in the

report and the one expected and needed by a developer often con-

siderably differ [5, 6]. Furthermore, the developers need to bridge

the lexical gap [35] between natural language bug description and

formal representation found in source code.

State-of-the-artmethods analyzemultiple development resources

to gather relevant information for locating source code files to be

fixed for a new bug report. Available algorithms contain dedicated

logical components each responsible to handle one of these re-

sources. Typical components are source code structure analysis,

version history analysis, and project meta-data analysis. Each com-

ponent computes a ranked list of source code files ordered by their

assumed to the bug report. Finally, these lists are combined to an

overall ranked list. On top of the list is the source code file, which

most likely needs modification in order to address the bug report.

While the source code structure analysis, the project meta-data

analysis, and the results’ aggregation received much attention and

improvements in previous research, the version history analysis

remains less studied. The fundamental idea of project history anal-

ysis is using previously resolved bug reports as resource for finding

analogies to a current one [26, 58, 61]. The set of source code files

modified to resolve previous bug reports is considered candidate to

be fixed for a current similar bug report. These previously resolved

bug reports are selected based on textual similarity to the new bug

report. In this scenario, the lexical mismatch is considerably re-

duced since the compared texts share the same characteristics, e. g.,

being informal and written from a user perspective.

We argue that the component responsible for version history

analysis could be considerably improved by utilizing two additional

information resources. First, instead of just bug reports, the whole

history of a development process should be leveraged. This enables

proposing not only source code files that already have been part

of a bug fix, but rather all source code files modified by project

activities become available. Second, in modern software system

development, related artifacts are kept in common repositories [45].

Relations between artifacts are captured and maintained as trace

links [47, 49]. These trace links allow navigating among different

artifacts [25, 29] and among different versions of an artifact. For

example, after implementing a requirement or improvement, a trace

link to the modified source files is created [46]. The same applies
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to bug fixes, i. e. all source files for all previously fixed bugs can

be traced. Leveraging this information, the second resource in our

approach, related artifacts can be detected independently from

their textual representation. As complete traceability is difficult to

maintain, textual similarity can be used to establish missing links

automatically.

In this paper, we study the effectiveness of utilizing additional

development artifacts (i. e., requirements and trace links) and their

history for bug localization. We propose a version history compo-

nent called TraceScore based on a novel calculation scheme, which

uses a bug report, existing project history, and traceability informa-

tion as input and recovers traceability between this new bug report

and existing source code files as output. The result is a ranked

source file list with the most relevant files on top.

We conducted a large empirical study on 15 open-source projects

containing more than 13,000 bug reports in total in order to answer

the following research questions:

RQ-1: How effective is our approach TraceScore for bug to source

code trace recovery?

RQ-2: How do requirement artifacts and explicit trace links affect

TraceScore?

RQ-3: What is the impact of filtering historical artifact data on

TraceScore?

RQ-4: Do bug localization algorithms benefit from TraceScore?

Our results are compared to two state-of-the-art version history

components: SimiScore first proposed by Zhou et al. [61] and also

applied unchanged in successive approaches [26, 50, 53, 54, 56] and

CollabScore by Ye et al. [58], which is also used in [59]. TraceScore

significantly outperforms both algorithms in all tested measures,

notably by increasing Top-1 by 35.9%, MAP by 37.4% and MRR by

25.1% compared to closest competitor SimiScore. Integrating the

TraceScore component into full bug localization algorithm AmaL-

gam [53] doubles Top-1 and significantly increases MAP by 49.6%.

The evaluation results confirm that requirements information sup-

ports the bug report to source code traceability recovery process.

The paper is organized as follows. Section 2 shows a motivating

example and introduces the structure of bug localization algorithms

focusing on contained version history components. In Section 3, we

explain necessary concepts of our approach and describe TraceScore

in Section 4. Section 5 studies our approach on 15 open-source

projects. The study results are discussed in Section 6. Potential

threats to the validity of our study and how we mitigated them are

elaborated in Section 7. Related work is presented in Section 8. The

paper concludes with Section 9 and outlines further research.

2 VERSION HISTORY COMPONENTS IN BUG
LOCALIZATION ALGORITHMS

This section illustrates an example and motivates our approach in

the context of related work.

2.1 Motivating Example

The bottom of Figure 1 shows a resolved bug report PIG-45641

from project Pig. The report consists of a unique issue id, a short

textual summary, a longer detailed textual description, and two

1PIG-4564: https://goo.gl/aUR8nV, fixed files: https://goo.gl/z5Lb8s

Issue ID: PIG-3979 Type: Improvement

Summary: group all performance, garbage

collection, and incremental aggregation

Description: I have a PIG statement similar

to: summary = foreach (group data ALL). . .

Created: 01/Jun/14 Resolved: 03/Nov/14

Modified Code Files:

GroupingSpillable.java

POPartialAgg.java

Spillable..Manager.java

TestPOPartialAgg.java�
⏐ Breaks

Issue ID: PIG-4564 Type: Bug

Summary: Pig can deadlock in POPartialAgg

if there is a bag

Description:made spill of POPartialAgg syn-

chronous, but if there is a bag in . . .

Created: 20/May/15 Resolved: 23/May/15

Fixed Code File:

Spillable..Manager.java

Figure 1: Example requirement, bug report, along withmod-

ified source code files to implement and fix them.

timestamps: creation and resolution, whereas the latter would be

unset for new bugs. Based on the provided information, the task of

bug localization is to create a ranked list of source code files relevant

for the bug report. Using this list, a developer can investigate the

files from the beginning of the list and quickly identify relevant

ones instead of searching the complete code base of the project. In

the example, one file was modified to fix the bug, which ideally

would be on top of the list.

Figure 1 also shows requirement PIG-39792 implemented in

four files, before the bug was created. The requirement is explicitly

linked to PIG-4564 in the projects’ issue tracking system (ITS).

This provides valuable information for bug localization, because

the implementation of PIG-3979 modified SpillableMemory
Manager.java, which was later modified to fix the bug.
Our novel approach TraceScore leverages requirement artifacts

and trace links found in ITS to improve bug localization. Since

explicit trace links are not always present among issues, artificial

ones are established using information retrieval (IR) techniques.

2.2 Components of a Bug Localization Method

State-of-the-art bug localization methods analyze different input

resources to create a ranked list of source code files (see Figure 2).

Internally, each input resource is processed by a dedicated compo-

nent and creates an individual ranking. Eventually, these rankings

are aggregated by a composer component generating the final

source code file ranking. Multiple aggregation methods are used to

combine the ranking result list of the bug localization algorithms’

components. This includes summation [50], empirically determined

weighting schemes [53, 61], trained weights by vector support ma-

chines [58] and neural networks [26].

The source code structure component relates a given bug

report to a project’s code base. It analyzes the source code and

typically extracts identifier names and comments. Afterwards, the

collected data per source code file and the newly reported bug report

are treated as text documents. This allows the application of IR

algorithms to compute similarity scores for source code file and bug

report combinations [33]. The code structure component creates

a source code file ranking using this similarity value as ordering

2PIG-3979: https://goo.gl/hFGZ2K, modified files: https://goo.gl/PFmCAi
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Figure 2: Structure of a bug localization framework. Our ap-

proach, TraceScore, provides an evolved algorithm for the

version history component, outperforming existing ones.

criteria. Various text matching algorithms have been proposed and

studied for this purpose [12].

Themeta-data component analyzes diverse project meta-data.

For example, in [26] the authors utilize developer names and re-

leased project version information. Additional, textual resources,

e. g., API-documentation, were used to further improve localization

results [26, 35, 58, 59].

The version history component, the focus of our work, uses

previously resolved bug reports and the source code files that were

modified in order to fix these. TraceScore implements an evolved

algorithm.

2.3 State-of-the-art Algorithms for Version
History Component

The version history component of a bug localization algorithm

leverages information about previously fixed bug reports, i. e., those

reported prior to the new and unresolved bug report. Formally, the

component uses the set of all fixed bug reports B and the set of

source code files SB representing all source code files modified in

order to fix these bugs b ∈ B. Based on this information and a new
and unresolved bug b∗ � B, the component calculates a score for
each s ∈ SB . The score facilitates a ranking with the most relevant
source code files on top. It is important to emphasize that SB ⊆ S ,
meaning that SB might not represent all source code files in the

code base S at the time when b∗ is filed and the localization is being
performed. Therefore, the search space of the history component

is inherently limited to source files, which at least were part of

one previous bug fix. However, bugs occur in burst and source files

recently fixed are likely to be responsible for new bugs [22]. With-

out explicitly analyzing the code base, the task the code structure

component is responsible for, our proposed approach still increases

the search space.

Zhou et al. [61] propose BugLocator featuring the version history

component SimiScore. SimiScore is part of succeeding approach-

es, namely BLUiR+ (2013) [50], BRTracer (2014) [56], AmaLgam

(2014) [53], AmaLgam+ (2016) [54], and HyLoc (2015) [26]. Each

approach improved the localization performance over previous.

Since SimiScore remained unchanged, the increased performance

is achieved by advances in other components. SimiScore builds

upon the function f ix : b → Sb,f ix ⊆ SB that returns the set of

all source files modified in order to resolve bug report b. If b∗ � B
is a new bug report, the SimiScore per source code file s ∈ SB is

denoted as:

SimiScore(s,b∗,B) =
∑

bi ∈{bi |bi ∈B
∧ s ∈ f ix (bi )}

sim(bi ,b
∗)

| f ix(bi )|
(1)

Function sim denotes the textual similarity between two bug reports.

Thereby, the text of a bug report is formed by concatenating its

summary with its description.

Ye et al. [58] proposed Learning to Rank (LR), which utilizes

a version history component called Collaborative Filtering Score

(CollabScore). CollabScore is also part of LR + WE (2016) [59]. The

authors define a function br : s → bf ix ⊆ B = {bi |s ∈ f ix(bi )},
which calculates the set of all bug reports for which a given source

code file s ∈ SB was modified. CollabScore(s,b∗) = sim(b∗,br (s))
calculates the textual similarity between two bug reports. In con-

trast to SimiScore, CollabScore only considers bug report summaries

and uses a different formula to calculate the textual similarity.

3 BACKGROUND

Our study builds upon the following description model.

3.1 Traceability Information Model

A software engineering process creates manifold development arti-

facts. Zave et al. [60] propose a “reference model for requirements

and specifications” that distinguishes three major artifact types:

requirements specifications, design specifications, and source code.

Open-source projects rarely use explicit design specification. There-

fore we combine the first two artifacts types into one set of require-

ments denoted with R. S is the set of source code files. Additionally,
we introduce a set of bug reports B. The definition and implemen-
tation of requirements, as well as the discovery of bugs, introduce

dependency and implementation links among these artifacts. The

functionmod : a → Sa , with a ∈ B ∪ R and Sa ⊆ S returns the set
of modified source files in order to implement/fix artifact a. Figure 3
shows our traceability information model (TIM) and the introduced

artifact types. Figure 1 shows typical examples for a bug report and

a requirement. In our study, both artifacts are represented equally,

only distinguished by the value of Type field.

3.2 Trace Path Patterns

All traces originating at bug reports and terminating at code files

are relevant for our approach. Figure 4 shows relevant trace path

patterns. We consider two path types, each starting at a bug report

denoting the new bug to be localized. The first trace link path,

b
dep
−−−→ b

impl
←−−−− s with b ∈ B, s ∈ S represents the relation of a

bug report via a previously filed bug report (dependency link) to
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Bug Report B

Implementation

Implementation

Dependency

Dependency

Traceable artifact Trace link typesKey

Requirement R Source Code File S

Figure 3: Traceability information model (TIM)

b b

r

sDep. Impl.

Figure 4: Considered trace path patterns between bug re-

ports b, requirements r and source code files s.

a source code file that was modified to fix the bug. The second

trace link path, b
dep
−−−→ r

impl
←−−−− s with b ∈ B, s ∈ S represents the

relation from the bug report via a requirement to a source code

file implementing that requirement. Using these patterns, all traces

from a given bug to all related source code files can be retrieved.

4 THE TRACESCORE APPROACH

TraceScore uses historical project data enriched with previously

unused information in order to increase localization performance.

Given a bug report b∗, TraceScore creates a ranked list based on
relevance of source code files, that are potential candidates to be

modified in order to fix b∗. The proposed localization process is
shown in Figure 5 and explained in the following paragraphs.

4.1 Step �: Selecting Artifacts from Project
History

The first step is artifact selection. In contrast to SimiScore and Col-

labScore, we consider previously resolved bug reports and realized

requirements, because each modification may introduce new faults

into the software. Further, we conditionally filter both the selected

artifact types in two ways. The first condition restricts the number

of files modified to resolve a bug, |mod(b)|, or implement a require-
ment, |mod(r )|, for b ∈ B, r ∈ R. The rationale is that the larger
this number, the smaller is the information gained by an individual

traced source code file. The second condition applies filtering on the

time domain, which has been reported to be effective before [27].

We exclude artifacts that were resolved more than a defined num-

ber of days before b∗ was filed. The rationale is that the longer
a source code file was not changed, either as part of a bug fix or

by implementing a requirement, the more mature its code is. The

function di f f (a,b∗) calculates the number of days between artifact
a ∈ B ∪ R was fixed before b∗. Despite previous studies elaborating
a smoothing effect varying over time, we simply use a hard cut off.

Eventually, the first step selects two artifact sets

Rsel =
{
r
�� |mod(r )| ≤ MR ∧ di f f (r ,b∗) ≤ DR

}
r ∈ R

Bsel =
{
b
�� |mod(b)| ≤ MB ∧ di f f (r ,b∗) ≤ DB

}
b ∈ B

withMR ,MB as upper limits for number of source files per artifact

and DR ,DB as upper limits for time difference in days.

4.2 Step �: Preprocessing Artifact Texts

We apply commonly used preprocessing steps to the text combined

from summary and description to each artifact a ∈ Rsel ∪ Bsel ∪
{b∗}: stop word removal, camel case splitting, lower casing and
stemming [41]. The resulting bag-of-words [33] representation per

document is used to build a document-term-matrix of the artifacts

a ∈ Rsel ∪Bsel . Analogous to SimiScore [61], we use the logarithmic
t f × id f term weighting scheme and denote V (a) as vector space
representation of artifact a.

4.3 Step �: Analyzing Textual Similarity

The vector space representation V (b∗) is considered as query and
used to search for relevant artifacts within the corpus. Cosine simi-

larity [33] is used to calculate the similarity of two documents. The

result is a similarity score of b∗ to every a ∈ Rsel ∪ Bsel .

4.4 Step �: Creating a Graph for Analyzing
Traceability

In this step, a traceability graph G is created as follows. Its nodes

represent the artifacts {b∗}∪Rsel ∪Bsel ∪Smod with Smod =
{
s
��s ∈

{mod(a)|a ∈ Rsel ∪ Bsel }
}
. Implementation edges are added be-

tween nodes representing source code files and nodes representing

requirements and bug reports, according to functionmod . From b∗

a weighted dependency edge is created to every node represent-

ing a requirement r ∈ Rsel and a bug report b ∈ Bsel . The edge
weight is determined by functionweiдht(a,b∗), which is 1.0, in case
an explicit dependency trace link exists between a and b∗ in the
project history, and textual similarity sim(a,b∗) otherwise. During
the process of creating a new bug report b∗, the author is able to
manually specify other bug reports or requirements this bug relates

to. If no such information exists, the textual similarity calculated in

step � is used. The construction of the graph assures the existence

of a trace path from every node to the node representing b∗.
Figure 6 shows an example of a traceability graph. The depicted

graph consists of b∗, the bug report for which the to be modified
source code files need to be found, r0...2 the selected previously
implemented requirements and b0...2 the selected previously fixed
bug reports. s0...11 are source code files modified to implement the
requirements and to fix the bugs, i. e. the elements of Smod . At this

stage, each source file has the same relevance for b∗. In the next
step, a score value per source code file is calculated and then used

to rank the files accordingly.

4.5 Step �: Calculating TraceScore per Source
Code File

TraceScore is an evolved version of SimiScore (see Eq. (1)). To

motivate the proposed changes, we first demonstrate why it is not

advantageous to simply apply SimiScore to requirement artifacts.
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r0 r1b0 b1 b2

b*
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Trace Link

0.8
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r2

0.3
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b3

0.1 0.1

Figure 6: Example traceability graph according to TIM (see

Figure 3) created to recover trace link for bug report b∗ to
source code files.

While the incorporation of requirements artifacts likely extends

the localization search space to other potentially defective files, it

also increases the chance for retrieving more false positives (see

Figure 1). For each source code file s , SimiScore sums up ratios. Each
ratio is determined as the textual similarity of a bug report that led to

amodification of s divided by the total number of filesmodified to re-
solve this bug report. For example, the SimiScore for s10 in Figure 6 is

SimiScore(s10,b
∗) =

sim(b2,b
∗)

3 +
sim(b3,b

∗)
2 = 0.2

3 +
0.3
2 ≈ 0.22. Sim-

ilarily, applying SimiScore to a source code file realizing a require-

ment, e. g., s0 results in SimiScore(s0,b
∗) =

sim(r0,b
∗)

4 = 0.8
4 = 0.2.

While s0 is realizing requirement r0, which has a very high tex-

tual similarity to the current bug report, the source code file s10
would still get a higher score due to the fact that it was modified

to resolve multiple bug reports though they have far less textual

similarity. Additionally, the summation is a linear combination of

nonlinear textual similarity values (underlying cosine function is

nonlinear), which vanishes the discriminating of the terms. Bug

report b∗ has a very high textual similarity to requirement r0, indi-
cating that source code files s0...3 need to be modified in order to
resolve b∗. Nevertheless, SimiScore would calculate a higher rank
for s10, overriding the exceptional high similarity value.
To overcome the reported deficiencies, we derived TraceScore

from SimiScore with the following assumptions.

(1) A small number of source code files S_B need to be changed

to fix a bug report.

(2) On average, the number of source code files S_R modified

to implement a requirement is larger than that for resolving

bug reports: S_R > S_B.
(3) A source code file is more often changed in order to resolve

a bug report B_S than for implementing a requirement R_S ,
i. e., B_S > R_S .

Based on these assumptions, we define TraceScore for each s ∈
Smod and a,ai ∈ Bsel ∪ Rsel as

TraceScore(s,b∗) =

∑
ai ∈{a |s ∈mod (a)}

weiдht(ai ,b
∗)2

|mod(ai )|
(2)

The values S_R and S_B affect the denominators of the formula.

Consider two source files, one modified by a requirement rx and
one modified by a bug report bx , both connected to b

∗ with same

edge weights, i. e: weiдht(rx ,b
∗) = weiдht(bx ,b

∗) = weiдht : As-
sumption S_R > S_B implies, the added ratio for each source code

file is larger, if it is connected to a bug report than if it is connected

to a requirement:
weiдht 2

S_B >
weiдht 2

S_R .

The values B_S and R_S affect the number of terms in the for-
mula for each source code file. Combining the previous statements

about ratios, and our assumption B_S > R_S , would result in similar
problems of vanishing textual similarity as outlined for SimiScore.

We compensate for this by pruning the trace graph and squaring the

weights. The square reintroduces nonlinearity, i. e., dampens low

textual similarity, while explicit dependency edge weights remain

unchanged: 12 = 1. The pruning adds an upper bound to the sum-

mation, preventing the accumulation of small ratios to high values.

The pruning already occurred in Step �. The time parameters DR

and DM limit B_S and R_S . Upper bounds for S_B and S_R are

provided byMB andMR .

For the example graph in Figure 6, the TraceScore value for s0 is

TraceScore(s0,b
∗) = 0.82

4 = 0.16 and for s10 it isTraceScore(s10,b
∗) =

0.22

3 +
0.32

2 ≈ 0.058. Thus our algorithm suggests it is more likely

to modify s0 than s10 in order to resolve b
∗.

Comparing Equations (1) and (2), the changes seem minor, but

show to have a significant influence, as discussed in Section 6.
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4.6 Step �: Recovering Bug to Source Code
Traceability

The last step sorts the source code files s ∈ Smod in descending

order of their respective TraceScore values. This creates a ranked
list for bug b∗ with the most relevant source code files on top.

5 STUDY DESIGN

In order to answer our four research questions (see Section 1), we

conducted a large study with 15 open-source software projects.

5.1 Project Selection

We selected open-source projects based on two criteria. First, since

our approach analyzes bug reports, requirements information, and

trace links among these artifacts (see Section 4), we only selected

projects providing these data. Second, in order to provide a mean-

ingful project history, we only selected projects that are in develop-

ment for at least five years. Applying these criteria, we selected 15

popular projects mainly from Apache Project and JBoss.

5.2 Data Demographics of Studied Cases

Table 1 shows the characteristics of chosen projects: studied time

period, the total number of bug reports and requirements. Addition-

ally, there is a detailed column about the minimum, mean, average,

and maximum number of source code files modified in order to fix

a bug report and to implement a requirement. The last columns

shows the number of dependency trace links explicitly defined by

the developers of the respective projects. We retrieved raw data

by collecting relevant project artifacts from each project’s website.

The collection was done on April 7th 2017.

5.3 Data Collection

A two step data collection process was sequentially applied to the

15 selected projects.

Step 1: Analyzing project management and issue tracker

system.We implemented a collector to retrieve artifacts (i. e. re-

quirements and bugs) and their trace links. All examined projects

use the JIRA [20] project management tool offering a web-service

interface. Our collector downloaded and parsed all artifacts and

dependency trace links.

Step 2: Analyzing Source Control Management (SCM) sys-

tem. A second collector was implemented to download all source

code changes and commit messages from each SCM repository. All

15 studied projects used Git[15] as SCM. We parsed the commit

messages and applied the heuristic described in [3] to discover im-

plementation trace links to bug reports and requirements. Certain

modifications of the code base require to alter non-source code files,

e. g., documentation, or files for build automation, which are not

relevant for bug localization. We excluded these files based on the

file name extension. The results of these two steps were stored in a

database per project, which is publicly available [44].

5.4 Evaluation Setup

5.4.1 Comparsion with version history components. We com-

pare TraceScore against the two state-of-the-art version history

components SimiScore [61] and CollabScore [58]. Furthermore, we

evaluate different parameter configurations for our TraceScore al-

gorithm to study the influence of each parameter in depth (see

Table 2). Based on our assumptions described in section 4.5, we em-

pirically determined a baseline configuration TraceScore (Baseline)

by using the artifact selection criteriaMB = 10,MR = 20, and

DB = DR = 365days . Thus, we exclude bug reports that required
changing more than 10 source code files as well as requirements

that are implemented in more than 20 source code files. Addition-

ally, we excluded artifacts resolved more than one year before the

new bug report was issued. In the second configuration, all require-

ment information is excluded, i. e., Rsel = ∅. The 3
rd configuration

changes the weight function toweiдht(a,b∗) = sim(a,b∗), and thus

excludes all explicitly defined dependency trace links. The 4th con-

figuration shortens the history to half a year. Finally, configuration

5 does not filter the artifacts based on the number of source code

files they affect.

We processed the 15 projects separately, by first ordering the

contained bugs by resolution date starting with the oldest one. This

list is processed front to back, using the current bug as the one to

locate b∗. For this, the SimiScore, CollabScore, and TraceScore in
all five configurations are applied and the resulting rankings are

captured. Results are evaluated by comparing computed rankings

with the list of source code files that were actually modified in order

to resolve a bug report.

5.4.2 Automated bug localization algorithm using TraceScore:

ABLoTS. We replaced the version history component of AmaL-

gam [53] with TraceScore, to study its application in a complete bug

localization algorithm. AmaLgam is the most advanced algorithm

with publicly available source code [2]. It consists of three compo-

nents, each calculating a suspiciousness score Susp for a given bug
b∗ ∈ B and s ∈ S . SuspR (s,b∗) represents SimScore(s,b∗), SuspS

is the structure component taken from BLUiR [50], and SuspH (s)
is taken from BugCache [22]. BugCache predicts future bugs by

maintaining a relatively short list of most fault-prone program enti-

ties. In AmaLgam, a composer applies two empirically determined

weighting factors a and b to the three individual suspiciousness
scores to create SuspS,R,H (s,b∗) for a code file s used for ranking.
We built ABLoTS using the components of AmaLgam, but re-

placed SimiScore, i. e. SuspR , with TraceScore in BaseLine con-

figuration. Further, instead of a fixed weighting scheme for the

three individual code file scores, we applied a supervised learning

classifier for categorizing source file and bug report pairs. We uti-

lized Weka’s [17] J48 decision tree with default pruning settings

because of its previously reported effectiveness in other software en-

gineering studies [16]. We formed 4-tuples consisting of SuspS (s,b),
SuspH (s,b),TraceScore(s,b), and a class labelCtrue orCfalse encod-
ing if s ∈ mod(b), i. e. if s was modified to resolve b. These instances
were used to train and test the classifier. On a project basis, we

ordered all bug reports by resolved date and used the first 80% for

training and the remaining 20% for testing. Because of bug his-

tory, a commonly used 10-fold-cross validation is not applicable.

Few source code files are modified to resolve a bug (see Table 1),

and thus created training instances were severely unbalanced con-

taining many more instances with Cfalse. Training against such
unbalanced sets makes it likely that the classifier will favor placing

instances into the majority class, i. e. the file s does not fix b. We
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Table 1: Characteristics of the studied cases.

Project Studied #Bug Changed Source Code Files #Requirements Changed Source Code Files #Dependency
Time Period Reports per Bug Report per Requirement Trace Links

min median mean max min median mean max

Axis2 2005-07 – 2017-03 1078 1 2 4.4 155 353 1 5 37.4 1144 96
Derby 2004-09 – 2016-12 1778 1 2 6.5 1920 1264 1 4 14.4 1334 1764
Drools 2005-12 – 2017-03 1281 1 3 17.4 1371 653 1 11 76.7 3247 153
Hadoop 2006-06 – 2016-11 748 1 2 3.0 85 746 1 3 15.0 3676 1131
HornetQ 2006-05 – 2015-06 270 1 4 7.4 50 187 1 10 59.5 3680 42

Infinispan 2009-03 – 2016-12 1996 1 3 5.9 167 1468 1 6 24.0 2851 745
Izpack 2009-01 – 2016-01 318 1 3 9.0 140 160 1 8 24.0 460 49
Keycloak 2013-07 – 2017-04 786 1 4 11.3 645 637 1 10 39.8 4652 360
Log4J2 2008-12 – 2017-04 441 1 2 7.6 385 335 1 4 31.7 1266 200
Pig 2008-02 – 2017-04 1265 1 2 4.0 130 623 1 4 9.8 391 513

Railo 2008-11 – 2013-12 300 1 2 4.0 66 129 1 4 8.5 140 7
Seam2 2005-08 – 2014-03 776 1 1 2.7 63 526 1 3 12.8 2268 246
Teiid 2004-04 – 2017-04 1297 1 3 14.0 1073 1162 1 8 72.9 3616 311
Weld 2009-01 – 2017-03 560 1 4 8.7 570 419 1 7 25.0 2050 228
Wildfly 2010-07 – 2016-12 687 1 2 7.7 295 557 1 8 37.9 3270 1925

Table 2: Studied parameter settings of TraceScore (TS).

Id Configuration Name MB MR DB [days] DR [days]

1 TS Baseline 10 20 365 365
2 TS No Requirements 10 0 365 0
3 TS No Explicit Dependencies 10 20 365 365
4 TS Short History 10 20 180 180
5 TS All Source Code Files ∞ ∞ 365 365

Table 3: Average accuracy for 15 projects of retrieved bug to

code traceability by version history components.

Algorithm Top-1 Top-5 Top-10 MAP MRR

SimiScore 0.130 0.283 0.369 0.146 0.208
CollabScore 0.040 0.105 0.150 0.056 0.078
TraceScore 0.174 0.350 0.436 0.202 0.260

used Weka’s inbuilt sub-sampling feature to create balanced data

sets. Given a fixed number of instances labeled Ctrue, Weka ran-

domly selects the same number of instances Cfalse. We trained one

classifier in turn using the balanced sets for the project and then

evaluated the classifier against the respective unbalanced testing

set. To mitigate the random effects of sub-sampling, we repeated

the training and testing with 10 different J48 classifiers for every

project and averaged the achieved results.

5.5 Evaluation Metrics

We use accepted metrics [53, 56, 61] to evaluate the achieved ef-

fectiveness of the compared methods. Top@k [33] measures the

percentage of bug reports for which at least one correct predicted

source file is among the top k ranked files. The mean average preci-

sion (MAP) [33] provides a single measure of quality across multiple

query results. For one query, the average precision is the average

of the precision value obtained for the set of top K documents in

the ranked list. This value is averaged over all queries. The average

position of the first relevant document in the ranked list is defined

as mean reciprocal rank (MRR) in [52].

6 STUDY RESULTS

In this section we answer our research questions one by one.

6.1 How effective is TraceScore for bug to
source code trace recovery?

To investigate RQ-1, we measured the effectiveness of “TraceScore

Baseline” configuration for 15 open-source projects and compared

the performance metrics with SimiScore and CollabScore. Trace-

Score Baseline outperforms these approaches in almost all metrics.

Therefore we only report the averaged metrics across all projects

(Table 3) and discuss exceptional cases. Detailed values are part of

reproduction data [44]. SimiScore achieves a slightly higher Top-1

value in project Railo and Weld. For project Railo, SimiScore

shows competitive results compared to the “TraceScore Baseline”

configuration. CollabScore performs worst in all metrics and on

every project, likely stemming from its rather simple algorithm

only relying on textual similarity of the summary of bug reports

(see Section 2.3). On average “TraceScore BaseLine” configuration

achieves a 35.9% better Top-1, 23.8% better Top-5, 19% better Top-

10, 37.4% better MAP, and 25.1% better MRR value than its closest

competitor SimiScore across the 15 projects. An application of non-

parametric Kruskal-Wallis test [24] confirms significant (p < 0.05)
differences among the three algorithms in all studied metrics. Ap-

plying Dunns [13] post hoc test with Bonferroni correction shows

that these differences stem from TraceScore.

Finding 1 (RQ-1) TraceScore is effective for recovering trace-

ability information between bug reports and source code files.

It outperforms existing version history components in terms of

Top-1, Top-5, Top-10, MAP, and MRR.

For bug report Derby-42143 of project Derby, SimiScore ranks

fixed file DD_Version.java as 2nd, whereas TraceScore ranks it

3DERBY-4214: https://goo.gl/bdQqCE, fixed files: https://goo.gl/rHVb8p
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Figure 7: Comparison of SimiScore and different configurations of TraceScore in terms of MAP.
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Figure 8: Comparison of SimiScore and different configurations of TraceScore in terms of MRR.

only 4th. However, TraceScore also correctly ranks DataDictionary
Impl.java as 1st which was modified prior to implement improve-
ment Derby-37694. Contrasting SimiScore, TraceScore utilizes this

information, as well as the existing trace link among the two arti-

facts and thus achieves a better result.

6.2 How do requirements artifacts and explicit
trace links affect TraceScore?

To investigate the influence of requirements information and ex-

plicit trace links, we created two configurations of TraceScore de-

rived from “TraceScore Baseline” (see Table 2). The first, “TraceScore

No Requirements”, ignores all requirement artifacts, i. e., Rsel = ∅
independent from b∗. The resulting MAP and MRR metrics for all
projects are shown in Figure 7, and Figure 8.

For all projects, both the MAP and MRR metric decrease com-

pared to “TraceScore BaseLine”. The highest drop occurs in project

Hadoop, where the MAP is reduced by 30% and the MRR by 22%.

Ignoring the requirements artifacts for bug localization has nearly

no effect on Drools. Indeed, the MAP value even slightly increases.

Nevertheless, even without utilizing requirements artifacts, Trace-

Score achieves a higher accuracy in terms of MAP and MRR as

SimiScore, in 14 out of 15 projects. In project Railo, which contains

the least number of requirements and explicit dependency links

(see Table 1), SimiScore performs better.

4DERBY-3769: https://goo.gl/vyoFmb, modified files: https://goo.gl/iDJhK5

The configuration “TraceScore No Explicit Dependencies” uses

the same parameters as “TraceScore Baseline”, but ignores explicitly

defined dependency trace links extracted during data collection

(see Section 5.3). This results in a slight decrease of MAP and a

much larger in MRR compared to “TraceScore Baseline”. The inter-

pretation is that the created source code file rankings are shifted

downwards, i. e., relevant source code files appear on a lower rank,

but the relative order stays the same. This can clearly be seen in

project Drools, where the MRR decreased to 25% (i. e, on average

the first relevant source code file is on 4th position in the ranked

list) compared to 35% in “TraceScore Baseline” (i. e., on average the

first relevant source code file is on 3rd position). The MAP metric as

well as Top@k are not much affected by such a change in rankings.

SimiScore, which does not elaborate explicitly created dependency

trace links, is superior to “TraceScore No Explicit Dependencies”

in terms of MRR.

Finding 2 (RQ-2) Requirements artifacts and explicitly defined

dependency trace links improve the bug localization perfor-

mance of TraceScore.

6.3 What is the impact of filtering historical
artifact data on TraceScore?

In configuration “TraceScore Short History” we set DB and DR

to 180 days: roughly bisecting the values compared to “TraceScore
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Baseline” configuration. This negatively effects MAP and MRR (see

Figures 7 and 8) on all projects, except Drools. TraceScore loses

information by limiting the time interval of previously resolved bug

reports and implemented requirements. For example, bug report

Derby-67055 was created and resolved in August 2014. It has a

dependency trace link to bug report Derby-63576, which has been

fixed in October 2013. This information is no longer available during

localization of Derby-6705 if the history is too short.

The last configuration “TraceScore All Source Code Files” studies

the influence of not restricting the number of changed files per

requirement and bug report, i. e.,MB =MR = ∞. In terms of MRR,

this change in configuration has no effect compared to “TraceScore

Baseline”. Thus on average, the rank of the first relevant source code

file stays the same. However, the MAP slightly decreases, meaning

other but the first relevant source code files are shifted downward

the ranking, i. e., are displaced by false positives, because |Smod | is

larger in this setup as for “TraceScore Baseline”. In both filtering

scenarios, TraceScore is still more effective in terms of MAP and

MRR than SimiScore.

Finding 3 (RQ-3). History filtering effects TraceScore perfor-

mance, being more sensitive to time interval than to the amount

of source code files.

6.4 Do bug localization algorithms benefit
from TraceScore?

Table 4 compares ABLoTS (see Section 5.4.2) with AmaLgam [53].

For AmaLgam, we set parameters a = 0.2 and b = 0.3 as pro-

posed by their authors, and in ABLoTS “TraceScore Baseline” is

used, because this configuration generally performs best (see Fig-

ures 7 and 8). AmaLgam is applied to the same 20% of bug reports

as ABLoTS. ABLoTS outperforms AmaLgam in terms of Top-1,

which in turn leads to improved MAP and MRR values, except for

projects HornetQ and Log4J2. We performed the non-parametric

Mann-Whitney U Test [32], which showed that the differences are

significant (p < 0.05) in terms of Top-1, MAP, and MRR measures.
On average, ABLoTS increases Top-1 by 102%, MAP by 49.6% and

MRR by 47.8%, slightly increases in Top-5 and maintaining similar

Top-10 measures compared with AmaLgam.

Finding 4 (RQ-4) TraceScore improves bug to source code recov-

ery when incorporated into existing algorithms (i. e. AmaLgam).

Without available source code, it is challenging to integrate

TraceScore in more sophisticated algorithms such as [26, 58, 59]. A

comparison based on reported metrics is also difficult, because the

respectively used datasets do not contain requirements artifacts.

7 THREATS TO VALIDITY

Construct Validity. The analyzed trace links were created man-

ually by project members in all projects implying the risk that

semantically incorrect trace links were created or trace links were

forgotten by mistake. Cleland-Huang et al. [8] found, that many

projects outside of safety critical domains do not have reliable

traceability information. However, the following aspects indicate a

5https://issues.apache.org/jira/browse/DERBY-6705
6https://issues.apache.org/jira/browse/DERBY-6357

Table 4: Achieved accuracy values for AmaLgam and

ABLoTS for the last 20% of all bug reports. The results for

ABLoTS are averages from 10 independent classifier runs.

#Bug
Project Reports Algorithm Top-1 Top-5 Top-10 MAP MRR

Axis2 216
AmaLgam 0.264 0.551 0.625 0.360 0.396
ABLoTS 0.557 0.658 0.692 0.564 0.607

Derby 356
AmaLgam 0.289 0.632 0.758 0.369 0.436
ABLoTS 0.409 0.564 0.622 0.399 0.484

Drools 257
AmaLgam 0.152 0.370 0.463 0.223 0.257
ABLoTS 0.499 0.609 0.654 0.450 0.553

Hadoop 150
AmaLgam 0.227 0.580 0.740 0.350 0.392
ABLoTS 0.514 0.658 0.773 0.535 0.585

HornetQ 54
AmaLgam 0.463 0.741 0.870 0.502 0.591
ABLoTS 0.502 0.572 0.606 0.475 0.541

Infinispan 400
AmaLgam 0.150 0.318 0.443 0.210 0.239
ABLoTS 0.491 0.590 0.614 0.503 0.539

Izpack 64
AmaLgam 0.312 0.500 0.656 0.368 0.406
ABLoTS 0.366 0.547 0.584 0.410 0.448

Keycloak 158
AmaLgam 0.253 0.532 0.639 0.346 0.378
ABLoTS 0.517 0.609 0.630 0.525 0.565

Log4J 89
AmaLgam 0.416 0.787 0.809 0.520 0.576
ABLoTS 0.440 0.634 0.684 0.449 0.530

Pig 253
AmaLgam 0.316 0.680 0.791 0.417 0.467
ABLoTS 0.725 0.838 0.864 0.725 0.773

Railo 60
AmaLgam 0.183 0.483 0.600 0.287 0.322
ABLoTS 0.573 0.730 0.732 0.610 0.636

Seam2 156
AmaLgam 0.256 0.436 0.519 0.325 0.340
ABLoTS 0.391 0.443 0.474 0.392 0.423

Teiid 260
AmaLgam 0.308 0.581 0.685 0.370 0.430
ABLoTS 0.491 0.654 0.695 0.484 0.571

Weld 112
AmaLgam 0.223 0.482 0.598 0.272 0.331
ABLoTS 0.456 0.564 0.610 0.425 0.503

Wildfly 138
AmaLgam 0.174 0.413 0.522 0.259 0.287
ABLoTS 0.368 0.484 0.507 0.381 0.424

sufficient trace link quality in the studied projects. First, all projects’

quality assurance process is based on the created trace links. The

projects established a manual process where changes are reviewed

and tested by humans. All projects have in common that the quality

of the established trace links is implicitly verified through this pro-

cess. Second, the explicit change approval process in all 15 projects

ensures that the four-eyes-principle is applied for each manually

created trace link. Third, the openness of all projects enables any-

one to participate in the project and review the created trace links.

At last, assuming trace links are imperfect, our evaluation shows,

TraceScore is still able to successfully utilize this information.

External Validity. We solely focused on open-source projects,

since those were the only available projects to us that provided all

the necessary information to conduct this study. A potential threat

to external validity arises when we want to generalize our find-

ings to a wider population that includes commercial developments.

Replications of our study with closed-sourced projects are required

to justify our assumption by further empirical evidence.

Analyzing Requirements and Traceability Information to Improve Bug Localization MSR ’18, May 28–29, 2018, Gothenburg, Sweden

450



MSR ’18, May 28–29, 2018, Gothenburg, Sweden Michael Rath, David Lo, and Patrick Mäder

Internal Validity. The 15 studied cases were selected by the au-

thors of this study and thus might be biased due to certain experi-

ences or preferences. To mitigate this threat, we specified a set of

case selection criteria derived from our research questions and from

the studied traceability metrics. This selection strategy ensured that

we selected cases, which are suitable for the studied problem.

All bug and requirement artifacts are retrieved from projects’

issue trackers and are subject to misclassification [19], i. e. a bug is

actually a feature and vice versa. Kochar et al. [23] found, misclas-

sification affects bug localization, but the effect size is negligible.

Further, comparing median number of changed source files per ar-

tifact (Table 1) shows, the values for bug reports are lower than for

requirements, indicating the golden set is not artificially inflated.

Another potential threat exists in the collection and prepara-

tion of the project data. To avoid especially manual bias and to

ensure reproducible results, we fully automated the process of data

collection and preparation. Due to the public availability of the

project artifacts and the fully automated collection and analysis

process, our study can be replicated and additional projects could

be included to further broaden the data corpus. We carefully veri-

fied our tool that automates this process. Therefore, we validated

intermediate results of the process manually and cross-checked the

data for inconsistencies and contradictions.

We split the available data set for each project into 80–20% of the

bug reports retaining the temporal ordering of the project. Choosing

another split point may produce different evaluation results.

8 RELATEDWORK

As the manual creation and maintenance of trace links is asso-

ciated with high costs [18], researchers studied information re-

trieval based approaches to support automated trace recovery sce-

narios [7, 11, 21, 30, 31, 34, 38, 48]. However, automated trace re-

covery implies the risk that potentially incorrect trace links are cre-

ated [36, 51]. To address this traceability quality problem, Panichella

et al. leveraged structural artifact information to improve the cor-

rectness of the recovered traces [39]. A combination of multiple

information retrieval approaches can improve the overall recovery

performance [14]. The proposed technique TraceScore recovers

traces from bug reports to source code. Similar to previous ap-

proaches on supplementary bug fixing [40, 57], TraceScore utilizes

graphs representing structural, historical and similarity relation-

ships among development artifacts. Besides similarity, TraceScore

also incorporate existing traces defined by the projects’ develop-

ers, as well as requirement information. Contrasting the work of

Panichella et al. [14], TraceScore does not require a manual trace

candidate evaluation step performed by a project developer.

Dit et al. [12] summarize textual feature location techniques to

establish a mapping between the textual description of a feature

given by the developer and parts of the source code. Several IR-based

techniques, such as vector space model (VSM), and LSI have been

studied the create this mapping. However, TraceScore leverages

explicitly created trace links (weiдht = 1) from requirements to

source code and only applies IR-based text similarity, when such

information is not available. Further, the feature candidate set is

pruned by two parameters DB and DR .

Finding bugs is a costly activity in software development. IR

methods are frequently proposed to automated the costly bug find-

ing activity [1, 10]. One common approach [50, 58, 61] is to build

a vector space model (VSM) to represent documents [33]. In this

model the documents are encoded as vectors, where the vector

elements represent the weight of terms used in a document. Differ-

ent weighting schemes have been proposed. To quantify similarity,

the standard way is to use cosine similarity [33]. Latent semantic

Indexing (LSI) is an advanced IR retrieval technique to capture the

similarity between terms and abstract concepts. Poshyvanyk et

al. [42] use LSI to locate features and bugs in source code. Closely

related to LSI is Latent Dirichlet allocation (LDA). LDA models

documents as document distribution vectors [28, 37]. However, the

evaluation in [43] found, LSI and LSA are not superior to standard

VSM models, which we applied in our approach TraceScore.

The performance of IR models is usually limited by the lexical

gap between queries and source code [35]. Thus, researchers in-

vested a lot of effort in bridging the lexical gap by analyzing the

source code. Various studies utilize API documents as an additional

source of information [4, 9, 26, 35, 58, 59]. Saha et al. [50] structure

the source code to find identifiers, method- and classnames prior

extracted from bug reports. Instead of processing a source code

file as a whole, Wong et al. [56] dissect the files in equally sized

chunks. The chunk with the highest similarity is chosen to repre-

sent the file. To assist IR retrieval models, in [55] the authors further

decreased text granularity by analyzing software changes instead

of source code files. If available, bug localization methods benefit

from additional data next to pure texts. Therefore bug localization

algorithm ABLoTS utilizes source code information and knowledge

about recently modified source code files.

9 CONCLUSION

In this paper, we studied whether utilizing additional development

artifacts, namely requirements, trace links, and their history can

improve bug localization. The proposed approach uses a bug re-

port as input and utilizes a traceability graph build from historical

project artifacts and relations among them. Our work led to Trace-

Score — an enhanced version history component taking advantage

of explicitly defined dependency and implementation trace links

as well as of requirement information available in a development

project. We evaluated TraceScore on 15 large scale open-source

projects with more than 13,000 bug reports in total. Further, we

compared our results to two state-of-the-art approaches (SimiScore

and CollabScore) that are used to analyze version history data today.

The evaluation results confirm that analyzing requirements and

traceability information can substantially support the bug report

to source code recovery process over previous approaches. Further-

more, we showed the effectiveness of TraceScore version history

component by integration into a recent bug localization algorithm.

We plan to plug TraceScore into more existing bug localization

approaches to study its interplay with there contained components.
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